An Inline Approach for Secure SOAP Requests and Edy
Validation:

Mohammad Ashigur Rahaman, Maarten Rits and Andseasad
SAP Research
805, Avenue du Docteur Maurice Donat
Font de I'Orme, 06250 Mougins
+33(0)4 92286200
{mohammad.ashiqur.rahaman,maarten.rits,andreasgg@sap.con

Abstract. Regarding the current status of message levelrisedn Web Services,
various standards like WS-Security along with W3i€yoplay a central role. Al-
though such standards are suitable for ensuring@edd message level security as
opposed to point-to-point security, certain attasksh as XML rewriting may still
occur. In addition the generation and validatiorthaf key security mechanisms (e.g.
signature) are always processor intensive tasksed®an some real world scenarios
we propose a scheme to include SC&tRucture information in outgoing SOAP mes-
sages and validate this information before policyeh validation in the receiving
end. This allows us to detect some XML rewritingaeks early in the validation proc-
ess, with an improved performance. We report as éfficient technique and provide
a performance evaluation. We also provide insigftts the WS-Security, WS-Policy
and related standards’ features and weaknesses.

Keywords: Web Services, WS-Security, XML rewriting attack.

1 Introduction

Web service specifications (WS*) have been designigdthe aim of being composable to
provide a rich set of tools for secure, reliabled/ar transacted web services. Due to the
flexibility of SOAP-level security [1] mechanismgeb services may be vulnerable to a
distinct class of attacks based on the maliciotex@eption, manipulation, and transmission
of SOAP messages, which are referred to as XML itingrattacks [2]. Although WS-
Security, WS-Policy and other related standardsriteally can prevent XML rewriting
attacks in practice, incorrect use of these statsdaray make web services vulnerable to
XML rewriting attacks.

All WS* security related specifications, howevertroduce new headers in SOAP mes-
sages. So concerns about the operational perfoenain@/eb services security are legiti-
mate because added XML security elements not oakenuse of more network bandwidth
but also demand additional CPU cycles at both #reler side and at the receiver side.
Therefore it is desirable to examine the perforredesue of Web services security.

The main achievements of this paper are that wéoexpXML rewriting attacks [2]
against web services. We propose measures detéloing attacks build on the idea of add-
ing additional SOAP structure information. We fathevaluate the performance of the
proposed solution against the existing state oathe

The paper is organized as follows. Section 2 disesiselated work. Section 3 reviews
the state of the art and its limitations. Sectidiuétrates attacker and rewriting attack sce-

IThis work was funded in part by the Information ®Btc Technologies programme of the European Comams$uture and E-
merging Technologies under the 1IST-2005-015905 MIBproject.

This paper reflects only the author’s views and@eenmunity is not liable for any use that may belenaf the information con-
tained therein.

narios. Section 5 presents our efficient solutmprevent these attacks. In Section 6 we de-
scribe a case study in which we applied our apgro&ection 7 evaluates the performance
of the approach.

2 Related Work

Security protocols, described using web servicecifipations (WS*), are getting more
complex day by day. Researchers are applying fomedhods to verify and secure the pro-
tocols’ and specifications’ goals. As new vulnelitibs are exposed, these specifications
continue to evolve. Microsoft's SAMOA [3] projecs iamong the pioneer efforts where
web services specifications are analyzed usingoigoformal techniques.

One of the focus areas of the SAMOA project isdentify common security vulner-
abilities during security reviews of web serviceshwpolicy-driven security [2]. The au-
thors describe the design of an advisor for webices security configurations, the first
tool both to identify such vulnerabilities autoncaliy and to offer remedial advice. While
their previous work [4] is successful to generatd analyze web services security policies
to be aware for vulnerabilities to XML rewritingtatks, this tool is able to bridge the gap
between formal analyses and implementation quiteietly.

The mentioned previous work [4] describes a forsehantics for WS-SecurityPolicy,
and proposes an abstract link language [6] foripeg the security goals of web services
and their clients. They present the architectuckiemplementation of fully automatic tools
to compile policy files from link specificationsnd to verify by invoking a theorem prover
[7] whether a set of policy files run by any numioérsenders and receivers correctly im-
plements the goals of a link specification, in epif active attackers. Note that policy-
driven web services implementations are proneaaugual subtle vulnerabilities associated
with cryptographic protocols; these tools help pravsuch vulnerabilities, as policies can
be verified when first compiled from link speciftaans, and also can be re-verified against
their original goals after any modifications duriggployment.

The assumptions with all these formalizations & the attacker can compose mes-
sages, replay them, or decipher them only if itvkedhe right key, but cannot otherwise
decrypt the encrypted messages. A severe limitdatiothat these formalizations do not
model insider attacks: principals with shared kaysassumed well-behaved.

Some guidelines about performance evaluation of seebices are specified in [8]. They
address about the performance overheads of weltsgrthe XML size, the calculation of
the message size, the choice of the XML parserctisés of the serialization and deserial-
zation, the costs of connection establishment hadverheads at the network level.

The performance of web service security in termgsofelationship in both the imple-
mented cryptography in Java and the propertiesyiditidocuments like the size and the
complexity of structure are investigated in [9]ffBient cryptography algorithms and vari-
ous kinds of key references in XML are comparedvali. They also categorize the web
service security activities consisting of at leagfptography operations and XML process-
ing. Cryptography operations are byte based, streateutral and computation intensive.
They conclude that XML processing, in particular KManonicalization (page 4, Section
3.5) is the area where WS security performanceldtfoaus on.

In our later evaluation we take such performansads into account as well.

3 State of the Art
In this section we describe different web servissdards’ insights and limitations re-
lated to web services security that are deployetklyiin web services technologies.

3.1 WS-Security

The WS-Security [1] specification defines an eneémal security framework that provides
support for intermediary security processing. Mgssategrity is provided by using XML
Signature [10] in conjunction with security toketasensure that messages are transmitted
without modifications. Message confidentiality isagted by using XML Encryption in
conjunction with security tokens to keep portiofisSOAP messages confidential. WS-
Security seeks to encapsulate the security inferectlescribed above within a set of secu-
rity Headers.

3.2 WS-Policy

WS-Policy is essentially a logical predicate on $Omessages over base assertions, determining
which message parts must be present, signed, oypeaed. A standard policy framework would make

it possible for developers to express the poliofeservices in a machine-readable way. Web services
infrastructure could be enhanced to understanaiocepblicies and enforce them at runtime. The pol-
icy framework currently expressed by WS-Poljéy] requires the definition of policy “Assertions”
(predicates) for each domain to which policy ibé&applied. Three examples of specifications defin-
ing such Assertions have been published to date:

» WS-PolicyAssertiond 2], defining some general-purpose Assertions,

» WS-SecurityPolicy5], defining policy Assertions for WS-Security aather specifica-
tions that might cover the same message secuiigesand

» WS-ReliabilityPolicy{14], defining policy Assertions for WS-Reliabilif23] and other
specifications that might cover the same reliabdssaging space.

3.3 WS-SecurityPolicy

WS-SecurityPolicy1.04], built on the WS-Policy [11] and WSPolicyAsserti§l?], is a
declarative XML format for programming how web sees implementations construct and
check WS-Security headers. It expresses policgrimg of individual headers on individual
messages. It defines two base assertions for ityeayrd confidentiality. The more recent
version WS-SecurityPolicyl.1 [15] expresses polityerms of higher-level message pat-
terns.

3.4 XML-Signature
XML Digital Signature specification [10] specifiésw to describe, attach and validate a
digital signature using XML. The structure of aithgsignature as currently defined within

the specification is shown in Fig 1.
<Signature ID?>
<Signedinfo>
<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >
(<Transforms>)?
<DigestMethod>
<DigestValue>
</Reference>)+
</SignedIinfo>
<SignatureValue>
(<Keylnfo>)?
(<Object ID?>)*
</Signature>
Fig. 1. Structure of XML Digital Signature
The Signature element is the primary construchef XML digital signature specifica-
tion. The signature is generated from a hash dwecanonical form of the manifest, which

can reference multiple XML documents. Canonicalratmeans to put a structure in a

standard format that is generally used. ¥8ggnedinfo> element is the manifest that is
actually signed. This data is sequentially procg$beough several steps on the way to be-
coming signed. A concrete example using XML Sigrats given in Fig 2.

3.5 XML Canonicalization

XML canonical form states that XML documents thouxgling logically equivalent within
an application context may differ in physical reqmetations based on XML permissible
syntactic changes. These changes, for exampleheattribute ordering, entity references
or character encoding. Basically this is a proadgsspplying standard algorithms to gener-
ate a physical representation of an XML documemtXML security, there is a standard
mechanism to produce an identical input to thestiga procedure prior to both signature
generation and signature verification. Given itsassity, the speed of canonicalization will
have an impact on the overall performance of SO&drdty.

3.6 Limitations of the State of the Art

Considering the state of the art, various web serspecifications [1],[10],[15],[17] and ar-

ticles [22], we observe the following limitations their applicability in secure web ser-

vices:

1. Itis not realistic to capture all security need¢him a simple declarative syntax (e.g.
WS-Policy, WS-SecurityPolicy).

2. In order to handle each Assertion, a policy prooesaust incorporate a domain-
specific code module that understands the inteapioet of that Assertion as defined in
the domain-specific specification.

3. The interpretation is subject to human error, siuit strict conformance tests, differ-
ent implementations of the processor for each tiseanay not be consistent.

4. Policy files need to be validated on applicaticartsip because if a policy file is com-
promised then malicious SOAP messages could bsgoaied.

5. Enforcing the policy is totally domain dependendl @énis a must. The strongest policy

may be useless if it is not applied to the rightsage.

To enforce the policy for intermediaries is yebwstandardized.

Lack of standardization to retrieve policy for sendr receiver.

The digital signature references message parthdiy|t attributes but says nothing of

their location in the message. So an attacker earite the message part placing itin a

new header keeping the reference valid.

9. The message identifier is optional according to Xéshessing [16] but must be pre-
sent in a request if a reply is expected.

All these limitations may directly affect the seityiand the performance of the web ser-
vices.

4 ATTACKER SCENARIOS

The presence of a hostile opponent who can obsdhthe network traffic and is able to
send any fraudulent messages meeting the proteqairements must always be assumed.
So SOAP messages are vulnerable to a distinct ofestsacks by an attacker placed in be-
tween any two legitimate SOAP nodes (Sender, Irgdiaties, and Ultimate Receiver).
The attacker intercepts the message, manipulatglimay transmit it. These kinds of at-
tacks are called XML rewriting attacks [2].

4.1 Attack Patterns
We observe that XML rewriting attacks follow twotfgans in general. The patterns give us
indication about the security loophole. The genpadlerns are as follows:

©o~No

1. SOAP Extensibility Exploitation: The attacker generates new SOAP elements
and adds those into the message, keeping it watlfd. Consequently malicious data may
be transported.

2. Copy & Paste:The attacker copies parts of a message into o#ims pf that mes-
sage, or into completely new messages which maeherated using the previous pattern.

The attacker is able to forge message parts acksttihe recipient in a way that it is im-
possible to detect any tampering if the standaelg. (WS-Security, WS-Policy, WS-
SecurityPolicy) are not used carefully. The impottabservation here is that not the cryp-
tographic technique used as part of the standasdbban broken but that the SOAP mes-
sage structure has been exploited by an attackem & general perspective XML rewriting
attacks exploit a known weakness of XML signatuihes is described in section 3.6,item 8.

4.2 XML Rewriting Attacks
In this section, we see two concrete examples had $wo errors that lead to typical XML
rewriting attacks.

First Scenario: Consider, one service consumer of a Stock Quenédce requests for
some particular Stock (Fig 2). Each request catlsesonsumer to pay. We assume that
one SOAP node (Ultimate receiver) is supposed dogss the SOAP header or Body. The
<Security> header block without a specified actor can be waoesl by anyone, but must
not be removed prior to the final destination. Ataeker can now observe and manipulate
the message on the SOAP path. He can move an dlémgrMessage 1D into a new,
false header (e.@ogus) (Fig 3); everything else, including the certifie and signature,
remains same. TheBogus>element and its contents are ignored by the recigince this
header is unknown, but the signature is still atal@dp because the element at reference
URI “lId-1" remains in the message and still has the same.v@his may cause the con-
sumer to pay several times for the same requestf@nods the service to do redundant
work.

Second Scenario: A customer submits an order that contains@erIlD header (Fig 4)
through his mobile device. He signs trelerlD header and the body of the request (the
contents of the order). When this is received lgydtder processing sub-system (an inter-
mediary), it may inseshippinglD into the header. The order sub-system would thgm s
at a minimum, therderID and theshippingID, and possibly the body as well. Then when
this order is processed and shipped by the shipdemartment, ashippedinfo header
might be appended. The shipping department wowid, €it a minimum, thehippedinfo
and theshippinglD and possibly the body and forward the messagbedilling depart-
ment for processing. The billing department carify¢he signatures and determine a valid
chain of trust for the order, as well as who didatviAn attacker with access to any SOAP
node can copy & paste tlwederID in a bogus header which causes the Order Processing
System to process the same request several tirhesatfacker can copy & paste the body
of the message under a new fake header and may arbérary order information to be
processed subsequently.

4.3 State of the Art Approach Against Attack
Methodical usage of WS-Policy [11], WS-PolicyAsgamt[12], and WS-SecurityPolicy [5]
resists these attacks. Microsoft has performed sexperiments on its Web Services En-
hancement [21] tool using another tool called WSl Advisor [2]. The later tool uses
three assertions: the message predicate assexionV¥S-PolicyAssertion, and the integ-
rity and confidentiality assertions from WS-Sétyiolicy.

= A <MessagePredicate> assertion lists the message parts that are magdato

* An <Integrity > assertion lists the message parts to be joinggesl. The listed
message parts must be signed if present.

= A <Confidentiality > assertion lists the message parts that must drymad if
present in the envelope.

The flawed policy that is used to generate and lchiee request messages for Fig 2 is
shown in Fig 5. In the Fig 5, the service is refyion the presence of tkitMessagelD>
header for replay protection but the header ismadtided in the<MessagePredicate>
assertion. This allows the attacker to introduoewa header enabling the replay attack.

The policy file in Fig 6 could be used in the set@tenario and it does not include
<To>/<Action> header in the<MessagePredicate> which enables attacker to
route the message to another shop.

To check these policy errors WSE Policy Advisodues 36 static queries [2]. Those
gueries enable us to detect the flaw. In this dhee query is: “The Head@ves-
sageld,Header(To) andHeader(Action) are included in a message predicate as-
sertion whenever the same header is included intagrity assertion”. Note that after writ-
ing the policy the client and the service need méokee it on all request or response
messages. The enforcement is totally domain depen@déSE does this using some map-

pings which are included in policy file.
<Envelope>
<Header> ID to correlate message reply

essagelD Id="|d-1'/'>uuid:21c81...</>
Security mustUnderstand="1">
<BinarySecurityToken ValueType=".#X509v3" Id="1 d-2">
MIIBXDCCAWGg..
<Signature>

<Signedinfo>
<CanonicalizationMethod Algorithm="...xml-exc-
clan#"/>
\gnatureMethod Algorithm="...#rsa-shal"/>
<Reference URI="#Id-1"> <4— Message ID is signe
<DigestMethod Algorithm="...#shal"/>
<DigestValue>d5A0d..=</DigestValue>
</Reference>
rence URI="#1d-3"> <4——Body is signed for integrity
<DigestMethod Algorithm="...#shal"/>
<DigestValue>zSzZT...=</DigestValue>

</Reference></SignedInfo>

<SignatureValue>e4EyW...=</SignatureValue>
<KeylInfo>
SecurityTokenReference> <Reference URI="#Id- 2"
ValueType="...#X509v3" />
<Body ld="Id-3">

<StockQuoteRequest>...</StockQuoteRequest>
</Body> </Envelope>

Fig. 2. SOAP message sent by the requester (Excerpt

5 INLINE APPROACH

Considering the specifications of WS-Security, W8idy, WS-SecurePolicy and above
discussion, we observe that a large number of S@&&ensions is possible. SOAP header
(<security>) information never considers the SOAP messagetsneiwhich is essentially
the major attack point. In the context of our paperrecognize the dynamic structure of
SOAP messages by referring to them using the t&@WFSAccount. We show that includi-
ng SOAP Account information in SOAP we can detbesse XML rewriting attacks early
in the validation process. This SOAP structure ($Q&ccount) information can be inte-

grated easily while adding the headers. We neeitlar@ approach to incorporate SOAP
Account information into the message. The objestiokthe proposed technique are:
1. To be able to pass SOAP Account information abbetexchanged SOAP mes-
sages in a domain independent fashion.
2. SOAP messages should be protected while they acegsed by a node such that
they can be updated legitimately by the intermeelaif they are required to do so.
Any tampering with pre-existing message parts leydtimpromising node must be
detected early by the recipient before committitsgrésources to validate and to
process the request.

<Envelope>
<Header>...... —~ Bogus header has been added by the a-
<Bogus>
<MessagelD Id="ld-1">uuid:21c81...</> </ Bogus>

<BinarySecurityToken ValueType="...#X509v3"
1d="Id-2">MIIBXDCCAW6g..
<Signature>
<SignedInfo>
<CanonicalizationMethod Algorithm="...xml-exc-
clan#"> Reference is still valid & so is sigature
<SignatureMethod Algorithm=".. #rsa-shal"/>
ference URI="#Id-1">
<DigestMethod Algorithm="...#shal" />
<DigestValue>d5A0d...=</DigestValue>
</Reference>
<Reference URI="#1d-3">
igestMethod Algorithm="...#shal"/>
<DigestValue>zSzZT...=</DigestValue>
</Reference></Signedinfo>
<SignatureValue>e4EyW...=</SignatureValue>
<KeylInfo>
<SecurityTokenReference> <Reference URI="#ld- 2"
ValueType="...#X509v3" />
<Body Id="1d-3">
<StockQuoteRequest>...</StockQuoteRequest>
</Body></Envelope>
Fig. 3. SOAP message after attack (Excerpt)

The general objective is to protect the integrégtiires of a SOAP message while in transit
from malicious attackers. While securing the retpreand the service using WS-policy is
well understood, securing the intermediaries usiegsame is not. A SOAP message may
choose its next hop dynamically and its’ requireglseage parts may be secured dynami-
cally based on the requirements of the intermegaiWe assume that the sender and the
ultimate recipient of the message are always tduste

5.1 Motivation of Using SOAP Account Information

After carefully observing the rewriting attackse ttollowing conclusions are obvious:

. All attacks are some kind of modification of a SOAfessage (either deleting some
parts and adding afterwards, or adding some coelplaew element in a SOAP mes-
sage essentially in the Header portion or in Body).

* When some unexpected modification occurs in thenfof manipulation of underly-
ing XML elements, the intended predecessor or sswerelationship of the SOAP
element is lost consequently.

e The number of predecessor, successor, and sibéngeats of a SOAP element where
the unexpected modification occurs is changed hosl the expected hierarchy of the
element is modified as well.

At the time of sending SOAP message, we can alkagp an account of the SOAP
elements by including SOAP Account into the mességg 7)

* Number of child elements of root (Envelope).

* Number of header elements.

* Number of references for signing element.

» Predecessor, Successor, and sibling relationshipedfigned object.

These SOAP Account information are computed whiteane creating the message itself
in the sending application. We do not incur anysiderable overheads for the computa-
tion. Since this information is computed while ¢neg the same message we call it the
inline approachin this paper.

5.2 Proposed Technique
On the sender side, the protocol stack generatéd?Sfvelopes that satisfy its policy and
then we add SOAP Structure/Account information (Fjginto the outgoing SOAP mes-
sage. The sender must sign the SOAP Account infiloma

Conversely, on the receiver side, a SOAP envels@etepted as valid, and passed to
the application; if its SOAP Account/Structure Infation is validated at first and then pol-
icy is satisfied for this envelope. Validating SOARcount information before validating
policy, we can detect rewriting attacks in thetfghase and thus without doing processing
intensive policy driven validation which may nottelet attacks at all if not used carefully
(Fig 5,Fig 6).

5.3 Using SOAP Account Information in SOAP Message

Fig 7 depicts the SOAP Structure/Account Informatioat we consider in our implementa-
tion of Java SOAP Account module. We capture th&BG®tructure that is computable us-
ing any SOAP processor. Using this information we able to detect the attacks in the
scenarios. We have left one extension elementcdlade any future extension. In later sec-
tions we give a concrete example how can we addalidate SOAP Account information.

Before sending any SOAP message we calculate thePS&ccount information and
capture it in SOAP Header Elements. We add thizrin&tion in a SOAP element either in
Header or in Body and then sign it (Preferably iaHer). The same arguments are appli-
cable for intermediaries as well. This calculati®mlone by thédddSoapAccount mod-
ule in our implementation. To understand it rigelguwve take the second scenario from
Fig 4 and use the following notation:

Encryption of a plaintext m into a cipher text isitten as Cfm}x where K is the key
being used.

A digital signaturewritten as encryptiofim}s* , with a private signing ke$*.WhenA
sends some messageto B we writeA > B : m.We writeA - B : {m}s- when m is sent
with a signature. Concatenationrof andm, is written asmy+ m,. We define asigned ob-
ject pattern(SOPyvhich manifests the signed elements in a messagéntents to sign.

In Fig 8, A’ssigned object pattern(SQPis {SOAP Accounty + OrderID + Body},

OrderlD + Orde- Ship-

Body rID+Shipping! pingID+Shipping
Order Proc- D +Body Shipping Info+Body .

—P | essing Sys- ———p Processing P»{ Billing Sys-

tem System tem

Customer's
Web service

Fig. 4. SOAP processing with multiple intermediaris

where SOAP Accouptrefers to the SOAP Account of A. A signs signed object pattern

before sending it to B:

A 2 B R, { SOAP Accougtt OrderID + Body }A'l; Here R is the rest part of the mes-
sage. B processes the order and adds new heaggirgfiD and B’ssigned object pat-
tern(SOR) is {I; + SOAP Accourg + ShippingID + Body}, where SOAP Accounefers

to the SOAP Account of B.

<Policy Id="FlawedPolicy1">
<MessagePredicate>

Body() Header(To) Header(Action)
</MessagePredicate>

<Integrity> MessagelD is not included i
<Tokeninfo> the MessagePredicate
<SecurityToken>
<TokenType>...#X509v3
</TokenType>

<Tokenlssuer>CN=Root Agency
</Tokenlssuer>
</SecurityToken>
</TokenlInfo>
<MessageParts>
Body() Header(To) Header(Action)
Header(MessagelD) Timestamp()
</MessageParts>
</Integrity>
</Policy>

Fig. 5. FlawedPolicyl (Excerpt)

<Policy Id="FlawedPolicy2">
<MessagePredicate>

Body() Header(MessagelD)
</MessagePredicate>

<Integrity> To/Action are not included in the

<TokenlInfo> .
<SecurityTokenMessagePredlcate

<TokenType>..#X509v3
</TokenType>
<Tokenlssuer>CN=Root Agency
</Tokenlssuer>
</SecurityToken>
</TokenInfo>
<MessageParts>
Body() Header(To) Header(Action)
Header(MessagelD) Timestamp()
</MessageParts>
</Integrity>
</Policy>

Fig. 6. FlawedPolicy2 (Excerpt)

SOAP Accounl

Parent Element

Sibling Elements

Fig 7: SOAP Account

I

{'SOAP Account +
Customer’s |OrderlD +
Web service [Body },,* Order Processi
) ng System

®

counts
pingID +

2

—
{ 1, + SOAP Ac-
+ Ship-

Body }*

Iy

Shipping

{12+ SOAP Account +

Processig Sy{shippingiD + Shippinginfo + | Billing Sys-
L tem
©) (@)

2 »

Ll Ll

Fig 8: SOAP Processing with multiple intermediaries

B 2 C 'R, {I;+ SOAP Accounj + ShippingID + Body} s *;Here | is the signature of
A’s signed object pattern. C processes the ordéradds new header Shippinglnfo and C's
signed object pattern(SQPis {l, + SOAP Accourg + ShippinglD + Shippinginfo +
Body}, where SOAP Accouptefers to the SOAP Account of C.

C- D:R{I,+ SOAP Accouns + ShippingID + ShippingInfo + Bodyc™'; Here } is
the signature of B’s signed object pattern.

Finally, D receives: R,{{SEOR} s+ {SOR}} s +{SOR}} . D will validate SOAP
Account usingCheckSoapAccount module in our implementation. D uses SOAP Ac-
count as C is the outermost signature, it needs to waliddaving a nested signature, D
can validate each signature subsequently using pablic certificate respectively. Note
that all SOAP Account information is also well proted by a signature which makes it im-
possible to change by any malicious host. Now fhees of SOAP Account will be mani-
fested directly. If any kind of XML rewriting attk@ppears in the message in the form of
the mentioned scenarios, it will be caught immeayaby CheckSoapAccount . This is
straightforward as each attack in a received SOA#saige essentially invalidates the
SOAP Account information that is bundled in the s8®©AP message.

A key advantage of our approach compared to thieypdtiven approach is that the de-
letion of headers and elements can be detectedwtitistricting the flexible XML format.
Deletion is a stronger form of a rewriting attabbkorder to prevent this with the policy ap-
proach, every header and element should be dedaredandatory, which introduces first
of all a performance penalty in the validation ghasd more important it reduces strongly
the flexibility of the XML message format. Only nsagie elements that were defined in ad-
vance by the partners can be added. With the idpgoach the different intermediaries
still have some flexibility to add additional infoation, which can be detected for dele-
tion/rewriting by the subsequent parties.

5.4 Where is the Efficiency?

One can argue about achieving efficiency in detgcKML rewriting attacks, considering
the added modules (e.4ddSoapAccount, CheckSoapAccount) at both ends. In
Fig 8 we assume every SOAP node (A,B,C,D) has Btsr#ty infrastructure implementa-
tion at least for signature generation (maybe fd8-Rolicy as well) and is supposed to
process some headers. Every intermediary recehesmniessage and it checks it in the
CheckSoapAccount module before committing its resources for WS-&egand WS-
Policy infrastructure. We show how we can deteetdttacks in the added module whereas
in the current approach the attacks may be unastedt the way to the ultimate end and
even might be undetected in the end as well, uiitdss a well designed policy. We show
a concrete example describing this fact in theofwihg section. We do a performance
evaluation supporting this claim in section 7.

Note that the most popular XML packages comply WBC Document Object Model
(DOM), which provides a set of interfaces for chegt accessing and modifying both the
structure and the content of the document. Secrelated XML processing includes pars-
ing, validation, transformation and document tmedrsal. As we mentioned in section 2
cryptographic processing (e.g. signing and vetiiiice encryption and decryption, and
among different algorithms) incurs negligible cortipg time where some researchers find
that XML canonicalization is disproportionately gntconsuming. We can consciously ig-
nore this XML canonicalization while validating S®@AAccount information.

10

6 Case Study
6.1 Concrete Example
We consider a scenario where only one SOAP Accauattached with the requester’s
SOAP message and no intermediaries are supposaepdtie it. A customer, Alice, re-
guests 1000 euros to be transferred from her atdoue supplier (Bob’s) account (Fig
9). Some malicious attacker intercepts this messageupdates it stating to transfer 5000
euros instead of 1000 euros (Fig 10).

Fig 9 depicts the outgoing message after adding S@écount information. The policy
file for this message would be Fig 11.

Observe that in spite of usi@pdy () in <MessageParts> and<MessagePredi-
cate> in Fig 11 the attack in Fig 10 is possible. Tlsiglue to the fact that Message Predi-
cate only makes statements about mandatory patteahessage and the XML signature
does not say anything about the location of thesams parts to be signed as stated in sec-
tion 3.6.

6.2 Adding SOAP Account Information into SOAP Message

Using theAddSOAPAccount module we can calculate any accounting informagibaut
the outgoing message in Fig 9. The SOAP AccouRigB is as follows:

* Number of children of Envelope is 2

* Number of Header is 2

* Number of Signed Elements is 3

« Immediate Predecessor of tHiéSligned Element is “Envelope”

+ Sibling Elements of the®1Signed Element is “Header”

The Extension element of the SOAP Account (Fig Zkes it easy to add any additional
common required accounting information between seadd receiver. There should be an
agreement about the SOAP Account information tleepire beforehand. This information
is added into a header named “SoapAccount”. Beferaling the message, SOAP Account
must be signed by the sender.

Generation of Soap Account information neither aglseon any enforcement infrastruc-
ture nor does it incur considerable execution tithis rather efficient in terms of execution
time as a SOAP Account can be computed inline wdelleerating the SOAP message. We
can easily attach this information using existifgA® message libraries which makes it
robust.

6.3 Simulating the Attacker

To simulate the attacker in these scenarios wegdesilava clasattacker which repre-
sents the malicious host. After receiving the mgedaom the legitimate sender it updates
the message following the attack patterns describextction 4.1 and sends the updated
message to the next hop. But this attempt to aitadetected by the legitimate receiver of
the message.

6.4 SOAP Account Validation

The Soap Account validation should be done as asdhe message is received, before do-
ing any policy validation. The receiver calculatiks SOAP Account information of the re-
ceived SOAP message (Fig 10) us@igeckSoapAccount module as follows:

* Number of children of Envelope is 2

* Number of Header is 3.

* Number of Signed Elements is 3

11

« Immediate Predecessor of théSigned Element is “BogusHeader”
+ Sibling Elements of the®1Signed Element is “SoapAccount”,”Security”
On the other hand the obtained SOAP Account inftionaas provided in the received

SOAP message, (Fig 10) is as follows:
* Number of children of Envelope is 2
* Number of Header is 2.

* Number of Signed Elements is 3

« Immediate Predecessor of théSligned Element is “Envelope”
« Sibling Elements of the®1Signed Element is “Header”

<Envelope>

1000 euro to Bob,signed Alice”
<Security>
<UsernameToken 1d=3>
<Username>Alice</>
<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
<Created>2003-02-04T16:49:457</>
<Signature>
<Signedinfo>
ference URI= #1>
DigestValue>Ego0...</>
<Reference URI= #2>
<DigestValue>Qser99...</>
<Reference URI= #3>
<DigestValue>OUytt0...</>
<SignatureValue>
vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
<KeylInfo>
<SecurityTokenReference>
<Reference URI=#3/>
<SoapAccount id=2>
<NoChildOfEnvelope>2</>
<NoOfHeader > ~ Verifying signature using
</SoapAccount> ey derived from Alice’s se-

<Body ld=1> t d
<TransferFunds> Cret passwor

<beneficiary>Bob</>
<amount>1000</>
Fig. 9. A SOAP request before an attack (Excerpt)

<Policy ld="FlawedPolicy3">
<MessagePredicate>
Body() Header(To) Heade%ction)
</MessagePredicate>
<Integrity>
<TokenlInfo>
<SecurityToken>
<TokenType>...
#UserNameToken
</TokenType>
</SecurityToken>
</TokenlInfo>
<MessageParts>
Body() Header(To) Header(Action)
UsernameToken() Header(SoapAccount)
</MessageParts>
</Integrity>
</Policy>

Body is included in Mes-
sagePredicate & Integ-
rity assertions

Fig. 11.Flawedpolicy3 (Excerpt)

<Envelope:
<Heade Messageto bank's web service says:"Transfe <Header>

>q.Attacker has intercepted the message

<Security>

UsernameToken 1d=3>

<Username>Alice</>

<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>

<Created>2003-02-04T16:49:45Z</>

<Signature> This reference is not valid anymor:
because No of header is not 2.Aft
attack itis 3

<Signedinfo>
Reference URI= #1>
<DigestValue>Ego0...</>
<Reference URI= #2>
<DigestValue>Qser99...</>
Reference URI= #3>
<DigestValue>OUytt0...</>
<SignatureValue>
vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
<KeylInfo>
<SecurityTokenReference>
<Reference URI=#3/>
<SoapAccount id=2>
<NoChildOfEnvelope>2</>
<NoOfHeader > 2 </>
</SoapAccount> Attacker has added a B-
cBogusHeader > g sHeader & included the

Body ld=1> Body
<TransferFunds>
<beneficiary>Bob</>
<amount>1000</>
<Body> Amount has been changed
<TransferFunds> 5000 by the attacker
<beneficiary>Bob</>
<amount>5000</> /

Fig. 10.SOAP request after an attempt to attack (Excerpt)

Line Diagram
»
£
s
£ 60 - "
= 50 4 W —e— PolicyDriven XWS-
3 40 Security
z 30 —=— SoapAccount
53 201
® 10
g 0 ——
]
z R
&
N
8
®

Number Of Iterations

Fig. 12. Performance Diagram

12

= Timing Diagram
[%)
E
2 70
E 60 1
o 50 — - - -
g 40 — @ PolicyDriven XWS-Security/|
g gg B SoapAccount
o 10 |
[0 ‘
]
z & Yo R S ®

a‘@&

&
Number Of Iterations

Fig. 13. Performance Diagram

If any mismatch happens the receiver can conclbhdethe SOAP message is not accept-
able. In our proposed scenario, there is a cleamaiich. In addition, if an attacker changes
the SOAP Account information meeting its updatedABOnessage’s account information,
then this message will be invalidated in the reiogivend while validating the signature of
the signed SOAP Account by the initial sender. Agaio substantial execution time is re-
quired here as we can validate the SOAP Accourtrimétion inline while reading the
message. The performance evaluation in the netibeedescribes this more in detail.

7 PERFORMANCE EVALUATION

Performance evaluation of Web services can helpeimenters understand the behavior of
the services and gives an indication to the felitsilof the deployment. The most com-
monly used approach to obtain performance restilésgiven Web service is performance
testing, which means to run tests to determingéréormance of the service under specific
application and workload conditions. To be morectfjiethe total execution time of a
process is a measure of its efficiency.

We use XWS-Security framework [13] as a comparabéssage level security infra-
structure that has already wide deployments. XWy framework has its own way of
enforcing policy. XWS Configuration file [13] isdomain dependent way of enforcing pol-
icy in XWS-Security Framework in Java. This is edidly a XML file. Instead of using
Policy directly this framework uses this XML filehich has its own syntax and semantics
for attaching and using the security features @tgching signature, referencing a key cer-
tificate).

Since we focus on the integrity aspect of a messdmeh requires only signature infra-
structure, we take the advantage of an alreadyeimghted signature infrastructure in the
XWS-Security framework. In the process, we add Sdegount information in the outgo-
ing message before incorporating WS-Policy in thessage. This exception does not
weaken our evaluation; rather it helps us to makeoge solid claim. The XWS-Security
framework which has both a signature and an enianyphfrastructure, will incur more
execution time in the sending side compared wighekecution time of using the signature
infrastructure alone. We show this in the followsegtion.

7.1 Timing Analysis

We measure the execution time taken by a Web seimimcation using two time frames:

Service Time (S9ndMessag Delay Time (M) Service Time is the time that the Web ser-
vice takes to perform its task. In our case Sertiioe is essentially the duration of detec-
tion of XML rewriting attacks. Message Delay Tinethe time taken by the SOAP mes-
sages, in being sent/received by the invocatioh vdé simulate Message Delay using
Random number to iterate a loop. It may be detezthiny the size of the SOAP message

13

being transmitted/received and the load on the ortthrough which the message is being
sent/received. We do not consider the size of thesage, as the same message is transmit-
ted each time in the simulation to get the cleaasneement and the load on the network is
out of scope here. To be more specific, MessageyDiine gets longer by the increased
SOAP size of augmented SOAP headers but it is WéSaSecurity specific concern.

Total Invocation Time (Thor a Web service is given by the following formula.
T(c) = M(o) + S(o)

Evaluating the above two componentsTdbr a Web service invocation, help us to analyze
the efficiency of a Web service. We perform testdétermine each of the above two com-
ponents for a number of iterations for a policydn solution versus our proposal. We gen-
erate the SOAP message in Fig 9 in the senderasidave simulate an attacker as a mali-
cious intermediary which generates the rewritingads as in Fig 10. We send the same
message to the receiver for a specific numbereoéiions, while the attacker generates the
same attack same number of times. Fig 12 and Figh@w corresponding charts in line
and timing diagram for 50 and 40 iterations usiifferent timing resolution of Java profil-
ing. It is clearly indicative that the proposed hewat shows better execution time in com-
parison to the XWS-Security policy driven framework

7.2 Evaluation Environment

The sender (e.AddSOAPAccount) and receiver code (e.@heckSoapAccount) are
written in Java and they are compiled and executigidl Sun’s jdk1.5.0_06, for windows.
To be more specific we use XWS Security FramewdrdWSDP 1.6 package for WS-
Security features. The experiments are carriedusirtg a PC with Mobile Intel(R) Pen-
tium(R) 4, 2.80GHz Processor and 512 MB RAM, rugrmm Microsoft Windows XP Pro-
fessional.

7.3 Discussion
The data in Fig 12 are extracted using #yetem.currentTimeMillis() Java method
which has a resolution of 15/16 ms. The result shaw impressive performance against
policy driven validation. In average, service tinmging SOAP Account is 10 times faster
than using a comparable policy based approachlFghows another performance diagram
obtained wusing a library called “hrtlib.jar” [19] nstead of using Sys-
tem.currentTimeMillis() , which improves the accuracy of 15/16 ms to a foacif 1
ms(e.g. 0.5 ms).

As SOAP supports a variety of message exchangerpajtsuch as request-response,
one way message, RPC, and peer-to-peer interadtMh,rewriting attacks are possible in
any patterns. So is the SOAP Account driven valitatio detect these attacks.

8 Conclusion and Future Work

SOAP structure information has been ignored inalietg XML rewriting attacks so far.
We have presented and discussed an inline apptoasblude SOAP structure information
(SOAP Account) in the SOAP message and to valittegenformation by the receiver of
the message. SOAP Account information can be uselgtiect the XML rewriting attacks
immediately in the receiving end which might notdegected using the state of the art (e.qg.
WS-Security, WS-Policy, WS-SecurityPolicy) as itstsowed in the section 3. This simple
and elegant feature can be incorporated in WS-&gcur particular we can attach SOAP
Account information inte<Security> header in the WS-Security. We can even use it in
any standalone web service which may be subjeXthb rewriting attacks. It is not an at-

14

tempt to replace policy based validation; rathés designed to be an alternative that can be
used when performance is an issue in detecting X&riting attacks.

We have considered the SOAP structure informatiobet used in the context of secur-
ing single messages. Using WS-Security indepengémtieach message to secure the in-
tegrity of a session of messages is rather inefiiciWS-SecureConversation [20] intro-
duces security contexts, which can be used to sezessions between two parties. How
SOAP structure information can be used for secuairggssion is a future research topic.
We have used only the XWS-Security Framework asmparable message level security
implementation and have drawn some comparisons $i \thplementation with our tech-
nique. It would be interesting to see how the penBimce scales regarding other implemen-
tation frameworks of message level security.

9 REFERENCES

[1]http://docs.oasis-open.org/wss/2004/01/0asisARRONss-soap-message-security-1.0.pdf

[2]K. Bhargavan, C. Fournet, A. Gordon, and G. @&An Advisor for Web Services Security Policietp ¥ re-
search.microsoft.com/~adg/Publications/details.lstns®5

[3]Microsoft Research; http://research.microsoftnéprojects/Samoa/

[4]K. Bhargavan, C. Fournet, and A. D. Gordon. Yeénig policy-based security for web services.lttth ACM
Conference on Computer and Communications Sed@®5'04) pages 268-277, October 2004.

[5]T. Nadalin, ed.Web Services Security Policy Language (WS-Secolityf,Version 1.0, 18 December 2002,
http://www.verisign.com/wss/WSSecurityPolicy.pdf

[6]K. Bhargavan, C. Fournet, A. D. Gordon, and Rcétla. TulaFale: A security tool for web servickslnterna-
tional Symposium on Formal Methods for Components@bjects (FMCO’03)LNCS. Springer, 2004

[71B. Blanchet. An efficient cryptographic protoceérifier based on Prolog rules. RProceedings of the 14th
IEEE Computer Security Foundations Workshagges 82—96. IEEE Computer Society Press, 2001.

[8]Ana C.C. Machado and Carlos A. G. Ferraz. Gundsl for Performance Evaluation of Web Servid¥spbMe-
dia’'05, December 5-7,2005

[9]Hongbin Liu, Shrideep Pallickara Geoffrey Foxr®rmance of Web Services Security

[10]XML-Signature Syntax and Processing http://ww®&.org/TR/xmldsig-core/

[11]Bajaj, et al., Web Services Policy Framework (WS-Policy) September
2004, http://www.ibm.com/developerworks/library/sifieation/ws-polfram/

[12]T. Nadalin,edWS-PolicyAssertion28 May 2003,http://www.ibm.com/developerworks/litwavs-polas

[13] Java Web Services Tutorial http://java.sun.ceebservices/docs/2.0/tutorial/doc/index.html

[14]Stefan Batres, edWeb Services Reliable Messaging Policy Assertids+RM Policy)February 2005,
http://specs.xmlsoap.org/ws/2005/02/rm/WSRMPolidf.p

[15]G. Della-Libera, M. Gudgin, P. Hallam-Baker, NHondo, H. Granqgvist, C. Kaler, H. Maruyama, M.
Mcintosh, A. Nadalin, N. Nagaratnam, R. Philpott, Prafulichandra, J. Shewchuk, D. Walter, and R.
Zolfonoon. Web services security policy languageS¢®écurityPolicy), July 2005. Version 1.1.

[16]Web Services Addressing (WS-Addressing) W3C MenSubmission 10 August
2004http://www.w3.org/Submission/ws-addressing/

[17]SOAP, http://www.w3.0rg/TR/soap/

[18]http://msdn.microsoft.com/library/default.asp2dibrary/en-us/dnglobspec/html/ws-routing.asp

[19]Roubtsov,V. My kingdom for a good timer, htfpavw.javaworld.com/javaworld/javaqa/2003-01/01-qa-
0110-timing.html

[20]http://specs.xmlsoap.org/ws/2005/02/sc/WSSecanwersation.pdf

[21]Microsoft CorporationWeb Services Enhancements (WSE)2.0 St 2004.At
http://msdn.microsoft.com/webservices/building/wieéault.

[22]http://msdn.microsoft.com/library/default.asp2dibrary/en-us/wse/html/40c4b84a-a6e8-40db-810e-
2521fdd8c09d.as

[23]K. Iwasa, et al., eds., WS-Reliability v1.1, S¥S Web Service Reliable Messaging TC, OASIS Stahd®b
November 2004, http://www.oasisopen.org/committ@shload.php/9330/WS-Reliability-CD1.086.zip.

15

