EURECOM

An t i p o |l is

S op h i a

Institut Eurécom
Networking and Security Department
2229, route des Crétes
B.P. 193
06904 Sophia-Antipolis

FRANCE

Research Report RR-09-233
Revisiting the Performance of Short TCP Transfers

January 15", 2009

*

* Institut Eurecom

Aymen Hafsaoui*, Denis Collange™, and Guillaume Urvoy-Keller
T Orange Labs

Email : Aymen.Hafsaoui@eurecom.fr, Guillaume.Urvoy @eurecom.ft,
Denis.Collange @orange-ftgroup.com

'Institut Eurécom’s research is partially supported by its
industrial members: BMW Group Research & Technology - BMW Group Company,
Bouygues Télécom, Cisco Systems, France Télécom, Hitachi Europe, SFR,

Sharp, STMicroelectronics, Swisscom, Thales.

Revisiting the Performance of Short TCP Transfers

Aymen Hafsaoui, Denis Collange, and Guillaume Urvoy-Keller

Abstract

Performance of short TCP transfers, e.g., Web browsing, has a direct
impact on the way users perceive the health of their Internet access. It is a
common belief that TCP performs better with large than with short transfers,
as the latters are more likely to time-out and their duration is dominated by
the RTT.

In this paper, we revisit the performance of short TCP transfers. We
highlight the interplay between TCP and the application on top. We show
that while losses can have a detrimental impact on short TCP transfers, the
application significantly affects the transfer time of almost all short - and even
long - flows in a variety of way. Indeed, the application can induce extremely
large tear-down times and it can also slow the rate of actual TCP transfers or
affect the ability of TCP to recover using Fast Retransmit/Fast Recovery. We
illustrate our findings using several traces from realistic networks including
DSL, wireless hotspot and a research lab traffic.

OCorresponding author: aymen.hafsaoui @eurecom.fr

Contents

1 Introduction 1
2 Related Work 2
3 Data Sets 3
3.1 Well-behaved connections 3
4 Short Transfers 4
4.1 Definition e 4
4.2 Transfer time break-down 6
43 Recoverytime 6
5 Application Impact 7
5.1 SynchronismandLosses 9
52 DataPacing 9
6 Conclusion 11

List of Figures

Trace characteristics
Transfer time break-down
Conditional ratio of push flags

N W N =

Application impact for the Portland trace

vi

Cumulative distribution of transmitted size blocs

1 Introduction

TCP is the dominant transport protocol currently implemented in the Internet
and responsible of the majority of packets and flows sent. Recent measurement
studies show that TCP accounts for 60% to 90% of today’s Internet traffic [1]. It
is used by a large range of applications, including web, email, peer-to-peer file
sharing and the newly emerging trend of YouTube-like media streaming.

A large majority of TCP flows are short lived, also known as “mice”. Mice
can contribute up to 97% of total number of flows and 6% of global traffic [2].This
phenomenon was attributed to the domination of Internet flows by web data trans-
fers, which are characterized by short connections. More generally, the interactive
traffic of the end users often corresponds to short TCP transfers and a change in
their performance directly affects the way the user perceives his Internet access.

A closer look at TCP loss recovery mechanisms brings to light some phenom-
ena which can badly impact short connections. TCP detects and recovers from
losses using two basic types of mechanisms: retransmissions timeouts (RTO) and
fast retransmit/recovery (FR/R). Normally, a sender must receive at least three du-
plicate acknowledgments (ACKs) before it triggers a fast retransmit [4]. Short
flows in the slow start phase often do not have a congestion window large enough
to generate three duplicate ACKs, making timeouts the only loss recovery mecha-
nism available to a TCP sender.

Given the above statements, a commonly used definition for a short TCP trans-
fer is a transfer that can not rely on FR/R to recover from a loss. We will use
this definition as a starting point and show that the emergence of new mechanisms
to speed up short transfers, like Limited Transmit [4] and larger initial congestion
window [5] prevents the derivation of a universal threshold in number of packets.

The main contribution of this paper lies in the study of the interplay between
TCP and the application on top of it. Indeed, the application can slow down a TCP
transfer by: (i) being stalled waiting for data to be crafted by back-end servers
or from the end user, (ii) shaping the traffic to a specific rate, or (ii) delaying the
closing of the transfer. In addition, the application can worsen the impact of losses
by preventing TCP from sending large enough burst of packets. We adopt an ap-
plication agnostic approach, i.e., we do not make any assumption on the way the
application is working, to develop a set of techniques that delineate the impact of
the application from other causes that explain a given transfer duration, including
the data transfer itself and the recovery time if any.

We rely on a passive study of more than 35,000 TCP connections to assess the
impact of the application and the recovery mechanisms of TCP. Those connections
originate from a variety of environments: one trace from an ADSL platform of a
European ISP collected in 2005, one wireless trace from a public hotspot captured
in Portland in 2007 (publicly available on Crawdad [7]) and one trace from a
research lab (Eurecom) collected in 2008.

Overall, we find that while losses can significantly impact the performance of
short TCP transfers, only a small fraction of the short flows actually experience

losses. In contrast, the application tends to affect the vast majority of the transfers,
resulting in a significant drop of performance as compared to a TCP transfers where
all the bytes to be sent are present in the application buffer at the onset of the
transfer.

The reminder of the paper is organized as follows: related work is reviewed
in Section 2. We present the main characteristics of the traces we used in Section
3. Section 4 reports on how to identify short TCP connections. In Section 5, we
focus on the many different ways an application can impact a TCP transfer. Finally,
Section 6 concludes the paper.

2 Related Work

The study of short TCP connections, a.k.a mice, has been the focus of several
studies over the past two decades. The exact definition of a short transfer varies
from one publication to the other. Some works rely on a fixed threshold: 10 KB [8],
[9], which corresponds to 7 segments with a typical maximum segment size (MSS)
of 1460 bytes, 13.5 KB in [10], i.e., 9 segments, or 32 KB [11], which is chosen
equal to the median size of HTTP responses with status code 200 (indicates that the
client request was successfully received). In [12] authors define short connection
as data transfer comprising a number of packets less than or equal to 20 packets,
assuming that the maximum congestion size is 8 KB and delayed acknowledgment
is turned off. Unlike previous studies, the authors in [13], [14] define short transfers
as connections that never leave the slow start phase of TCP.

Modeling short TCP transfers latency has received considerable attention. Sev-
eral approaches have been proposed that take into account round trip time(RTT)
estimation and losses impact. In [9] Cardwell et al. compare analytic models to
understand how well several TCP performance models fit TCP behavior under re-
alistic loss rate in the Internet. They propose a first model when the loss rate is
zero. When the loss rate is strictly positive, they adapt the model based on the
well-known TCP throughput formula of [15] to the case of short flows. In [10],
a recursive analytical model is proposed to predict the TCP performance of short
lived flow in the presence of losses. Completion time is computed using the con-
nection establishment time and the duration of previous data transfers. Results
in [10] show that TCP performance was mainly dominated by time outs.

More recently, the authors in [11] investigated the use short transfers latency
prediction techniques based on the TCP throughput formula proposed in [9] and
historical observations, being done at the server end. They demonstrated using real
traces that prediction based on previous transfers systematically outperforms the
analytical approach. Hence, they propose an hybrid approach: an equation based
estimation for the first-contact transfer and a smoothed mean of the client previous
bandwidths for subsequent transfers.

Few works have focused on the interplay between the transport and the ap-
plication layers. In [16], the authors analyze passively captured TCP connections

of more than 128 packets. They propose a technique to break each connection
into time intervals where the application explains the transfer rate or not, based
on the silences and also the rate of push flags observed. In contrast, we focus on
small transfers and provide a deeper analysis of the impact of the application on the
transfer time (Section 5.2) and also on the impact of the application on the recovery
mechanisms of TCP (Section 5.1).

3 Data Sets

Table 1 summarizes the main characteristics of the packet level traces (in tcp-
dump format) used in this paper. These traces were collected from several different
environments: the network of a DSL ISP, a wireless hotspot in Portland and a re-
search lab (Eurecom). Those traces are interesting because of their diversity in
terms of access technology but also because of their diversity in terms of appli-
cations. For instance, p2p transfers are banned from the Eurecom network while
it represents a large fraction of the bytes for the DSL trace. A wireless hotspot
should differ from a DSL network in that users tend to focus more on interactive
application in such environment and tend to refrain themselves from generating
large transfers, e.g. application updates or p2p transfers.

Capture Duration No. of Well-behaved Size Size
day connection connection connection in MB in packets
ADSL 2005-05-31 | 1 minand29s 37790 5873 357.51 743683
Portland | 2007-09-14 | 2 hand 20 min 5051 3798 174.13 352569
Hotspot
Research | 2008-10-20 1 hand I min 32153 26837 1567.42 2867321
Lab

Table 1: Trace description

3.1 Well-behaved connections

While analyzing the performance of TCP transfers, we focused on the connec-
tions that correspond to valid and complete transfers. Specifically, well-behaved
TCP connections must fulfill the following conditions: (i) A complete three-way
handshake; (ii) At least one TCP data segment in each direction; (iii) The connec-
tion must finish either with a FIN or RESET flag.

When applying the above heuristics, we are left with a total of over 35,000 TCP
connections when summing over the three traces (detailed values are given in Table
1). The DSL trace is the one offering the smallest fraction of well-behaved con-
nections, 5873 over 37,790, because of a large number of unidirectional transfers
(SYN without a reply). P2p applications tend to generate such abnormal connec-
tions (contacting a non available p2p server to download a content), as well as
malicious activities.

Figure 1 depicts the cumulative distribution of well-behaved connection size
using bytes and data packets of the 3 traces. We observe that the Eurecom and
Portland traces offer a similar connection profile that significantly differs from the
DSL trace. For instance, 65% of the DSL connections are less than 1 kbytes and
25% are between 1 Kbytes and 1 Mbytes, unlike Portland and Eurecom traffic
which offers larger values at similar connection percentiles. A reason behind this
obervation is the small duration of the DSL trace. However, our focus is on short
transfers, and from this perspective, the DSL trace offers valuable information.

When focusing on the performance of TCP transfers, the number of data pack-
ets to be transferred is a key element to consider. We can already observe from
Figure 1 that irrespectively of the trace, a significant portion of connections (be-
tween 53% and 65%) have less than 7 data packets.

--ADSL
-Portland
=Eurecom

-+Portland
—Eurecom

‘ 0 i

0} v 10 10 1 v 10 10
Connection Size Connection size

(a) Size in Bytes (b) Size in Packets

Figure 1: Trace characteristics

4 Short Transfers

4.1 Definition

In this section we introduce a first definition of a short TCP connection, which
is commonly used in the literature.

A short TCP connection is a connection unable to perform fast retransmit/recovery
(FR/R), after a packet loss detection.

While simple, the above definition does not lead to a unique threshold value
in terms of number of data packets for a short TCP transfer. Indeed, various TCP
implementations and connection characteristics can affect this definition: the ini-
tial congestion window, the use of delayed ACK, the number of duplicate acks that
triggers a FR/R. For instance, Windows Vista implements Limited Transmit, which
means that only 2 duplicate ACKs are enough to trigger a fast retransmit. We esti-
mated for the 3 traces, the number of segments observed in a duration equal to one

RTT after the sending of the first data packet, and this for each direction - see Table
2. The obtained value provides a lower bound on the initial congestion window that
the transport uses as the application may not provide TCP with enough data to send
at the beginning of the transfer. This is especially true for the initiator side in the
case of Web transfer where the GET might fit in a single data packet. Overall, we
observe that values of 1 and 2 MSS (and possibly higher values) seem to be com-
mon initial congestion windows. Initial congestion windows larger than 2 MSS (we
observed values up to 12 MSS) might be due to specific optimizations of operating
systems that cache TCP level variables of previous transfers for a few minutes, see
e.g http://www.csm.ornl.gov/~dunigan/netperf/auto.html.

Trace Initiator Remote party
Ipkt | 2pkts | >2pkts | 1pkt | 2pkts | > 2 pkts
DSL 99% 1% 0% 80% 18% 2%
Portland | 82% 17% 1% 64% 24% 2%
Eurecom | 90% 10% 0% 65% 24% 1%

Table 2: Estimated initial congestion window

Given the estimated initial congestion window of Table 2, we report in Table
3 the main scenarios we focus on to find the threshold in terms of number of data
packets that triggers a FR/R. A short connection is thus, for each scenario, one with
a number of packets strictly smaller than the threshold. Those scenarios cover, to
the best of our knownledge, all the most commonly encountered cases.

Scenario 1 Scenario 2 | Scenario 3 | Scenario 4
initial cwnd 1 1 2 2
Delayed ACK no yes yes yes
Duplicate ACK 3 3 3 2
Minimum connection 7 9 8 7
size (data packets)

Table 3: Minimum connection size to perform fast retransmit/recovery

Based on the results presented in Table 3, we observe that:

o Different scenarios lead to different thresholds, from 7 to 9 data packets;

e A connection size with less than 7 data packets can’t recover from packet
loss using FR/R, whatever the exact scenario is;

e When considering a given scenario and a connection whose size is one packet
over the threshold, we observe that this connection is able to perform a FR/R
for only a single packet in its last round. The loss of any other packet will
lead to timeout. A connection is thus not able always to perform FR/R if it
is over the threshold.

Based on the result obtained from this section, we adopt a first definition of a short
TCP transfer as a connection of size less than 7 data packets. This definition, while

simple, relies on the implicit hypothesis that the application on top of TCP does not
impact the way TCP sends packets. As we will see in Section 5, this assumption
can be too strong in practice, as even long TCP transfers can be divided into short
bursts that prevent TCP from relying on FR/R in case of losses.

4.2 Transfer time break-down

To understand the factors that affect the performance of TCP transfers, we rely
on the following decomposition of each transfer into 3 different phases:

Set-up time: this is the time between the first control packet and the first data
packet. Since we consider only transfer which have performed a complete three-
way handshake, the first packet is a SYN packet while the last one is a pure ACK
in general. The connection set-up time is highly correlated to the RTT of the con-
nection. For the three traces we consider, we have a correlation coefficient of 70%
for the DSL trace, 60% for the Portland trace, and 39% for the Eurecom trace.

Data transfer time: this is the time between the first and the last data packet
observed in the connection. Note that it includes loss recovery durations, if any.

Tear-down time: this is the time between the last data packet and the last
control packet of the connection. We impose, as explained in Section 3.1, that at
least one FIN or one RESET be observed, but there can multiple combinations of
those flags at the end of the transfer. Unlike set-up, tear down is not only a function
of the RTT of the connection, but also a function of the application on top of TCP.
For instance, the default setting of an Apache Web server is to allow persistent
connection but with a keep alive timer of 15 seconds, which means that if the user
does not post an new GET request after 15 seconds, the connection is closed. A
consequence of the relation between the tear-down time and the application is a
weak correlation between tear-down times and RTT in our traces: 40% for the
DSL trace (which is still quite high), 0.7% for the Portland trace, and -2% for the
Eurecom trace.

Using the above decomposition, we analyze, in the remaining of this article,
the impact of losses (Section 4.3) and also of the application (Section 5) on the
data transfer time.

4.3 Recovery time

As explained above, the data transfer time possibly includes loss events. We
estimate the time spent by TCP in recovering from losses using the recovery time.
Specifically, for a given transfer, each time the sequence number in the stream of
data packet decreases, we record the duration between this event and the obser-
vation of the first data packet whose sequence number is larger than the largest
observed sequence number seen so far. For instance, assuming that we associate a
unique sequence number to each packet, if we observe the sequence 1,2,3,4,7,6,5,6,8,
we will record the duration between packet 7 and packet 8. This duration is added
to the recovery time of the transfer. To filter out reorderings that occur at the net-

work layer, we discard each recovery time smaller than one RTT. Rewaskar et
al. [17] developed algorithms to assess whether an observed loss event could be
attributed to a time out or a FR/R. We were not able to use this technique as it
requires to perform a passive OS finger printing of the sender of the data. How-
ever, in our traces, most losses occurred in the data stream issued by the remote
party and not the local clients. While pOf (http://lcamtuf.coredump.
cx/p0f.shtml), which is recommended in [17], is effective when used on SYN
packets, it fails when working on SYN/ACK packets, which limits the applicability
of the techniques proposed in [17].

Figure 2 presents the break-down of the small and large TCP transfers for the
three traces. We first observe from Figure 2 that while set-up durations are con-
sistently small for all taces and transfer sizes, tear-down take very high values,
between 2.5 and 27.5 seconds on average. The tear-down phase in itself often rep-
resents the majority of the connection time. Note however, that the tear-down time
should have no impact on the performance perceived from the application on top
as the data transfer is completed.

As for losses, we present two distinct values for the recovery time: the average
conditional recovery time and the average recovery time. The latter is computed
over all transfers of the category while the former is computed only for the transfers
that experience at least one recovery event. Since only a small fraction of the
transfers experience losses (9.4% for DSL trace, 13.2% for Portland and 6.8% for
Eurecom) but dramatically increase the data time, the average conditional recovery
time is often much larger than the average transfer time. This impact is clearly more
pronounced for small than for large flows, over the three traces, most probably
because of the predominance of time-outs for short transfers.

S Application Impact

In this section, we are interested in assessing the impact of the application
on the transfer time of a TCP connection. There are many ways by which the
application can influence the pace at which data flows in a network. First, the user
might be involved in the transfer, as the case in a persistent HTTP connection,
where the download of a new page is triggered by an HTTP Get message issued by
the client browser. Second, the application might cap the rate at which information
is sent to the TCP layer. This is typically what p2p applications do to limit the
congestion on the uplink of the user. A third possibility where the application
might affect a TCP transfer is when the generation of data is done online. For
instance, when querying Google for a specific keyword, several tens of machines
are involved in this operation.

From the above discussion, we observe that the application may affect the
transfer of data in many different ways. A first simple assessment that can be
made to infer the impact of the application on a TCP transfer is to compute the
fraction of packets with PUSH flags. The PUSH flag is a way for the application to

73) et | %\30 Bset-up

g Waa ¢ | Wpae

§20 BRecovery §20 BRecovery

bt [cond. recovery b [lcond. recovery
g Tear-down £ Tear-down

£y [Irea-dom fyg U
L.

Short transfers Large transfers Short transfers Large transfers
Eurecom Portland
(a) Eurecom (b) Portland
3 ‘
" st -
) Bpata
§ 20 [Recovery
815 [[Jcond. recovery
o | [lTear-down
£1
'_
5

Short transfers Large transfers
ADSL

(c) ADSL

Figure 2: Transfer time break-down

specify that it has no more bytes to send at the moment and the current segment can
be sent. We plot in Figure 3 the ratio of PUSH flags as a function of the transfer
size for the three traces. We observe that the impact of application as captured by
the PUSH flags decreases with increasing transfer size. For the short connections,
the push flag ratio is extremely high, between 74% and 86%.

o 1 T
E N
3 DN - - -ADSL
%0.87 Sk \\ = = Portland 7
k] - e ——— Eurecom
S o06f p
Z
B oat B
B 021 f
(=%
o)
z 0 I I I I

10° 10' 10° ° 10 10°

Connection size (data packets)
Figure 3: Conditional ratio of push flags

In the remaining of this section, we want to assess in more details the way the
application influence the transfer time. We will first show that the application tends
to fragment the transfer in small flights of packets that prevent TCP from relying
on FR/R in cases of losses. In a second stage, we focus on the way the application
forces TCP to pace the data.

5.1 Synchronism and Losses

For client/server applications, one often observes that even if the server is send-
ing a large amount of bytes/packets, the actual exchange is fragmented: the server
sends a few packets (hereafter called a train of packets), then waits for the client to
post another request and then sends its next answer. If such a behavior is predom-
inant in TCP transfers, it can have a detrimental impact if ever the train size is too
small as it might prevent TCP from performing FR/R in cases of losses.

The question we raise is thus: are the two parties involved in a transfer synchro-
nized or not? Proving synchronism requires an a priori knowledge of the applica-
tion semantics. We can however prove that the synchronism hypothesis cannot be
rejected as follows: for a given transfer, each time we observe a transition from one
side sending packets, say A, to the other side sending packets, say B, we observe
if the first packet from B acknowledges the reception of the last packet from A.
If this is not the case, then there is no synchronism, otherwise, synchronism can
not be rejected. Applying this methodology to the three traces, we obtained that for
each trace, the fraction of connections for which synchronism could not be rejected
was extremely high: 88.6% for the ADSL trace, 94.4% for the Portland trace and
95.3% for the Eurecom trace.

For the connections for which synchronism could not be rejected, we looked at
the distribution of the size of the trains of packets sent. We distinguished between
the initiator of the connection and the remote party, as we expect the latter to be
some kind of server that usually sends larger amount of packets than the former
that simply posts requests. As illustrated by Figure 4:

e Trains size sent by the remote part are larger than those sent by the initiator,
in line with our hypothesis that the remote party be a server;

e More than 97% of initiator trains are less than 3 data packets, which leaves
TCP unable to trigger any Fast Retransmit, even if Limited Transmit is used;

e More than 75% of remote part bloc are less than 3 data packets, which again
leaves TCP unable to trigger the fast recovery/retransmit, even if Limited
Transmit is used;.

Taking a broader perspective, the fraction of connections that have a maximum
train size of 3 packets is 85.2% for the DSL trace, 40.5% for the Portland trace
and 54% for the Eurecom trace. Sizes of those connections remain quite in line
with our definition of Section 4.1 as about 87% of those Eurecom and Portland
connections have less than 7 packets. It falls to 62% for the DSL trace. For all 3
traces, we observe the vast majority (over 97%) of those connections have less than
20 packets.

5.2 Data Pacing

In this section, we focus on the transfers that obey to the definition of synchro-
nism introduced in the previous section. For those transfers, we want to assess how

=Initior

= nilor -

- Remote

g - o il
v - -Remote v

i)
]

0 o i o
Tran Sze - ADSL Transize (Porland-Hospo Transize(Ewezom)

Figure 4: Cumulative distribution of transmitted size blocs

the application' slows down the actual data transfer. To do so, we term A and B the
two parties involved in the transfer (A is the initiator of the transfer) and we break
down the data transfer times into a set of components:

o T

train time

(A): time needed to transfer the i-th train of the initiator;

7
train time

(B): is the time needed to transfer the remote part data train;

. Tjarmrup(A): time between receiving the last data packet from B and sending

train ¢. The warm-up accounts either for the user thinking time or for some
latency to generate the data at the server time for instance;

e T! (B): time between receiving the last data packet from A and sending

warm-up

train 7;

Note that to obtain accurate estimates of those durations that are related to the
sender or receiver side, we have to shift in time the time-series of packets received
at the probe. Specifically, we assume that a packet received from A at probe P

TTp A - . . TTr_ 5 -
was sent % in the past and will be received BITr-F ip the future, where

RTTp_4 (resp. RTTp_p) is the RTT between P and zi (resp. B) . While doing
this operation, we assume that the RTT of the transfer stays constant.

The above breakdown strategy results in a complete partition of the total trans-
fer time. The application can impact both warm-up and train times. Concern-
ing train times, we sum for each party, A or B, the total train times, from which
we substract the recovery times if any. We term those values T, um.(4) and
Tainime (B). We also record the total number of distinct data packets sent by A
or B. We next compute the duration that an ideal TCP layer with an initial conges-
tion of 1, delayed acknowledgment turned on, an infinite capacity, an RTT equal to
RTT4_p and the same number of packets to send as A or B would take to com-
plete the transmission of all those packets. We term those duration 7},..,(A) and
Tieory (B). The difference between theoretical quantities and the total train time,
Taintime (A) — Tineory (A) and Tirgin ime (B) — Thneory (B), represent estimates of the delay

"We consider the application in a broad sense, including the user interactions.

10

introduced by the application on top of TCP. We term them as pacing time in the
remaining of this section.

Figure 5 presents the result of applying the above methodology to the Port-
land trace. The two other traces offer qualitatively similar results. We observe
when looking at Figure 5 that the warm up time of A (initiator) and the pacing
time of B (remote party) represent the largest shares of the train time of A and B
respectively. A possible explanation behind this observation is that the “average”
connection features characteristics close to a client/server application with a large
thinking-time of the user, that leads to large warm-up values for A, and a server
whose rate is limited either by some back-end server or the use of a rate policy.
A precise assessment of the causes behind those phenomena clearly calls for more
advanced studies, that we leave for future work. For the time being, the major
lesson learned from this study is that the application slow down most transfers in
many different ways and this impact is observable for both small and large trans-
fers. This is somehow in contrast to losses, which can an even more detrimental
impact, but only for a minority of transfers.

WTHData - A T Data- A
~ WTH Data- B ~ WTH Data- B
2 Wwarm-up - A 30 Wwarm-up - A
5 [EWarm-up - § 5 [EWarm-up - B
913 [IPacing - A] [Pacing - A
) [Jpacing - B 02 [Jpacing - B
0 1 1]
£ £
F F

0 10
0

Portland Hotspot - Short transfers

Portland Hotspot - Large transfers

Figure 5: Application impact for the Portland trace

6 Conclusion

In this paper, we have analyzed on three different traffic traces the performance
limitations of short and of interactive TCP transfers.

Short transfers sending less than seven packets are not able to apply Fast Re-
transmit. Thus, they are really sensitive to loss events in the network. These short
transfers represent the majority of transfers. We have also observed very long tear-
down delays, between the last data packet of the connection and the last control
packet. This tear-down delay does not influence the user perception, but it may af-
fect the measurement of response times of short transfers in network management
functions.

The sensitivity to loss concerns also many long transfers as many of them are a
sequence of alternate exchanges and the vast majority of these bursts are less than

11

3 packets. Such a feature has a direct influence on the ability of TCP to recover
from a loss using Fast Retransmit.

We have also highlighted that the delay to transfer a burst is usually much larger
than the pure transmission time. Causes behind this slow downs can be found at
the sender, e.g., rate shaping, and also at the receiver side, e.g., thinking time. To
the best of our knowledge, this work is the first of its kind to pinpoint and quantify
the impact of the application on top of TCP. An important lesson learned from this
study is that the while losses can have a highly detrimental impact on the transfer
times, losses occur in fact (and hopefully) very rarely. In contrast, the application
affect almost all flows and leads to a substantial slow down of the transfers.

References

[1] M. Fomenkov, K. Keys, D. Moore, and k. claffy. Longitudinal study of Internet
traffic in 1998-2003. Technical Report, Cooperative Association for Internet
Data Analysis (CAIDA), 2003.

[2] M. Mellia, L. Stoica, and H.Zhang, TCP model for short Lived Flows, IEEE
Communications Letters, 2002.

[3] J.R. Janardhan, A.L. Caro Jr, P.D. Amer, Dealing with Short TCP Flows: A
Survey of Mice in Elephants Shoes, Technical Report, 2007.

[4] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP’s Loss Recovery Using
Limited Transmit, RFC:3042, 2001.

[5] M. Allman, S. Floyd, C. Partridge, Increasing TCP’s Initial Window,
RFC:3390,2002

[6] J. Nagle, Congestion Control in IP/TCP Internetworks, RFC:896, 1984.

[7] David Kotz and Tristan Henderson and Ilya Abyzov, CRAWDAD data set dart-
mouth/campus , http://crawdad.cs.dartmouth.edu/

[8] U. Ayesta, K. Avrachenkov, “The Effect of the Initial Window Size and Lim-
ited Transmit Algorithm on the Transient Behavior of TCP Transfers”, ITC
Specialist Seminar on Internet Traffic Engineering and Traffic Management,

July 2002.

[9] N. Cardwell, Stefan Savage, T. Anderson, “Modeling TCP Latency”, INFO-
COM, 2000.

[10] M. Melia, L. Stoica, H. Zhang, “TCP Model for short Lived Flows”, IEEE
COMMUNICATIONS LETTERS, February 2002.

[11] Martin Arlitt, Balachander Krishnamurthy, Jeffrey C. Mogul, “Predicting
short-transfer latency from TCP arcana: A trace-based validation”, ACM SIG-
COMM, 2005.

12

[12] N. Ben Azzouna, F. Guillemin, “Analysis of ADSL traffic on an IP backbone
link”, GLOBECOM, 2003.

[13] S. Ebrahim-Taghizadeh, A. Helmy, S. Gupta, “TCP vs. TCP: a Systematic
Study of adverse Impact of Short-lived TCP Flows on Long-lived TCP Flows”,
INFOCOM, 2005.

[14] C. Barakat, E. Altman, “Performance of short TCP transfers”’, Networking,
2000.

[15] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, ‘“Modeling TCP Through-
put: A Simple Model and its Empirical Validation”, In Proceedings of ACM
SIGCOMM 98,pages 303-314,Vancouver, BC, September 1998.

[16] M. Siekkinen, G. Urvoy-Keller, and E. W. Biersack, “On the interaction
between internet applications and TCP”, In Proceedings of ITC20, 2007.

[17] S. Rewaskar, J. Kaur and FD. Smith, “A Passive State-Machine Approach
for Accurate Analysis of TCP Out-of-Sequence Segments”, In the ACM SIG-
COMM Computer Communication Review, July 2006.

13

