Towards Secure SOAP Message Exchange in a SOA

Mohammad Ashiqur Rahaman, Andreas Schaad and MaRite
SAP Research
805, Avenue du Docteur Maurice Donat
Font de 'Orme, 06250 MOUGINS
+33(0)4 92 28 62 00
{mohammad.ashiqur.rahaman, andreas.schaad, maaits@sap.com

Abstract A service consumer sends a service requestsage

SOAP message exchange is one of the core servicel® @ service provider and the service providerrrstia
required for system integration in Service Oriented 'esponse message to the service consumer. Opgioaall
Architecture (SOA) environments. One key concera in SOA can also include a service that provides actiirg
SOA is thus to provide Message Level Security (asOr registry of services. A service consumer cacalier
opposed to point to point security). We observet tha Services by examining the registry.
systems are communicating with each other in a SOA
over SOAP messages, often without adequate protecti
against XML rewriting attacks.

Although the concept of a SOA has thus been used fo
years, the evolution of web services-based SOASlisa

field of ongoing Research & Development in industng
academia. We observe that with the emergence of web
service standards, the integration of systems iAZh or

B2B fashion has become more and more accelerated.
Message exchange is one of the core services eelyfar
system integration in SOA environments. This messag
exchange is usually performed via the SOAP protocol
Since messages may carry vital business informgatfiir
integrity and confidentiality needs to be presenzstti
SOAP Message exchange in a meaningful and secured
manner remains a challenging part of systems iatiygr.

We have already provided a solution to protect the
integrity of SOAP messages in earlier work [1]. §hi
solution was based on the usage of message steuctur
information SOAP Account) for preservation of
message integrity. However, this earlier work didt n
discuss the issue of forging tB®AP Account itself. In
this paper, we discuss the integrity feature oS@AP
Account within a more general context of the current
web service security state of the art.

Categories and Subject Descriptors

D.2.11 Boftware Architectures] D.4.6 [Security and Since SOAP is based on XML, one particular expit
Protection] that of a XML rewriting attack which is a generalnme
General Terms for a distinct class of attacks based on the nmlii

interception, manipulation, and transmission of FOA

Security, Design, Verification. : o)
messages in a network of communication system.dJsin

Keywords N WS-Security [2], WS-Policy [3] and other standards
SOA, SOAP Account, XML Rewriting Attack correctly on SOAP we can avoid XML rewriting attack
1. Introduction [4]. However, in practice, incorrect usage and ipgibn
of these standards by the human being is veryylikad
A service oriented architecture (SOA) is a collectof leads to significant vulnerabilities.

loosely coupled services available in the World ®vid

Web [15]. Loose coupling means that the way a tlien In earlier work [1] we have shown that the usage of
(which can be another service) communicates with th SOAP message structure information, which we refers
service does not depend on the implementation ef th SOAP Account , can be an efficient technique to detect
service. The concept of a SOA is, however not ne#.[rewriting attacks. Although usinOAP Account [1]
One of the first service-oriented architectures @suse we can detect XML rewriting attacks very early et
of DCOM or Object Request Brokers (ORBs) based onvalidation process by a legitimate receiver of aABO
the CORBA specification. Figure 1 shows a b&A. message, &OAP Account itself might be a target of
Permission to make digital or hard copies of alpart of this work for personal or attackers. Therefore this pabe&nlms at prOV|d|ng an

classroom use is granted without fee provided tapies are not made or analysis of the integrity of BOAP Account itself.

distributed for profit or commercial advantage @hdt copies bear this notice and
the full citation on the first page. To copy othesy or republish, to post on servers
or to redistribute to lists, requires prior specjfermission and/or a fee. 1
SWS'06, November 3, 2006, Alexandria, Virginia, USA The work of A. Schaad and M. Rahaman has been sphsnder

Copyright 2006 ACM 1-59593-546-0/06/0011...$5.00. the EU IST-2004-026650 project “R4eGov”.

They suggest an iterative and incremental model to
incorporate web service security requirements, @sigh
web service security architecture, and to selecb we
service security standards for deployment. In &oldit

Service they describe a case study where they exercise the
Provide iterative and incremental model in the suggesteyl wa

The SAMOA project [5] takes a formal approach to
verify and validate web services specifications hwit
rigorous techniques. SAMOA identifies common sdguri

Figure 1: Service oriented Architecture vulnerabilities during security reviews of web dees
with policy-driven security [4] and proposes a toamed

In this paper we describe web service security policy advisor to identify vulnerabilities autoneily and
architectures in a simplified way using WS standard to provide remedial advices. While their prior wdi{
before addressing the issue of attacking S®AP describes generating and analyzing web servicasigec
Account itself. We concentrate on message level policies to detect XML rewriting attacks, this taslable
security and thus show the necessity of messagel lev to bridge the gap between formal analysis and
security in web services. We use concrete scenariosmplementation quite efficiently. It also descriteeformal
showing how we achieve the integrity feature @@AP semantics for WS-SecurityPolicy [7], and proposes a
Account assuming the presence of a malicious attacker. abstract link language [8] for specifying the séguyoals

of web services and their clients.

The paper is thus organized as follows. Section 2
discusses related work. Section 3 reviews related3. Terminologies and Techniques
terminologies and techniques. Section 4 illustratesate
of the art web service based security architedrasing In this section we present the terminologies and
on message flow and rewriting attacks with respeca techniques related to web services security thatater
real-world business scenario. In Section 5 we thenrefer to in this paper and that have been widefylajed
describe a scenario of a possible attack agair&DAP in industry. We also provide insights into the ségu
Account and reason about th8OAP Account 's context that is required in a SOA.
integrity. Section 6 concludes this paper.

Service
Consume
Service
Provide

Service
Registry
(upDI)

3.1. SOAP

2. Related Work
SOAP [12] is a XML based messaging framework

Security in SOAs has been an active research fieldused to exchange encoded information (e.g. wehicgerv
since the beginning of the SOA paradigm. This wierk ~ request and response) over a variety of protocelg. (
continuation of our previous work [1] where we have HTTP, SMTP, MIME). It allows a program running in
presented and discussed an inline approach todeclu One system to call a program running in anothetesys
SOAP structure information in the SOAP messagetand and it is independent of any programming model. 8OA
validate the information by the receiver of the sseg. I provides an easy way to design protocols for
particular, we can attach SOAP Account informafise ~ COmMmMunication between applications in an intramegver
the <Security> header in the WS-Security standard the internet.
[2]. Essentially ouSOAP Account has proposed a new)
SOAP header as any new standard in SOA does. Since the emergence of SOAP, systems rely on the
However, we took performance issues into account as@bility for message processing intermediaries tovéod
such an added SOAP header may introduce overhead if'eSsages. Security information is contained witiie
the processing of XML (such as XML canonicalizajion SOAP message and/or SOAP message attachment, which
We described a performance evaluation of the pregpos allows security information to travel along witheth
technique to detect XML rewriting attack on SOAP Message or attachment.
messages which showed better performance when
compared to standard policy based techniques [1]. 3.2. Point-to-Point Security vs. Message Level

Security for SOAP Messages

In [13] the authors suggested to follow certain
guidelines to integrate security aspects of welvises Point-to-Point security context preserves the sscur
throughout the development process of building web context in between any two consecutive SOAP prangss
service based systems in service oriented architet nodes as shown in Figure 2.

Security Context Security Context

Service
Consumer

Web servicq
Provider

A 4

Intermediary {¢———»

Figure 2: Point-to-point Configuration

Transport level security (e.g. SSL, TLS) [16] sugpo
Point-to-Point security context only (Figure 2) ashoes
not handle End-to-End multi-hopped messaging sircuri
So when a message is received and forwarded omby a
intermediary (A SOAP processing node e.g. SAP Xl or
IBM Websphere) beyond the transport layer, botke, th
integrity of data and any security information tfiatvs
with it may be lost. This forces any upstream SOAP
message processors to rely on the security evahsati
made by previous intermediaries and to completelgt t
them with respect to their handling of the conteft
messages. Security is preserved only when data the
wire, but not when off the wire (e.g. files, databs).

Using transport level security the current statehef
art is invocation of HTTPS [17]. However, the
communication is transient, Point-to-Point, andrgpied
with known trusted parties which means that
authentication of the parties and confidentialityre data
is guaranteed while data is in motion, but not eldbta
resides within an intermediary. Web services cath ém
provide such features, but it is insufficient ivesal ways
when transport level security is used:

e Transport Level Security is not granular enough
because it encrypts everything.

It is inflexible about routing because it is just
Point-to-Point.

Reduced auditing capabilities.

Can not avoid repudiation because it is not signing
the data.

HTTP might not be the only transport that is used
nowadays.

We need to adhere to more stringent security
requirements for web services because:

The point of interaction is more “over the intefnet
(as opposed to “within an intranet”).

Interaction happens between partners with no
previously established relationship.

Program to programnteraction (as opposed to
human to program interaction).

Security Context

-

Service
Consumer

~

Web servicg
Provider

b

A 4

Intermediary

Figure 3: End-to-End Configuration

More dynamicinteraction (as opposed to static
interaction).

Largernumber of service providers and users.

We need fine grained signature and encryption
where element wise signing and encryption may be
needed.

Message level security aka End-to-End securitysdeal
with and solves most issues of a transport levelirsty
scheme regarding its insufficiency, starting with
maintaining a security context (Figure 3) whichvalid
End-to-End. The identity, integrity, and securitf the
message and the caller need to be preserved oVipleu
hops and more than one encryption key may be Used a
the route with trust domains being crossed.

4. Web Service Security

From a more general perspective, Web services
describe the interaction of open WS* standards. (e.g
SOAP, WSDL, UDDI), different implementation
platforms (J2EE, .NET, ABAP), applications and degi.
Active presence of such diverse systems makes it
necessary to take an evolutionary approach thatdges
the existing technologies to cope with the security
concerns of a SOA. Web service specifications and
techniques for secure SOAs have been evolving Isapid
SOAs provide loosely coupled applications to be
composed and integrated from a set of internal and
external services which are distributed over theriet.

In this section we present a simplified view of abw
service security architecture considering the pitgr of
different Web Service standards and message floenwh
we deploy or implement the different WS* standards
related to security in a simple sender and receiver
scenario. We also provide a business scenario wikich
vulnerable to XML rewriting attacks.

4.1. WS Standards in Vb Service Security
Architecture

WS-Security [2], WS-Policy [3], WS-SecurePolicy [9]
and other web service standards follow an evolatipn
approach to address the End-to-End security corgswé

iy

1Poiicy,
L - - [Requeste]

Web Servic%_

l's

ecurlty' : Claims
Token &

I Claims 1.1 Security
1 1! Token)

WS-SecureConversation

Figure 4: Simple Web Service Security Architecture

in detail. Figure 4 shows a simple architecturewab
service security considering different WS standards
Note that these mentioned standards play a cawisin
web service security architectures along with other
standards.

WS-Security describes how to attach signature and
encryption headers to SOAP messages as well agdow
attach security tokens, including binary securitkeins
such as X.509 certificates and Kerberos tickets.- WS
Security provides a framework to secure a SOAP agess
using existing techniques (e.g. encryption, sigregtu

WS-Policy and WS-SecurePolicy describe the
capabilities and constraints of the security (arideio
business) policies on intermediaries and endpdats.
required security tokens, supported encryption
algorithms). For example, a service provider mayy on
accept a X.509 security token which can be desgribe
using the declarative syntax of WS-Policy and WS-
SecurePolicy.

As a SOA intends to provide the loose coupling of
services the issue of having trust among the differ
entities (e.g. service provider, consumer, and
intermediary) comes into play. WS-Trust [10] delses a
framework for trust models that enables web sesvice
securely interoperate. For example, a client cad saly
X.509 security tokens and the web service can aardp
SAML security tokens. WS-Trust provides a prototml
get the SAML security token by presenting the X.509
security token. By doing so, WS-Trust resolvesttiien
format mismatch; trust between client and web seregan
be established.

Using WS-Security independently for each message to
secure a conversation is possible, but it is rather
inefficient. WS-SecureConversation [11] describew o

1. Request for tokens Security Tl

service

‘2. Get tokens to add to SOAP messages
-

A
Checking SOAP
according to WS-
Policy
We_b 6. Validate
Service A tokens
Requester | 3 sending to 5.Enforcing
Policy Module WS—Policy
4. Sign & senc
= SOAP
p| Incorporating A 4 A 4
d WS-Policy in message to

web service q
Slorp Web Service

Provider

A\ 4

7. Receive response from Web Service

&
<

Figure 5: Typical message flow between web services us
WS standards

parties including security context and

establishing and deriving session keys.

exchange

Note that, though correct usage of all these staisda
can secure a SOAP message exchange in SOA, we
observe some limitations to achieve the expectedrig
[1]. We show an example of a possible attack irtieec
4.3.

4.2. Message Flow

On the sender side or Web Service Requester irrd-igu
5, at first the Requester will acquire the requisedurity
token from the Security Token Service and then the
protocol stack generates SOAP envelopes that \atissf
policy. It adds integrity and confidentiality credials
under the<Security > header that is defined in WS-
Security. The header block allows attaching segurit
related information targeted at a specific recipienthe
form of a SOAP actor/role. This may be either the
ultimate recipient of the message or an intermgdiar
Consequently, elements of this type may be present
multiple times in a SOAP message. An active
intermediary on the message path may add one oe mor
new sub-elements to an existing header block ¥ tre
targeted for its SOAP node or it may add one orenmaw
headers for additional targets.

Conversely, on the receiver side or Web Service
provider, a SOAP envelope is accepted as valid and
passed to the application if its policy is satdfier this
envelope. Normally, the sender policy should béeast
as demanding as the receiver policy.

manage and authenticate message exchanges between

<Envelope>
<Header>
<Security>
<UsernameToken Id=1>
<Username>Alice</>
<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
<Created>2003-02-04T16:49:45Z</>
<Signature>

Message to bank’s web service says:"Transfer

l 1000 euro to Bob,signed Alice”

<Signedinfo>
<Reference URI= #1><DigestValue>Ego0...</>
<Reference URI= #2><DigestValue>Qser99...</>
<SignatureValue>
vSB9JU/Wr8ykpAlaxCx2KdvjZce=</>
<Keylnfo>
<SecurityTokenReference><Reference URI=#3/>

<Body ld=2>
<BookTitle>ABC</>

<TransferFunds> Verifying signature using key
<beneficiary>Bob</> derived from Alice’s secret
<amount>1000</>

passworc

Figure 6: A SOAP request before an attack (Excerpt)

4.3. Possible XML Rewriting Attacks in a

Business Scenario

XML rewriting attack is a general name for a disti
class of attacks based on the malicious interceptio

manipulation, and transmission of SOAP messages in

network of communication system. In this section we
show a scenario of business processes that arerable
to such rewriting attacks.

Consider one service consumer of an online book sho
service requests for some particular book and fayg
(Figure 6). Each successful request causes theumms
to pay. We assume that one SOAP node (Ultimate

receiver) is supposed to process the SOAP header o

Body. A customer, Alice, wants to transfer 1000 d&ur
from her account to the book shop’s owner (Bob’s)
account (Figure 6) for a requested book. Some inakc
attacker intercepts this message and updatestitigsta
transfer 5000 Euros instead of 1000 Euros (Figyré\i
attacker can now observe and manipulate the message
the SOAP path. He can introduce a new false hgadgr
Bogus) (Figure 7). Everything else, including the
certificate and signature, remains same. ¥Bogus>
element and its contents are ignored by the ratigiace
this header is unknown, but the signature is still
acceptable because the element at reference' IdFR1 ”
remains in the message and still has the same.vBhie
may cause the consumer to pay several times fosaine
request and forces the service to do redundant.work

To detect the rewriting attack we ad8OAP
Account information in the SOAP message before
sending it to the legitimate receiver. Figure 10ve$ the
SOAP message after addiB@AP Account. The rati-

<Envelope>

<Header> <4— Attacker has intercepted the messac

<Security>
<UsernameToken |d=1>
<Username>Alice</>
<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
<Created>2003-02-04T16:49:452</>
<Signature> This reference and signature value is still valid

<SignedInfo>
<Reference URI= #1><DigestValue>Ego0...</>
ference URI= #2><DigestValue>Qser99...</>

<SignatureValue>
vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
<KeylInfo>
<SecurityTokenReference><Reference URI=#3/>
<BogusHeader >
<Body ld=2> ,L\
<BookTitle>ABC</>
<TransferFunds>
<beneficiary>Bob</>
<amount>1000</>
<Body>
<BookTitle>ABC</>
<TransferFunds>
<beneficiary>Bob</>
<amount>5000</>

Attacker has added aBogusHeader
& included the Body

Amount has been changed to
5000 by the attacker

/

Figure 7: A SOAP request after attack (Excerpt)

1. Request for tokens

Security Token service
. Get tokensto add to SOAF

A
Checking
SOAP
according to
WS-Policy
8. Validate
. Validating
Web Servicg 4. Sending SOAP S0AP Account| |7, Enforci |2
Requester message to Info hg WS-
3.Sending to SOAPAccount Policy
Policy Module module
-~ — 5. Sending 6.
p| Incorpor- | Adding | gjgneq Received
ating WS- SOAP | nessage SOAP
Policy in Account] \ith SOAP
SOAP Info | Aceoint
Web Service
Provider

9. Receive response from Web Service

<
<«

Figure 8: Message flow using new approach
between web services

-onale behind usingsOAP Account is described in
detail in [1]. We have designed and implemented a
module calledAddSOAPAccount [1] to compute the
SOAP Account information for every SOAP message
that is exchanged in SOA environment. There is a
correspondingCheckSOAPAccount module in every
SOAP processing node which checks the safety of the
received SOAP message as described in [1] anden th
section 5.

Figure 8 shows the message flow when these modules
are deployed in a SOA. The difference between Eigur

and Figure 5 is the addeHOAP Account module
(AddSOAPAccount & CheckSOAPAccount) in a
SOAP processing node (i.e. Sender, intermediary,
receiver). Since new modules are added in every BSOA
processing node the number of exchanged messages
increased by 2. A detailed performance analysis

considering the added modules is given in [1].
4.4. SOAP Account

Our concept of &S8OAP Account [1] refers to the

general idea of keeping record of a SOAP message’s

structure of elements (e.g. Number of header el&snen
number of signed objects, and hierarchy information of
the signed object).

Figure 9 shows thésOAP Account information
that is used to detect the XML rewriting attackstfie
scenarios of [1] and in this paper. As the mainasqtion
of the rewriting attacks was based on the strutsynatax
of a SOAP message, we focus on capturing the ateict
related information in &8OAP Account . We use the
AddSOAPAccount [1] module to add thisSOAP
Account information into outgoing SOAP message.

5. Attacks against SOAP Account

A SOAP Account itself is vulnerable to XML
rewriting attacks. Since the wholSOAP Account
information is signed before sending it to the tieghte
receiver any malicious attacker may try to forgenithe
same way as in the scenarios described in theogettB.
The usage of th€heckSOAPAccount [1] module in
every SOAP processing node acts as a safeguastdotd
any rewriting attacks againSOAP Account along with
attacks on other parts of the message.

To prevent this attack, th€heckSOAPAccount
module will do some routine checks as soon as ®&rs
message arrives. A first check is to make sure tiat
received SOAP message must havB@AP Account
header. If it is there then the module will verifige
signature of the SOAP Account . If several
intermediaries have their owBOAP Account then
there will be a nested signature as it is descridgdIf
verification is successful then tigheckSOAPAccount
module will do the rest of the routine work as disad in
the section 5 of that paper [1]. Figure 10 and fagll
show a SOAP message havin§@AP Account as well
as an attacked SOAP message showing an attermgrge f
the SOAP Account header respectively. As in the
previous example scenario, the attacker is intrmduocne
new header and copying the SOAP Account information
under the new header (Bogus) keeping the signatlic:

SOAP Accoun

Sibling Elements

Figure 9: SOAP Account

But as we said that tHeheckSOAPAccount module
will check the presence GOAP Account header as a
SOAP header as soon as the message arrives. S0%E
Account is copied under a new element it is not a SOAP
header anymore (Figure 11). The module can immglgliat
throw an exception saying th@OAP Account has been
attacked. Again, we can detect the attack befonegdany
kind of computation intensive task like canonicatian.

Even if the attacker provides its owiSOAP
Account it will be immediately invalidated while doing
SOAP Account signature validation. The reasoning
behind this claim is as follows. Although the akixcmay
provide its ownSOAP Account having updated SOAP
structure information according to its attack, &ncnot
provide its own signature key information to sidgmet
SOAP Account in the existing<Security> header.
The <Security> header contains legitimate key
reference of the legitimate sender of the message (
Figure 10). In Figure 10, the legitimate sendekAige
who has provided her signature key reference in the
<KeyInfo> element which will be used for signature
validation. Besides, an attack&8@DAP Account will be
under a new false header (in the case of Figuré ikl
<BogusHeader>) which will be caught after the first
routine check by th€heckSOAPAccount module. The
attacker may insert a newSecurity> header and its
own key reference to validate the adde’lOAP
Account . TheCheckSOAPAccount module can det-

<Envelope>
<Header>

Message to bank’s web service
<«4—says:"Transfer 1000 euro to Bob, signed
Alice”

<Security>

<UsernameToken Id=1>
<Username>Alice</>
<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
<Created>2003-02-04T16:49:45Z</>
<Signature>

<Signedinfo>
<Reference URI= #1>
<DigestValue>Ego0...</>
<Reference URI= #2>
<DigestValue>Qser99...</>
<Reference URI= #3>
<DigestValue>OUytt0...</>
<SignatureValue>
vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
<Keylnfo>
<SecurityTokenReference>
<Reference URI=#1/>

Verifying signature using
key derived from Alice’'s
secret passwor

<SoapAccount id=2>
<NoChildOfEnvelope>2</>
<NoOfHeader > 2 </>

</SoapAccount>

<Body 1d=3>
<BookTitle>ABC</>
<TransferFunds>
<beneficiary>Bob</>
<amount>1000</>

Figure 10: A SOAP message with SOAP Account before
an attack (Excerpt)

<Envelope>
<Header>
<Security>
<UsernameToken Id=1>
<Username>Alice</>
<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
<Created>2003-02-04T16:49:45Z</>
<Signature>

<Signedinfo>
<Reference URI= #1>
<DigestValue>Ego0...</>
<Reference URI= #2>
<DigestValue>Qser99...</>
<Reference URI= #3>
<DigestValue>OUytt0...</>
<SignatureValue>
vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
<Keylnfo>
<SecurityTokenReference>
<Reference URI=#1/>

<BogusHeader >
<SoapAccount id=2>
<NoChildOfEnvelope>2</>
<NoOfHeader > 2 </>
</SoapAccount>

SoapAccount is not a
SOAP header anymore

<Body id=3>
<BookTitle>ABC</>
<TransferFunds>
<beneficiary>Bob</>
<amount>1000</>

Figure 11. SOAP request after an attempt to attack on
SOAP Account (Excerpt)

Flight
Booking
_—Y| system ~
© T~
Custom- / Broker's
ers
Request Rei:gk))nse
s\g\?ik():e Flight service
Booking System
(G \ System / (D)
\ (B) /V

Figure 12: Travel Itinerary scenario

-ect this added key reference in #fgecurity> header

in the same way described above. So, even if aatadd
SOAP Account is provided by the attacker, it will be
detected eventually before signature value che&@AP
Account . Moreover, the nested signature feature of
SOAP Account makes things harder for the attacker to
forge the SOAP Account . How SOAP Account is
processed using nested signature with several
intermediaries is described in [1].

To understand the issue of forgiSOAP Account
with intermediaries and the reasoning to deteciatteck,
we consider the online travel itinerary scenariothie
Figure 12 where there are several intermediaribe, t
sender, and the ultimate receiver of a SOAP mesiage
shown. One service consumer (not shown in Figujeof 2
a travel itinerary web service broker A, requesis &
particular travel itinerary to get the best avdiaprice.
The travel itinerary broker A may forward the same
request several times to some flight booking systein
the related airlines (B, C). The broker is suppdseshow
the best available itinerary plan for the givenuest of
the service consumer. A malicious SOAP processar (e
Broker, Flight Booking systems) may manipulate the
SOAP message as in the previous scenario to prasent
bad itinerary plan in response. If the Broker idionaus it
can temper with the itinerary request itself.

If B or C performs this malicious attack the consum
may not receive the best itinerary plan. In anyeaasage
of SOAP Account information will allow us to detect
the attack as soon the message is received andssext
by the following SOAP processor’s
CheckSOAPAccount module. Here every SOAP
processor will add its owrSOAP Account using
AddSOAPAccount module in a nested fashion [1] so
that the ultimate receiver knows who did what. tiya
malicious attacker tries to forge tOAP Account in
the same fashion, theheckSOAPAccount module of
the following SOAP processor can detect the attasing

his routine checks of the validity of the receivB@AP
messages mentioned previously in this section.

6. Conclusion

In this paper we have presented a solution to prote
SOAP messages against XML rewriting attacks. This
solution was based on some prior work of ours Hihg
SOAP message structure information, which we rafer
SOAP Account , as an efficient technique to detect
rewriting attacks. Since 8OAP Account might be a
target of attackers itself, this paper focused be t
preserving the integrity of @OAP Account .

Symposium on Formal Methods for Components and c®bje
(FMCO'03), LNCS. Springer, 2004

[9] G. Della-Libera, M. Gudgin, P. Hallam-Baker, Mondo,
H. Granqyvist, C. Kaler, H. Maruyama, M. McIntosh, Madalin,
N. Nagaratnam, R. Philpott, H. Prafullchandra, lievé&chuk, D.
Walter, and R. Zolfonoon. Web services security iqyol
language (WS-SecurityPolicy), July 2005. Versioh 1.

[10] http://specs.xmlsoap.org/ws/2005/02/trust/WS-Tpatt.
[11]http://specs.xmlisoap.org/ws/2005/02/sc/WSSecaneersa
tion.pdf

[12] SOAP, http://www.w3.org/TR/soap/

[13] Carlos Gutierrez, Eduardo Fernandez-Medina,ridla
Piattini “Web Services Enterprise Security Architee: A Case
Study” http://delivery.acm.org/10.1145/1110000/1023/p10-
gutierrez.pdf?key1=1103025&key2=9585273511&coll=A&M
dl=ACM&CFID=15151515&CFTOKEN=6184618

We have presented our analysis of protecting the[14] G. Alonso and F. Casati and H. Kuno and V. Megju:

SOAP Account from forging (XML rewriting attack)

Web Services: Concepts, Architectures and Appboeti

based on a real-world business scenario. We haveSPringer-Verlag, 2004.

concentrated on message level security and distuase
different message flows with and without usinG@AP
Account . This was based on a simplified view of web
service security in a SOA to show exactly where the
concept of SOAP Account fits into a SOA.

Considering that in a real-world scenario we might

[15]http://java.sun.com/developer/technical ArticWebService
s/soa2/SOATerms.html#soawhy

[16] http://mww.ietf.org/rfc/rfc2246.txt

[17] http://mwww.ietf.org/rfc/rfc2818.txt

encounter systems with a payload of some hundred of

thousands of SOAP messages exchanged on a daity bas
our earlier work onSOAP Account and XML
processing related performance issues will needédo
confirmed again, this time in the context of a more
detailed performance analysis.

7. References

[1] Mohammad Ashiqgur Rahaman., Rits Marten, Andreas
Schaad, "An Inline Approach for Secure SOAP Requesid
EarlyValidation”,http://www.owasp.org/images/4/AlmalineS
OAPValidationApproach-MohammadAshiqurRahaman.pdf

[2] http://docs.oasis-open.org/wss/2004/01/0asi34PQ -wss-
soap-message-security-1.0.pdf

[3] Bajaj, et al.,Web Services Policy Framework (WS-Policy)
September,2004, http://www.ibm.com/developerworksdliy/sp
ecification/ws-polfram

[4] K. Bhargavan, C. Fournet, A. Gordon, and G.H@& An
Advisor for Web Services Security Policies, http://
research.microsoft.com/~adg/Publications/detaits#sivs05

[5] Microsoft Research;
http://research.microsoft.com/projects/Samoa/

[6] K. Bhargavan, C. Fournet, and A. D. Gordon. ify&ng
policy-based security for web services1itth ACM Conference
on Computer and Communications Security (CCS'@4)ges
268-277, October 2004.

[7] T. Nadalin, ed.,Web Services Security Policy Language
(WS-SecurityPolicersion 1.0, 18 December 2002,
http://www.verisign.com/wss/WSSecurityPolicy.pdf

[8] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Race
TulaFale: A security tool for web services. International

