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Abstract—Location estimation in Multipath Environments
(ME) can lead to significantly higher accuracy if the information
contained in the Non-Line-of-Sight (NLOS) signal components
is exploited thoroughly with the use of multiple antennas at
both sides of a communication system and with the aid of
appropriate channel modeling. In this contribution, this infor-
mation is exploited and a Maximum-Likelihood (ML) estimator
for the location of the Mobile Terminal is proposed, which is
based on the reception of the signal in only one Base Station
(BS). The method described herein can be characterized as
direct location estimation since, in contrast to the traditional
two-step approaches, the solution is formulated in terms of
the received signal and not some channel-dependent parameters
whose values have been estimated a-priori. The high accuracy of
the method is validated using the Cramer-Rao Bound (CRB).
Intuitive conclusions are reached through the comparison of
different systems and for different propagation environments,
which is performed by simulations 1.

I. I NTRODUCTION

Multipath and NLOS propagation are considered to be the
main sources of inaccuracies for network-based geometrical
localization techniques [1], [2]. Moreover hearability, i.e. the
ability of reception of the MT’s transmitted signal at a suffi-
cient - for localizing - number of BSs, has also been a major
concern [3]. The Direct Location Estimation (DLE), which
is presented in the following sections, results in a really low
positioning error, under any realistic propagation environment,
whether that is a multipath, if a LOS signal component exists,
or a strictly NLOS environment and in scenarios for which
the transmitted signal is received in not more than one BS. It
achieves high accuracy by taking advantage of the information
contained in all signal components.

Identifiability of a Mobile Terminal’s (MT) location in
a strictly NLOS environment is feasible if the number of
information sources due to the NLOS signal components is
larger than the number of the parameters that need to be
estimated. In a similar fashion, in a Multipath environment
with the location being identifiable solely by using information
contained in the LOS component, an improvement in perfor-
mance is to be expected, when the number of information

1Eurecom’s research is partially supported by its industrialmembers:
BMW Group Research & Technology, Bouygues Telecom, Cisco, Hitachi,
ORANGE, SFR, Sharp, STMicroelectronics, Swisscom, Thales.The work
presented in this paper has also been partially supported bythe European FP7
projects Where and Newcom++ and by the French ANR project Semafor.

sources due to the NLOS signal components is larger than the
number of the newly introduced nuisance parameters that need
to be jointly estimated [4]. Multiple-Input Multiple-Output
(MIMO) systems have a tremendous advantage over other
systems in meeting this condition due to the fact that in a
MIMO communications system the channel matrix depends
also on the Angles of Arrival (AOA) and the Angles of
Departure (AOD), among other parameters and these two sets
of parameters contain information about the MT’s position.

In order to express the AOA and the AOD, along with other
channel-dependent parameters like the delays and the Doppler
shifts, as a function of the MT’s coordinates, an appropriate
geometrical representation of the propagation environment is
required. To that end, we based our method on the Single-
Bounce Model (SBM) which has been employed in Local-
ization techniques in [5]. It is due to this widely acceptable
channel model, that we were able to create the mapping needed
to implement the DLE method. DLE was initially proposed
by the authors of [6], [7], who also showed the superiority of
its performance at the low and moderate SNR regime and/or
with short data records. Since in our analysis we consider a
dynamic channel, which varies rapidly due to the movement
of the MT and since in wireless communications high SNR
is not always guaranteed, DLE could serve as an alternative
approach that can still perform close to the CRB.

Notation: Throughout the paper, upper case and lower case
boldface symbols will represent matrices and column vectors
respectively.(·)t will denote the transpose,(·)∗ the conjugate
and (·)† the conjugate transpose of any vector or matrix. For
aM ×N matrix A = [a1, . . . ,aN ] , vec(A) = [at1, . . . ,a

t
N ]t

is a vector of lengthMN . For a squareM ×M matrix A,
diag(A) is aM×1 vector composed from its diagonal entries
aii, 1 ≤ i ≤M , while for aM × 1 vectora = [a1, . . . , aM ]t,
diag(a) is anM ×M diagonal matrix witha’s entries along
it’s main diagonal.[A](k:l,m:n) is a submatrixA containing
the common elements of rowsk, . . . , l and columnsm, . . . , n.
The symbols⊗, ⊠ and⊙ denote the Kronecker, Khatri-Rao
(column-wise Kronecker) and Hadamard product respectively.
Finally we have used the indicator function, defined as:

1A(i′) ,

{
1, i′ ∈ A

0, i′ /∈ A
(1)



II. CHANNEL MODEL

A. Geometrical Representation

The SBM can describe accurately the NLOS paths of a
multipath propagation environment. It is a valuable tool for lo-
calization techniques since it leads to simple equations through
which one can express channel-dependent parameters, such as
the AOA, the AOD, the delays and the Doppler shifts, as a
function of the MT’s and the scatterer’s coordinates. Albeit
simple, it enjoys a wide applicability, beacuse in a wireless
propagation environment, the more bounces of a signal, the
larger the attenuation will be, not only because the scatterer
absorbs some of the energy but also because more bounces
usually implies a longer path length. Thus if a limited number
of NLOS signal components with non-negligible energy arrive
at the receiver, it is reasonable to assume that they have
bounced only once.

With respect to figure 1, assuming linear movement of the
MT for the very short period of measurements and using the
subscriptli for the parameters at time instanttl, 1 ≤ l < Nt
and corresponding to path (or scatterer)si, 1 ≤ i ≤ Ns, the
parameters of the SBM are given by:

φli =





tan−1 ysi
−(y1+υydtl1)

xsi
−(x1+υxdtl1)

,
ysi

−(y1+υydtl1)

xsi
−(x1+υxdtl0)

> 0

π + tan−1 ysi
−(y1+υydtl1)

xsi
−(x1+υxdtl1)

,
ysi

−(y1+υydtl1)

xsi
−(x1+υxdtl1)

< 0

(2)

ψli = ψi =

{
tan−1 ysi

−yBS

xsi
−xBS

,
ysi

−yBS

xsi
−xBS

> 0

π + tan−1 ysi
−yBS

xsi
−xBS

,
ysi

−yBS

xsi
−xBS

< 0
(3)

τli =
1

c

√
(ysi

− (y1 + υydtl1))2 + (xsi
− (x1 + υxdtl1))2

+
√

(ysi
− yBS)2 + (xsi

− xBS)2 (4)

fd,li =
fc
c

υx(xsi
− (x1 + υxdtl1)) + υy(ysi

− (y1 + υydtl1))√
(ysi

− (y1 + υydtl1))2 + (xsi
− (x1 + υxdtl1))2

(5)
wherefc is the carrier frequency,c is the speed of light and
dtl1 = tl − t1 is the difference between two time instances.
Equations (2),(4) and (5) also hold for the LOS path, if we set
i = 0 and we use the subscripts0 for the BS so thatys0 = yBS
andxs0 = xBS . The AOD at timetl for the LOS path is just

ψl0 = π + φl0. (6)

B. Input-Output Relationship

The input-output relationship of anr × nt MIMO-OFDM
system for a time-variant (due to the MT movement), fre-
quency selective channel is:

Y(fk, tl) = H(fk, tl)X(fk, tl) + N(fk, tl) (7)

whereX(fk, tl) is the nt × N transmitted signal matrix,N
is the number of OFDM symbols,Y(fk, tl) is the nr × N
received signal matrix andN(fk, tl) is the nr × N noise
matrix, all at frequencyfk, ∀1 ≤ k ≤ Nf and time
tl. Throughout the rest of the analysis, the dependency on
frequency and time will be denoted by the subscriptkl for
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Fig. 1. Single Bounce model

the sake of simplicity. The input-output relationship can be
equivalently written in vectorized form, as follows:

ykl = (Xt
kl ⊗ Inr

)hkl + nkl (8)

where hkl = vec(Hkl) and nkl = vec(Nkl). For a NLOS
environment that can be accurately described by the single
bounce model, the channel matrixHNL,kl is given by2 [8],
[9]:

HNL,kl =
1√
Ptot

Ns∑

i=1

√
Piγie

j2πfd,litlaR(φli)a
t
T (ψi)

HTR,ke
−j2πfkτli

= AR,l(Γ ⊙ Dkl)A
t
T,l = AR,lΓDklA

t
T,l (9)

If the signal propagates through a strictly NLOS environment,
Hkl = HNL,kl. However, if a LOS component exists, then

Hkl = HNL,kl + HL,kl (10)

where the LOS component is

HL,kl =

√
P0√
Ptot

ejθej2πfd,l0tlaR(φl0)a
t
T (ψ0)HTR,ke

−j2πfkτl0

= ejθd0,klaR,0a
t
T,0. (11)

The corresponding vectors are

hNL,kl = vec(HNL,kl) = (At
T,l ⊠ AR,l)Dklγ = Qklγ(12)

hL,kl = vec(HL,kl) = ejθd0,kl(a
t
T,l0 ⊗ Inr

)aR,l0. (13)

In the above equations we have introduced the power of
the pathsPli = τ−2

li , along with the normalization constant
Ptot which contains all the common to the different powers,
constant terms. We further introduced the complex Gaussian-
distributed amplitudesγi ∼ CN(0, 1), the unknown phase

2The proposed channel matrix representation is also valid forany NLOS
environment where each AOA is linked with one AOD but not necessarily
via a single scatterer.



shift (due to phase noise) of the LOS pathθ ∼ U [0, 2π]
and thenr × 1 and nt × 1 array responsesaR(φli) and
aT (ψi) of the receiver and the transmitter respectively, for
the signal component with AOAφli and AOD ψi. Also
HTR,ke

−j2πfkτli = FT{hTR(τ−τli)} is the transfer function
(Fourier Transform of the delayed impulse response) of the
cascade of the filters at the transmitter’s and receiver’s front
end. Based on these variables we defined:

AR,l , [aR(φl1), . . . ,aR(φlNs
)] (14)

AT,l , [aT (ψl1), . . . ,aT (ψlNs
)] (15)

Γ , diag(γ) , diag([γ1, . . . , γNs
]) (16)

Dkl , 1√
Ptot

HTR,kdiag(dkl) (17)

where

dkl , [
√
P1e

j2π(fd,l1tl−fkτl1), . . . ,
√
PNs

ej2π(fd,lNs tl−fkτlNs )].
(18)

III. ML ESTIMATION OF SPEED AND INITIAL POSITION

Localization of a moving MT can be performed with the
aid of a mobility model if its position along with its speed
are jointly estimated at some reference time instants (a subset
of all time samples). In contrast to the traditional approaches
which are based on static snapshots, this approach adds one
more dimension to the localization procedure, namely the
(variation in) time. Thus, although two more unknown param-
eters (the speed components) need to be estimated, this new
dimension offers a lot of information about the MT’s position.
Denote bypint = [x1, y1, υx, υy]

t the parameters that we are
interested in estimating, namely the MT’s coordinatesx1 and
y1 at the reference time instantt1 and its speed components
υx andυy. The received signal vectorsykl can be expressed
as a function of the entries ofpint and thus these parameters
can be estimated directly. However,ykl depend also on the
position of the scatterers. Moreover if a LOS component exists,
ykl depends on the unknown phase shiftθ. Thus we need to
estimatepint in the presence of nuisance parameters which
compose the vectorpnuis = [xs1, ys1, . . . , xsNs

, ysNs
, θ]t, i.e.

our goal becomes to estimate the(2Ns + 5) × 1 vector:

p = [ptint,p
t
nuis]

t. (19)

The coordinates of the MT and the scatterers can be treated
as deterministic unknowns. Furthermore, under the Bayesian
framework [10] and having the principle of Maximum Entropy
as a guiding rule, we can assign uniform probability densityto
the speed direction of the MT and the phaseθ. Thus, the use
of these priors will lead to no improvement in the accuracy of
the estimation method, and a Maximum a-Posteriori (MAP)
estimator becomes equivalent to a ML estimator, which is
implemented below. To formulate the ML estimation problem
more precisely, let us introduce the following vectors and

matrices:

y = [yt11, . . . ,y
t
NfNt

]t (20)

hL = [htL,11, . . . ,h
t
L,NfNt

]t (21)

my = XhL (22)

Q = [Qt
11, . . . ,Q

t
NfNt

]t (23)

V = XQ (24)

Cy|p = VV† + σ2I (25)

where the block matrixX is constructed as follows:

X =




(Xt
11 ⊗ Inr

) 0 . . .

0
. . . 0

. . . 0 (Xt
NfNt

⊗ Inr
)


 (26)

The ML estimate ofp, denoted aŝp, is given by maximizing
the log-likelihood

p̂ = argmax
p

{L} . (27)

which is defined as

L ,L(y|p) = ln(f(y|p))

= − ln(det(Cy|p)) − (y − my)†C−1
y|p(y − my). (28)

IV. CRAMER-RAO BOUND

According to the (CRB) for an unbiased estimatorp̂ of p,
the correlation matrix of the parameter estimation errorsp̃ is
bounded below by the inverse of the Fisher Information Matrix
(FIM) J as shown below3:

Repep = E{(p̂ − p)(p̂ − p)t} ≥ J−1 (29)

The i′, j′ entry of the FIM is given by [11, eq.(8.34)]:

Ji′j′ =tr
{
C−1

y|p
∂Cy|p
∂pi′

C−1
y|p

∂Cy|p
∂pj′

}

+ 2Re
{∂m†

y

∂pi′
C−1

y|p
∂my

∂pj′

}
. (30)

The partial derivative of the conditional covariance matrix is

∂Cy|p
∂pi′

= X

(
∂Q

∂pi′
Q† + Q

∂Q†

∂pi′

)
X

† (31)

and ∂Q
∂pi′

is constructed by concatenating the following sub-
matrices:

∂Qkl

∂pi′
=(
∂AT,l

∂pi′
⊠ AR,l + AT,l ⊠

∂AR,l

∂pi′
)Dkl

+ (AT,l ⊠ AR,l)
∂Dkl

∂pi′
. (32)

The partial derivatives ofAT,l andAR,l can be found in [9]
while the partial derivative ofDkl is given at the bottom of the
next page. Similarly, the partial derivative of the conditional
mean is

∂my

∂pi′
= X

∂hL
∂pi′

(34)

3For matricesA andB, A ≥ B means thatA−B is non-negative definite.



TABLE I
BS, MT AND SCATTERERS’ COORDINATES

(xBS , yBS) (x1, y1) (xs1, ys1) (xs2, ys2) (xs3, ys3)
(0, 0)m (30, 20)m (20, 30)m (5, 5)m (40, 15)m

and ∂hL

∂pi′
is constructed by concatenating the subvectors given

by eq. (35). The partial derivatives of the AOA, AODs, delays
and Doppler shifts with respect to the entries ofp have been
derived in our previous work and can be found in the appendix
of [12]. Deriving ∂aT (ψi)

∂ψi
and ∂aR(φli)

∂φli
is trivial once the

geometry of the antenna arrays is known.

V. NUMERICAL EXAMPLES

In this section we compute and we plot the CRB for three
different cases: A LOS environment (information from NLOS
signal components is either not available or not used in the
estimation process), a Multipath environment with 2 NLOS
and a LOS path and a strictly NLOS environment with 3 paths.
The power normalization constant ensures that the channel’s
energy remains the same independently of the case or the
number of available paths. The coordinates of the BS, the MT
and the scatterers considered, correspond to a picocell andare
given in table I. The magnitude of the speed of the MT is
|υ| = 1.5m/sec (average walking speed) and we average the
results derived for20 different directions of the speed, drawn
independently from a uniform distribution with support region
[0, 2π]. TheNt = 40 time samples are uniformly spaced and
ttot = tNt

− t1 is 100msec. AlsoNf = 2 andfc = 1.9GHz.
The transmitted signal is the training matrixXkl = Int

, ∀k, l.
The array response of the receiver’s ULA to signal component
i arriving at timel, is

aR(φli) = [1, ej2π
fc
c
d sin(φli), . . . , ej2π

fc
c
dr(nr−1) sin(φli)]t

(36)
and its partial derivative with respect toφli is

∂aR
∂φli

= j2π
fc
c
dr cos(φli)[0, 1, . . . , (nr−1)]t⊙aR(φli) (37)

wheredr is the distance between two adjacent antenna ele-
ments. Replacingdr with dt, φ with ψ and nr with nt, we
get the transmitter’s array response (and the corresponding
derivative). In our simulations we considereddr = dt = λ/2.
In figures 2 and 3 we plot the position and speed root mean
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Fig. 2. Position RMSE, various environments

square error (RMSE) respectively, versus the received SNR
for a 2 × 2 MIMO system. The SNR is

SNR = 10 log10

(
E{tr(HXX†H†)}
E{tr(NN†)}

)
= 10 log10

(
1

σ2

)

(38)
whereH = [H11, . . . ,HNfNt

], X = [Xt
11, . . . ,X

t
NfNt

]t and
N = [N11, . . . ,NNfNt

]. The position and speed RMSE are
defined as:

RMSEex1,ey1 =
√
σ2ex1

+ σ2ey1 =
√
tr([J−1](1:2,1:2)) (39)

RMSEeυx,eυy
=

√
σ2eυx

+ σ2eυy
=

√
tr([J−1](3:4,3:4)) (40)

It can be noticed that the estimation error is very small
even for a strictly NLOS environment. Moreover, if the NLOS
signal components are considered along with the LOS com-
ponent, the position RMSE is significantly reduced (e.g.40%
at 10dB) and speed estimation becomes feasible. In figure 4
the effect of increasing the number of antennas on position
accuracy is depicted, for the Multipath environment only. For
MISO system,RMSEex1,ey1 < 1m for SNR > 11dB, while
a 2 × 2 system can achieve the same accuracy with anSNR
of 3dB. The effect is similar for the other two environments,
however position is not identifiable for a MISO system in a
NLOS environment.

∂Dkl

∂pi′
= 1{1,...,4,2i+3,2i+4}(i

′)

[
− 1

τli

∂τli
∂pi′

+ j2π

(
tl
∂fd,li
∂pi′

− fk
∂τli
∂pi′

)]
Dkl (33)

∂hL,kl
∂pi′

=1{2Ns+5}(i
′)jθhL,kl + 1{1,...,4}(i

′)

[ (
− 1

τl0

∂τl0
∂pi′

+ j2π

(
tl
∂fd,l0
∂pi′

− fk
∂τl0
∂pi′

))
hL,kl

+

(
∂aT (ψl0)

t

∂ψl0
⊗ Inr

)
aR(φl0)

∂ψl0
∂pi′

+ (atT,l0 ⊗ Inr
)
∂aR(φl0)

∂φl0

∂φl0
∂pi′

]
. (35)
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Finally in figure 5, the position’s RMSE as a function of
the MT’s speed is plotted. It can be seen that the movement of
the MT has a huge impact on localization accuracy, especially
for the NLOS environment, where the error is reduced by
more than50% when the speed is increased to2m/sec, largely
independently of the direction of movement.

VI. CONCLUSIONS

A ML solution for estimating the location of a MT directly
from the received signal, under any realistic propagation
environment, has been proposed. It is based on appropriate
channel modeling, in terms of both geometrical representation
of the paths through which the signal propagates and statistical
description of the channel’s impulse response. The movement
of the MT is taken into account with the aid of a simple
mobility model and therefore the estimation process is based
on consecutive measurements over a small period of time
and not on a static snapshot. The proposed method does
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Fig. 5. Position RMSE vs Speed

not require the reception of the transmitted signal in more
than 1 BS, however it requires at least 2 antennas at both
sides of communication (i.e. a MIMO system) to achieve high
accuracy. Performance simulations indicate that in a multipath
environment, the improvement in accuracy is significant, if
the information contained in NLOS signal components is
exploited and that even in a strictly NLOS environment the
estimation error is very small.
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