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HONEYPOT TRACES FORENSICS: THE
OBSERVATION VIEW POINT MATTERS

Van-Hau Pham and Marc Dacier

Abstract

In this paper, we propose a method to identify and group together traces
left on low interaction honeypots by machines belonging to the same bot-
net(s) without having any a priori information at our disposal regarding these
botnets. In other terms, we offer a solution to detect new botnets thanks
to very cheap and easily deployable solutions. The approachis validated
thanks to several months of data collected with the worldwide distributed
Leurré.com system. To distinguish the relevant traces from the other ones,
we group them according to either the platforms, i.e. targets hit or the coun-
tries of origin of the attackers. We show that the choice of one of these two
observations view points dramatically influences the results obtained. Each
one reveals unique botnets. We explain why. Last but not least, we show
that these botnets remain active during very long periods oftimes, up to 700
days, even if the traces they left are only visible from time to time.
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1 Introduction

There is a consensus in the security community to say that botnets are today’s
plague of the Internet. A lot of attention has been paid to detect and eradicate
them. Several approaches have been proposed for this purpose. By identifying the
so calledCommand and Control (C&C)channels, one can keep track of all IPs
connecting to it. The task is more or less complicated, depending on the type of
C&C (IRC [2, 4, 6, 7, 14, 20], HTTP [3, 5, 23], fast-flux based or not[12, 16, 21],
P2P [8, 13, 24, 26], etc.) but, in any case, one needs to have some insight about
the channels and the capability to observe all communications on them. Another
approach consists in sniffing packets on a network and in recognizing patterns of
bot-like traffic. This is, for instance, the approach pursued by [9–11] and [22, 25].
The solutions mostly aim at detecting compromised machinesin a given network
rather than to study the botnets themselves as they only see the bots that exist within
the network under study.

In this work, we are interested in finding a very general technique that would
enable us to count the amount of various botnets that exist, their size and their life-
time. As opposed to previous work, we are not interested in studying a particular
botnet in details or in detecting compromised nodes in a given network. We also
do not want to learn the various protocols used by bots to communicate in order to
infiltrate the botnets and obtain more precise information about them [20]. By do-
ing so, we certainly will not be able to get as much in depth information about this
or that botnet but our hope is to provide insights into the bigger picture of today’s
(and yesterday’s) botnets activities.

Before describing our approach, it is crucial to understandthe subtle difference
that exists between counting the amount of machines launching a given attack and
the amount of machines members of a given botnet. It is very misleading to be-
lieve that one can derive the latter from the former. Indeed,it is quite common to
see several distinct botnets relying on the same attack vector to compromise more
hosts. In such case, the total amount of machines observed using a given attack
vector will be greater or equal to the sum of all members of allthese botnets (it can
be greater as machines not belonging to any botnet may also launch this attack).
Clearly, any approach relying on simply summing up countersbased on attack
vectors characteristics (e.g. ID alerts, firewall logs, AV detection, etc.) is likely to
grossly overestimate the size of botnets.

The solution described in the following is generic and simple to deploy widely.
It relies on a distributed system of low interaction honeypots. Based on the traces
left on these honeypots, we provide a technique that groups together the traces that
are likely to have been generated by groups of machines controlled by a similar
authority. Since we have no information regarding theC&C they obey to, we do
not know if these machines are part of a single botnet or if they belong to several
botnets that are coordinated. Therefore, to avoid any ambiguity, we write in the
following that they are part of aarmy of zombies. An army of zombiescan be a
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single botnet or a group of botnets the actions of which are coordinated during a
given time interval.

In this paper, we propose a technique to identify and study the size as well
as the lifetime of sucharmies of zombies. We show that armies can stay active
for very long periods of time, up to 700 days, even if they manifest themselves
only from time to time. The approach does not pretend to be able to identify all
armies of zombiesthat could be found in our dataset. At the contrary, we show that,
depending on how the dataset is preprocessed, i.e. depending on the observation
viewpoint, different armies can be found. Exhaustiveness is not our concern at this
stage but, instead, we are interested in offering an approach that could easily be
widely adopted and that offers a much better picture of the reality of the problem.

The idea exposed here is similar, in its spirit, to the one presented in the paper
coauthored by Allmann et al. [1]. However, instead of ”[...] leveraging the deep
understanding of network detectives and the broad understanding of a large num-
ber of network witnesses to form a richer understanding of large-scale coordinated
attackers”, our approach relies on a diverse yet limited number of low interaction
honeypots. They do not need to be neither as smart as the network detectives nor
as numerous as the network witnesses proposed in that work. Both approaches are
quite complementary.

The reminder of the paper is organised as follows. Section 2 defines the terms
used in the paper. Section 3 describes the dataset we have used and what we
mean when we refer to the notion ofobservation viewpoint. It also explains why
it matters when trying to identifyarmies of zombies. In Section 4, we describe the
method itself that we have applied to find these armies, we provide the main char-
acteristics of the results obtained as well as two precise, yet anecdotal, examples
of armies detected thanks to our method. Finally, Section 5 concludes the paper.

2 Terminology

In order to avoid any ambiguity, we introduce a few terms thatwill be used
throughout the text.

• Platform : A physical machine simulating, thanks to honeyd [19], the pres-
ence of three distinct machines. A platform is connected directly to the
Internet and collects tcpdump traces that are fed on a daily basis into the
centralized Leurré.com’s database.

• Leurr é.com: The Leurré.com project is a distributed system of platforms as
defined earlier, deployed in more than 50 different locations in 30 different
countries. More detailed information about it can be found in [15]

• A Sourcecorresponds to an IP address that has sent at least one packetto, at
least, one platform. It is important to understand that a given IP address can
correspond to several distinct sources. Indeed, a given IP remains associated
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to a given source as long as there is no more than 25 hours between 2 packets
received from that IP. After such a delay, a new source identifier will be
assigned to the IP. By grouping packets by sources instead ofby IPs, we
minimize the risk of gathering packets sent by distinct physical machines
that have been assigned the same IP dynamically after 25 hours.

• A Cluster is made of a group of sources that have left highly similar net-
work traces on all platforms they have been seen on. Clustershave been
precisely defined in [18]. They aim at grouping together attackers that are
likely launching attacks with the very same attack tool.

• A Cluster time seriesΦT,c is a function defined over a period of timeT , T

being defined as a time interval (in days). That function returns the amount
of sources per day associated to a clusterc.

• An Observed cluster time seriesΦT,c,op is a function defined over a pe-
riod of time T , T being defined as a time interval (in days). That function
returns the amount of sources per day associated to a clusterc that can be
seen from a givenobservation view pointop. The observation view point
can either be a specific platform or a specific country of origin. In the
first case,ΦT,c,platformX

returns, per day, the amount of sources belong-
ing to clusterc that have hitplatformX . Similarly, in the second case,
ΦT,c,countryX

returns, per day, the amount of sources belonging to cluster
c that are geographically located incountryX . Clearly, we always have:
ΦT,c =

∑∀i∈countries ΦT,c,i =
∑∀x∈platforms ΦT,c,x

• An attack event is defined as a set of observed cluster time series exhibiting
a particular shape during a limited time interval. This timeinterval typically
lasts a couple of days but it can be as short as a single day in the case of ob-
served cluster time series having a one day peak of activities. The existence
of attack events highlights the coordinated activities of several attacking ma-
chines. It is important to notice that the set can be singleton. This is typically
the case when the set is a peak of activities on a single day.

We denote the attack eventi asei = (Tstart, Tend, Si) where the attack event
starts atTstart, ends atTend andSi contains a set of observed cluster time
series identifiers(ci, opi) such that allΦ[Tstar−Tend),ci,opi

are strongly corre-
lated to each other∀(ci, opi) ∈ Si. As an example, the top plot of Figure 1
represents the attack event 225 which consists of cluster 60332 (targeting
port 5900 TCP) attacking seven platforms 5,8, 11, ...,31. Each curve repre-
sents the amount of sources of that cluster observed from oneof these plat-
forms. As we can observe, the attack event start at day 393 andends at day
400. According to our convention, we havee225 = (393, 400, {(60232, 5), (60232, 8), ..., (60232, 31)}).

Similarly, the bottom plot of Figure 1 represents the attackevent 14 which
consists of activities of cluster 0 on day 307 coming almost only from Spain.
So,e14 = (307, 307, {(0, ES)})
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Figure 1: on the top plot, cluster 60232 attacks seven platforms from day 393 to
day 400. On the bottom plot, peak of activities of cluster 0 from Spain on day 307

3 IMPACT OF OBSERVATION VIEW POINT

3.1 Dataset Description

In order to have a clean dataset for our experiments, we have selected the traces
observed on 40 platforms out of the 50 that we had at our disposal. All these 40
platforms have been running for more than 800 days. During this period, none of
them has been down for more than 10 times and each of them has been up contin-
uously for at least 100 days at least once. They all have been up for a minimum of
400 days over that period. The total amount of sources observed, day by day, on
all these 40 platforms can be denoted by the initial time seriesTS over a period
of 800 days. We can split that time series per country1 of origin of the sources.
This gives us 231 time seriesTSX where theith point of such time series indi-
cates the amount of sources, observed on all platforms, located in countryX. We
represent byTS L1 the set of all these Level 1 time series. To reduce the com-
putational cost, we keep only the countries from which we have seen at least 10
sources on at least one day. This enables us to focus on 85 (theset of correspond-
ing countries is calledbigcountries), instead of 231, time series. We represent by
TS L1′ this refined set of Level 1 time series. Then, we split each of these time
series by cluster to produce the final set of time seriesΦ[0−800),ci,countryj

∀ci and
∀countryj ∈ bigcountries. Theith point of the time seriesΦ[0−800),X,Y indicates
the amount of sources originating from countryY that have been observed on day
i attacking any of our platforms thanks to the attack defined bymeans of the cluster
X. We represent byTS L2 the set of all these Level 2 time series. In this case
|TS L2| is equal to 436,756 which corresponds to 3,284,551 sources.

1The geographical location is given to us thanks to the Maxmind product, based on the IP ad-
dress. However, some IPs can not be mapped to any real countryand are attached to labels not
corresponding to any country, e.g. EU,A1,..
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As explained in [17], time series that barely vary in amplitude over the 800 days
are meaningless to identify attack events and we can get rid of them. Therefore, we
only keep the time series that highlight important variations during the 800 days
period. We represent byTS L2′ this refined set of Level 2 time series. In this case
|TS L2′| is equal to 2,420 which corresponds to 2,330,244 sources.

We have done the very same splitting and filtering by looking at the traces on
a per platform basis instead of on a per country of origin basis. The corresponding
results are given in Table 1.

TS consists of 3,477,976 sources
OVP country platform
|TS L1| 231 40
|TS L1′| 85 40

(94,4% TS) (100% TS)
|TS L2| 436,756 395,712
|TS L2′| 2,420 2,127
sources 2,330,244 2,538,922

(67% ofTS) (73% ofTS)

Table 1: dataset description:TS: all sources observed on the period under study, OV P :
observation view point, TS L1: set of time series at country/platform level, TS L1′: set
of significant time series inTS L1, TS L2 : set of all cluster time series, TS L2′ set of
strongly varying cluster time series

3.2 Attack Event Detection

Having defined the time series we are interested in, we now want to find attack
events, that is we now want to identify all time periods during which 2 or more of
these observed cluster time series are correlated together.

To do this, in a first step, we fix the time period to a value of L days and we
use a sliding window of size L to assess the correlation of allpairs of time series
over such sliding window. Therefore, given N time series of length T, we must
compute the correlation of N time series for T-L+1 time interval {[1, L], [2, L +
1], . . . [T − L, T ]}. As a result, we obtain the correlated time intervals for every
pair of time series in N. A correlated time interval of two cluster time series is
the interval in which two time series are correlated. After this first step, we group
together all pairs of cluster time series that are correlated together over the same
period of time. Each group of correlated observed cluster time series over a given
period of time constitutes what we have defined as anattack event.

It is worth noting that this method, which we refer to asM1 in the sequel, can
not detect attack events made of one observed cluster time series. This is typically
the case for peaks of activities occurring on a single day. Insuch simpler cases, it
is much more efficient to apply another, less expensive, algorithm to identify the
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attack events. This is what we have done. For the sake of conciseness, we have
decided not to include the description of this second method, M2, in the paper as
it lies outside the scope of the message we are interested to deliver.

In the first case, the techniques used to find strongly correlated time series are
classical ones developed within the signal processing community. We refer the
interested reader to our previous work [17] where we have covered them in some
more detail and have positioned them with respect to the state of the art in this
domain. It is worth stressing that, in this earlier publication, the methodology
used was very different as well as the results presented. Indeed, in that first work,
we have presented a cheap algorithm, based on heuristics, tovalidate the mere
existence of attack events whereas in this work, we have carried out an expensive,
brute force approach, to study and analyze the relationships between all attack
events one could find in a much larger dataset.

3.3 Impact of Observation View Point

3.3.1 Results on Attack Event Detection

We have applied the attack events identification techniquesto our 2 distinct
datasets, namelyTScountry andTSplatform. For the time series inTScountry, the
first method M1 (resp. second method M2), i.e. the general one, has found 549
(resp. 43) attack events. The total amount of sources found in these attack events is
552,492 for the first method and 21,633 for the second one. Thus, all in all, sources
participating to identified attack events account for 574,125 sources (corresponding
to 16,5% of all sources contained in our initial dataset). Similarly, when working
with the time series found inTSplatform, we end up with a total of 690 attack
events this time, containing 578,372 sources. The results are given in Table 2

Table 2: Result on Attack Event Detection
AE-set-I(TScountry) AE-set-II(TSplatform)

No.AEs No.sources No.AEs No.sources
M1 549 552,492 564 550,305
M2 43 21,633 126 28,067
Total 592 574,125 690 578,372
No.AEs: amount of attack events
M1,M2: methods represented in Section 3.2

3.3.2 Analysis

The table highlights the fact that depending on how we decompose the ini-
tial set of traces of attacks (i.e the initial time seriesTS), namely by splitting it
by countries of origin of the attackers or by platforms attacked, different attacks
events show up. To assess the overlap between attack events detected from differ-
ent observation view points we use thecommon source ratio, namely csr, measure
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as follows:

csr(e,AEop′) =

∑

∀e′∈AEop′
|e ∩ e′|

|e|

in which e ∈ AEop and |e| is the amount of sources in attack evente, AEop is
AEcountry andAEop′ is AEplatforms (or vice versa).
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Figure 2: CDF common source ratio

Figure 2 represents the two cumulative distribution functions corresponding to
this measure. The point(x, y) on the curve means that there arey ∗100% of attack
events obtained thanks toTcountry (respTplatforms) that have less thanx ∗ 100%
of sources in common with all attack events obtained thanks to Tplatforms (resp
Tcountry). TheTcountry curve represents the cumulative distribution obtained in
this first case and theTplatforms one represents the CDF obtained when starting
from the attacks events obtained with the intialTplatforms set of time series. As
we can notice, around 23% (resp. 25%) of attack events obtained by starting from
theTcountry (resp.Tplatform ) set of time series do not share any sources in com-
mon with any attack events obtained when starting the attackeven identification
process from theTplatform (resp.Tcountry ) set of time series. This corresponds to
136 (16,919 sources) and 171 (75,920 sources) attack eventsnot being detected. In
total, there are 288,825 (resp. 293,132) sources present inAE-Set-I (resp. AE-Set-
II), but not in AE-Set-II (resp. AE-Set-I). As a final note, there are in total 867,248
sources involved in all the attack events detected from bothdatasets which cor-
respond to 25% the attacks observed in the period under study. This number is
coincidentally comparable with work in [20], in which, witha much more com-
plicated technique, the authors claim that:“[...] 27% of all malicious connection
attempts observed from our distributed darknet can be directly attributed to botnet
related spreading activity“.

3.3.3 Explanation

There are good reasons that explain why we can not rely on a single viewpoint
to detect all attacks events. They are described here below.
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Split by country: Suppose we have one botnetB made of machines that are lo-
cated within the set of countries{X,Y,Z}. Suppose that, from time to time, these
machines attack our platforms leaving traces that are also assigned to a clusterC.
Suppose also that this clusterC is a verypopular one, that is, many other ma-
chines from all over the world continuously leave traces on our platforms that are
assigned to this cluster. As a result, the activities specifically linked to the bot-
net B are lost in the noise of all other machines leaving traces belonging toC.
This is certainly true for the cluster time series (as definedearlier) related toC
and this can also be true for the time series obtained by splitting it by platform,
Φ[0−800),C,platformi

∀platformi ∈ 1..40.However, by splitting the time series cor-
responding to clusterC by countries of origins of the sources, then it is quite likely
that the time seriesΦ[0−800),C,countryi

∀countryi ∈ {X,Y,Z} will be highly cor-
related during the periods in which the botnet present in these countries will be
active against our platforms. This will lead to the identification of one or several
attack events.
Split by platform: Similarly, suppose we have a botnetB′ made of machines lo-
cated all over the world. Suppose that, from time to time, these machines attack
a specific set of platforms{X,Y,Z} leaving traces that are assigned to a cluster
C. Suppose also that this clusterC is a verypopular one, that is, many other
machines from all over the world continuously leave traces on all our platforms
that are assigned to this cluster. As a result, the activities specifically linked to the
botnetB′ are lost in the noise of all other machines leaving traces belonging to
C. This is certainly true for the cluster time series (as defined earlier) related toC
and this can also be true for the time series obtained by splitting it by countries,
Φ[0−800),C,countryi

∀countryi ∈ bigcountries. However, by splitting the time series
corresponding to clusterC by platforms attacked, then it is quite likely that the
time seriesΦ[0−800),C,platformi

∀platformi ∈ {X,Y,Z} will be highly correlated
during the periods in which the botnet influences the traces left on the sole plat-
forms concerned by its attack. This will lead to the identification of one or several
attack events.

The top plot of Figure 3 represents the attack event 79. In this case, we see that
the traces due to the cluster 175309 are highly correlated when we group them by
platform attacked. In fact, there are 9 platforms involved in this case, accounting
for a total of 870 sources. If we group the same set of traces bycountry of origin
of the sources, we end up with the bottom curves of Figure 3 where the specific
attack event identified previously can barely be seen. This highlights the existence
of a botnet made of machines located all over the world that target a specific subset
of the Internet.

4 On the armies of Zombies

So far, we have identified what we have called attack events which highlight the
existence of coordinated attacks launched by a group of compromised machines,
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Figure 3: top plot represents the attack event 79 related to cluster 17309 on 9
platforms. The bottom plot represents the evolution of thiscluster by country.
Noise of the attacks to other platforms decrease significantly the correlation of
observed cluster time series when split by country

i.e. a zombie army. It would be interesting to see if the very same army manifests
itself in more than one attack event. To do this, we propose tocompute what we
call theaction sets. An action setis a set of attack events that are likely due to same
army. In this Section, we show how to build these action sets and what information
we can derive from them regarding the size and the lifetime ofthe zombie armies.

4.1 Identification of the armies

4.1.1 Similarity Measures

In its simplest form, a zombie army is a classical botnet. It can also be made of
several botnets, that is several groups of machines listening to distinctC&C. This
is invisible to us and irrelevant. All that matters is that all the machines do act in a
coordinated way. As time passes, it is reasonable to expect members of an army to
be cured while others join. So, if the same army attacks our honeypots twice over
distinct periods of time, one simple way to link the two attack events together is by
noticing that they have a large amount of IP addresses in common. More formally,
we measure the likelihood of two attacks eventse1 ande2 to be linked to the same
zombie army by means of their similarity defined as follows:

sim(e1, e2) =

{

max( |e1∩e2|
|e1|

,
|e1∩e2|
|e2|

) if |e1 ∩ e2| < 200

1 otherwise

We will say thate1 ande2 are caused by the same zombie army if and only if
sim(e1, e2) > δ. This only makes sens forreasonablevalues ofδ. We address this
issue in the coming subsections.
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4.1.2 Action Sets

We now use thesim() function to group together attack events into action sets.
To do so, we build a simple graph where the nodes are the attackevents. There is
an arc between two nodese1 ande2 if and only if sim(e1, e2) > δ. All nodes that
are connected by at least one path end up in the same action set. In other words,
we have as many action sets as we have disconnected graphs made of at least two
nodes; singleton sets are not counted as action sets.

We note that our approach is such that we can have an action setmade of three
attack eventse1, e2 ande3 wheresim(e1, e2) > δ andsim(e2, e3) > δ but where
sim(e1, e3) < δ. This is consistent with our intuition that armies can evolve over
time in such a way that the machines present in the army can, eventually, be very
different from the ones found the first time we have seen the same army in action.

4.1.3 Results

To test the sensitivity of the thresholdδ, we have computed the amount of
action sets for the two datasets for different values ofδ. The result is represented in
top plot of Figure 4 (the bottom plot represent the corresponding amount of attack
events involved in the armies). As we can see, at first, for thevalue ofδ from 1% to
7%, the amount of action sets increases rapidly. Indeed, forvery small values ofδ
all nodes remain connected together but, asδ increases, the initial graph loses arcs
and more disconnected graphs appear, i.e. more action sets show up. This creation
of action sets reaches a maximum after which action sets start disappearing with a
growing δ value. This is due to the fact that some graphs are broken intoisolated
nodes that are not counting as attack sets anymore. The two curves reach their
maximum values almost at the same position (whenδ = 8%). Then they both start
decreasing linearly.
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Figure 4: sensitivity check of thresholdδ

In the context of this paper, we have arbitrarily chosen to investigate deeper the
armies we can find when settingδ = 10%. We do not pretend that this number is
optimal in any sense and, in fact, we do not really care. Indeed, our purpose, at
this stage, is just to look at the results for one given value of δ and see if, yes or no,
this theory of zombie armies seems to be valid or not, based onthe characteristics
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of the ones we will find in that particular case. It can very well be that the attack
events found in attack sets, as we have built them, have no underlying common
cause and that they accidentally share common IPs.

For such value ofδ we have identified 40 (resp. 33) zombie armies from AE-
set-I (resp. AE-set-II) which have issued a total of 193 (resp. 247) attack events.
Figure 5 represents the distribution of attack events per zombie army. Its top (resp.
bottom) plot represents the distribution obtained from AE-set-I(resp. AE-set-II).
We can see that the largest amount of attack events for an armyis 53 (resp. 47)
whereas 28 (resp. 20) armies have been observed only two times.
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Figure 5: Zombie Army Size

4.2 Main Characteristics of the Zombie armies

In this section, we will analyze the main characteristic of the zombie armies.
Lifetime of Zombie Army Figure 6 represents the cumulative distribution of min-

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

duration (day)

C
D

F

 

 

country
platform

Figure 6: CDF duration

imum lifetime of zombie armies obtained fromTSplatform and TScountry (see
Section 4.1.3). According to the plot, around 20% of zombie armies have existed
for more than 200 days. In the extreme case, two armies seems to have survived
for 700 days! Such result seems to indicate that either i) it takes a long time to cure
compromised machines or that ii) armies are able to stay active for long periods
of time, despite the fact that some of their members disappear, by continuously
compromising new ones.
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Lifetime of Infected Host in Zombie Armies In fact, we can classify the armies
into two classes as mentioned in the previous Section. For instance, Figure 7a rep-
resents the similarity matrix of zombie army 33, ZA33. To build this matrix, we
first order its 42 attack events according to their occurred time. Then we repre-
sent their similarity relation under an42 × 42 similarity matrix M . The cell (i,j)
represents the value ofsim() of the ordered attack eventith andjth. Since,M
is a symmetric matrix, for the visibility, we represent onlyhalf of it. As we can
see, we have a very high similarity measure between almost all the attacks events,
around 60%. This is also true between the very first and the very last attack events.
It is important to notice the time interval between the first and the last activities
observed from this army is 753 days!

(a)

(b)

Figure 7: Renewal rate of zombie armies

Figure 7b represents an opposite case, the zombie army 31, ZA31, consisting
of 46 attack events. We proceed as above to build its similarity matrix. As we
can notice the important values are surrounded around the main diagonal ofM . It
means that the attack eventith has the same subset of infected machines with only
few attack events happening not far from it in terms of time. Another important
point to be noticed is that this army changes its attack vectors over time. In fact, it
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moves from attack against 4662 TCP, to 1025 TCP, then 5900 TCP, 1443 TCP, 2967
TCP, 445 TCP,...And the lifetime of this army is 563 days! It is clear, from these
two cases, that the composition of armies evolves over time in different ways. More
work remains to be done in order to understand the reasons behind these various
strategies.
Attack Capacity By attack capacity, we refer to the amount of different attacks
that a given army is observed lauching over time. The advanced worm, namely
multi-headed worm, we have presented in our earlier work [17] is an example of
worms that have many attack vectors and use them dynamically. The multi attack
vectors allow the worms to have a large chance to propagate, and the varying in
activity helps them to have multi attack traces which make itharder for IDS to
detect them. This work reinforces the results we have earlier [17]. In fact, in
previous work, we were able to detect multi-headed worms by the correlation of
attack traces generated by different attack tools within anattack event. In this
work, we have some even stronger evidence.Indeed, thanks tothe notion of army,
we observe several cases in which the same IP address has different behaviors in
different attack events attached to a given army. As an example, the two attack
events 128 and 131 consist of clusters 1378 and 2666 respectively. They both
have 106 IP addresses in common and belong to the zombie army 12. All the
attacks of attack event 128 are against port 64783 TCP whereas all the attacks
of attack event 131 are against port 6211 TCP. The conclusionis that these 106
attacking machines mentioned earlier have dynamically changed their behavior.
Finally, Figure 8 represents the distribution of number of distinct cluster per army.
One zombie army has almost 120 clusters, yet not all of them are very different
from each other.
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Figure 8: Zombie Army Attack Capacity

4.3 Illustrated Examples

After having offered a high level overview of the method and main character-
istics of the results obtained, we feel it is important to give a couple of concrete,
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simple, examples of armies we have discovered. This should help the reader in bet-
ter understanding the reality of two armies as well as what they look like. This is
what we do in the next two subsections where we briefly presenttwo representative
armies.

4.3.1 Example 1

Zombie army 29, ZA-29, is an interesting example which has only been ob-
served attacking a single platform. However, 16 distinct attack events are linked
to that army! Figure 9a presents its two first activities corresponding to the two
attack events 56 and 57. Figure 9b represents other four attack events. In each
attack event, the army tries a number of distinct clusters such as 13882, 14635,
14647, 56608, 144028, 144044, 149357, 164877, 166477. These clusters try many
combinations of Windows ports (135 TCP, 139 TCP, 445 TCP) andWeb server (80
TCP). The time interval between the first and the last activities is 616 days !
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Figure 9: attack events of ZA29

4.3.2 Example 2

Last but not least, the zombie army 33, ZA-33, consisting of 42 attack events
(already mentioned in Section 4.2) is an example of a multi-botnets zombie army.
In fact, it seems that several botnets do different jobs and from time to time, they
do some tasks together. In fact, in one hand, an important setof machines coming
from Italy attacks several times one platform in China. As anexample, the two
top plots of Figure 10 are two examples of these attacks. The attack event 291
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consisting of several clusters attack on port 64783T. And always coming from Italy,
and targeting the same platform, but attack event 195 tries many clusters on port
9661 TCP. On the other hand, another component of ZA-33 consistently sends
ICMP packets only, always coming from Greece and always targeting the same
platform also located in Greece (see two plots in the middle of Figure 10). And
as an example of coordination of two components of ZA33, the two plots in the
bottom of Figure 10 represent two attack events (out of four)coming mostly from
these two countries and attacking these two platforms. As a reminder, by design,
there are always overlap between the attack events, for instance, attack event 483
share 41 IP address in common with AE 307, whereas 454 and 483 have 47 IP
addresses in common.... The interval between the first and the last attack event
issued by this zombie army is 753 days.
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Figure 10: 6 attack events from zombie army 33

5 Conclusion

In this paper, we have addressed the important attack attribution problem. We
have shown how low interaction honeypots can be used to trackarmies of zom-
bies and characterize their lifetime and size. More precisely, this paper offers three
main contributions. First of all, we propose a simple technique to identify, in a
systematic and automated way, the so-called attack events in a very large dataset
of traces. We have implemented and demonstrated experimentally the usefulness
of this technique. Secondly, we have shown how, by grouping these attack events,
we can identify long living armies of zombies. Here too, we have validated exper-
imentally the soundness of the idea as well as the meaningfulness of the results it
produces. Last but not least, we have shown the importance ofthe selection of the
observation viewpoint when trying to group such traces for analysis purposes. Two
such viewpoints have been considered in this paper, namely the geolocation of the
attackers and the platform attacked. Results of the experiments have highlighted
the benefits of considering more than one viewpoint as each ofthem offers unique
insights into the attack processes. Future work needs to be done to consider other
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viewpoints as well as the possibility to combine these various viewpoints into a
uniformed framework.
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