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ABSTRACT  
Reputation systems have demonstrated their interest in stimulating 
cooperation in peer-to-peer (P2P) systems. Their key operation 
relies on collecting, processing, and disseminating the feedback 
about some peers’ past behavior in order to boost their 
cooperation, albeit this is susceptible to collusion and bashing. 
Additionally, estimating reputation generally relies on a partial 
assessment of the behavior of peers only, which might delay the 
detection of selfish peers. This situation is rendered even worse in 
self-organized storage applications, since storage is not an 
instantaneous operation and data are vulnerable throughout their 
entire storage lifetime. This paper compares reputation to an 
audit-based approach where peer observations are carried out 
through the periodic verification of a proof of data possession, and 
shows how the latter approach better addresses the 
aforementioned issues of inciting cooperation in P2P storage. 

Categories and Subject Descriptors 
C2.4 Distributed Systems. 

General Terms 
Reliability, Security. 

Keywords 
Peer-to-peer, trust establishment, reputation, audits, distributed 
storage. 

1. INTRODUCTION 
Peer-to-Peer (P2P) systems have emerged as an important 
paradigm for distributed storage in the way they exploit and 
efficiently make use of untapped peers’ storage resources. 
Particularly motivating services for P2P data storage are 
AllMyData [1], Wuala [3], and Ubistorage [4] where data is 
outsourced from the data owner place to several heterogonous 
storage sites in the network, for increased data availability and 
fault-tolerance, reduced storage maintenance costs, and high 
scalability. 

P2P data storage essentially means that a data owner peer stores 
its data at a third-party holder peer which is supposed to faithfully 
store the very data and make them available to the owner (and 
perhaps others) on demand. Since such P2P storage systems thrive 
on free storage space, a major security-related issue associated 
with them is how to incite peers to concede some of their spare 
storage space in favor of other peers, and in the meantime how to 
efficiently and fairly ensure that a peer who grants usage of some 
of its own space to store other peers’ data is normally granted 
usage of a proportional amount of space somewhere else in the 
network, for his own data storage.  

Approaches inciting peer cooperation and ensuring secure storage 
and storage fairness are generally based on reputation. The 
reputation value of a peer is an evaluation of its past behavior 
used by other peers to evaluate how trustful it is. Typically, 

approaches for building reputation systems presume that peers 
engage in repeated interactions, and that the information of their 
past doings that is taken as their reputation is indicative of their 
future performance. Still, they are also making simplifying 
assumptions on the instantaneous propagation around the system 
of the indirect reputation information in question and on the 
willingness of peers to correctly and fairly propagate such 
information. We propose in this paper to use remote storage 
auditing for observation thereby serving a twofold objective: 
inciting peers to check the availability of others’ data and at the 
same time assessing peers’ behavior using the very results of 
verification. 

Commercial storage systems such as AllMyData [1] and 
Ubistorage [4] do not have any cooperation incentive 
mechanisms, they assume that data which have been accepted by 
a storage server will be “retained and retrieveable until the lease is 
cancelled or expires, or until the server fails” [2]. The exception is 
made with Wuala [3] that uses a reputation-based approach to 
motivate peers to stay online. In the research community, there 
have been several works on reputation for P2P storage systems 
(e.g., [10], [11]); but they did not evaluate the security aspects of 
their approaches against selfish or malicious behaviors. In this 
paper, we examine the security of our solution in terms not only 
of attack mitigation but also in terms of the quality of reputation 
information used and the process of such information to identify 
and subsequently punish non cooperative peers in the storage 
system. 

The remainder of the paper is organized as follows: Section 2 
gives an overview of the P2P data storage we are intending to 
enhance with auditing, and presents the attacks that this system is 
exposed to. Section 3 discusses implementation issues of the 
audit-based mechanism on top of a P2P storage system, notably 
regarding the mitigation of denial of service attacks on the 
mechanism. Section 4 compares the audit-based approach to 
reputation and particularly proves the satisfactory use of direct 
observations in estimating reputation values that are used in 
isolating selfish peers. Section 5 finally presents our concluding 
remarks. 

2. P2P STORAGE: AN OVERVIEW 
A P2P storage application allows data owner peers to store their 
personal data in replicas at several data holder peers. A stored data 
replica is periodically checked by verifier peers on behalf of the 
owner.  Peers interact with each other based on trust relationships 
that are established through reputation: the higher the reputation 
of a peer, the more trustworthy and reliable it is believed to be. 

We review the actors of the system: the owner that stores its data 
to a set of r holders which keep the data until their retrieval by the 
owner. In addition, each holder is monitored by a set of m 
verifiers (the owner may participate in the verification process). 



2.1 Data possession verification 
The verification process relies on a secure data possession 
verification protocol. As discussed in [5] and [6], the protocol 
assumes that the verifier possesses metadata information allowing 
it to properly check data storage at the holder. The verification is 
based on challenge-response messages exchanged between the 
verifier and the holder (see Figure 1). The verifier constructs a 
time-variant challenge message and sends it to the holder. The 
holder derives the response from the received challenge and the 
data that it is storing, and then returns the response to the verifier. 
Upon reception of the holder’s response, the verifier checks 
whether the response is valid using the verification metadata for 
deciding if the holder is still storing the data.  

 
Figure 1 Verification of data possession 

 

No response from the holder cannot be taken as an undeniable 
indicator of deliberate data destruction by the holder, because it 
may result from connection break between the verifier and the 
holder, an offline holder, or even failure of this latter. However, 
persistent no response indicates that the holder has destroyed the 
data it promised to store, and thus it is considered by the verifier 
as selfish.  

The verification process is periodically initiated by the verifier. 
For example, consider a verifier performing verification after each 
time period T and a holder appointed to this verifier destroying 
them after a time τ of their storage. Data destruction will be 
detected by the verifier with a delay that equals τ/T×T - τ. So, 
the frequency of these data verifications tunes the granularity of 
holder’s behavior evaluations: the smaller the verification period 
T, the faster the detection of the holder’s non cooperation. In a 
self-organizing environment like the P2P network, verifiers and 
holders may be offline; therefore, we suggest that the data 
verification protocol may be rather opportunistically executed by 
verifiers, without exceeding the limits of a large time period 
interval. 

2.2 Data storage 
Storing data in a P2P system is composed of several phases: 

- Verification delegation: The owner delegates the task of 
verifying data stored in the system to well reputed peers. It 
sends them metadata information (containing e.g., delegation 
certificate, data digest, etc) that allows such verification.  

- Data storage: The owner stores r data replicas at peers that 
are selected with the help of verifiers. 

- Verifier checking: Each verifier checks the storage at the 
holder. With the result of this checking, the verifier updates 
its estimate of the reputation value of the holder. 

- Owner checking: The owner receives verification results 
from all verifiers. It checks the consistency of these results: if 

more than half of the verifiers agree on the same result, it 
accepts that result as the correct one; however, if there is no 
dominant result, the owner will ultimately and 
opportunistically check the availability of its data at the 
holder by itself. With this a posteriori checking, the owner 
decides if it must again replicate its data in the system with 
new holders, and at the same time it updates the reputation 
values of the checked holders. 

- Data retrieval: The owner retrieves its data from holders, 
which frees them from their obligations. This operation may 
be assisted by verifiers to ensure that data are actually sent 
back to the owner. 

2.3 Reputation & Audits 
We estimates the trustworthiness of a peer based on the 
observation of its past behavior. The semantics of the collected 
information can be described in terms of direct (or local) or 
indirect (or system-wide) observations. Direct observation 
amounts to the compilation of a history of personal interactions by 
one peer towards another peer when being the owner of data 
stored at the peer or serving as verifier of this peer. On the other 
hand, indirect observation refers to any reputation information 
received from other peers in the system. There are substantial 
communication savings to be gained by limiting observations to 
just private interactions even though indirect observation may be 
only partially disseminated or piggybacked on ordinary messages. 
Besides, using only direct observation may delay the evolution of 
observations. 

Reputation. A reputation-based approach for P2P storage 
applications allows estimating the trustworthiness of a given peer 
based on experiences and observations of its past behavior 
towards the actual estimator or other peers. This means that 
owners and verifiers will disseminate in the storage system their 
personal observations about the holders they had interacted with. 
Peers will collect these observations about a given peer to decide 
whether to store or verify data of the very peer.  

Audits. The audit-based approach, which we propose, relies on 
the estimation of the trustworthiness of a given peer solely based 
on personal experiences of the estimator. The estimator will use 
its observation, as a data owner or its observations obtained from 
audits of other peers’ data, in the role of a verifier. Again, the 
observed peer is the holder. We believe that the periodic 
verification of data will improve the accuracy of such estimations. 

2.4 Adversary model 
In our model, we consider the adversaries that do not correctly 
follow the roles as peers (owner, data holder, or verifier) that they 
agreed to carry out, and trick any reputation system for any 
perceived personal benefit: they seek to use the system storage 
without contributing their fair share, or they intentionally attack 
other peers or their storage in the system. In the following, we 
examine ways which peers may use to subvert a reputation-based 
P2P storage system.  

Storage related attacks: 

- Free-riding:  free-riders are peers that do not contribute to the 
storage community, or that may destroy some data they 
promised to keep in order to optimize their own storage 
resources. Such peers never play the role of holder or verifier 
of other peers’ data. 



- Collusion between holders: Holders collude so that only one 
of them keep the data replica, and the remainder of holders 
are still able to answer challenges to verifiers by invoking the 
holder with the replica, and hence increase their reputation at 
these verifiers. This collusion is mitigated by personalizing 
data replicas stored at different holders as proposed in [5] 
and [6]. However, this is obtained with some cost, because 
personalization generally means that metadata information 
allowing a given verifier to check storage at a holder is also 
personalized. A verifier checking the same data at different 
holders must then hold more information consisting of 
different metadata corresponding to the personalized data 
replicas. 

- Maliciousness: Malicious peers aim to destroy the data or the 
infrastructure with DoS attacks (e.g., flooding), even at the 
expense of their own resources. Maliciousness can be 
prevented using common security countermeasures for DoS 
attacks.  

Reputation & audits related attacks: 

- Lying:  a liar is a peer that disseminates incorrect observations 
on other peers (rumor spreading) in order to either increase 
or decrease their reputation. Colluded liars may form a 
collective of peers that conspires against one or more peers in 
the network by assigning unfairly low reputation to them 
(bad mouthing) and high reputation for themselves.  

- Collusion between owner and holder: The collusion aims to 
increase the reputation of the holder at honest verifiers. Just 
lying to verifiers supposes that observations of peers rely on 
external recommendations. However without these 
recommendations, peers may still be vulnerable to lying 
using such type of collusion where the owner pretends 
storing bogus data at the holder. One way to mitigate this 
attack is to have the verifiers altogether select the holder on 
behalf of the owner, thus guaranteeing to verifiers that the 
owner and the holder do not know each other a priori. 

- Collusion between holder and verifier: The aim of such a 
collusion is to advertise the quality of holder more than its 
real value (ballot stuffing) thus increasing its reputation at 
owner. But, still the owner may ultimately and 
opportunistically check by itself storage at holder to make its 
own view on the holder. 

- Sybil attack: If peers are able to generate new identities at 
will, they may use some of them to increase the reputation of 
the rest of identities either by lying, or pretending to have 
several roles at the same time. 

3. IMPLEMENTING AUDITS WITH 
STORAGE 
This section aims at proving the feasibility of the reputation-based 
and the audit-based approaches for P2P storage applications. In 
the storage system, we rely on the construction of groups in which 
we evaluate peer behavior. Peers store their personal data in their 
group. The security of data stored is the responsibility of group 
members, given that they are periodically verified by some group 
members for availability and no corruption. 

3.1 Group construction and management 
Peer groups are dynamic with members that join and leave the 
group at anytime. Such group-based architecture allows only 
intra-group interactions, and thus peers establish rapid knowledge 

of the trustworthiness of their group fellows. Moreover, the group 
ensures a minimum level of good behavior: whenever a peer 
misbehaves it is badly audited or reputed by a growing number of 
group members until becoming totally isolated from the group. 

Peer groups are created either in a centralized or in a decentralized 
manner. Centralized managed groups can be initially constructed 
by an authority like partnership in [11] that may tackle as well the 
task of distributing the group key to all members. On the other 
hand, decentralized groups are cooperatively formed at will by its 
members and they rely on collaborative group key agreement 
protocols (e.g., [7], [8]). The group key controls the access to the 
group, and ensures secure and private communication between its 
members. 

Group members are organized in a structured Distributed Hash 
Table (DHT) such as CAN [12], Chord [14], Pastry [13], or 
Tapestry [15]. A DHT consists of a number of peers having each a 
key KeyPeer in the DHT space, which is the set of all binary strings 
of some fixed length. We assume that the DHT provides a secure 
lookup service (see [17] and [18]): a peer supplies an arbitrary key 
(an element in the DHT space), and the lookup service returns the 
active node in the DHT that is the closest to the key.  

Peers, in the group, have unique identities in the DHT. The risk of 
Sybil attacks can be mitigated by imposing a membership fee for 
peers willing to join a given group, or in a decentralized way 
constraining the number of invitations any group member 
possesses as proposed in [9]. 

3.2 Self-organizing peer selection 
In the P2P storage system, peers are able to delegate the 
verification of their data to other volunteer peers, the verifiers, and 
also to only accept to store data of well-behaved peers. 

3.2.1 Verifier selection 
A data owner desiring to store a data replica in the system may 
randomly choose verifiers to whom it will send a verification 
request. The random selection of verifiers may be based on a 
random operation proper to the owner, for example the identity of 
the verifier i can be the closet key to the value 
KeyVerifier=Hash(KeyOwner||nonce||i) where Hash is a pseudo-
random function determined at group outset and nonce is a 
randomly chosen number  protecting against a replay of the same 
operation (“||” means concatenation). From peers answering to 
this request, the owner selects m peers, and then acknowledges 
them including in the message the list of the m chosen verifiers. 
This information is a commitment from the owner to the verifiers’ 
list. 

3.2.2 Holder selection 
To avoid collusion between the owner and the holder, the selected 
verifiers will choose altogether the holder for the owner. 
Therefore, each verifier i commits to a randomly chosen DHT key 
ki (commitment can be as simple hash operation of the key) and 
then sends this commitment to the owner. The owner sends the 
digest of verifiers’ commitments to each verifier. Upon the receipt 
of the owner’s message, verifiers will send their chosen random 
keys to the owner. The selected holder is the peer with the closest 
key to the XORed sum of these random keys: 

KeyHolder = k1 ⊕ k2 ⊕ … ⊕ km 

The owner sends a digest of the messages received by verifiers 
containing their keys along with the identity of the chosen holder. 



 It is clear that the process of selecting holders requires several 
communication messages between the owner and verifiers that 
might be grouped in a single multicast message; nevertheless, this 
is the price to pay to obtain a consensus between the owner, the 
verifiers, and the holder, and particularly to avoid collusion 
between any participants in this agreement. 

3.3 Interaction decision 
Our trust model is based on whitelisting (see Figure 2) similarly to 
the Tit-For-Tat (TFT) strategy in BitTorrent [19]: peers that have 
correctly stored data they have promised to preserve are added to 
the whitelist of their observers (observers may be the owner and 
its delegated verifiers or the peers to which this observation was 
propagated in the reputation case). Whenever a peer detects that 
another peer has destroyed data it has promised to store, the latter 
will be removed from the whitelist. We also propose a “grace 
period” during which “no response” from the challenged holder is 
tolerated until the period times out, thus avoiding abusively 
isolating cooperative holders with transient connection.  
Newcomers to the system are probabilistically added to the 
whitelist. Newcomer acceptance probability may be computed 
based on the upload capacity of the peer and its whitelist size. 
This probabilistic process serves to bootstrap the storage system, 
but it also means that selfish peers changing their identities may 
probabilistically gain some advantage of that.  

 

Figure 2 Whitelisting model. 

A peer accepts to only serve peers pertaining to its whitelist: it 
stores their personal data or periodically verifies their data 
availability in the system. However, a peer may accept to store its 
data at peers that do not pertain to its whitelist. 

4. REPUTATION VS. AUDITS 
In this section, we examine two questions relevant to 
understanding how efficient reputation and audits are in 1) 
collecting observations and 2) processing them. We propose an 
analytic model to study the quality of observations obtained in 

both approaches and a simulation based-experimentation to 
evaluate their actual process of selfishness detection in the P2P 
storage system. 

4.1 Analytic model 
This section discusses the advantageous of choosing a reputation 
or an audit-based approach over the other with respect to the level 
of correctness of gathered observations. 

4.1.1 Model description 
Considering two peers p1 and p2, where p1 desires to have correct 
observations on p2. Peer p1 may make a correct observation itself 
or may receive observations from other peers in the system that 
may be correct or incorrect. Let η denotes the fraction of incorrect 
indirect observations that may be obtained from the system. These 
incorrect observations are conveyed by selfish or malicious peers 
(this type of peers may also send correct observations, but it is 
assumed that they always send incorrect observations). 
Cooperative peers transmit correct observations. 

Table 1 Notation used 

Symbol Description 

p1 The estimator  desiring to have correct observations 
about a given peer 

p2 The observed peer 

r Number of holders (number of stored data replicas) 

m Number of verifiers per one holder 

n Number of participants (peers) to the group 

η Fraction of incorrect indirect observation from peers 

�� Maximum observation quality level 

� Minimum observation quality level 

õ Average quality level of the estimated observation by 
p1 

λ Average storage rate of peers 

γ Fraction of peer population to which the reputation is 
propagated 

�� The probability that p1 has an observation of p2 in the 
audit-based approach 

�� The probability that p1 has an observation of p2 in the 
reputation-based approach 

 

We define a quality level for the estimated observation with two 
extrema: �� and �. An observation of quality ��  is correct, and an 
observation of quality � is incorrect. Observation may be null to 
refer to the situation where p1 does not have any observation on 
peer p2 (indistinguishably from the worst reputation).  

First of all, the probability that p1 knows about the p2’s behavior is 
computed (it must at least obtain the result of one interaction 
involving p2); the average estimated observation quality of p1, 
denoted õ, is then derived for two cases: reputation and audit-
based approaches. This average õ indicates the level of 
correctness of the estimated observation obtained by p1: the more 
õ approximates ��, the more the estimated observation in average 
is correct; whereas, the more it approximates �, the more the 
observation is incorrect. For an average õ that equals ��� � ��/2, 



we cannot claim that the observation is correct or incorrect (e.g., 
case p1 has no observations about p2).  

The average õ is computed for two different cases: 

- Audits: observations based on storage and verification 
results: p1 only takes into account its personal interactions 
with p2 as an owner storing data at p2 or as a verifier for other 
peers’ data stored at p2.  

- Reputation: observations based on peer’s experiences and 
also recommendations: p1 takes into account both its personal 
interactions and opinions expressed by other peers with 
respect to p2. The reputation model is inspired from [16] 
where reputation computation is based on a subset of 
information provided by randomly chosen peers. 

Table 1 summarizes the notation used in the proposed model. 

Audits:  The probability that p1 knows about the behavior of p2 is 
equal to: 

 

���
��� ����� ��� � �� � 1 � �1 � ��
������ �      

                             �1 � ��
����� � ��

����� �1 �  
������

��
���

             (1) 

 

λ being the average storage rate of peers and n being the number 
of peers in the group. 

The probability (1) takes into account the probability that p1 

chooses p2 as a holder of its data (p1 stores data at rate λ) and the 
probability that another peer from the n-2 remaining peers 
chooses p2 as a holder and p1 as a verifier for it. 

Since personal observations are always correct, the estimated 
observation quality may only take two values: correct observation 
or no observation. 

���
��!� � ��� � �� 

���
"�!� � �# � 0 

���
��!� � 0� � 1 � �� 

On average, we have: 

�!� � �� � �                                       (2) 

 

Reputation: External observations may either be correct or 
incorrect. Peer p1 receives at best (1-η)×γ×n correct observations 
from cooperative peers and η×γ×n from selfish or malicious peers. 
Observations from cooperative peers are all correct; and 
observations from selfish or malicious peers are assumed always 
incorrect. For k and k’ not null observations respectively received 
from cooperative and non cooperative (selfish or malicious) peers, 
the average observation quality is denoted by tk,k’ when p1 has a 
direct observation (obtained from its own experience), and by t’ k,k’ 
when p1 does not have a direct observation: 

%&,& ′ � �1 � ��� � � (&)*& ′)+
&*& ′                       (3) 

%′&,&′ � � �&)*&′)�
&*&′                                     (4) 

 

γ being the fraction of the peer population to which the reputation 
is propagated, and w the weight that p1 gives to averaged system-
wide observations with respect to local observations.  

(3) gives the average observation quality taking into account 
correct observations obtained from the owner itself and 
cooperative peers, and incorrect observations obtained from 
selfish or malicious peers. (4) only considers indirect 
observations. 

For 0 ≤  k  ≤ (1-η)×γ×n and  0 ≤  k’  ≤ η×γ×n, we have: 

 
���
"�!� � %&,&′# � ���,���-�.�

& ��&�1 � ������-�.��&� �
�,-.�&′ ��&′�1 � ���-.��&′�                           (5)   

 

���
"�!� � %′&,&′# � �1 � ����,���-�.�
& ��&�1 � ������-�.��&� �

�,-.�&′ ��&′�1 � ���-.��&′�                     (6)   

  

The value Ck
(1-η)γn (respectively Ck’

ηγn) is the number of 
combinations of k (respectively k’) peers from the set of 
cooperative (respectively non cooperative) peers from which p1 
gathers observations.  

(5) consists of the probability that p1 interacted with p2, the 
probability that k peers from the set of (1-η)×γ×n cooperative 
peers interacted with p2 and the rest of the set did not, and also the 
probability that k’ peers from the set of η×γ×n non cooperative 
peers interacted with p2 and the remainder of the set did not. (6) is 
similar with (5) but having instead the probability that p1 did not 
interacted with p2. 

A certain probability of interaction is attached to the observations 
of both cooperative and non cooperative peers. This is due to the 
fact that peers have to provide cryptographic proofs (e.g., 
signature) that they had interactions with p2. Peers cannot always 
provide proofs of correct observation: for example, the 
observation of the absence of any response from p2 cannot be 
proved; or the peer sending an observation may be in collusion 
with p2. 

From (3, 4, 5, 6), the average is derived as: 

�!� � / / ���
"�!� � %&,& ′# � %&,& ′
-.� 

&′01

���-�.� 

&01
 

                           �  ���
"�!� � %′&,&′# � %′&,& ′              (7) 

 

Using the Vandermonde's identity over k and k’, (7) becomes: 

�!� � ���1 � �� � ���1 � 2� � � � 2 � �)           (8) 

We notice that the fraction γ does not appear in (8); this is because 
the probability of correct observation is dependent on η that is 
taken as fraction and hence is not determined by the quantity of 
observations collected.  

4.1.2 Analytic comparison 
Seeking for simplicity, we choose quality observations such as: 
 �� � 1 and � � �1. Thus, (2) and (8) become: 

�!� � ��                                         (9) 

�!� � ���1 � �� � ��1 � 22�                      (10) 



 

The average quality of observations is computed for reputation 
and audit-based approaches in different setting. We distinguish 
between simple data redundancy and erasure coded data. Erasure-
codes have been used in Wuala [3], AllMyData Tahoe [2] (Tahoe 
is free software sponsored by AllMyData), and the backup 
application of [11]. The usual used redundancy factor is around 3 
(3 of 10 chunks are sufficient to recover the whole file in 
AllMyData Tahoe, i.e., replication factor=10/3~3). Therefore, we 
will consider two replication values r=3 and r=10 for respectively 
simple data redundancy and erasure coding. The size of the peer 
population is generally determined by the type of the network. 
The size of “swarms” in BitTorrent [19] ranges from 300 to 2000 
peers depending on file popularity. Whereas, in social network, 
Dunbar’s [20] rule of 150 is generally employed. Thus, we will 
consider two different values for peer group size: n=150 and 
n=2000. 

False observations. The fraction of non cooperation η has no 
impact on the audit-based approach. For high fraction of non 
cooperation in the storage system, reputation has a poorer 
observation quality than audits. The point on η axis at which 
average observation qualities of both approaches are equal varies 
with r and n. For small group size (n=150), the point is lower for 
higher replication rate. In Figure 5, this point approximates η=0.5 
for r=3 and η=0.25 for r=10. This means that increasing the 
number of replicas r increases the performance of the audit-based 
approach over reputation. 

 
 (a) r=3, n=150                        (b) r=10, n=150 

Figure 3 Average observation quality for small peer groups 
n=150 varying r: (a) r=3 (b) r=10. λ=0.2, m=5. 

 

For large group size (n=2000), the point practically does not 
change with r=3 and r=10 (η~0.5 in Figure 4). Thus, the number 
of replicas has no significant impact on performance 
differentiation between the two approaches for large group size. 

 
(a) r=3, n=2000                   (b) r=10, n=2000 

Figure 4 Average observation quality for large peer groups 
n=2000 varying r: (a) r=3 (b) r=10. λ=0.2, m=5. 

 
(a) n=150 

 
(b) n=2000 

Figure 5 Average observation quality varying r and m with (a) 
n=150 and (b) n=2000. λ=0.2. 
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Number of verifiers. The number of verifiers m increases the 
quality of observation of the two approaches. This increase is 
more important for the audit-based approach than for reputation, 
that’s why, the audit-based approach beats reputation for high 
value of m. The point of switch on m axis at which the observation 
quality of the audit-based approach outpaces reputation varies 
with n and r. Figure 5 shows that the point equals to m=5 for 
n=150 and r=10 and is higher than 100 for n=2000 and r=3. 

 
(a) n=150 

 
(b) n=2000 

Figure 6 Average observation quality varying r and λ with (a) 
n=150 and (b) n=2000. m=5. 

 

Storage rate. Increasing the storage rate λ makes the quality of 
observation increase for the two approaches, but more 
significantly for audits than reputation. Figure 6 shows that 
reputation is usually outperforming the audit-based approach, 
except the case of r=3 and n=150 where the audit-based approach 
is more advantageous for λ>0.2.  

Summary. The study of the analytic model demonstrates that the 
audit-based approach for observing peer behavior outperforms 
reputation if the number of data replicas is high (e.g., erasure 
coding) and with small group peer population, as it may be the 
case for a social network. However, with small population, the 
number of peers volunteering for verification will be small, and 
thus using reputation may be more advantageous. Additionally, 
the analytic model reveals that increasing the number of 
interactions between peers, e.g., increasing λ, r or m, has a much 
better impact on the quality of observations collected by the audit 
based approach than by reputation. So, for an actively in demand 
storage system, audits are more competitive than reputation; on 

the contrary for a system that does work at low capacity, 
reputation becomes more valuable.  

These results suggest that the decision to choose one approach 
over the other must be made by the peer itself: with the 
observations it has and system metrics it estimates (e.g., λ, and η), 
the peer can determine if it requires reputation or an audit-based 
approach and can as well properly establish their parameters (e.g., 
w, p). 

4.2 Simulation experiments 
This section evaluates reputation and audits in terms of selfishness 
detection with simulation.  We implemented a custom simulator 
whose framework is at first described, and then results of 
simulation are presented and analyzed. 

4.2.1 Framework 
The group is modeled as a closed set of peers with a fixed storage 
rate and several behavior strategies. We consider the following 
strategies:  

- Cooperation whereby the peer concedes storage space for 
other peers’ data and sends correct verification results to 
owner. 

- Free riding whereby the peer free rides by using the storage 
offered in the network without contributing its equal share. In 
a reputation-base approach, free-riders never give any 
observation. We distinguish between: rational peers that 
change their strategies to cooperation if they cannot store 
data in the system; and whenever they are able to store again 
they return to their original strategy; whereas, irrational 
peers persist in free-riding. 

- Active selfishness whereby the peer only probabilistically 
conserves data stored and verifiers other peers’ data with 
some probability. In a reputation approach, actively selfish 
peers always give false observations to the requester. We 
distinguish between rational and irrational actively selfish 
peers: rational peers will change their strategy if they cannot 
anymore store data in the system; and whenever they are able 
again to do that they return to selfishness; whereas, irrational 
peers will keep their selfish strategy. 

4.2.2 Simulation results 
Different scenarios within the framework are simulated in order to 
analyze the impact of system parameters and choices on the 
convergence time of the storage system to a stable state where 
only cooperative peers are the active consumers of the storage in 
the system. Framework simulations are cyclic.  A simulation cycle 
corresponds to a time period between two successive 
verifications. 

The same system parameters as in the previous Section 4.1 are 
considered. Because it is prohibitive to simulate a huge group of 
peers, we will limit simulations to groups of size n=150. The size 
of the whitelist in average equals to 4 (similarly to the default 
“active set” size in BitTorrent [19]). So the probabilistic peer 
acceptance p=0.03 (~4/n). The frequency of verifications is set to 
every one hour (we choose to use a high frequency to accelerate 
the results of studied approaches). Peers may connect or 
disconnect from the storage system with some given probabilities, 
respectively denoted pin and pout. Generally, peers are 
continuously connected in average (e.g., Wuala [3]) for more than 
4 hours per day (pin/pout>4). Hence, they are able to perform more 
than one verification operation per day. Finally, we suppose that 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

storage rate

av
er

ag
e 

o
b

se
rv

at
io

n
 q

u
al

it
y

 

 Reputation:
r=3
r=10
Audits:
r=3
r=10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

storage rate

av
er

ag
e 

o
b

se
rv

at
io

n
 q

u
al

it
y

 

 

Reputation:
r=3
r=10
Audits:
r=3
r=10



in average 30% of peers connect at the bootstrap (pin=0.3, 
pout=0.075). 

  
(a) fraction of cooperative peers able to store data 

 
(b) fraction of free-riders able to store data 

 
(c) fraction of actively selfish peers able to store data 

Figure 7 Average ratio of owners per strategy (a) cooperation, 
(b) free-riding, and (c) active selfishness. n=150, λ=0.2, m=5, 
p=0.03, pin=0.3, pout=0.075, w=0.8, initial composition: 0.4% 
cooperators, 0.3% irrational free-riders, 0.3% irrational 
actively selfish peers. 

 

Exclusion of non cooperative owners. Figure 7 depicts the 
fraction of peers able to store data in the system with respect to 
their strategies. The figure demonstrates that reputation and the 
audit-based approach are able to detect and prevent non 
cooperative peers from utilizing storage at the system; but each 
approach processes this at a different pace. The figure proves that 
the audit-based approach is faster than reputation (with w=0.8) in 
excluding free-riders and actively selfish peers from storing data 
in the system (reputation with small w produces practically similar 
results as audits). Free-riding owners are first rejected before 

actively-selfish owners; because the latter cooperate at first by 
storing data before destroying them which slows their detection. 
This explains also the small peak at about 50 simulation cycles: 
the number of actively selfish owners does not increase, but in 
fraction it does due to the elimination of free-riding owners. We 
notice also that actively-selfish peers are difficult to eliminate 
from the set of owners if the replication rate r is high; on the 
contrary free-riders are quickly eliminated with high replication. 

 
Figure 8 Average ratio of cooperative owners varying the 
storage rate λ. n=150, r=3, m=5, p=0.03, pin=0.3, pout=0.075, 
w=0.8, initial composition: 0.4% cooperators, 0.3% irrational 
free-riders, 0.3% irrational actively selfish peers. 

 

Storage rate. The load of the storage system impacts selfish 
peers’ detection. Figure 8 depicts the variation of the fraction of 
cooperative owners in the system over time, for two different 
storage rates: λ=0.2 and λ=0.8. The figure shows that it takes more 
time to make cooperators the only peers able to store data in the 
system with the high storage rate than with the low one. This 
result is relevant for both approaches. There is a rapid increase of 
cooperators’ ratio around 50 simulation cycles (for curves with 
λ=0.8) due to a more efficient detection of free-riders with the 
high storage rate. So, high storage rate is more effective for 
detecting free-riders than actively selfish peers. High storage rate 
produces more chances for actively selfish peers to go unnoticed 
by accepting to store a lot of data, without eventually fulfilling 
their promise. 

Inciting cooperation. Figure 9 depicts the fraction of rational 
peers in the system over time. The figure shows that cooperative 
behavior is becoming the most rationally advantageous strategy 
over time for the audit-based approach: the other strategies (free-
riding and selfishness) are decreasing in population. Reputation is 
inciting peers to choose cooperation over selfishness for small 
replication rate r. For high replication value, reputation is not able 
to cope with false observations disseminated by actively selfish 
peers. So, free-riders and selfish peers are still able to store data in 
the system. The population of cooperators does not change a lot 
over time, and the populations of free-riders and selfish peers 
survive. The replication rate has also an impact on the audit-based 
approach. This impact concerns only actively selfish peers: with 
high replication, it is more difficult to convince rational actively 
selfish peers to change strategy to cooperation. This is because 
they have a lot of opportunities to be selected as holders so that 
they can temporarily counterbalance their past selfish behavior. 
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(a) fraction of cooperative peers in the system 

 
(b) fraction of rational free-riders in the system 

 
(c) fraction of rational actively selfish peers in the system 

Figure 9 Average ratio of peers per strategy (a) cooperation, 
(b) free-riding, and (c) active selfishness. n=150, λ=0.2, m=5, 
p=0.03, pin=0.3, pout=0.075, w=0.8, initial composition: 0.4% 
cooperators, 0.3% rational free-riders, 0.3% rational actively 
selfish peers. 

 

Data reliability. The reliability of data in a storage system is 
generally increased with data replication, as illustrated in Figure 
10 with very low data loss. For the same low replication rate r=3, 
the data loss for reputation is higher than the one for audits. The 
figure shows that the data loss for audits decreases with time, due 
to peers changing their strategies from selfishness to cooperation. 
From the figure, we notice also that the amount of data injected 
into the storage system is lower than the storage rate (<λ=0.2). 
This is due to several factors. First of all, there is the probability 
of acceptance p that slows the bootstrap of the storage system.  
Then, there is the gradual exclusion of selfish peers that limits the 
number of peers able to store data in the system. And finally, there 

is the churnout of the P2P system by which some cooperative 
peers are removed from the whitelist because they were offline for 
a period higher than the grace period (selfishness detection with 
false positives). 

(a) data lost per peer 

 
(b) data stored per peer 

Figure 10 Average amount of data stored and lost per peer 
and per simulation cycle. n=150, λ=0.2, m=5, p=0.03, pin=0.3, 
pout=0.075, w=0.8, initial composition: 0.2% cooperators, 0.4% 
free-riders, 0.4% actively selfish peers. 

 

Summary. Simulation results prove that the audit-based approach 
is able to successfully detect and subsequently punish selfish 
peers by denying them the usage of the storage facility. 
Reputation may also have this capability if the replication rate is 
low. Even though, there are some false positives that may cause 
some cooperative peers being denied storage. Results reveal also 
the situations (such as loaded storage system and high replication 
rate) where the sliest selfish peers (who store data for some time 
and then destroy them) are circumventing the reputation or audit-
based approach in order to be able to consume storage in the 
system without fulfilling their equal share.  

4.3 Security considerations 
In this section, we evaluate the robustness of reputation and audit-
based mechanisms against the attacks exposed in 2.4. 

Lying observers have no impact on the auditing mechanism since 
estimations are based on verification results performed by the 
actual estimator; thus observations are objective. Collusions 
between the owner and its holder or a subset of its verifiers are 
mitigated by the random selection of holders and verifiers. 
Verifiers’ selection relies on a pseudo-random function and a 
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secure routing in the DHT that can be assessed by each verifier. 
And, holders are randomly selected by each verifier. So, collusion 
between any subset of participants is prevented.  

The group-based architecture of the P2P storage permits 
controlling peers who are joining the storage system in order to 
mitigate Sybil attackers. This latter may still be able to take profit 
of peers that are probabilistically adding newcomers to their 
whitelist, still this probability can be adjustable depending on 
peer’s confidence on the system. The architecture allows also a 
rapid knowledge about the behavior of group members, and then 
peers are able to refuse storage to non cooperating peers, hence 
limiting free-riders. 

5. CONCLUSION 
We compared conventional reputation to an audit-based 
mechanism for P2P storage systems in which peer’s observations 
originate from periodic verifications of data stored in the system. 
We demonstrated that the audit-based solution is more robust to 
selfish behavior than reputation. Therefore, we suggest that the 
former approach could be a good option for today’s commercial 
storage systems. The reason behind this choice is the economic 
compensation peers acquire for storing data which encourages 
them to give false recommendations for fame. Additionally, we 
proposed a group-based design for audits management that may 
fit several types of networks such as social networks. 
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