
A Secure Comparison Technique for Tree Structured Data

Mohammad Ashiqur Rahaman

SAP Research

805, avenue Dr. Maurice du Donat

06250, Mougins, France

mohammad.ashiqur.rahaman@sap.com

Yves Roudier

EURECOM

2229, route des Crêtes

06560 Valbonne, France

Yves.Roudier@eurecom.fr

Andreas Schaad

SAP Research

Vincenz-Priessnitz-Str. 1, 76131, Karlsruhe

Germany, +49/62 27/78-43082

andreas.schaad@sap.com

Abstract

Comparing different versions of large tree structured

data is a CPU and memory intensive task. State of the art

techniques require the complete XML trees and their inter-

nal representations to be loaded into memory before any

comparison may start. Furthermore, comparing sanitized

XML trees is not addressed by these techniques. We pro-

pose a comparison technique for sanitized XML documents

which ultimately results into a minimum cost edit script

transforming the initial tree into the target tree. This method

uses encrypted integer labels to encode the original XML

structure and content, making the encrypted XML readable

only by a legitimate party. Encoded tree nodes can be com-

pared by a third party with a limited intermediate represen-

tation.

1. Introduction

Detecting changes in tree structured data has many ap-

plications such as aggregation of similar XML databases,

difference queries, versioning, or merging of documents.

When dealing with sensitive data, such as some organiza-

tional strategy, marketing, or financial transactions, a third

party performing the comparison should preferably not be

allowed to identify the XML structure or content. Although

comparison techniques for tree structured data and the gen-

eration of a minimum cost edit script using intermediate nor-

malized trees have been extensively studied [3, 4, 9], they

fall short with respect to (1) enabling a partial comparison

of large XML documents due to the memory footprint of

the trees and their intermediate normalized forms; and (2)

protecting sensitive data: a comparison is typically assumed

to be performed by a trusted party.

The differences between two versions of hierarchically

structured data can be described by a minimum cost edit

script that is a sequence of edit operations performed se-

quentially over the initial tree. A well known approach to

finding such a script is to have initial matches of node pairs

computed over the full trees of two versions in memory for

which comparison functions and approximations are further

applied [4]. However, this requires parsing both the source

and normalized trees multiple times (i.e. in pre-order, in-

order, post-order) and requires more time and memory.

We claim that a comparison technique utilizing en-

crypted breadth first order labeling (or EBOL) [11], a

method combining tree and event based parsing addresses

these requirements. The comparison technique proposed in

this paper has five key characteristics. It addresses large

XML documents. One such large WSDL of a SAP purchase

order can be found in [1]. This schema contains 442 ele-

ment definitions, of which 36 may occur unboundedly. Ex-

isting approaches use at least a full representation of the

trees in memory [4], or worse given intermediate represen-

tations [19]. EBOL based XML document parsing enables

partial comparisons. For example, WSDL documents may

only differ by an additional service operation resulting in

the addition of only few XML nodes. In addition to plain-

text XML tree comparison, our technique also supports the

protection of confidential information. It enables the com-

parison of encrypted XML nodes without exposing sensi-

tive structural information, like the number of nodes, size of

the document, content information such as plaintext values,

element names, attribute name-value pairs, or text content.

Our approach describes differences based on a sequence

(i.e. edit script) of edit operations (update, insert, delete,

move) performed on encrypted tree nodes. The edit opera-

tions are defined in terms of siblings rather than parent-child

hierarchies so as to enable partial comparison. Finally, our

algorithm produces a minimum cost edit script (MCES) in

a single pass algorithm over two versions of a document.

2. Related Work
Tree comparison techniques, which are generally based

on string matching techniques [8, 16, 17, 18] introduce very

diverse models. [6, 14, 20] supports insertion and deletion

anywhere in the tree whereas in [6], insertion is supported

only before deletion. In [12] insertion and deletion of single

nodes at the leaf level and updating of nodes anywhere in

the tree are allowed. In [4] a subtree movement (bulk op-

eration) for the ordered trees is introduced. [3] introduces

a

bb

e f e f

98938273

3519

7

d'n
5953 59

Tya

bb

e f e f
98938273

3519

7

c d
48 59

Tx

Figure 1. Comparing two trees, Tx(initial) and Ty(edited).

Solid lines represent appropriate matches.

techniques for unordered tree comparison including copy

operation. We define four atomic edit operations (i.e. up-

date, insert, delete, and move) that can be performed in-

dependently except the update operation which needs to be

performed before any of the other operations. A comprehen-

sive survey of edit script computation (or tree edit distance)

can be found in [2].

Matching algorithms for finding initial matches of node

pairs for ordered trees are presented in [13, 20]. The al-

gorithm of [20] runs in O(n2log2n), which is further im-

proved by [4] into O(ne+e2), n and e being the number

of leaf nodes and ’weighted edit distance’ respectively. The

minimum cost edit script algorithm of [4] runs in O(ND)
time, N being the total number of nodes of the two trees and

D the number of misaligned nodes. Our algorithm differs in

that it does not consider any initial match of node pairs be-

tween tree nodes; instead matches are computed as a side

effect of the minimum cost edit script computation. It runs

in O(N) time, N being the maximum number of nodes of

the two levels of the source trees [10].

[5] proposes the tree edit distance between two trees

should be computed based on the so called ’string edit

distance’ whereas [19] suggests ’binary branch distance’.

Both techniques require intermediate representations of the

source trees: two sequences of nodes by pre-order and post-

order traversal for [5], two binary tree representations of the

source trees for [19]. Our algorithm only requires a FIFO

queue storing one level of tree nodes.

[4] describes scenarios in which tree nodes, although or-

dered, contain unidentified (keyless) data. Tree comparison

relies on the semantic but unprotected tagging of the tree.

Our EBOL-based parsing technique realizes a similar but

protected tagging by associating unique encrypted identi-

fiers with parsed nodes.

3. Solution Model
Consider two XML trees, Tx (initial) and Ty (edited) of

Fig 1, each having two levels of nodes, any comparer (e.g.

third party) determines minimum cost edit script by finding

appropriate matches among encrypted nodes of these two

trees as shown by the solid lines. One level of a tree Tx is

said to be isomorphic [4] to a level of another tree Ty if they

are identical except for encrypted node names.

3.1. XML Parsing Model
We parse two XML document tree versions to be com-

pared in breadth first order. For each level of a tree ver-

sion, we take the sibling nodes (having the same parent) in

a

cb

d e f g

a

cb

d e f g

7,26,25,24,2

3,12,1

1,0 a

cb

d e f g

103,2787,2766,2748,27

35,1419,14

7,8

(I) XML Document (III) Encrypted BOL (EBOL)(II) Breadth First Order Labeling (BOL)

Figure 2. Solid and dotted lines represent explicit memory foot-

print and no memory footprint respectively. (II,III) are im-

plicit hierarchy representations of (I).

a FIFO queue and associate an integer pair called breadth

first order labels (BOL) to those nodes as these are stored in

FIFO order. Each such node, having associated integer pair,

captures various structural properties with a minimal mem-

ory footprint for hierarchical relationships (i.e. parent-child,

siblings, left/right child) of the parsed XML node [10].

In Fig 2, let a be the parent of nodes b, c. We denote a’s

BOL as Ba. Let forder and flevel be two functions operat-

ing on a BOL respectively returning the BOL order (1st at-

tribute of the BOL pair) and BOL depth (2nd attribute). Let

b be the last parsed child of a and that c to be parsed next.

BOL of c will be: forder(Bc)=forder(Bb) + 1; flevel(Bc)
uniquely identifies the depth level of the node c in a docu-

ment tree (i.e. Bc =(3, 1)).

A BOL is a plaintext and may reveal structure specific

information (number of nodes and thus the size of the docu-

ment), hierarchy relationship among the nodes to an adver-

sary. Encryption over such BOL (i.e. order and depth), de-

noted as EBOL, by preserving their original order, protects

this undesired disclosure [11]. In Fig 2 (III) is the EBOL

representation of (II). The EBOL of c is: Ec =(35, 14). For

simplicity, following figures skip the depth number.

An EBOL-based parsed XML node in a level has a

unique encrypted identifier and n children where each child

node xi has 0..i−1 left sibling and i + 1..n right sibling

nodes respectively. Intuitively, it avoids explicit hierarchy

representation and as such all the figures show the dotted

lines among parent and its children. For each node, x, we

assume a dummy first child node exists, (not shown in the

figures) denoted as xǫ which is used in edit operations.

By storing the parsed children of a node in a FIFO,

EBOL-based parsing implicitly preserves a node’s hierar-

chy information that allows to define reach edit operations

based on solely node’s sibling relationship. For example, in

Fig 4, when an event of startElement of the node b is sent,

b’s child nodes, i.e. d, e, including the dummy child node bǫ

are queued in the FIFO
II
−→. Consequently, we can delete the

internal node b (i.e. (Del(19))) without deleting its children.

Moreover, the memory required for parent-child relation-

ship of b and its children; and their sibling relationship can

be freed as the sibling nodes, i.e. children, are stored in sib-

ling order in the queue. Similarly, an internal node can be

moved as its children are queued for the next level parsing.

3.2. Edit Operations Model

We refer to a node x’s encrypted name value with the

valx and to an EBOL-based parsed XML document with

a

bb

e f e f

98938273

35
19

7

c d

48 59

a

bb

e f e f
98938273

35
19

7

c d'
48 59

Upd(59, d’)

Upd(59, d)

Ins(53,n,19)

Del(53)

a

bb

e f e f
98938273

35
19

7

c d'

48

n
53

Mov(59,53)

Mov(59,48)

a

bb

e f e f
98938273

35
19

7

n d'

53 59
c

48

Del(48)

Ins(48,c,35)

a

bb

e f e f
98938273

3519

7

d'

59
n

53
59

T0 T1
T2 T3

T4s1 s2 s3
s4

Figure 3. Basic edit operations on encrypted tree structured data.

the tree, Ti. Ti+1 refers to the resulting tree after performing

an edit operation on Ti.

• Update: The update operation of the value of a node

x in Ti, denoted as Upd(x,val), leaves Ti+1 as of Ti

except the value of x is val in Ti+1. This is depicted in

T0 and T1 of Fig 3 for Upd(59,d’).

• Insert: The insertion of a new node x with a value v

after the node k of Ti is denoted as Ins(x,v,k). The value

v is inserted after k as its immediate right sibling node

in Ti. In particular, if r1, ..., rm are the right sibling

nodes of k in that order in Ti, then x, r1, ..., rm are the

right sibling nodes of k in Ti+1. In case of an insertion

of a node as a first sibling node, k is considered to be

the dummy node as mentioned in Section 3.1. Insertion

can be performed after any leaf or internal node. (T1

and T2 of Fig 3 for Ins(53,n,19).

a

b

d e
6648

19

7

c
35

l0

a

l1

b

c

l2

c

d

e
a€

a€

b€

l1

l2

d

e

c€

l3

b€

I

III

V

II

IV
e

c€

d€

l3

c€

d€

e€

a

d e
6648

7

c
35

c

d

e

a€

b€

l2II
Del(19)

Figure 4. Deleting an internal node, b, (Del(19)). The FIFO

stores the sibling nodes (d, e) of the 2nd level
II
−→. The

nodes including the dummy nodes in one level are delim-

ited by two li entries.

• Delete: The deletion of a node x from Ti, is denoted as

Del(x). The resulting Ti+1 is the same as Ti without the

node x. In particular, if l1, ...ln, x, r1, ..., rm is the sib-

ling sequence in a level of Ti, then l1, ...ln, r1, ..., rm

is the sibling sequence in Ti+1. To delete a leaf sibling

node is straightforward as depicted in T3 and T4 of Fig

3 for Del(48). When deleting an internal sibling node,

its children are stored in the FIFO queue as shown in

Fig 4 so that these nodes can be fetched from the queue

and thus be considered for the next level comparison.

• Move: The move of a node x after the node y, is de-

noted as Mov(x,y) in Ti. Ti+1 is the same as Ti, except

x becomes the immediate right sibling of y. The chil-

dren of the moved node are kept in the queue in similar

fashion as the delete operation. (T2 and T3 of Fig 3 for

Move(59,53))

Mov(53,73) a

bb

e f e f
98938273

3519

7

d'
59

53

T2

n

a

bb

e f e f
98938273

3519

7

cd'
4859

n
53

T1

c
48

Figure 5. Inter level moving of node n in 1st level of T1 to 2nd

level of T2.

If a node is moved in the same level then it is an intra

level move (as in Fig 3). However, for any inter level move,

as in Fig 5, the node n of T1 is moved after the node e to

the lower level, requires different strategy [10]. In particu-

lar, for the first level comparison it will be identified as n

is deleted whereas it is moved to another level. Intuitively,

when a node is moved upwards in a higher level it would be

matched for the insert case as it is a new node for that level.

3.3. Edit Script and Cost Model

We formalize edit script and its cost model in simi-

lar fashion of [4, 7, 15, 19]. An edit script, S, is a se-

quence of edit operations when applied to T0 transforms

it to Ti. For a sequence S = s1 . . . si of edit opera-

tions, we say T0

S
−→ Ti if there exist T1, T2, . . . Ti−1

such that T0

s1−→ T1

s2−→ T2 . . . Ti−1

si−→ Ti.

S ={Upd(59, d′), Ins(53, n, 19), Mov(59, 53), Del(48)} is an

edit script that transforms T0 to T4 of Fig 3.

Several edit scripts may transform T0 into the same

resulting tree T4. For example, the edit script, S′ =

{Del(59), Ins(59, d′, 48), Ins(53, n, 19), Del(93), Del(98),-

Del(35),Ins(35, b, 48), Ins(93, e, bǫ), Ins(98, f, 93), Del(48)},

when applied in Fig 3, it also transforms T0 to T4. Note

that, for the insertion of Ins(93, e, bǫ) the dummy node bǫ

is considered.

Clearly, the edit script, S′, performs more work than that

of S and thus it is an undesirable edit script to transform T0

to T4. In effect, to determine a minimum cost edit script a

cost model is required. The cost of an edit operation depends

on (1) the type of operation and (2) the nodes involved in

the operation. Let Cd(x), Ci(x), Cu(x), and Cm(x) de-

note respectively the cost of deleting, inserting, updating

and moving operations respectively. Regarding (2), the cost

may depend on the value of the encrypted value represented

by node x and its position in the sibling order in a level.

In this paper, we use a simple cost model similar to [4]

where deleting, inserting, and moving a node are considered

to be unit cost operations, i.e. Cd(x)=Ci(x)=Cm(x)=1
for all x. For the cost Cu(x) of updating an encrypted

value associated to a node x, a function diff is defined

as: diff(valx, valy) that returns 0 if encrypted values rep-

resented by valx and valy are same, otherwise a nonzero

value is returned indicating that there has been an update.

4. Determining Edit Script (MCES)
We refer to a level of EBOL-based parsed XML nodes

of Tx as l(Tx), to a node x as a node in a level and to a two

dimensional array M as consisting of matched node pairs

(xi, yj), where xi ∈ Tx and yj ∈ Ty for i, j ∈N. We define

a function exist(args) when applied on a tree Ty (or array

M), returns the valy (or TRUE) if Ex matches Ey of a node

y in Ty (or xi matches any node in M as a peer node) i.e.

∃Ey =Ex or (∃xk =xi in M), where valy is the encrypted

node value associated to y. The function exist(args) takes

arguments depending on the invoking edit operation.

4.1. Appropriate Matching
We assume two root nodes match without loss of gener-

ality. We want to find appropriate matching pairs during the

execution of the MCES algorithm rather than finding initial

matches and then updating those. The rationale is: (1) Initial

match finding requires parsing the large XML documents

and their normalized forms into memory before any com-

parison may start which is undesirable in our context. (2)

Partial comparison requires appropriate matching of sibling

nodes without knowing their descendants. (3) The matching

should be performed over encrypted values as opposed to

plaintext values. For (1), we utilize the EBOL based parsed

nodes of a level as a first class values for comparison. For

(2), we define matching criteria for a node that do not re-

quire comparing descendant nodes except its direct children

that are stored in the queue. For (3), matching criteria are

applied over the encrypted values of XML nodes. A first cri-

terion determines whether an attempt to match nodes should

be made based on the similarity of their encrypted values.

Criterion 1: Sibling nodes x∈Tx and y∈Ty match only

if Ex =Ey .

Given the first criterion is fulfilled, the function

diff(valx, valy) is called to check whether nodes have

been updated. As we rely on symmetric and determinis-

tic encryption, this check is merely matching the corre-

sponding ciphertexts. Further to this verification, a second

criterion is applied: two nodes match only if their direct

children also potentially match. We define two functions

same(x, y) and max(|x|, |y|) where x and y are the nodes

to be compared and |x| and |y| are their number of children.

same(x, y) returns the number of child nodes having the

same EBOL and max(|x|, |y|) returns an integer represent-

ing the maximum number of child nodes of the two nodes.

Criterion 2: Sibling nodes x∈Tx and y∈Ty match only

if same(x, y)

max(|x|, |y|)
> t; where 0 ≤ t ≤1.

t is a threshold value that depends on the domain and cho-

sen by the comparer. For instance, if the comparing XML

trees are two purchase order documents having lot of item,

Figure 6. (I) The tree T0 is transformed to T4 which is isomor-

phic to Ty . (II,III,IV,V) The transformed trees T1, T2, T3,

and T4 after edit operations Upd(59, d′), Ins(53, n, 19),

Move(59, 53), and Del(48) respectively.

price, quantity elements then it is quite likely that two

documents have lot of same elements in a level and as

such, the comparer can choose a higher value for t ≥ 1

2
.

If two WSDL documents are compared to check operations

change (addition or remove) then probably the value of t is

lower, i.e. t≤ 1

2
as the number of operations are less.

Finally, we assume that the number of similar nodes of

a level of a tree with a level of another tree is not smaller

than that of dissimilar nodes. As such, one node has bigger

chance to match with another node if their sibling nodes

also potentially match. This assumption reflects the goal of

partial comparison where two versions of a document differ

mostly in the same level.

4.2. MCES Algorithm
The algorithm, shown in Fig 7, takes one level of tree

nodes from Tx and Ty and combines all the edit cases in one

breadth-first traversal of Tx and Ty . It makes use of aux-

iliary functions exist, UpdateMatch, ArrangeSibling, and

FindSibling described in Fig 8 and detailed in [10]. We as-

sume there is a multi threading control mechanism exist that

disallows updating M and S by an edit case while another

is updating them and thus is not depicted in the algorithm.

Fig 6 illustrates how to determine a MCES that transforms

Tx =T0 to T ′x =T4 by finding appropriate matches.

1. Input: l(Tx), l(Ty); Output: M and S.

2. M = ǫ; S = ǫ

3. Load the nodes of l(Tx) and l(Ty). /*load one level of Tx and Ty*/

4. Update Case: for each node x∈ l(Tx)

(a) valy = exist(x,−, U,−)

(b) if valy ! = NULL

UpdateMatch((x, y), Update).

v = diff(valx, valy). /*appropriate matching*/

i. if(v! = 0)
A. Append Upd(x, valy) to S.

B. Apply Upd(x, valy) to Tx.

5. Insert Case: for each yj ∈ l(Ty); if exist(−, yj ,−, M) =
FALSE /*yj 6∈ M ; yj as a peer node*/

(a) k = FindSibling(yj).

(b) UpdateMatch((k, yj), Insert).

(c) Append Ins(yj , valyj
, k) to S.

(d) Apply Ins(yj , valyj
, k) to Tx.

6. Move Case: Take the sequences of misarranged siblings: Lx, Ly ;

(a) X = ArrangeSibling(Lx, Ly) /*Missarranged nodes of

Tx*/

(b) for each xi ∈ X

i. kn = FindSibling(xi).

ii. if n>i then UpdateMatch((xn+1, yj), Delete).

/*if moved to right*/

if n < i then UpdateMatch((xn+1, yj), Insert).

/*if moved to right*/

iii. Append Mov(xi, k) to S.

iv. Apply Mov(xi, k) to Tx.

7. Delete Case: for each xi ∈ Tx; if exist(xi,−,−, M) = true

/*if xi 6∈ M ; xi as a peer node*/

(a) UpdateMatch((xi,), Delete).

(b) Append Del(xi) to S.

(c) Apply Del(xi) to Tx.

Figure 7. Algorithm Minimum Cost Edit Script(MCES)

Update Case. For each node x of T0 the function exist()
is invoked to find whether xi exists in Ty . If so, the function

returns valy , then the function diff(valx, valy) is called.

If a nonzero value is returned, we add the edit operation

Upd(x, valy) to S, and a matched pair (xi, yj) to M . Con-

sequently, we apply the update operation to T0. Ultimately,

T0 is transformed to T1 by assigning valx = valy such that

Ex = Ey for each node x in T0 which has a corresponding

identifier in Ty (exist(xi,−, U,−) in Ty). Even if there is

no updated node in Ty meaning a 0 is returned from diff ,

M may have pairs in which each peer has a corresponding

matched node in the other tree. Fig 6(II) shows that apply-

ing Upd(59, d′) to T0 results into T1. Fig 6(II) also shows

the matching node pairs in M .

Insert Case. To find the inserted nodes in Ty , we take

the nodes, w of Ty where w is not a peer in any of the

pairs in M . For each such w we add the edit operation

Ins(w, valw, k) to S, meaning w will be inserted after node

k in Tx with the encrypted value valw. The position k is

determined with respect to the sibling position of already

matched pairs of M . In particular, the peer node xi of Tx in

1. Function exist(xi, yj ,U,M)

(a) if (U) then for each node yj ∈ l(Ty); /*update case*/

do if Ey =Ex return valyj
; else return NULL; endfor

(b) if (M) then for each node pair ∈ M

if yj 6∈ M ; return true; /*insert case*/

if xi 6∈ M return true; /*delete case*/

2. Function UpdateMatch((xi, yj), editcase)

q, t, u, v are integers

(a) if (editcase=Update)

then M [q] = (xi, yj), such that ∀t, 0 < t < q; M [t] =
(xu, yv) and i>u. /*adding pair nodes in M*/

(b) if (editcase=Insert) for each pair M [q]= (xu, yv), such that

u>i, do M [q + 1] = (xu, yv). endfor

M [i]=(xi, yj) /*updating sibling position*/

(c) if (editcase=Delete) for each right sibling node, xu>i of xi,

such that (xu, yv)∈M do /*updating sibling position*/

replace u with u− 1; i.e. (xu−1, yv) = (xu, yv). endfor

3. Function ArrangeSibling(Lx, Ly)

Compute Lxy = LSS(Lx, Ly). return ∀x 6∈ Lxy ; /*misarranged

peer node*/

4. Function FindSibling(yk)

for each (xi, yj)∈M

if (yk is the right sibling of yj) return xi. /*left peer node*/

Figure 8. Functions exist, UpdateMatch, ArrangeSibling, Find-

Sibling invoked by MCES algorithm.

M(xi, yj) for which w is the immediate right sibling of yj ,

is the node k in Tx. We apply the insert operation to Tx and

add the node pair, (xk+1, wj+1) to M . If w is the first sib-

ling in Ty , i.e. left most child, then k is considered to be the

dummy child node of the level in question of Tx. In effect,

insertion operation changes the sibling positions of existing

peer nodes of Tx in M . Fig 6(III) shows the resulting tree

T2 after Ins(53, n, 19) and the updated sibling positions of

peer nodes in M . For clarity, only the new solid line resulted

for the new matched pair is shown in the figure.

Move Case. In this case, we consider the pairs of M for

which peer node’s sibling positions are not the same. If it

is the case we say peer nodes are misarranged. In Fig 6(III)

nodes 35, 59 in T2 are misarranged with respect to their re-

spective sibling positions in Ty as depicted in M . We add

move operations to S to arrange the sibling order. We ex-

plain the details in Section 4.3. In Fig 6(III), a Mov(59, 53)
is added to S, and applied to T2 to transform it to T3 (Fig

6(IV)). Note that no new match is found by this operation,

however the sibling positions of 35, 59 are changed as de-

picted in M .

Delete Case. To find the deleted nodes of Tx, we take the

nodes x in Tx such that x is not a peer in any of the pairs

in M . For each such node x, we say that either it is deleted

from the level it was in Tx or it is moved to some other level.

For the partial comparison purpose, we can safely conclude

the former. Accordingly, we can add operation Del(x) to S

which in turn changes the existing sibling positions in M as

insertion and move cases. Fig 6(V) shows the resulting tree

T4 after performing Del(48) on T3.

When the algorithm runs for the first level, the MCES

Figure 9. Appropriate matching by rearranging sibling nodes.

S = (Upd(59, d′),Ins(53, 19),Move(59, 53),Del(48)) is gen-

erated that transforms T0 to T4 which is isomorphic to Ty

with respect to first level and M contains the matched pairs

nodes of that level (Fig 6). Intuitively, the algorithm can be

applied repeatedly for other levels and as such Tx can be

transformed to an isomorphic tree of Ty in one pass of the

algorithm. In Fig 6 the tree T4 happens to be isomorphic to

Ty for the second level also.

4.3. Rearranging Sibling Nodes

As mentioned in the move case (Fig 6(III)) there might

be misarranged peer nodes in M . In Fig 9 (shows the sib-

lings of Fig 6(III)), there are at least three sequences of

moves to arrange the sibling nodes of T2 to transform to T3:

(1) moving nodes c and d′ after n in that order. (2) mov-

ing the node b after d′. (3) moving the node d′ after n. All

yield the same transformed tree. Clearly, the first is undesir-

able as it requires more moves and thus concedes more cost.

However, to pick the desired one from the rest two, having

one move, is also tricky as the former has direct children as

opposed to the latter and thus the former potentially require

more moves. In case of several sequences having the same

number of moves any one can be picked. To ensure the edit

script incurs minimum cost, the shortest sequence of moves

to arrange the siblings is determined by finding the longest

sibling sequence (LSS) of nodes complying with the sec-

ond criteria of Section 4.1 (see [10] for details).

5. Conclusion

We have provided a comprehensive technique and an

algorithm to compare sanitized tree structured data and

generate a minimum cost edit script. We showed how to

achieve partial comparison over such trees without memory

intensive intermediate representations. While the solution is

geared to sanitized XML data it is equally applicable to any

plaintext tree.

References

[1] A Purchase Order WSDL Document,

SAP Enterprise Services Workplace,

http://esoadocu.sap.com/socoview(bd1lbizjptgwmczkpw1p

bg==)/get wsdl.xml?packageid=dbbb6d8aa3b382f191e00

00f20f64781&id=0afcbb068cee3d59a67b420bc73f2f1b.

[2] P. Bille. A survey on tree edit distance and related problems.

Theoretical Computer Science, 337:217–239, 2005.

[3] S. S. Chawathe and H. Garcia-Molina. Meaningful change

detection in structured data. In SIGMOD ’97: Proceed-

ings of the 1997 ACM SIGMOD international conference

on Management of data, pages 26–37, New York, NY, USA,

1997. ACM.

[4] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and

J. Widom. Change detection in hierarchically structured in-

formation. In SIGMOD ’96: Proceedings of the 1996 ACM

SIGMOD international conference on Management of data,

pages 493–504, New York, NY, USA, 1996. ACM.
[5] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and

T. Yu. Approximate xml joins. In SIGMOD ’02: Proceed-

ings of the 2002 ACM SIGMOD international conference on

Management of data, pages 287–298, New York, NY, USA,

2002. ACM.
[6] T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an

alternative to tree edit. In CPM ’94: Proceedings of the

5th Annual Symposium on Combinatorial Pattern Matching,

pages 75–86, London, UK, 1994. Springer-Verlag.
[7] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to es-

timate selectivity of string matching with low edit distance.

In VLDB ’07: Proceedings of the 33rd international con-

ference on Very large data bases, pages 195–206. VLDB

Endowment, 2007.
[8] E. W. Myers. An o(nd) difference algorithm and its varia-

tions. Algorithmica, 1:251–266, 1986.
[9] A. Nierman and H. V. Jagadish. Evaluating structural simi-

larity in xml documents. pages 61–66, 2002.
[10] M. A. Rahaman and Y. Roudier. An Efficient Comparison

Technique for Sanitized XML Trees. Technical Report RR-

09-229, Eurécom, 05 2009.
[11] M. A. Rahaman, Y. Roudier, P. Miseldine, and A. Schaad.

Ontology-based Secure XML Content Distribution. In IFIP

SEC 2009, 24th International Information Security Confer-

ence, May 18-20, 2009, Pafos, Cyprus, May 2009.
[12] S. M. Selkow. The tree-to-tree editing problem. Inf. Process.

Lett., 6(6):184–186, 1977.
[13] D. Shasha and K. Zhang. Fast parallel algorithms for the

unit cost editing distance between trees. In SPAA ’89: Pro-

ceedings of the first annual ACM symposium on Parallel al-

gorithms and architectures, pages 117–126, New York, NY,

USA, 1989. ACM.
[14] D. Shasha and K. Zhang. Approximate tree pattern match-

ing. In In Pattern Matching Algorithms, pages 341–371. Ox-

ford University Press, 1997.
[15] E. Ukkonen. Approximate string matching with q-grams and

maximal matches. Technical report, 1991.
[16] R. A. Wagner. On the complexity of the extended string-

to-string correction problem. In STOC ’75: Proceedings of

seventh annual ACM symposium on Theory of computing,

pages 218–223, New York, NY, USA, 1975. ACM.
[17] R. A. Wagner and M. J. Fischer. The string-to-string correc-

tion problem. J. ACM, 21(1):168–173, 1974.
[18] S. Wu, U. Manber, G. Myers, and W. Miller. An

o(np) sequence comparison algorithm. Inf. Process. Lett.,

35(6):317–323, 1990.
[19] R. Yang, P. Kalnis, and A. K. H. Tung. Similarity evaluation

on tree-structured data. In SIGMOD ’05: Proceedings of the

2005 ACM SIGMOD international conference on Manage-

ment of data, pages 754–765, New York, NY, USA, 2005.

ACM.
[20] K. Zhang and D. Shasha. Simple fast algorithms for the

editing distance between trees and related problems. SIAM

J. Comput., 18(6):1245–1262, 1989.

