SOAP-based Secure Conversation and Collaboration

Mohammad Ashiqur Rahaman, Andreas Schaad
SAP Research
805, Avenue du Docteur Maurice Donat
Font de I’Orme, 06250 MOUGINS, France
+33(0)4 92 28 62 00
{mohammad.ashiqur.rahaman, andreas.schaad } @sap.com

Abstract

Web services in different trust boundaries interact with
each other via SOAP messages to realize functionality in
a collaborative environment. Exchanging SOAP messages
for remote service invocation has gained wide acceptance
among web service developers. Several web service secu-
rity standards are widely deployed aiming at securing ex-
changes of a single SOAP message and a conversation of
SOAP messages among partners in a collaborative environ-
ment. Concerns have been raised about the possibility of
XML rewriting attacks within this context and their early
detection.

In this paper, we demonstrate such possible attacks with
respect to WS* policy based scenarios to set a security con-
text and to use a security context for conversations of SOAP
messages. We show how our proposed SOAP Account
[21] solution could be applied for early detection of XML
rewriting attacks, specifically regarding secure SOAP-based
conversations. A simulation-based performance analysis
and comparison of our SOAP Account approach vs. a
WS* policy based approach complements our observations.

1. Introduction

Interaction among partners in a collaboration may be
done using two classic techniques of a distributed system:
shared memory and message passing. In service-oriented
architectures (SOA) the latter approach has been used as a
de facto standard for interaction among services.

Secure message exchanges among the partners in a col-
laborative environment may be required to find appropriate
partners, set common goals and achieve a defined set of re-
sults. In a SOA, individual web services may reside in dif-
ferent organizational boundaries. Often, they do not have
prior trust among them. We need a trust framework which
will essentially bridge the gap of trust among partners in dif-
ferent organizations. Interaction among services, whether
of a static or a dynamic nature, occurs through SOAP [7]
message exchanges.

A series of web service standards: WS-Security [20],
WS-Policy [22], WS-SecurityPolicy [6], WS-Trust [18]

and WS-SecureConversation [17] address the mentioned
concerns of securing message exchanges both in single
messages and conversation of messages scenarios and es-
tablishing a trust framework across different trust bound-
aries. However, implementing any WS* standard in the un-
derlying SOAP messaging layer, introduces new XML el-
ements and thus enlarges the SOAP message size which in
turn introduces overhead in terms of size and complexity of
XML processing and/or cryptographic operations. A per-
formance analysis with precise performance criteria would
provide a measurable rationale regarding the deployment of
WS#* standards.

Our previous work [21] discusses the theory of a SOAP
Account and the usage, limitations of policy to detect
XML rewriting attacks and [16] addresses the same attack
on a SOAP Account itself. However, in this paper' we
focus on a secure conversation framework for which an un-
derlying trust framework is complementary and how these
frameworks are used in the current web service security ar-
chitecture (e.g. SOA). Accordingly, we see the key contri-
butions of this paper in:

e an overall understanding of applying WS-Trust and

WS-SecureConversation in a collaborative environ-

ment;

e carly detection of XML rewriting attacks with respect
to different trust domains and conversations of mes-
sages;

e a detailed performance analysis of various perfor-
mance issues including the detection time of XML
rewriting attacks using a policy based approach vs. our
proposed SOAP Account technique.

The rest of this paper is organized as follows. Section
2 describes trust and secure conversation frameworks as re-
alized by different web service standards. We briefly refer
to related standards (e.g. WS-Security, WS-Policy) where
it is necessary with respect to our discussions. Section 3
demonstrates possible attacks (e.g. XML rewriting attacks)
by means of two example scenarios. Section 4 shows how a
SOAP Account can be useful to detect these attacks when

IThe work of M. A. Rahaman and A. Schaad has been sponsored under
the EU IST-2004-026650 project “"R4eGov”.

used in trust and secure conversation frameworks and how it
may fit into current web service security architectures. Sec-
tion 5 provides a performance analysis regarding a SOAP
Account vs. a WS* policy-based approach. Section 6
briefly discusses related work and section 7 concludes the
paper.

2. Trust and Secure Conversation

Trust is the characteristic that one partner (consumer,
service) is willing to rely on a second partner (consumer,
service) to execute a set of tasks and/or to make a set of
statements/assertions about a set of subjects and/or scopes
[18]. A Claim is any statement/assertion about a partner
(consumer, provider of a service). A Security Token is a
token which represents a collection of claims. A Trust En-
gine is a conceptual component that evaluates the security-
related aspects of a message in a trust framework. A Se-
curity Token Service (STS) is a service, responsible for is-
suing/renewing/validating security tokens. Request security
Token (RST) is a token in a SOAP message, sent to a STS to
request a security token. Request security Token Response
(RSTR) is a response token to the requestor containing the
requested token.

The analysis of the WS* standards related to the trust
and secure conversation frameworks is based on [18] and
[17]. Trust and conversation is not a new concept in secu-
rity. Numerous classic protocols, aiming at the mutual au-
thentication of the partners involved in a conversation, exist
in the literature and industrial deployments. Most of the
concepts can be applied to WS-Security, WS-Trust, WS-
SecureConversation, but experience shows that this adapta-
tion is not so straightforward.

2.1. WS-Trust

WS-Trust [18] defines the trust framework that we need
in a collaborative environment. While this framework is
based on the mechanisms described in WS-Security [20],
it defines additional primitives and extensions for security
token exchange to enable partners to interact with SOAP
messages within various trust domains. So, essentially trust
is represented through the exchange and brokering of secu-
rity tokens among partners. The trust framework provides:

e Methods for issuing, renewing, and validating security

tokens;
e Ways to establish, assess the presence of, and broker

trust relationships.

The overall process is as follows - one service may re-
quire that any incoming message prove a set of claims (e.g.
name, key, permission, capability, etc.). Any message arriv-
ing without the required proof of claims should be ignored
or rejected by the service. A service’s required claims can
be described using WS-Policy [22] and WS-SecurityPolicy
[6] specifications. So, if any requestor of a service does not
have the necessary tokens to prove the required claims, it
may request to the appropriate third entity (according to the
service’s policy) for the required tokens with appropriate

<RequestSecurityToken Context="...">
<TokenType>...</TokenType>
<RequestType>...</RequestType>
<Base>...</Base>
<Supportings...</Supporting> ...
<wsp:AppliesTo>...</wsp:AppliesTo>

<Claims Dialect="...">...</Claims>
<Entropy>
<BinarySecret>...<BinarySecret></Entropy>
<Lifetime>
<wsu:Createds>...</wsu:Created>
<wsu:Expires>...</wsu:Expires></Lifetime>

</RequestSecurityTokens>
Figure 1. Requesting a security token (RST)
<RequestSecurityTokenResponse Context="...">
<TokenType>...</TokenType>
<RequestedSecurityTokens>. ..
</RequestedSecurityToken> ...
<wsp:AppliesTo>...</wsp:AppliesTo>
<RequestedTokenReferences>...</RequestedTokenReferences>
<RequestedProofTokens>...</RequestedProofToken>
<Entropy>
<BinarySecret>...<BinarySecret></Entropy>
<Lifetime>...</Lifetime>
</RequestSecurityTokenResponses>
Figure 2. Response a security token (RSTR)
<wsc:SecurityContextToken wsu:Id="... >
<wsc:Identifier>...c< /wsc:Identifier>

<wsc:Instance>...c< /wsc:Instance>
</wsc:SecurityContextToken>

Figure 3. Structure of Security Context Token

claims. The third entity is essentially a security token ser-
vice (STS), which may in turn require its own set of claims
for authenticating and authorizing the request for security
tokens. The STS forms the basis of trust by issuing security
tokens that can be used to broker trust relationship among
different trust domains. Service may have its own policy,
receives a message from a requestor. Requestor may in-
clude signature, security tokens, using WS-Security [20]
features. The Trust engine residing in the service performs
a set of key steps before processing the request:

e Verify that the attached claims in the token are suffi-
cient to comply with the policy and that the message

conforms to the policy.
e Verify that the subjects and other security attributes of

the claims are valid by the signatures.

o Verify that the issuers of the security tokens are trusted.

The trust framework is realized by a number of
XML elements that are used to request security tokens
(RST) and respond to the request security tokens (RSTR).
Figure 1 and Figure 2 show a typical structure of a
token request (<RequestSecurityTokens>) and re-
sponse (<RequestSecurityTokenResponses>) ele-
ments identifying the general mechanisms respectively.
Eventually these elements will be the payloads (in some
cases these can be in the SOAP header) in the exchanged
SOAP messages.

2.2. WS-SecureConversation
WS-SecureConversation [17] aims at the security of a
conversation of related messages in a collaboration. While
the WS-Security [20] focuses on the message authenti-
cation model, the WS-SecureConversation focuses on the
context authentication model (security context model) for a
conversation of SOAP messages. While the former model
is used for securing a single message, the latter is useful for
the partners wishing to exchange multiple messages. The
security context is defined as a new security token type in

WS-Security that is obtained using the process described in
the previous section about WS-Trust. Figure 3 shows the
structure of a security context token. The goals of the WS-
SecureConversation specification are:

e Establishing security contexts for a conversation of

messages.
e Amending, Renewing, and cancelling the security con-

texts.

e Computing and passing derived keys and session keys.

WS-SecureConversation [17] left some terms and their
relationships undefined. It does not specify any definition
of a conversation although the title of the standard uses the
word “conversation”. It is also not clarified that how the
context and conversation starts/ends and depends on each
other. [10] also mentions these disparities of the WS-
SecureConversation standard and makes its own clarifica-
tion. In our case we use the terms “conversation” and ’ses-
sion” to refer to the same concept while the notion of start-
ing/ending does not require further definition in our context.

A security context token must be created and shared
among the partners before using it in the conversation of
messages. There are three ways to create a security context
token. A STS can create a new security context token after
receiving a request. Alternatively, one partner can create a
new security context token and shares it with the other part-
ners. However, this way works only when sender is always
trusted to create a new security context token. The previous
two ways allow for a simple request/response for security
context tokens. However, there are some scenarios where
a sequence of message exchanges between partners is re-
quired prior to the issuing a security context token. One
scenario could be that the partners may want to negotiate
about the shared secret of the security context tokens which
may be done with several message exchanges. Once the
security context token is established it can be distributed
to the partners for the lifetime of a communication session
through the mechanisms described in WS-Trust. Amending
and canceling a security context can be done using the same
ways for establishing of a security context token. For estab-
lishing, amending and canceling a security context token a
RST token for a request and a RSTR token for a response
are used in a SOAP message.

An established security context token contains or implies
a shared secret which may be used for signing and/or en-
crypting messages. However, partners may derive different
keys using that shared secret key using a specific function
[17]. For example, four keys may be derived so that two
partners can sign and encrypt using separate keys. Using
WS-Security features, like, attaching security tokens, token
references, and secrets for each message in a conversation
consumes considerable processing time for the SOAP pro-
cessing nodes (e.g. requestor, partners). Establishing se-
curity context among partners and thereby having shared
secret based on the context allows one to derive more keys.
One can derive its own different required keys offline, and

Security Token
Seryice (STS)
H Soap Account '
2.RSTR

[Requestor ——L__
P s G

without and with SOAP Account

Validation

Figure 4. Secure Ci ion of

(Dashed box and Arrow)
<Envelope > gmm—— Message to get a security context token
<Headers>..

<Action> http://schemas.xmlsoap.org/

ws/2004/04 /security/trust/RST/SCT

</Actions> ...

<Security>
<BinarySecurityToken Id=" Id-2" ValueType="...X509v3">
MIIEZzCCA9CgAWIBAGIQEMtJZcO. . .</BinarySecurityToken>

<Signature>

<SignedInfo>
<CanonicalizationMethod Algorithm="..xml-exc-cl4n#"/>
<SignatureMethod Algorithm="...#rsa-shal"/>

<Reference URI="#Id-1">
<DigestMethod Algorithm="...#shal"/>
<DigestValue>d5A0d. .=</DigestValue>
</Reference>
<Reference URI="#Id-2>...</Reference>
</SignedInfo>
<SignaturevValue>e4EyW. ..=</SignaturevValue>
<KeyInfo>
<SecurityTokenReference><Reference URI="#Id-2"
ValueType="...#X509v3" /></KeyInfo>
</Signatures>
</Securitys>. ..
</Header>
<Body Id="Id-1">
<RequestSecurityToken>
<TokenTypes>http://schemas.xmlsoap.org/ws/2005/02/sc/sct
</TokenType>
<RequestTypes>http://schemas.xmlsoap.org/
ws/2004/04 /security/trust/Issue
</RequestType>
<Base>...</Base>
</RequestSecurityToken></Body></Envelope>
Figure 5. Soap request with RST token before XML rewriting attack (excerpt)
<Envelope> . ______ Attacker has intercepted the message
<Header>. .
<Securitys>
<BinarySecurityToken Id=" Id-2" ValueType="...X509v3">
MIIEZzCCA9CgAWIBAgIQEmMtJZcO. 4 </BinarySecurityToken>
<Signature>
<SignedInfos>...
<Reference URI="#Id-1">...</Reference>
<Reference URI="#Id-2>.J..</Reference>
</SignedInfo>
<SignaturevValue>e4EyW...=</SignaturevValue>
<KeyInfo><SecurityTokenReference><Reference URI="#Id-2"
ValueType="...#X509v3" /></KeyInfo>
</Signatures>
</Securitys>
<BogusHeader > 4’\
<Body Id="Id-1"> 4— XML Rewriting attack
<RequestSecurityTokgn>
<TokenType> http:/{schemas.xmlsoap.org/ws/2005/02/sc/sct
</TokenType>
<RequestType> ?
http://schemas.xmlsoap.prg/ws/2004/04/security/trust/Issue
</RequestType>
<Base>...</Base>
</RequestSecurityToken>
</Body>
</BogusHeader>
</Header>
<Body>
<RequestSecurityToken>
<TokenTypes>http://example.org/myBogusToken</TokenType>
<RequestType> http://schemas.xmlsoap.org/
ws/2004 /04 /security/trust/Renew
</RequestType>
</RequestSecurityTokens></Body></Envelope>

RST token is signed

Request for a custom token by the Attacker

Figure 6. Soap request with RST token after XML rewriting attack (excerpt)

thereby, explicit security tokens, secrets, or key material
need not be exchanged for every single message exchange
and thus increased efficiency, better scalability, and secu-
rity of the subsequent exchanges is achieved. Note that,
we do not loose any features of message level granulari-
ties for signing and encrypting message parts as specified in
WS-Security. Figure 4 (without dashed boxes and arrows)
shows the current web service security architecture having
the multiple message conversation in particular.

3. XML Rewriting Attacks

The trust and secure conversation frameworks described
in the previous sections primarily provide us with mean-
ingful protocols for establishing trust using security tokens
and security context respectively. All the models are based
on the WS-Security which is itself a framework only. Due
to the complex and inter dependent structure of the frame-
works, configuration mistakes at deployment time are likely
to happen, in the worst case leading to an unsecured ex-
change either in single or multiple message scenarios. Be-
sides, there are considerable numbers of limitations of the
usage of the frameworks [21] which may affect the secured
message exchange and overall performance of the system
as well. We show some scenarios where possible security
attacks may occur while using trust and secure conversa-
tion frameworks. We assume the presence of a malicious
attacker in the SOAP message path from a sender to a re-
ceiver. The attacker may be a part of the message processing
nodes (e.g. Intermediaries, partners) or any outsider which
can listen, forward, and update to the messages. However,
we assume the initial sender and the ultimate receiver of the
messages are trusted.

XML-Rewriting attacks [12] refer to a message modifi-
cation by a malicious attacker while keeping the XML sig-
nature valid. An attacker may perform an attack on SOAP
messages that use trust and secure conversation frame-
works. We demonstrate two such attacks in the following.

Security Context Token Issuing. Requestor A wants
to have a conversation with the service B. Requestor A
requires a security context token which can be acquired
from STS (Figure 4). STS essentially builds the trust
between A and B. To be able to get a required security
context token, A will send a SOAP message to the STS
with a RST (<RequestSecurityToken> as Defined
in WS-Trust) in the body of the message (see Figure
5). Since this is sensitive information, the RST element
will be signed [8] by the requestor A. A may indulge
in a conversation with service B, residing in different
trust boundary, after receiving the security context token.
Any malicious attacker in between the requestor A and
the STS may capture the message and introduce its own
<BogusHeader> inside the header of the SOAP mes-
sage and copy the sensitive request information into the
<BogusHeader> (Figure 6). Note that, the attacker
does not change or modify any sensitive information
and thus keeps the signature value intact for the STS. In

<Envelope> <= Message using the security context token
<Header> ...
<Security>
<SecurityContextToken wsu:Id="Id-1">
<Identifier>uuid:...</Identifier>™® Security context
<SecurityContextToken> token is signed
<Signature>
<SignedInfo>...
<Reference URI="#Id-1">7..</Reference>
<Reference URI="#Id-2>....</Reference>
</SignedInfo>
<SignatureValue>e4EyW. ..=</SignatureValue>
<KeyInfo>

<SecurityTokenReference>
<Reference URI="#MyID"/>
<SecurityTokenReference>
</KeyInfo>
<Signature>
</Security>
</Header>
<Body wsu:Id="Id-2">
<StockSymbols> /Request for the stockquote
<SAP> 100 </SAP>
<ORACLE> 70 </ORACLE>
</StockSymbol></Body></Envelope>

Figure 7. Usage of Security Context Token (excerpt)

<Envelope> @ Attacker has intercepted the message
<Header> ...

<Security>
<SecurityContextToken>
<Identifier>uuid:...</Identifier>
<SecurityContextToken>
<Bogus >
<SecurityContextToken wsu:Id="Id-1">
<Identifiersuuid:...</Identifier
<SecurityContextToken>
</Bogus>
<Signature>
<SignedInfo>...
<Reference URI="#Id-1">...</Reference>
<Reference URI="#Id-2>....</Reference>
</SignedInfo>
<SignatureValue>e4EyW. . .=</SignaturevValue>
<KeyInfo>
<SecurityTokenReferences>
<Reference URI="#Id-1"/>
<SecurityTokenReferences>
</KeyInfo>
<Signature>
</Security>
</Header>
<Body wsu:Id="Id-2"
<StockSymbol>
<SAP> 100 </SAP>
<ORACLE> 70 </ORACLE>
</StockSymbol></Body></Envelopes>
Figure 8. An attack on Usage of Security Context Token (excerpt)

addition, the attacker is adding its own request for a custom
token (http://example.org/myBogusToken) and request
type(http://schemas.xmlsoap.org/ws/2004/0
4/security/trust/Renew) into the body of the
message. The STS may process the request by renewing the
custom token assuming that the token has been established
beforehand. Thus the attacker may posses a security token
after the arrival of the RSTR token in response from the
STS. The STS may ignore or reject the request but this
attack enables the attacker to make an invalid request to the
STS. Note that this kind of invalid request may occur for
indefinite time and it could be resulted to a denial of service
for the STS.

Similar kinds of attacks may occur for token renewing,
validating or trust brokering scenarios. The consequences
can be renewing request for an invalid security token, val-
idating request for an invalid security token, and even bro-
kering an invalid security token among the partners in a col-
laborative environment.

XML rewriting
attack

Usage of Security Context token. Requestor A wants to
communicate with the service B in a conversation using the
security context token that has been established using the
SOAP request in Figure 5. Considering the performance
bottlenecks of the usage of WS-Security features for every
single message in the conversation, A establishes a secu-
rity context token which is valid for the entire conversation
using WS-Trust. Ideally, after the establishment of the secu-
rity context token, A can continue in a conversation where
each message will be secured using derived session keys. A
can compute session keys using the shared secret of the se-
curity context token rather than exchanging the keys for ev-
ery message. WS-SecureConversation specifies a security
token to be used for the context authentication model named
<SecurityContextTokens>. Eventually, requestor A
will use the established security context token for the later
conversation with the service B. Service B provides stock
information of various stock exchanges. Figure 7 shows
one possible use of the established token to get stock in-
formation of SAP and ORACLE from service B. A signs
[8] the established security context token and the body of
the message, considering those elements as sensitive infor-
mation. Any malicious attacker in between the requestor
and the service may capture the message (Figure 8). The
attacker may introduce an element <Bogus > of its own in-
side the <Securitys> header; keeping the signed security
context token into it so that signature value is still valid.
Now, an attacker may add its intended security context to-
ken which may or may not be valid to the service. The
service may ignore or reject the attacker’s security context
token depending on its own policy. In case of an invalid se-
curity context token the service may reject the message ac-
cording to its own policy. In case of arrival of an indefinite
number of invalid requests the service may lead to a break
down state. However, at any time several security context
tokens may be valid between any two services for different
conversations. An attacker may use any valid context token
other than the intended one for the particular conversation
which may eventually force the service to perform unneces-
sary computing tasks.

Similar kinds of attacks may occur for establishing,
amending security contexts and computing and passing de-
rived keys and session keys. The consequences would be as
follows (not exhaustive): establishing invalid security con-
text token with the attacker, amending any invalid security
context token and thus invalid session or derived keys may
be computed.

4. SOAP Account
A SOAP Account [21] describes the general idea of

keeping a record of a SOAP message’s structure of elements
(e.g. Number of header elements, number of signed objects,
and hierarchy information of the signed object).

The idea of a SOAP Account originates from the ex-
ploitation of an attacker against SOAP messages which is
essentially a message restructuring effort, resulting in XML

rewriting attacks [12]. A solution for detecting such attacks
should comply with the standards that are widely accepted;
should not violate XML usage motivation; and should be
better performing. While using WS* policy we could also
detect XML rewriting attacks, this is quite resource de-
manding and the setup is reasonably complex leading to er-
rors. We take the SOAP Account approach which allows
us to detect XML rewriting attacks early in the validation
process. Besides, the usage of a SOAP Account is sim-
ple enough in a conversation of SOAP messages. The com-
pliance with the standard and simplicity of this approach
makes it less vulnerable and the deployment requires less
effort thereby.

We believe that usage of SOAP Account in the web
service architecture as shown in the Figure 4 (with dashed
boxes) is capable of detecting any XML rewriting attack
with improved performance compared to a policy based so-
Iution. The difference between previous architecture and
the proposed one in Figure 4 is incorporating the SOAP
Account approach. Ideally every SOAP processing node
(e.g. sender, intermediary and receiver) should incorporate
a SOAP Account data structure into its processing. The
sending side will add required structure information into
the SOAP Account before sending the message. The re-
ceiver will compute the SOAP Account information of
the signed part in the received message and will compare
this computed SOAP Account information with the at-
tached SOAP Account information in the received mes-
sage. If there is a difference between the computed value
and the attached SOAP Account information, then we
can conclude that there is a XML rewriting attack. In the
later sections we provide performance analysis related data
which supports our claim. SOAP Account information
will be signed by the sender since it is sensitive informa-
tion. However, an attacker might exploit the technique of
XML rewriting attack on SOAP Account itself. Our pre-
vious work [16] describes how we can address and solve
this issue.

Detecting XML Rewriting Attacks: At the time of send-
ing SOAP messages either in a trust scenario and/or secure
conversation scenario, we can always keep an account of
structure of the SOAP elements by including the following
information into the SOAP Account header (not exhaus-
tive):

Number of child elements of the root (Envelope).
Number of header elements.

Number of references for signing element.
Predecessor, Successor, and sibling relationship of the
signed object.

As a SOAP Account represents any kind of message
structure information this list is not exhaustive rather it is
always extensible depending on the context. For example,
one might add the depth information of the signed element
with respect to the root of the message (i.e. Envelope) to
capture the location of the element. Even though using the

depth information of a signed element we can detect XML
rewriting attacks it may not comply with the schema of the
WS#* standards or even it may violate further processing of
XML messages. The SOAP Account information for the
signed part is computed while we are creating the message
itself in the sender side. We do not incur any considerable
overheads for the computation [21]. Section 5 provides
a more rigorous analysis regarding the performance issues
of incorporating SOAP Account. We take the attacking
scenarios of section 3 respectively and show how our SOAP
Account can be used to detect those attacks.

SOAP Account in Security Context Token Issue.
Requestor A attaches SOAP Account informa-
tion into the message (Figure 9) before sending it to
STS. We add only two structure information namely
<NoChildOfEnvelope> and <NoOfHeaders> to
capture the number of child elements in the SOAP envelope
and number of header elements in the SOAP header
respectively. The SOAP Account is signed by A before
sending the message. Figure 9 shows the message excerpt
after an attempt to attack by the attacker in the same way
described in the section 3. Any legitimate receiver (e.g.
STS) of the message complying with the SOAP Account
approach will compute the SOAP Account information
in the received message as soon as it arrives. The computed
SOAP Account in STS is as follows:

<SoapAccounts>

<NoChildOfEnvelope>2</>

<NoOfHeader>3</></SoapAccount >

Note that, <NoOfHeader> is 3 including the
<BogusHeader>. It does not match with the attached
SOAP Account information as <NoOfHeader> con-
tains 2. The receiver can immediately detect that there has
been a rewriting attack on this message and rejects the re-
quest for issuing security context token. Note that the re-
ceiver can detect the attack by simple comparison which
allows the early detection of rewriting attacks before signa-
ture validation and committing its resources to the request.

SOAP Account in Usage of Security Context Token.
We take the same scenario of section 3, and as before
we attach SOAP Account information into the message
(Figure 10). However, we add different structure infor-
mation to capture the parent information of a signed el-
ement namely, <SecurityContextToken>. In ad-
dition to the two previous structure information namely
<NoChildOfEnvelope> and <NoOfHeader>, which
capture the number of child elements in the SOAP envelope
and number of header elements in the SOAP header respec-
tively, we add this structure information. However, to de-
tect this attack only one structure information in the SOAP
Account namely <ParentOfSCT> would be sufficient.
We keep the two previous structure information so that we
can detect the attack described in Figure 9. The SOAP
Account is signed by the sender before sending the mes-
sage. Figure 10 shows the message excerpt after an attempt

<Envelope>

<Header>. .
<Security>
<BinarySecurityToken Id="Id-2" ValueType="...X509v3">
MIIEZzCCA9CgAWIBAgGIQEMtJZcO. .</BinarySecurityToken>
<Signature>
<SignedInfos>...
<Reference URI="#Id-1">...</Reference
<Reference URI="#Id-2>....</Reference>
<Reference URI="#Id-3>....</Reference
</SignedInfo>
<SignatureValue>e4EyW. ..=</SignaturevVglue>
<KeyInfo>
<SecurityTokenReference> <Reference
ValueType="...#X509v3" /></KeyInfo
</Signature>
</Security>

<SoapAccount Id="Id-3">
<NoChildOfEnvelope>2</>
<NoOfHeader>2</>
</SoapAccount >
<BogusHeader>
<Body Id="Id-1"
<RequestSecurityToken>
<TokenType> http://schemas.xmlsoap.org/ws/2005/02/sc/sct
</TokenType>
<RequestType>
http://schemas.xmlsoap.org/ws/2004/04/security/trust/Issue
</RequestType>
<Base> ...</Base>
</RequestSecurityToken>
</Body>
</BogusHeader>
</Header>
<Body>
<RequestSecurityToken>
<TokenType>
http://example.org/myBogusToken
</TokenType>
<RequestType>
http://schemas.xmlsoap.org/ws/2004/04/security/trust/Renew
</RequestType>
</RequestSecurityToken></Body></Envelope>

dded SOAP Account

Figure 9. A R ST token with SOAP Account after an attempt to attack (excerpt)
<Envelope>
<Headers>. .
<Security>
<SecurityContextTokens>
<Identifiersuuid:...</Identifiers>
<SecurityContextTokens>
<Bogus>
<SecurityContextToken wsu:Id="Id-1)>
<Identifiersuuid:...</Identifier
<SecurityContextToken>
</Bogus>
<Signature>
<SignedInfo>. ..
<Reference URI="#Id-1">...</Reference>
<Reference URI="#Id-2>....</Reference
<Reference URI="#Id-3>....</Reference>
</SignedInfo>
<SignatureValue>e4EyW. ..=</SignatureValu
<KeyInfo>
<SecurityTokenReferences>
<Reference URI="#Id-1"/>
<SecurityTokenReferences>
</KeyInfo>
<Signature>
</Security>
<SoapAccount Id="Id-3">
<NoChildOfEnvelope>2</
<NoOfHeader>2</>
<ParentOfSCT>Secus
</SoapAccount >
</Header>
<Body wsu:Id="Id-2">
<StockSymbol>
<SAP> 100 </SAP>
<ORACLE> 70 </ORACLE>
</StockSymbol></Body></Envelope>

4—Added SOAP Account

Figure 10. An attempt to attack on Usage of Security Context Token with SOAP Account

(excerpt)

to attack by the attacker in the same way described in the

section 3. Any legitimate receiver of the message comply-
ing with the SOAP Account approach will compute the
information in the received message as soon as it arrives.
The computed SOAP Account is as follows:
<SoapAccount>
<NoChildOfEnvelope>2</>
<NoOfHeader>2</>
<ParentOfSCT>Bogus</></SoapAccount >
Note that, <ParentOfSCT> is Bogus after the attack.
It does not match with the attached SOAP Account
information as <ParentOfSCT> contains Security.
The receiver can immediately detect that there has been a
rewriting attack on this message and rejects the usage of
the security context token. Again the receiver can detect
the attack by simple comparison.

5. Performance Issues
The performance of detecting XML rewriting attacks us-

ing a SOAP Account in a single message scenario is dis-
cussed in [21] and [16]. This section now focuses on per-
formance regarding our trust and conversation scenarios.
To understand the performance issues of detecting rewrit-
ing attacks in the trust and conversation scenario we need
to revisit the goals of WS-SecureConversation. The first
two goals are to establish or amend a security context to-
ken which will be valid for the entire conversation. The
last goal is the derivation of session keys from the estab-
lished context. To achieve any goal we need to use RST and
RSTR tokens in the SOAP messages. This token can be used
in the body or in the header of the SOAP messages which
means this token is vulnerable to XML rewriting attacks
also. These attacks can be detected using SOAP Account
immediately as we have seen in section 4. So, early detec-
tion of XML rewriting attacks in any SOAP message which
aims at context establishment, amendment or derivation of
keys is possible when we use SOAP Account.

As long as the security context is established, the part-
ners (e.g. requestor, service) can interact with each other
for the entire conversation. Please note that each message
in the conversation is also vulnerable to XML rewriting at-
tacks. We perform our performance evaluation of detecting
XML rewriting attacks using a SOAP request for security
context token as of Figure 5. The body of the SOAP request
contains a RST element according to WS-Trust and WS-
SecureConversation. We implement a local STS which can
provide security context token for a secured SOAP request.
We simulate an attacker which is capable of intercepting the
request and perform a rewriting attack before sending its
own forged request as of Figure 6. The requestor, enforced
with SOAP Account, addsits SOAP Account informa-
tion into the SOAP Account header and signs it as of
Figure 9. In our implementation the requestor added only
the number of header information into <Soap Account>
header as it is sufficient to detect the attack of Figure 6.
The service, in this case, the STS will check the SOAP
Account information of the received soap request with

the attached <Soap Account> header. We perform this
simple simulation in our performance evaluation emphasiz-
ing on several performance criteria. We observe the results
which are described in the following.

Assuming the security context token has been estab-
lished without an attack, any further attempt to attack on
the messages in the conversation will be detected in the re-
ceiving end. The reason is as follows: After the secure es-
tablishment of the security context each message in the con-
versation is supposed to use the established security context
token as a shared secret or any derived key from the secret
for signing/or encryption of the message parts. The attacker
must not get the shared secret or any derived key unless the
sender and the receiver are malicious one.

5.1. Environment

We chose the WSS4J API [3] of Apache to simulate
our idea of a SOAP Account in Java 1.5.0.06. However,
in [21] we have used XWS Security Framework [5] of
Sun JWSDP to simulate the same in a single message ex-
change scenario. While both of these mentioned libraries
provide WS-Security implementation, the former provides
implementation for WS-Trust and Ws-SecureConversation.
All our performance data is computed on a Pentium 4 with
1.6 GHz CPU and 448 MB RAM. We have performed the
simulation on Windows XP Professional with SP2. The
STS Service is deployed as a web service in Axis 1.4 [1].
For our simulation we require SOAP Account process-
ing, policy processing, signature processing and an attacker
which performs XML rewriting attacks. On the requestor
side, we have designed individual classes to simulate each
of the mentioned processing. In the ST side, we designed
all processing modules as individual handlers [1]. Note
that, we simulate the Attacker as a handler in STS for the
sake of simple processing. In practice, the attacker can re-
side anywhere in the SOAP message path. The requestor is
deployed in the same computer where the STS is deployed.
This way we avoid the network overhead.

We have obtained our simulation result with 100 itera-
tions, but due to space limitations we show data with 50
iterations. In the first iteration the input SOAP message’s
size is 2695 bytes. We increase our input SOAP message
size incrementally by 1 Kb in the consecutive iteration. The
1 Kb random XML elements has been added as a body el-
ement in every iteration. So the size of the request SOAP
message in the 50th iteration is more than 50 Kb. Initially,
in each iteration of a SOAP request, we performed several
runs and took average computing time. However, the aver-
age computing time was comparable with a single running
time in an iteration. Later on, we stick on computing time
using a single run in each iteration. The Figure 11 shows
a policy file that we use for policy enforcement in the re-
questor and the receiver. This simple policy file says that
the body of the SOAP message should be signed. Note that,
the enforcement of this simple policy file can detect the at-
tack scenarios of Figure 6. In practice, the attacks may not

be as simple as it is in the example scenarios, rather the at-
tacker can perform XML rewriting on any part of the SOAP
message.

5.2. Performance Criteria

Within a more general perspective our performance anal-
ysis is focused on two aspects: The enlargement of the
SOAP message and computing time of various processing
(e.g. Enforcement time, Signature Processing time, XML
rewriting attack detection time). As a SOAP Account
is essentially adding yet another header into the SOAP
message we have to consider the overhead due to the en-
larged SOAP header. However, to detect XML rewriting at-
tacks in single message and conversation scenarios SOAP
Account approach overrides the usage of a policy file.
Any signature and encryption operation on XML message
requires considerable XML processing time which is di-
rectly proportionate to the size of the message [15]. Our
performance analysis will be based on the following crite-
ria:

1. Relative comparison of request SOAP size vs. re-
questor Soap Account header size and Policy file
size.

2. Relative comparison of SOAP Account size vs. Pol-
icy file size.

3. Relative comparison of signature processing in both
ends.

4. Relative enforcement time of SOAP Account and

Policy in sender (requestor).
5. Relative enforcement time of SOAP Account and

Policy in the receiver.
6. Relative comparison of XML rewriting attack detec-

tion time using SOAP Account and Policy.

First, we perform a test with different sizes of SOAP
messages starting with 2695 bytes up to 51551(~50 Kb)
bytes to observe the relative size of the SOAP Account
header and Policy file (Figure 11) of the requestor. Fig-
ure 12 shows that both, a SOAP Account header and pol-
icy file are consuming considerably less space with com-
pare to the request SOAP message. As a matter of fact,
the size of the SOAP Account header and policy file re-
mains the same throughout the 50 iterations with increasing
SOAP messages. However, looking at the relative size of
the SOAP Account and policy file we can conclude that
the SOAP Account header consumes less space than the
policy file. The size of the SOAP Account header and the
policy file are 197 Kb and 388 Kb respectively. This im-
plies that the usage of a SOAP Account does not consume
any considerable memory space comparing to request Soap
message and policy file. Here the SOAP Account con-
sumes only ~0.72% of the increasing request SOAP size
whereas the policy file consumes ~1.42% of the size of the
request SOAP message. As we have message overhead data
with respect to message size we further move on to an anal-
ysis of the required computing time. Figure 13 shows a
comparative signature processing time on the requestor

<wsp:Policy w..> ...
<!-- Example Message Policy --»>
<sp:SignedParts>
<sp:Body/>
</sp:SignedParts></wsp:Policys>

Figure 11. Policy file (excerpt)

Requestor Soap Size VS Policy and SoapAccount size Comparison

[—Fouest 5o Wi Soap Account S

soono
2ol

M
e

30000 M/w -

2

0000

Size in Bytes

|

o EALAR A ATAT JAT AL At A ATAT AT AT ATAT SR AT AL ATATATAT JAT SR TR At At gt At At AT AT TS JTAR

Figure 12. Requestor SOAP size vs Soap Account and Policy file size

SignatureProcessingComparison

aaaaa

Comparative processing time
g

Figure 13. F vs Receiver Si p ing time

Enforcement Time comparison in Regestor

[=—

1

-
A
i

|
\
|
\
\

Enforcement Time{ms)
g

2 \‘\ L] A =1 L1 A
Rl T T AN AN A, = S AT TS

Request Soap Size(bytes)

Figure 14. F Soap A

vs Policy enforce time

TimeC: i icy Vs St

—&—PolicyEnforcem entTim e RoeMerSoap AccountEnforcem entTim e Receiver

Enforcement Time{ms)
z

Received Soap Message Size(bytes)

Figure 15. iver Soap A

vs Policy enforce time

xmiRewriting Attack Detection Time Comparison

Tim e Using Polic

DetectionTime{ms)

AN
VA, \J \—
VA A

NV

10

Roceived Soap size With Soap Account(Bytes)

Figure 16. XML rewriting attack detection time Soap Account vs Policy

and the receiver side. It shows that the signature process-
ing time on the requestor side is comparatively more than
the receiver side. Digital signatures may require attaching
time for the key or security token for verification, acquisi-
tion time of keys from the key-storage, signing time with

a particular algorithm and then attaching time of the signa-
ture value into the message. However, on the receiver side
verification may not need all the processing that is required
by the requestor. Initially, requestor may incur some over-
head time due to JVM warm up time which is reflected in
the initial spike in Figure 13. It shows that the requestor
takes ~15% more time to do the signature processing and
attaching compared to the verification time of the receiver.
To avoid the considerable signature processing time by the
sender in general, we should be precise about the signed part
of the message. Being precise about the signed part, allows
us to avoid unnecessary signature processing on message
parts which are not sensitive. This way we can preserve
valuable computing time for signing only the required sen-
sitive part. This also suggests that deciding what structure
information will be attached into a SOAP Account af-
fects the signature processing directly. Depending on the
scenarios, only the related or required parts of the mes-
sage should be in the signed part. In our example sce-
nario of Figure 9 we demonstrate two structure information:
<NoChildOfEnvelope> and <NoOfHeader>. How-
ever, at implementation time we attach the only latter due to
the fact that the number of header information is enough to
detect the XML rewriting attack in the Figure 6.

Figure 14 shows a comparative result of enforcement
time of SOAP Account and policy on the requestor side.
During the enforcement of SOAP Account the required
structure information is computed and attached into the
SOAP Account header. During the enforcement of pol-
icy the required signed parts, encryption parts are computed
and security tokens are attached into the SOAP message ac-
cording to the policy. The elapsed time in the enforcement
for the both techniques is comparable. Again, in the begin-
ning of the simulation there are some irregularities due to
JVM warm up time. If we observe the initial spikes more
closely we see that policy enforcement time is considerably
higher than the SOAP Account enforcement time. This
is because the requestor has to fetch the policy file from
the storage which incurs computing time in addition to the
JVM warm up time. As soon as the policy file is fetched, the
later iterations may not need to fetch the file again but rather
enforce it only. This result complements our previous ob-
servation of attaching required structure information so that
enforcement time of SOAP Account in the requestor side
can be a minimum.

On the receiver side, enforcement time of SOAP
Accout is considerably less than the enforcement time of
policy. Figure 15 shows that using SOAP Account we
can gain ~0.30% enforcement time compared to using pol-
icy enforcement. The uneven high spike in the beginning
is due to the JVM warm up time. However, looking at the
curves after the SOAP size exceeding 4500 bytes we ob-
serve that the SOAP Account enforcement time is get-
ting closer to policy enforcement time. This suggests that
we should be more careful about choosing structure infor-

mation in the SOAP Account as the SOAP message size
is increasing.

Figure 16 shows the data in support of our claim that us-
ing a SOAP Account approach on the receiver side we
can detect XML rewriting attack early in the validation pro-
cess. If we observe Figure 16 closely, we see that a SOAP
Account approach is always faster than the policy based
approach in detection of XML rewriting attack. This simu-
lation is also done with the same increasing SOAP request
from 1Kb to more than 50 Kb. Unlike the other simula-
tion results it does not show any irregularity while detecting
the attack. A SOAP Account based approach is ~1.50%
faster than a policy based approach. It also scales with the
increasing SOAP size as it always outperforms the policy
based approach.

In general, a SOAP Account based approach can be
used in a XML rewriting attack prone service where perfor-
mance of the service is an issue. Performance of services
is a demand in a collaborative environment. Our SOAP
Account approach shows convincing results in detecting
XML rewriting attacks. However, we should be careful
enough about certain performance criteria, particularly, on
the requestor side. We should be precise enough in attach-
ing structure information into SOAP Account. Attach-
ing unnecessary structure information may lead to a perfor-
mance bottleneck in the enforcement in the requestor side.
We should also use cryptographic operations (e.g. signa-
ture, encryption) only when it is required and we should
be granular enough in selecting the parts of the message to
be signed and encrypted. This allows us keeping comput-
ing intensive signature and encryption processing as low as
possible.

6. Related Work

There has been a rapid progress in specifying web ser-
vice standards, specifically in the secure web service area.
Functional aspects and performance issues of security re-
lated web service standards are ongoing research chal-
lenges. Some work has been done regarding functional
analysis of WS* standards, but none has been performed
in the context of a collaborative environment. There are
so far a considerable number of implementations of SOAP
and XML security services, but there is comparatively little
work on analyzing their performance issues. At the time of
writing there was no performance analysis of the state of the
art in detecting XML rewriting attacks and only a few more
generally comparable approaches.

In [14], the authors describe semantics for WS-Trust
and WS-SecureConversation and prove security properties
based on the semantics. They mention several limitations
of these specifications as well. In [10], the authors describe
an implementation of WS-SecureConversation focusing on
group communication in a grid environment. They pro-
vide a performance and vulnerability analysis of their im-
plementation. [13] describes generating and analyzing web
services security policies to detect XML rewriting attacks

based on a formal approach. It also describes a formal se-
mantics for WS-SecurityPolicy for specifying the security
goals of web services and their clients.

In [9], the authors focus on XML parsing, signa-
ture, and encryption computing time using different algo-
rithms. They demonstrate the proof of concept of WS-
SecureConversation being efficient with compare to WS-
Security. In [19], the authors analyze WS-Security and
RMI-SSL as comparable technologies. They describe the
functional differences between them and show performance
differences related to the architecture and implementation.
A similar performance analysis has been done in [11], but
in the context of RMI tunneling techniques and web ser-
vices in general.

7. Conclusion and Future Work

In a collaborative environment, different partners are re-
siding in different trust boundaries. Often they communi-
cate with each other using single message or in a conversa-
tion of messages. In this paper, we have described briefly
the insights into the required trust framework and secure
conversation framework that are required for such collabo-
ration. We have emphasized on secure message exchanges
among the partners in collaboration. We have shown two ex-
ample scenarios demonstrating possible XML rewriting at-
tacks and the usage of SOAP Account to detect those at-
tacks. We compared our SOAP Account approach with
the WS* policy based approach with a detailed performance
analysis and precise performance criteria. Finally, based
on the performance analysis we observed some useful re-
sults regarding the potential usage of SOAP Account and
discussed the recommended usage of SOAP Account ac-
cordingly.

SOAP messaging is meant to be the future means of
communication between heterogeneous environments. Ide-
ally, we can, for example, invoke any service defined in
.NET environment using a client in JAVA and vice versa.
However, there are some interoperability issues for which
services may not interoperate with each other efficiently.
For example, SOAP encoding is such an interoperability is-
sue among services. Apache services [2] and .NET services
[4] use different SOAP encoding by default during service
invocation and operation. We performed all our simulation
in a JAVA environment. It would be interesting to see how
the simulation results show up in heterogeneous environ-
ment.

We will now also start to investigate performance with
respect to the surrounding organisational context. This will
include identifying critical and context-dependent securing
of single SOAP messages and parts of a conversation as op-
posed to securing the entire channel or conversation.

References

[1] Apache soap axis,

http://ws.apache.org/axis/.

implementation

(2]
(3]

(4]
(3]
(6]

(7]

(8]
(9]

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

Apache web service project, http://ws.apache.org/.

Apache ws-security implementation,
http://ws.apache.org/wss4j/.

Basics of .net, http://www.microsoft.com/net/basics.mspx.
The java web service tutorial,
http://java.sun.com/webservices/docs/1.6/tutorial/doc/.

June 14 2005.

T. N. Chris Kaler. Web services security policy lan-
guage (ws-securitypolicy),version 1.0,18 december 2002,
http://www.verisign.com/wss/wssecuritypolicy.pdf.

G. K. AL L. N. M. H FE N. S. T. D. W. Don Box,
David Ehnebuske. W3c. soap version 1.1,
http://www.w3.org/tr/soap/.

D. S. Donald Eastlake, Joseph Reagle. Xml signature syntax
and processing, http://www.w3.org/tr/xmldsig-core/.

G. F. Hongbin Liu, Shrideep Pallickara. Per-
formances of web service security, http://
grids.ucs.indiana.edu/ptliupages/publications/wssperf.pdf.
M. P. S. P. Hongbin Liu, Geoffrey Fox. A multi-party im-
plementation of ws-secureconversation.

K. B. H. M. R. I. Juric, M. B. and I. Vezocnik. Java rmi, rmi
tunneling and web services comparison and performance
analysis. volume SIGPLAN Not, pages 58-65, May 2004.
A. D. G. G. O. Karthikeyan Bhargavan, Cdric Fournet. An
advisor for web services security policies. volume 2005
Workshop on Secure Web Services, pages 1-9, Fairfax, VA,
USA, November 2005. ACM, ACM Press, New York, NY.
A. G. Karthikeyan Bhargavan, Cedric Fournet. Verifying
policy-based security for web services. volume 11th ACM
Conference on Computer and Communications Security of
CCS04, page 268277, October 2004.

C. E. A. D. G. Karthikeyan Bhargavan, Ricardo Corin. Se-
cure sessions for web services. volume ACM Workshop on
Secure Web Service of SWS ’04, pages 56-66, Fairfax, Vir-
ginia, October 2004. ACM Press, New York, NY.

P. Kumar. Xml processing measurements using xpb4j,
http://www.pankaj-k.net/xpb4j/docs/measurements-
may30/measurements-may30-2002.html. May 30 2002.

M. A. R. A. S. R. Maarten. Towards secure soap message
exchange in a soa. volume 3rd ACM Workshop on Secure
Web Services of SWS 06, pages 77-84, Alexandria, Vir-
ginia, USA, November 2006. ACM, ACM Press, New York,
NY.

A. N. Martin Gudgin. Web services secure
conversation language (ws-secureconversation),
http://specs.xmlsoap.org/ws/2005/02/sc/ws-
secureconversation.pdf.

A. N. Martin Gudgin. Web services trust language
(ws-trust), http://specs.xmlsoap.org/ws/2005/02/trust/ws-
trust.pdf.

B. B. M. C. M. H. Matjaz B. Juric, Ivan Rozman.
Comparison of performance of web services, ws-security,
rmi, and rmi-ssl, http://www.semgrid.net/citation-before-
2006.1/+++jss-2006-service.pdf.

H.-B. M. Nadalin, Kaler. Services security: Soap message
security 1.0 (ws-security 2004), oasis standard 200401.

M. A. R. R. M. A. Schaad. An inline approach for secure
soap requests and earlyvalidation. volume OWASP Europe
Conference, Leuven, Belgium, May 2006. OWASP, OWASP
AppSec Europe.

J. Schlimmer. Web services policy framework (ws-
policy),september,2004.

