
P2P Second Life: experimental validation using Kad
Matteo Varvello†⋆, Christophe Diot†, Ernst Biersack⋆

† Thomson, Paris, France
⋆ Eurecom, Sophia-Antopolis, France

{matteo.varvello,christophe.diot}@thomson.net, ernst.biersack@eurecom.fr

Abstract—Applications such as Second Life require massive
deployment of servers worldwide to support a large number
of users. We investigate experimentally how Peer-to-Peer (P2P)
communication could help cut the deployment cost and increase
the scalability of Social Virtual Worlds such as Second Life. We
design and build a communication infrastructure that distributes
the management of the virtual world among user resources using
a structured P2P network. Our communication infrastructur e is
implemented on the top of Kad, the P2P network that supports
millions of eMule users. We then use avatar and object traces
collected on Second Life to perform a realistic emulation ofP2P
Second Life over the Internet. We show that, despite using a
standard P2P solution, P2P Second Life is mostly consistent,
persistent and scalable. However, the latency avatars experience
to recover from an inconsistent view of the virtual world
can become disturbing for very large numbers of participants
and objects. We analyze and discuss this limitation and give
recommendation on how to design P2P Social Virtual Worlds.

I. I NTRODUCTION

Social Virtual Worlds (SVWs) are networked virtual envi-
ronments where people can invent and emulate a new social
life. Second Life1 (SL), launched in 2003 by Linden Lab,
has become the most popular SVW, reaching 14 million users
in June 2008. SL consists of virtual regions where users
interact via their digital representation calledavatar. The main
innovative feature of SL is that avatars can participate in the
design of the virtual environment by creatingobjectssuch as
cars, trees, and buildings. Thus, SL differs from on line games
where the virtual world is mostly static.

SVWs must exhibit three major properties. First, all users
must have aconsistentview of the world. Second, no object
should be lost; we call this propertypersistencyof the virtual
world. Third, the application must bescalable, i.e., the per-
formance of the SVW must not be affected by the number of
avatars and objects.

Today, SVWs are implemented using a client/server archi-
tecture. A server is used to maintain a unique state of the
virtual world and to distribute it to the users. Client/server
architectures are naturally consistent and persistent when
communication is reliable. However, scalability is an issue
as it depends on the number of servers deployed to support
an unpredictable number of avatars and objects. In SL, the
scalability issue is addressed by dividing the virtual world
into regionsthat are each associated to a dedicated server. The
number of avatars per region is limited to100 and in case of
server overload, the virtual world clock is slowed down. This

1http://www.secondlife.com/

strategy turns to be very inefficient as the popularity of regions
is highly variable [15].

A scalable alternative to client/server is to use a Peer-to-
Peer (P2P) approach, where the virtual world is maintained in
a distributed way using SVW user own resources. If we make
the assumption that each user joins with enough resources to
maintain its “share” of the virtual world, scalability should
come “for free”. A P2P SVW only requires a small number
of servers for access control, security and bootstrap. These
servers do not need to be located close to the users as they
do not play any active role in the virtual world simulation.
However, object consistency and persistency may suffer from
the unpredictable behavior of peers joining and leaving at any
point in time. Security might also be a issue [1]; we do not
address it in this paper.

In this work, we show experimentally that it is possible
to guarantee a very high level ofobject consistency and
persistency in Second Life using a standard P2P architecture
already deployed over the Internet. The management of the
interaction among avatars is beyond the scope of this paper
and left for future work.

Specifically, we design a new communication infrastruc-
ture for SVWs where users (i.e., peers) are organized via a
structured P2P network (Section 2). This P2P architecture is
inspired from CAN [11] and PHT [10]. We integrate this P2P
architecture on the top of Kad, the P2P network formed by
eMule clients2. Thanks to Kad, we can perform a realistic
emulation of SL on the Internet using the resources provided
by eMule users. We emulate P2P SL using avatar and object
traces collected in a region of SL (Section 3).

Our methodology is original and we believe that it is
an important contribution of this work. To the best of our
knowledge, this is the first work to directly exploit Kad as an
experimental platform. However, the major contribution isthe
experimental evaluation of a P2P architecture for SVWs on
the Internet, using SL object and avatar traces.

We show (Section 4) that it is possible to construct a
consistent, persistent, and scalable P2P version of SL on top of
a structured P2P network. However, in case of large number of
objects, avatars can experience a long latency to recover from
an inconsistent view of the virtual world. Moreover, search
inefficiency in Kad introduces additional latency. Based on
these observations, we discuss how to design a P2P overlay
that would eliminate the limitations of the current architecture.

2http://www.emule.com/



2

II. A PEER-TO-PEER INFRASTRUCTURE FOR SVW

In this Section, we design a P2P communication infrastruc-
ture for SVWs. First, we describe the mechanisms we use to
share the virtual world among participants using a structured
P2P network. Then, we explain how we adapt our architecture
to work on Kad as there is no possibility to modify the Kad
routing algorithm.

Note that we do not claim that this P2P communication
infrastructure is completely innovative. It has been designed
to allow realistic experiments on the Internet and to help us
understand how to design an efficient P2P architecture for
SVWs. The innovation lies in the way we adapt Kad to support
a P2P SVW on the Internet.

A. Adaptive Cell-Based Management

We introduce here anadaptive cell-basedpartition of the
virtual world. This simple mechanism is inspired from the
scheme used by CAN [11] to dynamically share the load in
the hash space. In the context of SVWs, we use a similar
approach to dynamically adapt the virtual world division to
the objects distribution.

We call acell, denoted byCl
i , a portion of the SVW. We

call No(C
l
i , t) the number of objects contained inCl

i at time
t. To start with, the virtual space is identified by a single
cell C0

0 = Ω. Then,C0
0 is successively divided into multiple

cells such thatΩ =
⋃

∀(i,l)

{

Cl
i

}

. Cells are split when the
number of objects they contain exceeds a given threshold
Dmax. Therefore,Dmax is the maximum number of objects
that can be present in a cell. We callDmin the minimum
number of objects contained within two adjacent cells.

Whenever a user notices thatNo(C
l
i , t) ≥ Dmax, it per-

forms asplit operation that creates cellsC(l+1)
(2i+1) andC

(l+1)
(2i+2).

In the same way, when(No(C
(l+1)
(2i+1), t) + No(C

(l+1)
(2i+2), t)) ≤

Dmin, a mergeoperation is performed originating cellCl
i .

Split and merge operations are accomplished according to a
well defined order. Assuming a two dimensional space, a cell
is first split on the vertical dimension, then on the horizontal,
and so on.

Figure 1 shows an example of the evolution of a cell-based
SVW with Dmax = 3. In Figure 1(a), two objects are created
in the original cell. Then, in Figure 1(b) two other objects
appear. GivenDmax = 3, the first split operation is performed.
In Figures 1(c) and 1(d), we show how the adaptive cell-
based management incrementally partitions the virtual world
according to the distribution of objects.

B. Virtual Space and Distributed key-space

Structured P2P networks provide a key-based routing (KBR)
layer to their peers [4]. Peers and content are each identified
by a key in a large identifier space, e.g., the key-space. The
KBR layer allows to store/retrieve< key, value > pairs.
According to the specific protocol, different techniques are
used to maintain the consistency and persistency over time of
the < key, value > pairs within the network.

Each cell is assigned a unique identifier in the key-space
(calledcell-ID) to distribute the virtual world responsibilities

(a) Initial Cell (b) First Split

(c) Second Split (d) Third Split

Fig. 1. Adaptive cell-based partition withDmax = 3

among peers of the structured P2P network. We now describe
how cell-IDs are associated to cells of the virtual world.
The mechanism we describe is inspired by PHT [10], a
distributed data structure that enables sophisticated queries
over Distributed Hash Tables.

We call kl
i the cell-ID associated to cellCl

i ; m is the
maximum number of cell-IDs in the system. The cell-IDs are
organized into al-level binary tree with0 ≤ l ≤ (log(m)−1).
Whenever a virtual cellCl

i is split, two active cell-IDsk(l+1)
(2i+1)

andk
(l+1)
(2i+2) are derived as a function ofkl

i and associated to

the cellsC
(l+1)
(2i+1) and C

(l+1)
(2i+2). We associatek(l+1)

(2i+1) to west

(vertical) or north (horizontal) originated cells andk
(l+1)
(2i+2) to

east (vertical) or south (horizontal) originated cells.
Given a cell-IDkl

i, we derivek(l+1)
(2i+1) andk

(l+1)
(2i+2) as follows.

Let H be a generic hash function. For convention,k
(l+1)
(2i+1) =

H(kl
i) andk

(l+1)
(2i+2) = H(NOT (kl

i)). All the peers agree in a
unique root for the tree, e.g.,k0

0 , and on the hash function,
e.g.,H=MD4 [3].

The hash function distributes cell-IDs uniformly in the key-
space. In this way, any distribution of objects and cells in the
SVW is mapped to a uniform distribution of cell-IDs in the
key-space, achieving good load balancing among peers. The
tree organization of the cell-IDs allows to always identifya set
of cell-IDs to represent the cells organization in the SVW. We
simply need to activate/deactivate the corresponding branches
of the tree.

In order to maintain the evolution of the SVW, the cell-IDs
are divided intoactiveandcontrol cell-IDs. We call an active
cell-ID the identifier of a cell representing an active portion of
the world, i.e., a leaf in the tree. We call a control cell-ID,the
identifier used to retrieve information on the cells organization
of the virtual world, i.e., an inner node of the tree. In Figure
2, we show the tree organization of the cell-IDs associated to
the evolution of the SVW presented in Figure 1.



3

Fig. 2. Cell-IDs organization

C. Object Storage and Search

The KBR layer allows to identify for each cell-ID a set of
peers in the P2P network who are responsible for this key.
We call these peerscoordinatorsas they are the peers who
manage an object located within a cell of the SVW. For each
cell within the SVW,R coordinators are selected, i.e.,R copies
of each object in a cell are stored onR different peers.

In a SVW, an avatar at timet is interested only in a portion
of the entire virtual world. We call this area theArea of Interest
(AoI). In order to ensure a consistent view of the world, users
of the SVW subscribe to theR coordinators for the cells
intersecting their AoI. In this way, they are informed of every
modification of the world in their surroundings.

When an avatar creates an object in the virtual world, we
say that the object ispublishedin the P2P network. Object
publication is done by mapping object coordinates(x, y) to
the correct cell. An objectOi(x, y) is published under the key
kl

i associated toCl
i such that(x, y) ∈ Cl

i . The publication
is done by informing the coordinators for cellCl

i of the new
created object.

A special object calledpointer is published in cellCl
i to

inform other users that a merge/split operation was performed.
The pointer contains an explicit notification of the split. In this
way, other users are notified thatkl

i is a control cell-ID.
Whenever a participant wants to move toward a generic

location (x, y) ∈ Ω, it contacts the coordinators for cellCl
i

such that(x, y) ∈ Cl
i . If Cl

i is a control cell-ID, it is used as
the entry point in the tree. The current active cell-ID containing
(x, y) is retrieved by going through the tree. We call this
operation thediscovery phase. Note that the discovery phase
is performed when an avatar joins the SVW and every time it
moves to a cell which has been previously partitioned.

In each hop of the discovery phase, the cell coordinators
must be found. Generally, this operation is logarithmic with
the number of usersN . In the worst case, a newcomer has to
go through the entire tree, e.g.,log(m) hops are required when
m is the maximum number of cell-IDs. Therefore, the number
of hops for the discovery phase isO(log(N) ∗ log(m)).

D. Implementation over Kad

Kad is the P2P network used for publish and search opera-
tions by eMule2 users. It is derived from the original Kademlia

protocol specifications [9]. In Kad, each peer is identified by a
128-bits Kad-ID and routing is based on prefix matching, i.e.,
the smallest XOR-distance. Kad divides keys in two types. A
sourcekey identifies the content of a file, and akeywordkey
classifies the content of a file.

We use the Kad API [3] to integrate our P2P infrastructure
on top of Kad. The Kadkeywordkeys are used as control and
active cell-IDs. Objects and pointers information are stored
within the field of the metadata associated to a keyword. A
unique identifier is used to distinguish between objects and
pointers belonging to our system and content inserted into
Kad by eMule clients.

The publication scheme in Kad differs from the original
Kademlia protocol, since the XOR minimum distance is not
really applied [12]. Keys are published on10 different peers
whose Kad-IDs agree at least in the first 8-bits with the key:
this fraction of the key-space is called thetolerance zone.
Since the Kad network is composed of millions of users, at
any point in time there are about 10,000 nodes which fall in
the tolerance zone of a given key [12]. This means that the
consistency of our SVW could be impacted by the publication
scheme deployed in Kad. For this reason, we simply modified
the publication scheme to use the XOR minimum distance
rule. Whenever a user subscribes to a cellCl

i , it initially
derives the set of peers in the tolerance zone ofkl

i. Then,
it extracts theR coordinators for cellCl

i by selecting the ones
which identifiers are the closest tokl

i according to the XOR
distance.

The original Kademlia protocol recommends the usage of a
re-publication scheme to maintain the consistency and persis-
tency of a<key,value> pair during the publishing-searching
life-cycle [9]. In order to ensure consistency, whenever a node
w observes a new nodeu which is closer to some ofw’s
<key,value> pairs, w replicates these pairs onu. A simple
re-publication of the<key,value> pairs every hour is used to
maintain persistency.

As for the publication scheme, the republication scheme
in Kad differs from the original Kademlia. Keys are simply
periodically republished by its owner, e.g., source keys every
5 hours and keyword keys every 24 hours. Moreover, a node
responsible for a given key does not republish the key to a new
node identified as closest to the key. Since Kad nodes may join
and leave at any time, the set ofR peers closest to a given cell-
ID will change over time. This implementation choice adopted
by Kad could negatively impact the consistency of our SVW.

We must assure that at any point in time, theR closest
peers to a given cell-ID have the same information about the
objects located in the cell. For this purpose, we modify the Kad
republication scheme. We introduce a generalization of the
Kademlia solution that we call thedelta publication: whenever
a peerp realizes that a peerQ is one of theR closest tokl

i,
p (re-)publishes onQ any objectsOi(x, y) ∈ Cl

i it noticesQ

is missing.



4

III. E XPERIMENTAL METHODOLOGY

We now perform a realistic experimental evaluation of our
P2P communication infrastructure for SVWs in two steps.
Initially, we design a client prototype that implements the
functionalities described in the previous Section, i.e., Kad
routing, cell management, avatar movement across the virtual
world, and object insertion and lookup. Then, we use object
and avatar traces collected in SL to emulate the behavior of
a P2P version of SL. We reduce the SL objects to simple
(name,coordinates) pairs, i.e., we do not consider any addi-
tional object attribute such as textures, in order to store them
within the fields of the metadata associated to a Kad keyword.

We use the libsecondlife libraries3 to build a crawler appli-
cation that monitors regions in SL. The crawler connects to a
SL server and continuously asks the positions of avatars and
objects within the region. In addition, it queries the region
server about its load. A more complete description of the
crawler can be found in [15].

Traces are collected in theMoney Tree Islandregion for
a period of10 hours. In our traces, we observe about500
different avatars, with at most90 concurrent avatars and at
least20 avatars in this region.90% of the avatars barely move
and visit less than13% of the region. The most adventurous
avatar traverses65% of the region extension. We found a
constant number of about586 objects in the region. While
collecting the traces, we measured that these conditions force
the SL region server to slow down the simulation in about
50% of the times.

We emulate the activity of theMoney Tree Islandregion
by replaying its traces using our P2P client. Each avatar is
emulated on a cluster of machines and it is associated to a
node within Kad. In this way, the objects are stored on Kad
nodes and searched through the Internet. We also introduce a
generic user acting as a sniffer that we refer to as themonitor.
The monitor can see the entire region. It measures the region
performance, without performing any operation.

One issue with this methodology is that we do not know the
history of objects creation in the Money Tree Island prior tothe
monitoring period. Therefore, we create aninitialization phase
of duration Ti where avatars randomly insert new objects.
Objects coordinates are extracted from the traces in order
to be real. The initialization phase lasts20 min. Once the
initialization phase is completed, there is no object creation or
deletion in the region. Therefore, all split operations areper-
formed during the initialization phase and they do not impact
our performance evaluation. This strategy is representative of
the evolution of the object composition of most SL regions
[15]. The maximum number of objects per cell (Dmax) is set
to 20. The number of coordinators per cell varies from5 to 20
(default value is20). We approximate the AoI of each avatar
as a circle centered on the avatar coordinates, and we variate
its radiusAoIr between5 and35 units (default value is35).
With these parameters, we distribute the586 objects of the
Money Tree Island region across44 cells and a 9-levels tree.

3http://www.libsecondlife.org/

The numbers above are (1) derived from observations in
multiple SL regions [15] and (2) chosen to make the experi-
mental analysis tractable. It is not our intention to generalize
to other SVWs, but to perform a realistic evaluation of a P2P
Second Life.

IV. PERFORMANCEANALYSIS

We now formally define the three performance metrics
that we will evaluate. Then, we present the performance
results. Please note that it was not possible to compare the
performance of P2P SL to the real SL as we cannot perform
similar measurements on SL. The goal of this work is to show
the feasibility of a P2P SVW, and to give us insights on how
to design a dedicated P2P infrastructure. In addition, SVWs
requirements are different from the ones of on-line games.
Therefore, comparison to previously published P2P on-line
games is out of the scope of this work.

A. Parameters Definition

For simplicity, we consider a two dimensional region, i.e.,
a Cartesian spaceΩ = [0, Xmax] × [0, Ymax], whereXmax,
Ymax are the maximum extension of the region along thex,y
dimension. However, extension to three dimensional virtual
worlds is straightforward. Anobject is a piece of content
identified by its name and coordinates. We denote it with
Oi(x, y). We call O(t) the set of objects created within the
region before timet. To simplify the persistency evaluation,
we assume that objects never disappear from the world. We
call A a generic finite portion of the region. We callstate,
i.e., S(t, A), the set of objects contained in an areaA of the
region at timet. We defineS(t, A) as follows:

S(t, A) = {Oi(x, y) ∈ O(t) s.t. (x, y) ∈ A} (1)

We call AoIi(t) the AoI of an avatar at timet. We call
Vi(t, A) the set of objects seen by a useri at timet within an
areaA. Note thatVi(t, AoIi(t)) ⊆ S(t, AoIi(t)), i.e., an avatar
may not see all the objects in its AoI due to inconsistency in
the system.

Consistency:A SVW is consistent if at timet all the active
avatarsN (t) see the same set of objects (whether they exist
or not). In order to define the consistency, we callSAoIi(t),
or sharedAoIi(t), the portion ofAoIi(t) contained in at least
anotherAoIj(t) at time t. We defineSAoIi(t) as follows:

SAoIi(t) =
⋃

j 6=i

{AoIi(t) ∩ AoIj(t)} (2)

For a generic useri at time t we define the consistency of
a SVW as follows:

Ki(t) =
| (Vi(t, SAoIi(t)) ∩

⋃

j 6=i {Vj(t, SAoIi(t))} |

|
⋃

j 6=i {Vj(t, SAoIi(t))} |
(3)

In case thatSAoIi(t) = ∅, we consider thatKi(t) = 1.
Note that the consistency is a user-dependent value.



5

Persistency:A SVW is persistent if no object gets lost
during the evolution of the virtual world. Therefore, the
persistency is defined by the following property:

S(t, Ω) ⊆ S(t
′

, Ω) t
′

> t (4)

Scalability: the consistency and persistency of a SVW must
not be affected by the number of concurrent users and objects.
Therefore, we have identified two approaches to establish the
scalability of a SVW. First, prove that the P2P layer managing
all communications is itself scalable. Second, analyze how
increasing object density impacts the consistency and the
persistency of the SVW. Given we use Kad, a well know P2P
network that supports millions of users, we decided to focus
the scalability analysis on the second issue.

B. Consistency

1) Region Consistency:Figure 3 shows the complementary
cumulative distribution function (CCDF) of the consistency
experienced by an avatar for different values of the AoI radius.
For AoI radius up to20 units, the region is perfectly consistent
in 96% of the cases. For a more realistic value of 35 units,
each avatar has a consistent view of the region 90% of the
time. Intuitively, a larger AoI radius increases the discovery
time and the likelihood of inconsistency.

Fig. 3. CCDF of region consistency;R = 20 ; AoIr = [35; 20; 10; 5] units

We identify three origins of avatars inconsistency: (1) avatar
movements among cells, (2) avatars joining the region, (3)
P2P hazards, i.e., Internet latency, nodes churn and failures.
Among the inconsistency values, avatar movements are cause
of inconsistency in45% of the cases, and they are responsible
of consistency reduction from65 to 99 percent (see Figure 3).
In the same range of consistency values, accessing data in a
real and large P2P network is a cause of inconsistency in35%
of the cases. Finally, the most dramatic inconsistency values
(between0% and65%) are obtained when an avatar joins the
region. These join operations cause20% of the inconsistency
values. In all cases, inconsistency is temporary and all avatars
always succeed to reach100% consistency after a while. The
time it takes to come back to a consistent view of the region
is discussed later in this Section.

Figure 3 shows three vertical steps respectively at 35, 50
and 65% of consistency. These steps indicate popular levels

of inconsistency. When an avatar joins the region, it performs
the discovery phase(see Section II-C). During this period, it
only has a partial view of the region. Given that avatars tend
to join a region always at the same locations [15], they miss
more or less the same objects. A low level of consistency in
the discovery phase is not really a problem as the effective
join can be delayed until the view is consistent.

Inconsistency can either affect isolated avatars, or sets of
avatars. We now measure the probability that a fraction of the
avatars is inconsistent at the same time (see Figure 4). We
notice that all avatars are perfectly consistent in about55%
of the cases. In35% of the cases, a maximum of10% of the
avatars is simultaneously inconsistent. Finally, the number of
inconsistent avatars is always lower than half of the avatars.
These results demonstrate that inconsistency is never related
to the P2P architecture, as it only affects a small subset of the
region population.

Fig. 4. CDF of the fraction of not consistent avatars ;R = 20 ; AoIr =
35 units

2) Replica Consistency:We now analyze the impact of
the number of coordinatorsR on the consistency. By default
each user selects20 coordinators per cell, i.e., each object
is replicated20 times. In order to simulate several values of
R during a single emulation, we perform the emulation with
R = 20 and then reconstruct the view of the region for each
avatar using different subsets of the number of coordinators.

Figure 5 shows an evaluation of the impact ofR on region
consistency. We notice that we achieve comparable consistency
levels for 10 to 20 replicas per object, and5 replicas is clearly
not enough to maintain the region consistency. In order to
investigate deeper the impact of the number of replicas on
consistency, we compute the probability that avatars access
different coordinator sets for a given cell. We observe that
avatars contact the same set of coordinators only50% of the
time. This is due to churn in Kad, obsolete information in some
nodes routing tables and avatars joining a cell (i.e., selecting
the set of coordinators) at different times. In addition, we
observe that forR = 5, there is a non negligible probability
that all avatars in a cell get the objects from a totally disjoint
set of coordinators. This explains the reduction of consistency
observed in Figure 5. These results are clearly impacted by the
Kad users session characteristics and could be different with
P2P nodes being maintained by SL users.



6

Fig. 5. CCDF of region consistency ;R = [20; 15; 10; 5] ; AoIr =
35 units

3) Recovery Latency:We now investigate the time avatars
spend in an inconsistent state. Figure 6 plots the cumulative
distribution function (CDF) of the time it takes to an avatar
to recover from an inconsistent view of the region. In the
following, we refer to this time as therecovery latency. The
recovery latency is smaller than1 second around35% of the
times.40% of the times, it takes to an avatar between4 and16
seconds to re-establish a consistent view of the region. About
20% of the times this latency can be longer of16 seconds
and reach couple of minutes. We recall that this latency only
accounts for the discovery of objects in a region, and it does
not refer to avatar interactions.

Fig. 6. CDF of the recovery latency ;R = 20 ; AoIr = 35 units

In Table I, we assign the recovery latency to each cause
of inconsistency identified earlier. Latency values lower than
one second correspond to normal network conditions we
observe in Kad. Latency values between4 and16 seconds are
experienced by avatars that move as they often have to perform
a lookup operation in Kad. We observe that this lookup time
in Kad is generally close to4 seconds, as also observed by
Steiner et al [13]. During the lookup, the objects containedin
the new cell falling in the avatar AoI are not yet visible to the
avatar. In addition, in case the new intersecting cell is a control
cell, a discovery phase has to be initiated. Therefore, multiple
lookups in Kad are performed, and the recovery latency can
reach16 seconds. Finally, values between16 and100 seconds
are observed by avatars who join the region. Ideally, we should

never observe delays larger than40 seconds as the cells tree
organization in the emulation has a maximum depth equal
to 9. However, in some cases, avatars join the region and
immediately start to move across cells, e.g., they travel the
region to reach some friends. This behavior causes avatars to
change cell even before they obtain a consistent view of the
current cell, with a dramatic impact on the recovery latency.

Cause Percentage Recovery Latency (sec)
Moving 45 4-16

P2P Hazards 35 ≤ 1

Joining 20 16-100

TABLE I
CAUSES OF INCONSISTENCY

C. Persistency

Persistency characterizes the ability of our P2P architecture
not to loose objects over time. Remember that after the
initialization period where all objects are created, no more
object will appear. A keyword in Kad is removed after24
hours if not republished. Since we exploit Kad keywords to
store SL objects, all objects should be discoverable by any
avatar 24 hours after the last time they are re-published.

We measure region persistency through four monitors which
systematically access all cells in the region and report statistics
on the objects they contain. In order to evaluate the impact of
a different number of coordinatorsR, each monitor contacts
respectively 20,15,10 and 5 coordinators per cell.

In Figure 7, we plot the time evolution of respectively the
fraction of persistent objects (Figure 7(a)) and the average
fraction of persistent object replicas (Figure 7(b)). Notethat
an object is persistent when at least one of its replica is
available in Kad. The first20 minutes correspond to the
initialization phase. During this period, the cell organization
changes frequently as new objects are created. This explains
why the persistency grows from0.7 to 1 in Figure 7(a).
Once the initialization phase is completed, SL is perfectly
persistent during the entire emulation (i.e., 10 hours) for
R = [20; 15; 10]. For R = 5, we notice two glitches in the
curves of both Figure 7(a) and Figure 7(b) att = 5 hrs and
t = 6 hrs. At these times, the monitors could not find some
objects in Kad as all their replicas had disappeared from the
P2P network. The cause of this phenomenon is the difficulty
to constantly maintain a set of consistent coordinators under
the presence of churn, failures, etc. Anyway, in both cases the
persistency goes back to1 at the next measure performed by
the monitors. This is because, as soon as an avatar observes
that some objects have disappeared, it immediately performs
a (delta) publication and persistency is recovered.

The emulation ends after10 hrs, which means that objects
are not republished anymore fort > 10 hrs. Figure 7(a) shows
that for t > 10 hrs the glitches in the curve withR = 5
happen more frequently than in the first 10 hours. In addition,
we observe a continuous decrease of the average fraction of
persistent object replicas in Figure 7(b). This is due to the



7

(a) Time evolution of the fraction of persistent
objects

(b) Time evolution of the average fraction of
persistent object replicas

Fig. 7. Persistency analysis ;R = [20; 15; 10; 5]

absence of the delta publication, which goal is to actively
maintain a target number of replicas in the network. However,
until t = 24 hrs the region remains perfectly persistent for
R > 5. In addition, even forR = 5 SL persistency goes
back to1 from time to time. This behavior is explained by
the presence of churn in Kad: even if objects are not more
constantly republished, old coordinators which temporarily
left the Kad network eventually come back restoring the
persistency of the region.

The delta publication algorithm seems to be too conservative
when the number of object replicas in the P2P network is
larger thanR = 5. In order to study how our P2P SL would
behave without the delta publication, we study persistencyin
the [10, 34] hours period where the delta publication is not
active anymore. For this reason, we now analyze the behavior
of the Kad nodes selected at least once to be coordinators in the
[0, 10] hours period. We compute respectively their continuous
on-line time and availability to serve SL objects in the time
interval [10, 34] hours, i.e., the likelihood to be selected as
coordinators. For space limitations we do not plot any figure.

We observe that80% of the coordinators have a continuous
on-line time smaller than3 hrs, and only1% of the coordi-
nators is on line during the entire time interval[10, 34] hours.
In one hand, this is due to the Kad user session characteristics

[14]. In the other hand, it depends from the high level of churn
in Kad [14] which causes a coordinator to often go out from
the set of Kad nodes at minimum XOR distance from a cell-
ID.

The strong presence of churn in Kad causes frequent
changes in the sets of cell coordinators.50% of the coordina-
tors serve SL objects only for10% of the time interval[10, 34]
hours. However,15% of the coordinators serve objects for
more than60% of the time. These nodes guarantee persistency
despite the presence of many unstable nodes.

Finally, we analyze the time interval[24, 34] hours. Since
objects in Kad are removed after 24 hours if not republished,
in this time period we expect all objects to be deleted and
the persistency of our P2P SL to go to zero. As expected,
the average number of objects replicas decreases quickly
(see Figure 7(b)). However, fort ≥ 34 hrs, 20% of the
objects created are surprisingly still present in Kad. The
reason is that some eMule clients increase the lifetime of Kad
keywords, i.e., affecting our SL objects, to reduce the volume
of publishing/republishing operations4.

The persistency results we have presented are impacted by
the behavior of peers in the Kad network. We expect to observe
a different behavior of peers in a structured P2P network
maintained among avatars of a SVW. However, these results
underline two strong features of our P2P architecture. First, it
can support a very high churn in the P2P network. Second, it
is enough to have a low number of stable peers to maintain
excellent persistency.

D. Scalability

We need to discuss two aspects of scalability. First, we must
prove that our P2P SL scales with the number of users. This is
easy as our system inherits its scalability from Kad. Therefore,
we decided not to perform any emulation with large number of
participants as the scalability of Kad and Kademlia has been
shown already [12][14].

Second, we evaluate the impact of the number of ob-
jects (which in turn impacts the number of cells) on the
scalability of our P2P architecture. To do so, we perform
four emulations varying the number of objects in the region,
namelyN = [29; 82; 112; 586]. Object locations are randomly
chosen from the objects population of the Money Tree Island.
We chose several subsets of the Money Tree Island objects
composition to analyze whether our P2P architecture becomes
perfectly scalable for lower number of objects. The different
configurations of cells and objects for the emulations are
summarized in Table II.

We analyze first the impact of the number of objects on
the consistency perceived by the avatars. Figure 8(a) plots
the CCDF of the consistency for different values ofN5. We
observe that forN = 29, the consistency is nearly always
equal to100%. This is due to the fact that the limited depth
of the cell tree organization reduces the impact of the join

4http://www.emule-project.net/
5Note that the curve withN = 586 is the same as the curve withAoIr =

35 units in Figure 3 and the curve withR = 20 in Figure 5



8

objects active cell-IDs max tree depth
586 44 9
112 15 5
82 6 4
29 3 2

TABLE II
CELLS CONFIGURATION

operation and consequently of the discovery phase. Moreover,
the number of movements among cells is reduced as cell sizes
are very big. Finally, we see that increasing the number of
objects has a sublinear impact on the consistency; increasing
by one order of magnitude the number of objects causes a
reduction of consistency by less than10%.

(a) CCDF of region consistency

(b) CDF of the recovery latency

Fig. 8. Scalability Analysis;R = 20 ; AoIr = 35 units ; N =
[586; 112; 82; 29];

In Figure 8(b) we plot the CDF of the recovery latency for
different values ofN6. There is not clear impact of the cells
organization on latency values smaller than1 second. In fact,
these values only depends on the Kad nodes involved in the
emulations and on the network conditions. All curves meet
at 4 seconds, which corresponds to the discovery latency of
one cell as we have seen in Figure 6. For recovery latency

6Note that the curve withN = 586 is the same curve of Figure 6

values larger than4 seconds, we observe a clear impact of
the different complexity of the cell organization in the four
emulations. ForN = 29, 90% of the recovery latency values
are smaller than8 sec. Since the maximum depth of the tree is
two, 8 seconds correspond to the time duration of a discovery
phase of length two in the tree. Then, the depth of the tree
increases withN . This in turn increases the probability to
experience a larger recovery latency. In particular, we notice
that when the recovery latency is larger than4 seconds,
increasing the number of objects of one order of magnitude
causes a latency increase of about30%. This result shows that
the duration of lookup operations in Kad limits the scalability
of our P2P SL.

V. RELATED WORK

We are not aware of research work on Peer-to-Peer (P2P)
Social Virtual Worlds (SVWs). However, several authors have
proposed P2P architectures for on-line games. MiMaze [5]
was the first serverless on-line game, relying on IP multicast.
More recent work includes SimMud [8] and Colyseus [2], both
of which employ a Distributed Hash Table (DHT). Solipsis
[7] adopts an unstructured approach where virtual neighbors
collaborate to reciprocally monitor the state of the virtual
world. A similar approach is proposed by S.-Y. Hu et al. [6].
They introduce the usage of a Voronoi network to manage
collaboration among peers.

Albeit SVWs and on-line games are two applications of
Networked Virtual Environments (NVEs), they exhibit several
differences. In particular, they differ in the amount of user-
generated content: while in on-line games the virtual worldis
mostly predefined and static, SVWs are predominantly user-
generated. Thus, SVWs require significantly higher amounts
of persistent networked storage and data transfers.

This paper differs from previous work on P2P NVEs in
several ways. First, we focus on the research challenges
involved in P2P NVEs with strong persistency needs, i.e.,
Social Virtual Worlds. Second, we propose an innovative
approach as we implement our P2P architecture for SVWs
on top of a widely deployed P2P network (Kad), and study
the issues that arise when employing such an existing network.
Finally, we perform a realistic evaluation employing traces of
real Second Life user behavior.

The P2P communication infrastructure we deployed is
inspired from CAN [11], a structured P2P network which
provides hash table-like functionality. CAN introduces a re-
lationship between a logical Cartesian space and the key-
space. At any point in time, the Cartesian space can be
dynamically split to achieve a uniform partitioning of the
key-space among peers. The mechanism we use to index the
virtual world is inspired from the Prefix Hash Tree (PHT) [10].
PHT is a distributed data structure that enhances DHTs to the
management of more complex queries, such asrange queries.
PHT organizes keys in the DHT as a binary trie, and uses the
DHT lookup operation to handle range queries.

We integrate our architecture on the top of Kad to perform
a realistic emulation of Second Life on the Internet. In a



9

study unrelated to NVEs, Steiner et al. [14] conducted a
comprehensive analysis of Kad. They developed a crawler
application to explore Kad and monitored a fraction of the Kad
key-space for about six months. They identify two classes of
peers: long-lived peers that participate in Kad for weeks and
short-lived peers that remain in Kad no more than few days.
Moreover, they observe that the distribution of peers arrivals
and departures is well described by a Negative Binomial
distribution.

VI. L ESSONLEARNED AND FUTURE WORK

This paper presents an experimental study of a Peer-to-
Peer (P2P) architecture for Social Virtual Worlds (SVWs)
such as Second Life (SL). Our communication infrastructure
dynamically partitions the virtual world into cells, and assigns
responsibility for those cells to peers namedcoordinators.
The deployment of our P2P SVW is performed over Kad,
a widely deployed structured P2P network based on the
Kademlia routing protocol. We collect traces of user activity
(i.e., movement, churn and object creation) in Second Life in
order to perform a realistic emulation of a P2P SVW on the
Internet.

Our evaluation shows that the architecture we have designed
achieves acceptable levels of consistency, persistency and
scalability. Inconsistency is temporary and limited to avatars
entering new cells or joining the P2P SVW. Persistency is
excellent for the whole duration of the emulation. Finally,the
architecture can scale up to the number of objects contained
in a typical SL region.

The real deployment and evaluation we performed over Kad
underlines two interesting features of our architecture. First,
region persistency can be maintained even with a very low
number of stable peers; this result suggests that automated
avatars in SL [15], which are nearly always connected, could
be exploited to improve SL performance. Second, it exists
a trade-off between the rate of object re-publication and the
number of object replicas. This suggests the usage of an object
re-publication rate which dynamically adapts to the numberof
currently available object replicas.

Our P2P SL suffers from the latency avatars experience to
recover from an inconsistent view of the world. The causes of
these inconsistencies are mainly: (1) avatars joining the P2P
architecture, (2) avatar movements across cells. Our results
show that, for large number of objects, the recovery delay can
become so long that avatars would change cell before they
even have a consistent view of the current cell.

The recovery latency due to newcomers joining our P2P SL
can be easily addressed. The tree based organization of the
cells could be cached at the client and re-used across different
sessions. During the initial connection to SL or in case the cell
organization has changed between two sessions, the effective
join of an avatar could be easily delayed.

Reducing the recovery latency due to avatar movements is
a more complex problem to solve. Pre-locating the coordina-
tors for all adjacent cells can help reduce boundary-crossing
latencies. However, this solution would come at the expense

of increased traffic and load on the coordinators. We believe
that this recovery latency can be nearly removed by mapping
cells that are close in a SL region to cell-IDs which are close
themselves in the XOR address space. This would allow a
faster navigation in the virtual world with no additional cost
on the coordinators. Finally, a caching or prefetching of objects
can give significant benefits given the predictability of avatar
movement patterns [15].

In the future, we plan to design a key-based-routing al-
gorithm which implements the proposed technique to make
the object-search cost independent from the size of the P2P
network. We also plan to study how to integrate the proposed
architecture with a Delaunay-based overlay topology in order
to manage communication between avatars.

ACKNOWLEDGEMENTS

The authors would like to thank Moritz Steiner for the
precious help to integrate our P2P infrastructure on top of Kad.
We also would like to thank Fabio Picconi for his insightful
comments and suggestions.

REFERENCES

[1] N. E. Baughman, M. Liberatore, and B. N. Levine. Cheat-Proof Playout
for Centralized and Peer-to-Peer Gaming.IEEE/ACM Transactions on
Networking, pages 1–13, February 2007.

[2] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A Distributed Architec-
ture For Online Multiplayer Games. InNSDI’06, Berkeley, CA, USA,
May 2006.

[3] R. Brunner and E. Biersack. A Performance Evaluation of the Kad
Protocol. Technical report, Eurecom, 2006.

[4] F. Dabek, B. Zhao, P. Druschel, and I. Stoica.Towards A Common API
For Structured Peer-to-Peer Overlays, pages 33–44. Number Volume
2735/2003 in Lecture Notes in Computer Science. 2003.

[5] L. Gautier and C. Diot. Design and Evaluation of MiMaze, aMulti-
Player Game on the Internet. InInternational Conference on Multimedia
Computing and Systems, pages 233–236, 1998.

[6] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. VON: A Scalable Peer-to-Peer
Network for Virtual Environments.Network, IEEE, 20(4):22–31, 2006.

[7] J. Keller and G. Simon. SOLIPSIS: A Massively Multi-Participant
Virtual World. In PDPTA, pages 262–268, 2003.

[8] B. Knutsson et al. Peer-to-Peer Support for Massively Multiplayer
Games. InInfocom, Hong Kong, China, March 2004.

[9] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-PeerInformation
System Based on the XOR Metric. InIPTPS, Cambridge, MA, USA,
March 2002.

[10] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S.Shenker. Brief
Announcement: Prefix Hash Tree. InPODC, page 368, 2004.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
Scalable Content-Addressable Network. InSIGCOMM, San Diego,
USA, October 2001.

[12] M. Steiner, E. W. Biersack, and T. En Najjary. Actively Monitoring
Peers in KAD. InIPTPS, Bellevue, USA, February 2007.

[13] M. Steiner, D. Carra, and E. W. Biersack. Faster ContentAccess in
KAD. In P2P, Aachen, Germany, September 2008.

[14] M. Steiner, T. En Najjary, and E. W. Biersack. A Global View of KAD.
In IMC, San Diego, USA, October 2007.

[15] M. Varvello, F. Picconi, C. Diot, and E. Biersack. Is There Life in
Second Life? InConext, Madrid, Spain, Dec. 2008.


