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HONEYPOT TRACES FORENSICS: THE
OBSERVATION VIEW POINT MATTERS

Van-Hau Pham and Marc Dacier

Abstract

In this paper, we propose a method to identify and group tegdtaces
left on low interaction honeypots by machines belongingh® $ame bot-
net(s) without having any a priori information at our dispbegarding these
botnets. In other terms, we offer a solution to detect newndist thanks
to very cheap and easily deployable solutions. The appreaghlidated
thanks to several months of data collected with the worléwddstributed
Leurré.com system. To distinguish the relevant tracemftioe other ones,
we group them according to either the platforms, i.e. tarétor the coun-
tries of origin of the attackers. We show that the choice @& ofithese two
observations view points dramatically influences the tssaibtained. Each
one reveals unique botnets. We explain why. Last but not,leas show
that these botnets remain active during very long periodsads, up to 700
days, even if the traces they left are only visible from timeitne.
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1 Introduction

There is a consensus in the security community to say thaebogre today’s
plague of the Internet. A lot of attention has been paid t@ceand eradicate
them. Several approaches have been proposed for this purpgsdentifying the
so calledCommand and Control (C&Cghannels, one can keep track of all IPs
connecting to it. The task is more or less complicated, deipgnon the type of
C&C (IRC [2,4,6,7,14,20], HTTP [3, 5, 23], fast-flux based or fiR, 16, 21],
P2P [8, 13, 24, 26], etc.) but, in any case, one needs to hame swight about
the channels and the capability to observe all communicatan them. Another
approach consists in sniffing packets on a network and ingrézimg patterns of
bot-liketraffic. This is, for instance, the approach pursued by [9-ahd [22, 25].
The solutions mostly aim at detecting compromised machimasgiven network
rather than to study the botnets themselves as they onljisdmts that exist within
the network under study.

In this work, we are interested in finding a very general tégia that would
enable us to count the amount of various botnets that elgst, $ize and their life-
time. As opposed to previous work, we are not interestedudyshg a particular
botnet in details or in detecting compromised nodes in argivetwork. We also
do not want to learn the various protocols used by bots to conmicate in order to
infiltrate the botnets and obtain more precise informatiboud them [20]. By do-
ing so, we certainly will not be able to get as much in deptbrmfation about this
or that botnet but our hope is to provide insights into thegbigpicture of today’s
(and yesterday’s) botnets activities.

Before describing our approach, it is crucial to understiedsubtle difference
that exists between counting the amount of machines langchgiven attack and
the amount of machines members of a given botnet. It is vesfemdling to be-
lieve that one can derive the latter from the former. Indéeid, quite common to
see several distinct botnets relying on the same attaclwgctompromise more
hosts. In such case, the total amount of machines observeg agiven attack
vector will be greater or equal to the sum of all members offedse botnets (it can
be greater as machines not belonging to any botnet may alscHathis attack).
Clearly, any approach relying on simply summing up countesed on attack
vectors characteristics (e.g. ID alerts, firewall logs, Atettion, etc.) is likely to
grossly overestimate the size of botnets.

The solution described in the following is generic and sirtpl deploy widely.
It relies on a distributed system of low interaction hondgpd®ased on the traces
left on these honeypots, we provide a technique that graageghier the traces that
are likely to have been generated by groups of machinesattmutrby a similar
authority. Since we have no information regarding €&C they obey to, we do
not know if these machines are part of a single botnet or ¥ thelong to several
botnets that are coordinated. Therefore, to avoid any autgjgve write in the
following that they are part of army of zombiesAn army of zombiegan be a



single botnet or a group of botnets the actions of which amrdinated during a
given time interval.

In this paper, we propose a technique to identify and studysibe as well
as the lifetime of suctarmies of zombiesWe show that armies can stay active
for very long periods of time, up to 700 days, even if they rfestithemselves
only from time to time. The approach does not pretend to be bidentify all
armies of zombiethat could be found in our dataset. At the contrary, we sha; th
depending on how the dataset is preprocessed, i.e. degeodithe observation
viewpoint, different armies can be found. Exhaustivenss®t our concern at this
stage but, instead, we are interested in offering an apprtzat could easily be
widely adopted and that offers a much better picture of thdtyeof the problem.

The idea exposed here is similar, in its spirit, to the onsgméed in the paper
coauthored by Allmann et al. [1]. However, instead df.”] leveraging the deep
understanding of network detectives and the broad undedstg of a large num-
ber of network witnesses to form a richer understanding igfdescale coordinated
attackers, our approach relies on a diverse yet limited number of latefaction
honeypots. They do not need to be neither as smart as the kedetectives nor
as numerous as the network witnesses proposed in that wotk.gpproaches are
quite complementary.

The reminder of the paper is organised as follows. Sectioefides the terms
used in the paper. Section 3 describes the dataset we hasleandewhat we
mean when we refer to the notion observation viewpointlt also explains why
it matters when trying to identifarmies of zombiedn Section 4, we describe the
method itself that we have applied to find these armies, weigedhe main char-
acteristics of the results obtained as well as two preciseagecdotal, examples
of armies detected thanks to our method. Finally, Sectioorglades the paper.

2 Terminology

In order to avoid any ambiguity, we introduce a few terms thdk be used
throughout the text.

e Platform: A physical machine simulating, thanks to honeyd [19], thesp
ence of three distinct machines. A platform is connecteéatly to the
Internet and collects tcpdump traces that are fed on a da#yshinto the
centralized Leurré.com’s database.

e Leurr é.com The Leurré.com project is a distributed system of platferas
defined earlier, deployed in more than 50 different location30 different
countries. More detailed information about it can be foum{lLb]

e A Sourcecorresponds to an IP address that has sent at least one fIacket
least, one platform. It is important to understand that @gilP address can
correspond to several distinct sources. Indeed, a giveartRiins associated



to a given source as long as there is no more than 25 hours ére®yeackets
received from that IP. After such a delay, a new source iflentwill be
assigned to the IP. By grouping packets by sources instedy ¢®s, we
minimize the risk of gathering packets sent by distinct ptgismachines
that have been assigned the same IP dynamically after 25.hour

A Cluster is made of a group of sources that have left highly similar net
work traces on all platforms they have been seen on. Cluktars been
precisely defined in [18]. They aim at grouping togetherckitas that are
likely launching attacks with the very same attack tool.

A Cluster time series®7 . is a function defined over a period of tinig T’
being defined as a time interval (in days). That functionrretuhe amount
of sources per day associated to a cluster

An Observed cluster time series®r ., is a function defined over a pe-
riod of time T, T being defined as a time interval (in days). That function
returns the amount of sources per day associated to a cluttat can be
seen from a givebservation view poinbp. The observation view point
can either be a specific platform or a specific country of arigin the
first case,®r ¢ piatformy returns, per day, the amount of sources belong-
ing to clusterc that have hitplat formx. Similarly, in the second case,
D7 countryy TEIUIMNS, per day, the amount of sources belonging to cluster
c that are geographically located iaountryyx. Clearly, we always have:
q)T,c _ ZViGcountries (I)T,c,i _ ZVIEplatforms q)T,c,x

An attack eventis defined as a set of observed cluster time series exhibiting
a particular shape during a limited time interval. This timtrval typically
lasts a couple of days but it can be as short as a single dag itege of ob-
served cluster time series having a one day peak of actviliee existence

of attack events highlights the coordinated activitiesaviesal attacking ma-
chines. Itis important to notice that the set can be singletdis is typically

the case when the set is a peak of activities on a single day.

We denote the attack evertise; = (Tstart, Tend, Si) Where the attack event

starts atT,,,.+, ends atl,,,; andS; contains a set of observed cluster time

series identifiergc;, op;) such that albr,,. 7 . o, are strongly corre-

lated to each othe¥(c;, op;) € S;. As an example, the top plot of Figure 1

represents the attack event 225 which consists of clustg8btargeting

port 5900 TCP) attacking seven platforms 5,8, 11, ...,3ThEarve repre-

sents the amount of sources of that cluster observed fronobiese plat-

forms. As we can observe, the attack event start at day 392 gl at day

400. According to our convention, we haxgs = (393,400, {(60232, 5), (60232, 38), ..., (60232, 31)}).

Similarly, the bottom plot of Figure 1 represents the attack&nt 14 which
consists of activities of cluster 0 on day 307 coming almodg rom Spain.
So,e14 = (3077 307, {(07 ES)})
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Figure 1: on the top plot, cluster 60232 attacks seven ptagdrom day 393 to
day 400. On the bottom plot, peak of activities of clusterdirfrSpain on day 307

3 IMPACT OF OBSERVATION VIEW POINT

3.1 Dataset Description

In order to have a clean dataset for our experiments, we leeeted the traces
observed on 40 platforms out of the 50 that we had at our dipadl these 40
platforms have been running for more than 800 days. Durirgggariod, none of
them has been down for more than 10 times and each of them &asipecontin-
uously for at least 100 days at least once. They all have beéor@a minimum of
400 days over that period. The total amount of sources oedenay by day, on
all these 40 platforms can be denoted by the initial timeesdriS over a period
of 800 days. We can split that time series per countforigin of the sources.
This gives us 231 time seriéBSx where thei'” point of such time series indi-
cates the amount of sources, observed on all platformstddéa country.X. We
represent byl’'S_L1 the set of all these Level 1 time series. To reduce the com-
putational cost, we keep only the countries from which weehseen at least 10
sources on at least one day. This enables us to focus on 85«ftloé correspond-
ing countries is calle@ig.ouniries), iINStead of 231, time series. We represent by
T'S_L1' this refined set of Level 1 time series. Then, we split eacthe$d time
series by cluster to produce the final set of time sefigs o) c; country, V¢i @and
Veountry; € bigeountries- Theit™ point of the time serie®(y_ggp), x,y indicates
the amount of sources originating from counifythat have been observed on day
1 attacking any of our platforms thanks to the attack definethbgns of the cluster
X. We represent by"S_L2 the set of all these Level 2 time series. In this case
|T'S_L2| is equal to 436,756 which corresponds to 3,284,551 sources.

1The geographical location is given to us thanks to the Magngiroduct, based on the IP ad-
dress. However, some IPs can not be mapped to any real coaminare attached to labels not
corresponding to any country, e.g. EU,AL,..



As explained in [17], time series that barely vary in ampléwver the 800 days
are meaningless to identify attack events and we can gef ticem. Therefore, we
only keep the time series that highlight important variasiauring the 800 days
period. We represent b§S_L2' this refined set of Level 2 time series. In this case
|T'S_L2'| is equal to 2,420 which corresponds to 2,330,244 sources.

We have done the very same splitting and filtering by lookintha traces on
a per platform basis instead of on a per country of origindathe corresponding
results are given in Table 1.

TS consists of 3,477,976 sources

OVP country platform
|T'S_L1| 231 40
|TS_L1| 85 40
(94,4% TS) | (100% TS)
|T'S_L2| 436,756 395,712
|TS_L2| 2,420 2,127
sources 2,330,244 2,538,922
(67% of T'S) | (73% of T'S)

Table 1: dataset descriptiof:S: all sources observed on the period under study P:
observation view pointl’'S_L1: set of time series at country/platform levélS_L1’: set
of significant time series i"'S_L1, T'S_L2 : set of all cluster time serie§d"S_L2’ set of
strongly varying cluster time series

3.2 Attack Event Detection

Having defined the time series we are interested in, we now tedimd attack
events, that is we now want to identify all time periods dgrmhich 2 or more of
these observed cluster time series are correlated together

To do this, in a first step, we fix the time period to a value of ysland we
use a sliding window of size L to assess the correlation gpaills of time series
over such sliding window. Therefore, given N time seriesesfdth T, we must
compute the correlation of N time series for T-L+1 time intdr{[1, L], [2, L +
1],...[T — L,T]}. As a result, we obtain the correlated time intervals fomgve
pair of time series in N. A correlated time interval of two sler time series is
the interval in which two time series are correlated. Aftasffirst step, we group
together all pairs of cluster time series that are correlatgether over the same
period of time. Each group of correlated observed clusteetseries over a given
period of time constitutes what we have defined aattack event

It is worth noting that this method, which we refer to/asl in the sequel, can
not detect attack events made of one observed cluster tines s€his is typically
the case for peaks of activities occurring on a single dagulth simpler cases, it
is much more efficient to apply another, less expensive,righgo to identify the



attack events. This is what we have done. For the sake of semess, we have
decided not to include the description of this second methég, in the paper as
it lies outside the scope of the message we are interestezliverd

In the first case, the techniques used to find strongly caelame series are
classical ones developed within the signal processing aomitgn We refer the
interested reader to our previous work [17] where we havemxthem in some
more detail and have positioned them with respect to the sththe art in this
domain. It is worth stressing that, in this earlier publiocai the methodology
used was very different as well as the results presente@ethdn that first work,
we have presented a cheap algorithm, based on heuristieglittate the mere
existence of attack events whereas in this work, we havéedaout an expensive,
brute force approach, to study and analyze the relatioasbgiween all attack
events one could find in a much larger dataset.

3.3 Impact of Observation View Point
3.3.1 Results on Attack Event Detection

We have applied the attack events identification technigoesur 2 distinct
datasets, namely'Scountry @NAT Syiqs form. FOr the time series id'Scountry, the
first method M1 (resp. second method M2), i.e. the general bag found 549
(resp. 43) attack events. The total amount of sources fautitebse attack events is
552,492 for the first method and 21,633 for the second ones,TdiLin all, sources
participating to identified attack events account for 528,4ources (corresponding
to 16,5% of all sources contained in our initial datasetmigirly, when working
with the time series found il’Sy4: form, We end up with a total of 690 attack
events this time, containing 578,372 sources. The reswgdtgigen in Table 2

Table 2: Result on Attack Event Detection
AE-set-I(l'Scountry) | AE-s€t-III"Spiat form)
No.AEs | No.sources| No.AEs | No.sources
M1 549 552,492 564 550,305
M2 43 21,633 126 28,067
Total 592 574,125 690 578,372
No.AEs: amount of attack events
M1,M2: methods represented in Section 3.2

3.3.2 Analysis

The table highlights the fact that depending on how we decsmaphe ini-
tial set of traces of attacks (i.e the initial time seri&S), namely by splitting it
by countries of origin of the attackers or by platforms dtet; different attacks
events show up. To assess the overlap between attack eetetsed from differ-
ent observation view points we use tt@mmon source ratio, namely ¢sneasure



as follows: .
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Figure 2: CDF common source ratio

Figure 2 represents the two cumulative distribution fusrtsi corresponding to
this measure. The poifit, y) on the curve means that there gre100% of attack
events obtained thanks ®Wouniry (r€SPT et forms) that have less tham x 100%
of sources in common with all attack events obtained thaakB,: forms (resp
Teountry)- TheTeouniry CUrve represents the cumulative distribution obtained in
this first case and th&,;q; rorms ONE represents the CDF obtained when starting
from the attacks events obtained with the infig),; s.-ms Set of time series. As
we can notice, around 23% (resp. 25%) of attack events autdig starting from
the Teountry (r€SP. Tpiat form ) S€t Of time series do not share any sources in com-
mon with any attack events obtained when starting the agaek identification
process from th@,q: form (r€SP.Teountry ) S€t Of time series. This corresponds to
136 (16,919 sources) and 171 (75,920 sources) attack ewetrtieing detected. In
total, there are 288,825 (resp. 293,132) sources preséfi-i8et-1 (resp. AE-Set-
1), but not in AE-Set-Il (resp. AE-Set-I). As a final notegtie are in total 867,248
sources involved in all the attack events detected from blatsets which cor-
respond to 25% the attacks observed in the period under.sflidig number is
coincidentally comparable with work in [20], in which, withmuch more com-
plicated technique, the authors claim tHat] 27% of all malicious connection
attempts observed from our distributed darknet can be tyrexdttributed to botnet
related spreading activity"

3.3.3 Explanation

There are good reasons that explain why we can not rely orgéesirewpoint
to detect all attacks events. They are described here below.
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Split by country: Suppose we have one botngétmade of machines that are lo-
cated within the set of countrigsX, Y, Z}. Suppose that, from time to time, these
machines attack our platforms leaving traces that are asigreed to a cluster'.
Suppose also that this clustétis a verypopular one, that is, many other ma-
chines from all over the world continuously leave traces onmlatforms that are
assigned to this cluster. As a result, the activities sp=difi linked to the bot-
net B are lost in the noise of all other machines leaving tracesrgghg toC.
This is certainly true for the cluster time series (as defiradier) related ta”
and this can also be true for the time series obtained bytisgliit by platform,
P10-800),0,plat form; YPlat form; € 1..40.However, by splitting the time series cor-
responding to cluster’ by countries of origins of the sources, then it is quite kel
that the time serie®(o_g0),c,country; Veountry; € {X,Y, Z} will be highly cor-
related during the periods in which the botnet present isehgountries will be
active against our platforms. This will lead to the idengétfion of one or several
attack events.

Split by platform: Similarly, suppose we have a botngét made of machines lo-
cated all over the world. Suppose that, from time to times¢hmachines attack
a specific set of platform$ X, Y, Z} leaving traces that are assigned to a cluster
C. Suppose also that this clustéfis a verypopular one, that is, many other
machines from all over the world continuously leave tracesath our platforms
that are assigned to this cluster. As a result, the actviecifically linked to the
botnet B’ are lost in the noise of all other machines leaving tracesrgghg to
C. This is certainly true for the cluster time series (as defiearlier) related t@”
and this can also be true for the time series obtained bytiagliit by countries,
D(0-800),C,country; Yeountry; € bigeountries- However, by splitting the time series
corresponding to clustef’ by platforms attacked, then it is quite likely that the
time seriesP o_goo),c plat form, VPlat form; € { X, Y, Z} will be highly correlated
during the periods in which the botnet influences the traeéisoh the sole plat-
forms concerned by its attack. This will lead to the identifion of one or several
attack events.

The top plot of Figure 3 represents the attack event 79. indhse, we see that
the traces due to the cluster 175309 are highly correlategshwie group them by
platform attacked. In fact, there are 9 platforms involvedhiis case, accounting
for a total of 870 sources. If we group the same set of tracesobwptry of origin
of the sources, we end up with the bottom curves of Figure Jevtiee specific
attack event identified previously can barely be seen. Tigislights the existence
of a botnet made of machines located all over the world thigeta specific subset
of the Internet.

4 On the armies of Zombies

So far, we have identified what we have called attack evenishatighlight the
existence of coordinated attacks launched by a group of camiped machines,



Figure 3: top plot represents the attack event 79 relateduster 17309 on 9
platforms. The bottom plot represents the evolution of tisster by country.
Noise of the attacks to other platforms decrease significahe correlation of
observed cluster time series when split by country

i.e. a zombie army. It would be interesting to see if the veiyne army manifests
itself in more than one attack event. To do this, we proposstopute what we
call theaction sets An action seis a set of attack events that are likely due to same
army. In this Section, we show how to build these action sadsxhat information

we can derive from them regarding the size and the lifetimid@zombie armies.

4.1 Identification of the armies
4.1.1 Similarity Measures

In its simplest form, a zombie army is a classical botnetait also be made of
several botnets, that is several groups of machines liggetai distinctC&C. This
is invisible to us and irrelevant. All that matters is thdtthé machines do act in a
coordinated way. As time passes, it is reasonable to expecthars of an army to
be cured while others join. So, if the same army attacks oneypots twice over
distinct periods of time, one simple way to link the two aktawents together is by
noticing that they have a large amount of IP addresses in @amMore formally,
we measure the likelihood of two attacks eventande, to be linked to the same
zombie army by means of their similarity defined as follows:

|61ﬂ€2| |61I’762‘

' ST ) 2
szm(el,eg):{ ;na:c( ler] > e ) OtLeelnr;,iZﬂ< 00

We will say thate; ande, are caused by the same zombie army if and only if
sim(e1, e2) > . This only makes sens foeasonablevalues ofs. We address this
issue in the coming subsections.



4.1.2 Action Sets

We now use theim/() function to group together attack events into action sets.
To do so, we build a simple graph where the nodes are the aftagks. There is
an arc between two nodes ande, if and only if sim(ej,e2) > 6. All nodes that
are connected by at least one path end up in the same actiom sgher words,
we have as many action sets as we have disconnected grapbofretdeast two
nodes; singleton sets are not counted as action sets.

We note that our approach is such that we can have an actiomesit of three
attack events;, eo andes wheresim(ey, ea) > 6 andsim(es, e3) > § but where
sim(ey,es) < 0. This is consistent with our intuition that armies can eeobver
time in such a way that the machines present in the army camfw@sily, be very
different from the ones found the first time we have seen theesarmy in action.

4.1.3 Results

To test the sensitivity of the threshold we have computed the amount of
action sets for the two datasets for different values. dfhe result is represented in
top plot of Figure 4 (the bottom plot represent the corresiag amount of attack
events involved in the armies). As we can see, at first, fov#éihee ofé from 1% to
7%, the amount of action sets increases rapidly. Indeedjeigr small values o
all nodes remain connected together but§ axreases, the initial graph loses arcs
and more disconnected graphs appeatr, i.e. more actionrestsup. This creation
of action sets reaches a maximum after which action setistitappearing with a
growingd value. This is due to the fact that some graphs are brokensotated
nodes that are not counting as attack sets anymore. The twescteach their
maximum values almost at the same position (Wwhen8%). Then they both start
decreasing linearly.
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Figure 4: sensitivity check of threshoéd

In the context of this paper, we have arbitrarily chosen vestigate deeper the
armies we can find when settisg= 10%. We do not pretend that this number is
optimal in any sense and, in fact, we do not really care. lddeer purpose, at
this stage, is just to look at the results for one given valukand see if, yes or no,
this theory of zombie armies seems to be valid or not, basdti@nharacteristics
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of the ones we will find in that particular case. It can very Moe that the attack
events found in attack sets, as we have built them, have nerlyidy common
cause and that they accidentally share common IPs.

For such value ob we have identified 40 (resp. 33) zombie armies from AE-
set-l (resp. AE-set-1l) which have issued a total of 193{re247) attack events.
Figure 5 represents the distribution of attack events pettaze army. Its top (resp.
bottom) plot represents the distribution obtained from gdf-l(resp. AE-set-lI).
We can see that the largest amount of attack events for an iarB%/ (resp. 47)
whereas 28 (resp. 20) armies have been observed only twe.time
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Figure 5: Zombie Army Size

4.2 Main Characteristics of the Zombie armies

In this section, we will analyze the main characteristichaf rombie armies.
Lifetime of Zombie Army Figure 6 represents the cumulative distribution of min-

02 - = -country
— platform

0 I I I I I I I

0 100 200 300 400 500 600 700 800

duration (day)

Figure 6: CDF duration

imum lifetime of zombie armies obtained frofiS,.; form aNdT'Scountry (S€€

Section 4.1.3). According to the plot, around 20% of zombieias have existed
for more than 200 days. In the extreme case, two armies seeire/é survived

for 700 days! Such result seems to indicate that eitherakié$ a long time to cure
compromised machines or that ii) armies are able to stayeafdr long periods

of time, despite the fact that some of their members disapgacontinuously

compromising new ones.
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Lifetime of Infected Host in Zombie Armies In fact, we can classify the armies
into two classes as mentioned in the previous Section. Btarice, Figure 7a rep-
resents the similarity matrix of zombie army 33, ZA33. TolOuhis matrix, we
first order its 42 attack events according to their occurigtet Then we repre-
sent their similarity relation under a2 x 42 similarity matrix.#. The cell (i)
represents the value @fm() of the ordered attack event® andj'*. Since,.#
is a symmetric matrix, for the visibility, we represent origf of it. As we can
see, we have a very high similarity measure between almia$teahttacks events,
around 60%. This is also true between the very first and thelast attack events.
It is important to notice the time interval between the finstdhe last activities
observed from this army is 753 days!

attack event identifier

Figure 7: Renewal rate of zombie armies

Figure 7b represents an opposite case, the zombie army 31 ,H8nsisting
of 46 attack events. We proceed as above to build its sinyilamiatrix. As we
can notice the important values are surrounded around tirediegonal of. 7. It
means that the attack evefft has the same subset of infected machines with only
few attack events happening not far from it in terms of timenother important
point to be noticed is that this army changes its attack veawer time. In fact, it
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moves from attack against 4662 TCP, to 1025 TCP, then 59001428 TCP, 2967
TCP, 445 TCP,...And the lifetime of this army is 563 days!sltiear, from these
two cases, that the composition of armies evolves over tindéfierent ways. More
work remains to be done in order to understand the reasoriah#tese various
strategies.

Attack Capacity By attack capacity, we refer to the amount of different asac
that a given army is observed lauching over time. The advhmemm, namely
multi-headed worm, we have presented in our earlier work i an example of
worms that have many attack vectors and use them dynamiddily multi attack
vectors allow the worms to have a large chance to propagatethe varying in
activity helps them to have multi attack traces which makieaitder for IDS to
detect them. This work reinforces the results we have edidié]. In fact, in
previous work, we were able to detect multi-headed wormshieycorrelation of
attack traces generated by different attack tools withiratiack event. In this
work, we have some even stronger evidence.Indeed, thartke taotion of army,
we observe several cases in which the same IP address reenlifbehaviors in
different attack events attached to a given army. As an elgntipe two attack
events 128 and 131 consist of clusters 1378 and 2666 regggctiThey both
have 106 IP addresses in common and belong to the zombie &myl the
attacks of attack event 128 are against port 64783 TCP whexbahe attacks
of attack event 131 are against port 6211 TCP. The conclusitimat these 106
attacking machines mentioned earlier have dynamicallyngéd their behavior.
Finally, Figure 8 represents the distribution of number igfidct cluster per army.
One zombie army has almost 120 clusters, yet not all of theanwery different
from each other.

# of zombie armies
o v s o o

1 1 1 Y P ‘ ‘
0 20 40 60 80 100 120 140
amount of distinct clusters

# of zombie armies
o v & o o

LI ‘ ‘ . L
0 20 40 60 80 100 120 140
amount of distinct clusters

Figure 8: Zombie Army Attack Capacity

4.3 lllustrated Examples

After having offered a high level overview of the method andimcharacter-
istics of the results obtained, we feel it is important toegavcouple of concrete,
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simple, examples of armies we have discovered. This shalfdthe reader in bet-
ter understanding the reality of two armies as well as whey thok like. This is
what we do in the next two subsections where we briefly prasemtepresentative
armies.

4.3.1 Example 1l

Zombie army 29, ZA-29, is an interesting example which hdyg been ob-
served attacking a single platform. However, 16 distintackt events are linked
to that army! Figure 9a presents its two first activities esponding to the two
attack events 56 and 57. Figure 9b represents other fowokagtgents. In each
attack event, the army tries a number of distinct clustechsas 13882, 14635,
14647, 56608, 144028, 144044, 149357, 164877, 166477 eTChesters try many
combinations of Windows ports (135 TCP, 139 TCP, 445 TCP)aHd server (80
TCP). The time interval between the first and the last a@wits 616 days !
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, 300 \
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5 200
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540 560
Time(day)
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Figure 9: attack events of ZA29

4.3.2 Example 2

Last but not least, the zombie army 33, ZA-33, consisting2a#ack events
(already mentioned in Section 4.2) is an example of a muoltivets zombie army.
In fact, it seems that several botnets do different jobs amwh time to time, they
do some tasks together. In fact, in one hand, an importamf $eaichines coming
from Italy attacks several times one platform in China. Aseaample, the two
top plots of Figure 10 are two examples of these attacks. Thelaevent 291
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consisting of several clusters attack on port 64783T. Angwgs coming from Italy,
and targeting the same platform, but attack event 195 trimsynelusters on port
9661 TCP. On the other hand, another component of ZA-33 stamly sends
ICMP packets only, always coming from Greece and alwaystanrg the same
platform also located in Greece (see two plots in the middIEigure 10). And
as an example of coordination of two components of ZA33, W flots in the
bottom of Figure 10 represent two attack events (out of fearhing mostly from
these two countries and attacking these two platforms. Agrander, by design,
there are always overlap between the attack events, fariost attack event 483
share 41 IP address in common with AE 307, whereas 454 and 834V IP
addresses in common.... The interval between the first amdagi attack event
issued by this zombie army is 753 days.
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Figure 10: 6 attack events from zombie army 33

5 Conclusion

In this paper, we have addressed the important attack@torbproblem. We
have shown how low interaction honeypots can be used to aavlkes of zom-
bies and characterize their lifetime and size. More prégisieis paper offers three
main contributions. First of all, we propose a simple teghei to identify, in a
systematic and automated way, the so-called attack evemtyery large dataset
of traces. We have implemented and demonstrated expeaihetite usefulness
of this technique. Secondly, we have shown how, by grougiegd attack events,
we can identify long living armies of zombies. Here too, weéaalidated exper-
imentally the soundness of the idea as well as the meanivegslof the results it
produces. Last but not least, we have shown the importantteafelection of the
observation viewpoint when trying to group such traces f@lgsis purposes. Two
such viewpoints have been considered in this paper, namelgdolocation of the
attackers and the platform attacked. Results of the exgatisnhave highlighted
the benefits of considering more than one viewpoint as eatteaf offers unique
insights into the attack processes. Future work needs t@be tb consider other
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viewpoints as well as the possibility to combine these warigiewpoints into a
uniformed framework.
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