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Abstract

Peer-to-peer overlay networks are distributed systems, without any hierarchical or-
ganization or centralized control. Peers form self-organizing overlay networks that
are on top of the Internet.

Both parts of this thesis deal with peer-to-peer overlay networks, the first part with
unstructured ones used to build a large scale Networked Virtual Environment. The
second part gives insights on how the users of a real life structured peer-to-peer net-
work behave, and how well the proposed algorithms for publishing and retrieving
data work. Moreover we analyze the security (holes) in such a system.

Networked virtual environments (NVEs), also known as distributed virtual envi-
ronments, are computer-generated, synthetic worlds that allow simultaneous inter-
actions of multiple participants. Many efforts have been made to allow people to
interact in realistic virtual environments, resulting in the recent boom of Massively
Multiplayer Online Games.

In the first part of the thesis, we present a complete study of an augmented
Delaunay-based overlay for peer-to-peer shared virtual worlds. We design an over-
lay network matching the Delaunay triangulation of the participating peers in a gen-
eralized d-dimensional space. Especially, we describe the self-organizing algorithms
for peer insertion and deletion.

To reduce the delay penalty of overlay routing, we propose to augment each node
of the Delaunay-based overlay with a limited number of carefully selected shortcut
links creating a small-world. We show that a small number of shortcuts is sufficient
to significantly decrease the delay of routing in the space.

We present a distributed algorithm for the clustering of peers. The algorithm is dy-
namic in the sense that whenever a peer joins or leaves the NVE, the clustering will
be adapted if necessary by either splitting a cluster or merging clusters. The main
idea of the algorithm is to classify links between adjacent peers into short intra-
cluster and long inter-cluster links.

In a structured system, the neighbor relationship between peers and data locations is
strictly defined. Searching in such systems is therefore determined by the particular
network architecture. Among the strictly structured systems, some implement a dis-
tributed hash table (DHT) using different data structures. DHTs have been actively
studied in the literature and many different proposals have been made on how to
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organize peers in a DHT. However, very few DHTs have been implemented in real
systems and deployed on a large scale. One exception is KAD, a DHT based on
Kademlia, which is part of eDonkey, a peer-to-peer file sharing system with several
million simultaneous users.

In the second part of this thesis we give a detailed background on KAD, the organi-
zation of the peers, the search and the publish operations, and we describe our mea-
surement methodology. We have been crawling KAD continuously for more than
a year. We obtained information about geographical distribution of peers, session
times, peer availability, and peer lifetime. We found that session times are Weibull
distributed and show how this information can be exploited to make the publishing
mechanism much more efficient.

As we have been studying KAD over the course of the last two years we have been
both, fascinated and frightened by the possibilities KAD offers. We show that mount-
ing a Sybil attack is very easy in KAD and allows to compromise the privacy of
KAD users, to compromise the correct operation of the key lookup and to mount
distributed denial-of-service attacks with very little resources.



Zusammenfassung

Peer-to-peer Overlay Netwerke sind verteilte Systeme ohne jede hierarchische Or-
ganisation oder zentrale Kontrolle. Die Teilnehmer bilden auf Anwendungsebene
sich selbst organisierende Overlay-Netzwerke, die über das unterliegende Netz-
werk, das Internet, paarweise miteinander Verbindungen aufbauen können.

Beide Teile dieser Dissertation behandeln Peer-to-Peer Overlay-Netze. Der erste
Teil beschäftigt sich mit unstrukturierten Overlays, die unter anderem benutzt wer-
den können, um virtuelle Welten im großen Maßstab aufzubauen. Der zweite Teil
gewährt Einblicke darüber, wie sich die Benutzer eines real existierenden strukturi-
erten Peer-to-Peer Netzwerkes verhalten und wie gut die vorgeschlagenen Algorith-
men für die Publikation und Suche von Daten funktionieren. Darüber hinaus wird
die Sicherheit eines solchen Systems analysiert.

Networked virtual environments, auch bekannt als verteilte virtuelle Umgebungen,
sind Computer-generierte synthetische Welten, die es mehreren Teilnehmern er-
möglichen, gleichzeitig zu agieren. Es wurden viele Anstrengungen unternommen,
um Nutzern die Interaktion in möglichst realistischen virtuellen Umgebungen zu er-
möglichen. Dadurch wurde der Boom von Massively Multiplayer Online Games in
den letzten Jahren erst ermöglicht.

Im ersten Teil dieser Dissertation stellen wir eine komplette Studie eines Delaunay-
basierten Peer-to-Peer Overlays für verteilte virtuelle Welten vor. Wir entwerfen
ein Overlay-Netz, das mit der Delaunay-Triangulierung der teilnehmenden Peers
in einem d-dimensionalem Raum übereinstimmt. Vor allem beschreiben wir die sich
selbst organisierenden Algorithmen für das Einfügen und Entfernen eines Peers.

Um die erhöhte Laufzeit, die durch das Routing im Overlay entsteht, zu re-
duzieren, schlagen wir vor, jeden Knoten im Delaunay-basierten Overlay mit einigen
sorgfältig ausgewählten Abkürzungen anzureichern, so dass eine sogenannte small-
world entsteht. Anschließend zeigen wir, dass eine kleine Anzahl von Abkürzun-
gen ausreichend ist, um die Laufzeit einer Nachricht im Overlay signifikant zu re-
duzieren.

Wir präsentieren einen verteilten Algorithmus zum Clustern von Peers. Der Al-
gorithmus ist adaptativ in dem Sinne, dass jedesmal, wenn ein Peer dem NVE
beitritt oder es verlässt, das Clustering wenn nötig angepasst wird, indem ein Clus-
ter aufgeteilt wird oder Cluster zusammengeschlossen werden. Die zentrale Idee
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des Algorithmus ist es, die Verbindungen zwischen benachbarten Peers in kurze
intra-cluster- und lange inter-cluster-Verbindungen aufzuteilen.

In einem strukturierten Peer-to-Peer System ist die Nachbarschaftsbeziehung zwi-
schen Peers sowie der Ort für die Datenspeicherung strikt festgelegt. Die Suche
in einem solchen System ist daher durch die spezielle Netzwerkarchitektur be-
stimmt. Unter den strukturierten Systemen implementieren einige eine verteilte
Hash-Tabelle (Distributed Hash Table, DHT). DHTs sind in der Literatur ausführlich
untersucht worden, und es sind viele verschiedene Vorschläge für die Organisation
der Peers gemacht worden. Dennoch sind nur sehr wenige DHTs in einem realen
System implementiert worden und im großen Maßstab zur Anwendung gekommen.
Eine Ausnahme ist KAD, eine auf Kademlia basierende DHT, die Teil von eDonkey
ist, einem Peer-to-Peer Netz, das von mehreren Millionen Nutzern gleichzeitig be-
nutzt wird.

Im zweiten Teil dieser Dissertation stellen wir die Funktionsweise von KAD vor, seine
Organisation der Peers, sowie seine Publikations- und Suchoperation. Um ein Sys-
tem dieser Größenordnung zu untersuchen, haben wir unsere eigene, skalierbare
und robuste, Meßmethodologie entwickelt. Auf diese Weise war es uns möglich,
KAD ohne Unterbrechungen während eines gesamten Jahres zu vermessen und eine
Vielzahl von Informationen zu erhalten. So haben wir Daten über die geograph-
ische Verteilung, die Sitzungszeiten, die Verfügbarkeit, sowie die Lebenszeit der
Peers gewonnen. Ein besonders interessantes Ergebnis ist, dass die Sitzungszeiten
Weibull-verteilt sind. Wir zeigen, wie diese Information dazu genutzt werden kann,
den Publikationsmechanismus effizienter zu gestalten.

Während wir in den vergangenen zwei Jahren mit den Funktionsweisen von KAD
immer vertrauter wurden, haben uns die Möglichkeiten, die KAD bietet, sowohl
fasziniert als auch erschreckt. KAD erlaubt es einem einzelnen Benutzer ohne große
Mühe viele verschiedene Identitäten anzunehmen. Diese können dazu benutzt wer-
den spezifische Daten über Nutzer zu sammeln, die korrekte Funktionsweise der
Suche zu unterbinden und verteilte Denial-of-Service Angriffe mit sehr wenigen
Ressourcen durchzuführen.
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CHAPTER1
Introduction

“Take young researchers, put them together in
virtual seclusion, give them an unprecedented
degree of freedom and turn up the pressure by
fostering competitiveness.”

– James D. Watson –

1.1 Peer-to-peer networks

Peer-to-peer overlay networks are distributed systems without any centralized con-
trol. Peers form a self-organizing overlay network that runs on top of the Internet.
These overlays offer various features such as robust routing, efficient search of data
items, selection of nearby peers, redundant storage, anonymity, scalability and fault
tolerance. A peer-to-peer network does not have the notion of clients or servers but
only equal peer nodes that simultaneously function as both “clients” and “servers”
to the other nodes of the network.

New challenges such as topology maintenance arise, as nodes can join or leave at
any time, and efficient content search, as no node has a complete knowledge of the
entire topology. Peer-to-peer overlay networks do not arise from the collaboration
between established and connected groups of systems, and without a reliable set of
resources to share. The basic units are commodity PCs instead of well-provisioned
facilities.

The peers have autonomy, i.e., they are able to decide about services they wish to
offer to other peers. Peers are assumed to have temporary network addresses, and
have to be recognized and reachable even if their network address has changed.
That is why issues of scale and redundancy become much more important than in
traditional (centralized or distributed) systems.

The peers cannot necessarily trust each other because of their autonomy. Indeed
attacks in peer-to-peer networks are easy to set up. It is possible to join the net-
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work with multiple identities, the so called sybils, and affect the routing of messages,
and the publication and lookup of content. This way content can be made invis-
ible, eclipsed, for benign participants. Moreover content can be polluted by bogus
publications.

Peer-to-peer networks have three main principles, which specify a fully-distributed,
cooperative network design with peers building a self-organizing system:

• The principle of sharing resources: all peer-to-peer systems involve an aspect
of resource sharing, where resources can be physical resources, such as disk
space or network bandwidth, as well as logical resources, such as services or
different forms of knowledge. By sharing of resources, applications can be
realized that could not be set up by a single node. They scale with the number
of participants.

• The principle of decentralization: this is an immediate consequence of sharing
of resources. Parts of the system or even the whole system are no longer op-
erated centrally. Decentralization is in particular interesting in order to avoid
single points of failure or performance bottlenecks in the system.

• The principle of self-organization: when a peer-to-peer system becomes fully
decentralized there exists no longer a node that can centrally coordinate its
activities, or a central database to store global information about the system.
Nodes have to self-organize themselves, based on whatever local information
is available and by interacting with locally reachable nodes (neighbors). The
global behavior then emerges as the result of all the local behaviors.

File Sharing, Video Streaming, Telephony, Backup, Games P2P Application Layer
Meta-Data (File Management), Messaging, Scheduling P2P Services Layer
Node State, Keep Alive, Lookup, Join, Leave Overlay Node Management
TCP and UDP over IP Transport Layer

Table 1.1: The Peer-to-Peer Protocol Stack.

Table 1.1 shows an abstract peer-to-peer overlay architecture, illustrating the compo-
nents in the overlay communications framework. The Transport layer is responsible
for the connection of desktop machines over the Internet. The dynamic nature of
peers implies that peers can join and leave the peer-to-peer network at any time.
This is a significant problem for peer-to-peer systems, as they must maintain con-
sistent information about peers in the system in order to operate most effectively.
All the layers above the Network layer are situated at the application layer of the OSI
model. Thus a peer-to-peer system can be viewed as an application-level Internet on
top of the Internet.

The Overlay Nodes Management layer covers the management of peers, which in-
clude the operations to join and leave the network, the discovery of peers, and rout-
ing algorithms. The neighbors of a peer are chosen depending on the look-up algo-
rithm used. So we can say that the look-up algorithm specifies or defines a peer-to-
peer network.
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The peer-to-peer Services layer supports the underlying peer-to-peer infrastructure
through scheduling of tasks, content and file management. Meta-data describe the
content stored across the peers and the location information.

The peer-to-peer Application layer is concerned with tools and applications that are
implemented with specific functionalities on top of the underlying peer-to-peer over-
lay infrastructure. File sharing was the first and oldest application for peer-to-peer
networks. Today it has been complemented by a wide variety of other applications
using a peer-to-peer infrastructure, such as telephony (e.g., Skype), video streaming
(e.g., Zattoo), distributed backup (e.g., Wuala), and games.

The peer-to-peer overlay network consists of all the participating peers as network
nodes. Every peer has a list of other peers he knows. They are used to forward any
kind of messages, for routing, publishing, or searching purposes. There are links
between any two peers that know each other: i.e., if a participating peer knows the
location of another peer in the network, then there is a directed edge from the former
node to the latter in the overlay network. Based on how the nodes in the overlay
network are linked to each other, we can classify them as unstructured or structured.

Unstructured Peer-to-Peer Networks An unstructured peer-to-peer network is
formed when the overlay links are established arbitrarily. A new peer that wants
to join the network can copy existing links of another node and then form its own
links over time. The network uses flooding as the mechanism to send queries across
the overlay, with a limited scope. When a peer receives the flood query, it sends back
a list of all the content matching the query to the originating peer.

While flooding-based techniques are effective for locating highly replicated items
and are resilient to peers joining and leaving the system, they are poorly suited
for locating rare items. Clearly this approach is not scalable as the load on each
peer grows linearly with the total number of queries and the system size. Thus, un-
structured peer-to-peer networks face one basic problem: peers become overloaded,
therefore, the system does not scale when handling a high rate of aggregate queries
and sudden increase in system size.

Structured Peer-to-Peer Networks In a structured peer-to-peer system, the neigh-
bor relationship between peers and data locations is strictly defined. Among the
structured systems, some implement a distributed hash table (DHT) using different
data structures. The structure of a DHT can be decomposed into several main com-
ponents. The foundation is an abstract key space, which typically consists of large
inter values, e.g. the range from 0 to 2128 − 1. A random unique key (identifier)
from this keyspace is assigned to each participant. Each node stores a partial view
of the whole distributed system, i.e., it maintains a small routing table consisting of
its neighboring peers. Together these links form the overlay network. Based on this
information, the routing procedure traverses several nodes, approaching the desti-
nation with each hop until the destination node is reached. This style of routing is
sometimes called key based routing.
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A data item is mapped to the same keyspace as the participating peers by hash-
ing either the filename or the binary file itself using a consistent hash function. Thus,
DHTs implement a proactive strategy to retrieve data by structuring the search space
in a deterministic way. The way content is assigned to one or more participant(s) dif-
fers among the proposed DHTs. This mapping scheme of the data items to the peers
defines the routing strategy on how to find the node who stores the data item. The
routing is used in the same way for both basic functions: publish and lookup. In
most implementations, this will not be a single node, but every data item is repli-
cated several times on different nodes who are close to the data item in the keyspace.

In theory, DHT-based systems can guarantee that any data object can be located on
average in O(log N) number of overlay hops, where N is the number of peers in
the system. The underlying network path between two peers can be significantly
different from the path on the DHT-based overlay network. Therefore, the lookup
latency in DHT-based peer-to-peer overlay networks can be quite high and could
adversely affect the performance of the applications running on top.

Although structured peer-to-peer networks can efficiently locate rare items since the
key-based routing is scalable, they incur significantly higher overheads than unstruc-
tured peer-to-peer networks for popular content (cf. Section 10.4).

1.2 Networked virtual environments

Networked virtual environments (NVEs) [53, 62], also known as distributed virtual
environments, are computer-generated, synthetic worlds that allow simultaneous
interactions of multiple participants. From the early days of SIMNET [17], a joint
project of the U.S. Army and Defense Advanced Research Project Agency (DARPA)
between 1983 and 1990 for large scale combat simulations, to the recent boom of
Massively Multiplayer Online Games (MMOG), many efforts have been made to allow
people to interact in realistic virtual environments.

Most of the existing MMOGs are role-playing games; first-person shooter games or
real-time strategy games are usually divided into many small isolated game sessions
with a handful of players each. As of early 2006, the most popular title, World of
Warcraft, has attracted more than six million subscribers within two years, while the
game Lineage also has more than four million subscribers worldwide. More than
100,000 peak concurrent users are frequently reported for major MMOGs, making
scalability a defining trait.

Works of science fiction, such as Neal Stephenson’s novel “Snow Crash” [118] and
the Matrix movies, give an impression of what a 3D environment that is truly con-
sistent, persistent, realistic and immersive could be like. Progression in technology,
converging advances in CPU, 3D acceleration and bandwidth may make the vision
come true in the near future.
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NVE scalability is fundamentally a resource issue, and is determined by whether
the system has enough resources to continuously accommodate new participants.
However, existing server-based architectures pose inherent scalability limits and sig-
nificant costs. Though much effort has been spent on improving scalability, no real
system exists as yet that could support more than one million concurrent users. The
popularity and rapid growth of large-scale NVEs such as MMOGs will likely pose
serious challenges to existing networks and architectures in the near future. On the
other hand, a new class of peer-to-peer applications that seeks to realize large-scale
NVEs has recently appeared as an alternative.

A number of issues are involved in building an NVE system; several are described
as follows:

• Consistency - For meaningful interactions to happen, all users’ perceptions
of the virtual world must be consistent. This includes maintaining states and
keeping events synchronized. The inherently distributed nature of peer net-
works makes it difficult to guarantee reliable behavior. The most widespread
solution to ensure consistency across NVEs is to keep redundant information
in different peers. For example, upon a detection of a failure, the task can be
restarted on other available machines. Alternatively, the same task can be ini-
tially assigned to multiple peers. In messaging applications lost messages can
be resent or sent along multiple paths simultaneously. Finally, in file sharing
applications, data can be replicated across many peers. In all serverless peer-to-
peer systems, states about neighbors and connections must be kept in different
peers to ensure the consistency after the crash of one or more peers.

Zhou et al. [141] classify NVE event consistency into two main groups:

– Causal order consistency - Events must happen in the same order as they
occur, as humans have deeply-rooted concepts about the logical order of
sequences of events.

– Time-space consistency - In an NVE system, messages are sent to notify
others about position updates. However, due to network delay and clock
asynchrony among computers, it is possible for hosts to receive updates
with different delays and thus interpret the order of events differently.
Inconsistencies therefore could occur for entity positions at a given logical
time.

Note that causal order consistency and time-space consistency are not neces-
sarily related to each other (i.e., it is possible to preserve causal order consis-
tency but violate time-space consistency). This problem is particularly evident
when forecasts are used to compensate missing updates. On the other hand, in
p2p networks the concept of consistency generally refers to what may be called
topology consistency, which is whether each node in the p2p system holds con-
sistent views of the parts of the network they share (note that each node only
maintains a local view of the complete topology).
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• Scalability is usually concerned with the number of simultaneous users in a
NVE. One important challenge is to allow all people to interact in the same
environment. This is achieved by developing new systems that do not rely
on a centralized server. Thus the server can not be overloaded and crash due
to to increasing usage. No investment is needed for servers. The nodes only
know the nodes in their attention radius. While the virtual world is infinite, in
this radius the number of peers is limited. A trade-off has to be made between
knowing enough neighbors to interact and not keeping connections open to
too many neighbors.

• Reliability and fault resilience is important to make an NVE a service with
quality. To ensure this point peers may need some redundant information to
cope with a crash of one or more neighbors. One of the primary design goals
of a peer-to-peer system is to avoid a central point of failure. Although most
(pure) peer-to-peer systems already do this, they nevertheless are faced with
failures commonly associated with systems spanning multiple hosts and net-
works: disconnections / unreachability, partitions, and node failures. These
failures may occur more often in some networks (e.g., wireless) than in others
(e.g., wired enterprise networks). In addition to these random failures, per-
sonal machines are more vulnerable than servers to security attacks or viruses.
It is be desirable to continue active collaboration among the remaining con-
nected peers in the presence of such failures.

• Performance - NVEs are simulations of the real world. Performance therefore
is important to adapt the virtual world fast enough to allow for the impression
of realism and to keep the different views consistent. Because of the decentral-
ized nature of these models, performance is influenced by three types of re-
sources: processing, storage and networking. In particular, networking delays
can be significant in wide area networks. Bandwidth is a major factor when a
large number of messages is propagated in the network and large amounts of
files are being transferred among many peers. This limits the scalability of the
system. Performance in this context cannot be measured in milliseconds, but
rather tries to answer questions of how long it takes to retrieve a file or how
much bandwidth a query will consume. These numbers have a direct impact
on the usability of a system.

• Security is a big challenge for NVEs, especially if they use a peer-to-peer in-
frastructure without centralized components. Transforming a standard client
into a server poses a number of risks to the system. Only trusted or authen-
ticated peers should have access to information and services provided by a
given node. Unfortunately, this requires either potentially painful intervention
from the user, or interaction with a trusted third party. Centralizing the task
of security is often the only solution even though it voids the p2p benefit of a
distributed infrastructure. Another way is to introduce the notion of trust: In
the physical world we trust someone who has a good reputation. The concept
of reputation can be adopted to the p2p world: you only trust a node you know
or a node for which you get a recommendation from a known trusted node.
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• Persistency - To create sophisticated contents, certain data such as user profiles
and valuable virtual objects must be persistently stored and accessible across
user sessions. An example of a virtual object may be a bar where people can
meet. This information is in most cases stored on a central server to allow
the users to log into the virtual world with the same identity from different
computers.

We consider scalability to be the most important issue if we plan to build truly mas-
sive worlds and applications, which millions of people can participate in and en-
joy. Therefore, this thesis focuses on finding a solution for the scalability problem
in NVEs. Existing approaches to improve scalability mainly rely on enhancing the
server capacity in a client-server architecture. Further scalability is achieved by clus-
tering servers and by dividing the game universe into multiple different, or parallel,
worlds and spreading the users over them. However, a client-server architecture has
an inherent upper limit in its available resources (i.e., processing power and band-
width capacity) and is expensive to deploy and to maintain. Distributed systems
relying on a peer-to-peer architecture have emerged in recent years as an alterna-
tive that promises scalability and affordability. We attempt to apply a peer-to-peer
architecture to NVE design, and to address the scalability problem.

1.3 Organisation of the Thesis

In this section we present the main topics developed in this thesis.

Both parts of this thesis deal with peer-to-peer overlay networks, the first part with
unstructured ones used to build a large-scale Networked Virtual Environment. The
second part gives insights on how the users of a real life structured peer-to-peer net-
work behave, and how well the proposed algorithms for publishing and retrieving
data works. Moreover we analyze the security (holes) in such a system.

1.3.1 An Augmented Delaunay Overlay for Decentralized Virtual
Worlds

In the first part of the thesis we introduce a set of distributed algorithms with the
aim to build a scalable virtual world. To create a large-scale virtual world the tra-
ditional client-server model does not scale, and a peer-to-peer based approach is re-
quired that constructs an overlay connecting all the participants. NVEs have several
requirements that influence the choice of the overlay:

• Peers must be able to freely choose their peerIDs, which in fact reflects their
position in the overlay.

• Peers move around, and their positions and therefore peerIDs will change.
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• The overlay must efficiently support the communication of a peer with its
close-by neighbors.

There exist a large number of structured overlays such as Pastry [100], Tapestry [140],
Chord [120], and CAN [98]. However, these overlays typically assign to each peer a
fixed peerId, for instance the hash of the peer’s IP address, which is not appropriate
for NVEs.

One notable difference between P2P-NVE and DHT or file sharing is that the prob-
lem of content search is greatly simplified: as each node’s area of interest is limited,
the desired content is localized and easily identified. This differs from file sharing,
where the desired content may potentially be on any node. The content search in
peer-to-peer systems thus becomes a neighbor discovery problem.

Delaunay triangulation [29], on the other hand, meets all these requirements. Struc-
tured overlays based on Delaunay triangulation have been studied previously [73].
However these works were restricted to the special case of two dimensions only. In
Section 3 we propose algorithms for the fully distributed computation and main-
tenance of the n-dimensional Delaunay Triangulation. A Delaunay-based overlay
organizes peers according to their position in the NVE. However, as do most over-
lays, a Delaunay based overlay completely ignores the position of the peers in the
physical network. As a consequence, two peers that are neighbors in the overlay
may be physically far away, and any message sent over a sequence of overlay hops
will experience a significant delay penalty.

To reduce the delay penalty of overlay routing, we propose in Section 4 to augment
each node of the Delaunay-based overlay with a limited number of carefully selected
shortcut links. These shortcuts are chosen in a way that they are short in the underlay
but long range in the overlay. Last we introduce in Section 5 a distributed clustering
algorithm that allows for the self-organizing clustering of the nodes.

1.3.2 Measurements of real-world peer-to-peer networks

Distributed hash tables (DHTs) have been actively studied in the literature, and
many different proposals have been made on how to organize peers in a DHT. How-
ever, very few DHTs have been implemented in real systems and deployed on a large
scale. One exception is the DHT KAD, an implementation of Kademlia, a peer-to-peer
file sharing system with several million simultaneous users.

In Section 8 we give a detailed background on KAD, and we describe our mea-
surement methodology. We present the KAD crawler we have designed and imple-
mented. The speed of this crawler allows us to crawl the entire KAD ID space which
has never been done before. We have been crawling KAD continuously for more
than a year, the results are presented in Section 9. We obtained information about
geographical distribution of peers, session times, peer availability, and peer lifetime.
We also evaluated to what extent information about past peer uptime can be used to
predict the remaining uptime of the peer. We found that session times are Weibull
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distributed and show how this information can be exploited to make the publishing
mechanism much more efficient.

Peers are identified by the so-called KAD ID, which was up to now assumed to be
persistent. However, we observed that a large number of peers change their KAD
ID, sometimes as frequently as after each session. This change of KAD IDs makes
it difficult to characterize end-user behavior. However, by tracking end-users with
static IP addresses, we could measure the rate of change of KAD IDs per end-user
and the end-user lifetime.

In Section 10 we present our measurement results on the content shared among users
in KAD. Since the measurement technique is based on the Sybil attack, we show how
easy it is in KAD to mount such an attack that allows to compromise the privacy
of KAD users, to compromise the correct operation of the key lookup and to mount
distributed denial-of-service attacks with very little resources. Moreover we present
some results of the content pollution attack we ran against the network of the Storm
bots that use a Kademlia-based DHT for communication.

We provide distributions of file types, formats, and sizes. In a first evaluation, we
notice that publishing new content in a KAD system is much more expensive than
searching and retrieving existing content. Indeed, measurements show that of all the
Internet traffic generated by KAD-based peer-to-peer networks, 90% is for publish-
ing and 10% for retrieving existing files. Moreover, the most frequently published
keywords are meaningless stopwords.

We analyze in detail the content retrieval process of KAD in Section 11. In particular,
we present a simple model to evaluate the impact of different design parameters on
the overall lookup latency. We then perform extensive measurements on the lookup
performance using an instrumented client. From the analysis of the results, we pro-
pose an improved scheme that is able to significantly decrease the overall lookup
latency without increasing the overhead.

For comparison with the results obtained on KAD we also performed measurements
on the DHT of the BitTorrent client Azureus that we present in Section 12. The users
come from different regions; the US are dominant whereas they play only a minor
role in KAD. The users in Azureus tend to stay online for more than twice the time
of the KAD users.
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Part I

An Augmented Delaunay Overlay for
Decentralized Virtual Worlds
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CHAPTER2
Introduction

“A distributed system is one in which the fail-
ure of a computer you didn’t even know existed
can render your own computer unusable.”

– Leslie Lamport –

Massive and persistent virtual environment which allows millions of people to par-
ticipate simultaneously may eventually happen on the Internet. There are many
technical and architectural issues that need to be resolved before such a true cy-
berspace can be realized. The primary among these needs is a scalable architecture
that handles large numbers of simultaneous users. These worlds will allow people
to interact as they do in the real world, e.g., to speak (broadcast audio or video) to
people interested in a common topic. Todays massively multi-player online games
provide a good impression of what such worlds could be like. It somehow cor-
roborates the concept of a massively shared public virtual world depicted by Neal
Stephenson in his science fiction novel Snow crash [118].

These applications usually rely on servers, whose owners can monitor the behav-
iors of inhabitants and ban those who exhibit unexpected characteristics. A second
interest for peer-to-peer virtual environments is related to scalability issues. As a
dramatic growth of the number of on-line gamers is expected, the stress on central
servers increases and advocates for a better distribution of resources involved in
the system management. Another motivation for fully decentralized virtual places
comes from business perspectives. On-line games are now valuable research venues
and platforms where millions of users from a broad age range interact and collabo-
rate on a daily basis [138].

This chapter deals with a peer-to-peer system for a massively distributed virtual
world, owned by nobody except inhabitants and populated by a potentially unlim-
ited number of users.

13
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2.1 Networked Virtual Environments

In shared virtual worlds (Networked Virtual Environments), peers are characterized
by a position in a three-dimensional space. These worlds are dynamic: peers join
and leave the world, move from one virtual place to another, and interact in real-
time. The system is intended to provide a similar perception of the same scene for
any two peers. This property, called coherency, can be obtained when every object
– avatar of a player or other virtual object – is aware of all objects within its virtual
surroundings and of all events occurring nearby. In a centralized system, a server
knows at any time the positions of all peers, so it can easily alert peers about new
neighbors and main close events.

Decentralized systems for shared virtual worlds have been studied since the early
90’s. Some early applications rely on a two-tier architecture where the virtual space
is partitioned into disjoint cells, each cell being under the responsibility of either a
server or a super-peer [134, 142]. The partitioning can be dynamically adjusted to
cope with variations of virtual densities [68]. Each cell is associated with a multicast
address, so moving implies joining and leaving multicast groups when crossing cell
borders. Some recent works use a Distributed Hash Table (DHT) to equally share
the responsibility of inhabitants for virtual [42, 62], however these applications face
latency problems due to message relay. In another approaches, peers carry their
auras, sub-spaces that bind the presence of an object and act as an enabler of potential
interaction [7]. This concept adopted in several applications [95, 130] requires that
two peers are alerted when their auras collide, so the problem persists.

A promising approach is based on mutual notification: neighbor discovery is en-
sured through collaborative notifications between connected nodes. The idea con-
sists of maintaining a logical overlay such that each peer has a direct logical connec-
tion with its virtual neighbors and is able to alert two neighbors when they have to
be introduced [59]. Ideally, each peer would be connected with all the peers in its
aura, these neighbors being able to monitor its aura’s boundaries. In this context, an
overlay network based on a Delaunay triangulation is appealing [53]. Indeed, as de-
picted in Figure 2.1, a Delaunay triangulation [29] links two peers when their Voronoi
regions share a boundary [5, 88]. A Delaunay triangulation for a set P of points in
the plane is a triangulation DT (P ) such that no point in P is inside the circumcircle
of any triangle in DT (P ). Delaunay triangulations maximize the minimum angle of
the triangles; they tend to avoid skinny triangles. Generalized to d-dimensions the
definition is as follows: For a set P of points in the d-dimensional Euclidean space, a
Delaunay triangulation is a triangulation DT (P ) such that no point in P is inside the
circum-hypersphere of any simplex in DT (P ). A Voronoi diagram [132] of a set of
peers in an Euclidean space tessellates the whole space. So, any subspace S of a vir-
tual world can be monitored by the peers whose Voronoi region overlaps S. Hence,
a peer can be notified of any events in its surroundings subspace if it knows all peers
monitoring it [53].
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Figure 2.1: Delaunay Triangulation (solid lines) and Voronoi diagram (dashed lines) in two
dimensions

2.2 Contributions

In this part of the thesis, we present the design of an augmented Delaunay-based
overlay for peer-to-peer massively shared virtual worlds.

Previous proposals of Delaunay-based overlays in dynamic distributed systems rely
on an angular feature that is specific to two-dimensional spaces [3, 73]. An overlay
based on a Delaunay triangulation has also been studied in ad-hoc networks [72],
but some features of wireless protocols ease the detection of neighbors, and the algo-
rithms focus on two-dimensional spaces. These studies can not be applied to higher
dimensional spaces. However, realistic representations of virtual worlds require
three dimensions. We design an overlay network matching the Delaunay triangu-
lation of the participating peers in a generalized d-dimensional space. Especially, we
describe the distributed algorithms for peer insertion and deletion in Section 3.

The resulting overlay organizes peers according to their position in the virtual en-
vironment. However, as do most overlays, the position of the peers in the physical
network is completely ignored. As a consequence, two neighbors in the overlay may
be physically far away, so message exchange along a sequence of overlay hops may
experience a significant delay. Yet, entering into the virtual world and teleporting re-
quire messages to do a greedy walk of average length equal to n1/d hops. To reduce
the delay penalty of overlay routing, we propose in Chapter 4 to augment each node
of the Delaunay-based overlay with a limited number of carefully selected shortcut
links. First of all, we describe three random distributions of peers in a virtual envi-
ronment: uniform in a three-dimensional space, uniform on a sphere, and following
a Lévy distribution [50] in three dimensional space. To our knowledge, the study of
a Delaunay triangulation in the two latter contexts has never been done. We confirm
through these realistic scenarios that a Delaunay-based overlay is an appealing data
structure for massively shared virtual spaces. Then, we evaluate the benefits of over-
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lay augmentation by simulating the underlay on top of which the Delaunay overlay
is built. We show that a small number of shortcuts is sufficient to significantly de-
crease the delay of routing in the space.

In Chapter 5 we present a distributed algorithm for the clustering of peers in a Net-
worked Virtual Environment (NVE) that are organized using a peer-to-peer (P2P)
network based on the Delauny triangulation. The algorithm is dynamic in the sense
that whenever a peer joins or leaves the NVE, the clustering will be adapted if neces-
sary by either splitting a cluster or merging clusters. The main idea of the algorithm
is to classify links between adjacent peers into short intra-cluster and long inter-
cluster links.

The advantages of clustering are multiple: clustering allows to limit queries to the
peers of a cluster avoiding to flood the entire network. Since clusters can be seen as
a level of abstraction that reduces the amount of information/detail exposed about
the NVE, clustering allows for faster navigation in the NVE and reduces the number
of messages a node receives when he travels through the NVE.



CHAPTER3
Maintaining a Delaunay-based

Overlay

In this Chapter, we first propose a distributed algorithm intended to let a peer join
the overlay. Second, we present an algorithm allowing peers to maintain the d-
dimensional Delaunay structure in spite of ungraceful leaving or failing peers. An
early version of this algorithm, for 3 dimensions only, has been published in [110].
Both sets of algorithms form a complete self-organizing self-healing Delaunay-based
overlay whose usage can be extended to many other peer-to-peer applications.

3.1 Model and Definitions

An overlay network is a network that is built on top of another network, called the
underlay or the physical network. Let N denote the set of all nodes in the underlay
andO ⊂ N the set of nodes in the overlay. The underlay consists of a set of nodesN
(routers and end hosts) connected by physical links. The overlay consists of a set of
nodes O (end hosts only) connected by virtual links.

A peer p ∈ O has two types of coordinates: (i) overlay coordinates po that indicate the
position of p in the d-dimensional space of the virtual world and (ii) network coordi-
nates pu that reflect the position of the peer in the underlay. Given two peers p and
q in O, do(p, q) denotes the overlay distance between p and q, which is defined as the
Euclidean distance between the virtual coordinates po and qo. The network coordi-
nates can be determined at very low cost using a network coordinate system such
as Vivaldi [26]. The underlay distance du(p, q) is defined as the Euclidean distance be-
tween the network coordinates pu and qu. The underlay distance between two peers
corresponds to the delay in the Internet between them. We assume that network co-
ordinates are fixed, while the overlay coordinates can be freely chosen and changed
by the user at any time. Overlay distance is a measure of the routing overhead since,

17
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at each overlay hop, some processing must be done. Underlay distance is a measure
of the delay a message will experience before reaching the destination.

If the underlay distance between two nodes p and k is less than a threshold dt,
i.e., du(p, k) < dt, p and k are considered to be very close to each other in the un-
derlay and are called physical neighbors.

The delay penalty can now be precisely introduced. Consider two peers p and q. Let
Ψ = {p = h0, h1, . . . , hi = k} be the set of overlay peers visited by a message sent
from peer p to peer q. The sum of underlay distances between two consecutive peers
in Ψ may be much longer than the underlay distance separating p and q, a case which
we refer to as delay penalty:

i−1∑
j=0

du(hj, hj+1) >> du(p, q)

In a d-dimensional overlay space, the Delaunay triangulation links peers into non-
overlapping d-simplices such that the circum-hypersphere of each d-simplex con-
tains none of the peers in its interior. Recall that 2-simplices are triangles and 3-
simplices tetrahedra. Two peers p and q sharing a virtual link in O are overlay neigh-
bors. We note K(p) the set of overlay neighbors of peer p. The hypersphere which
passes through all peers of a d-simplex T is noted C(T ). The in-hypersphere-test veri-
fies whether a peer is inside a hypersphere. In three dimensional spaces, a peer p is
within C(a, b, c, d) when:∣∣∣∣∣∣∣∣∣∣

ax ay az (a2
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y + a2
z) 1
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z) 1
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x + p2
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∣∣∣∣∣∣∣∣∣∣
> 0

We assume in this thesis that peers are in general position, i.e., no d + 1 peers are on
the same hyperplane and no d + 2 peers are on the same hypersphere. Otherwise
the triangulation would not be unique: consider 4 points on the same circle (e.g., the
vertices of a rectangle). The Delaunay triangulation of this set of points is not unique.
Clearly, the two possible triangulations that split the quadrangle into two triangles
satisfy the Delaunay condition. Finally, we consider that the position chosen by a
new peers at t is in the interior of the convex hull of O.

3.2 Peer Insertion

We consider a new peer z joining the system at time t. We assume that z has a
position in the space and knows at least one peer in O.

In two dimensions, a known insertion technique depicted in Figure 3.1 consists of
finding the triangle enclosing the new peer, then splitting this triangle into three,
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Figure 3.1: Insertion of a new peer

finally recursively checking on all adjacent triangles whether the edge flipping proce-
dure should be applied [44, 46]. This is the case if the circumsphere around a triangle
contains a node. In Figure 3.2, the edge flipping algorithm replaces the edge (b, c) by
the edge (a, z) because C(a, b, c) contains the new peer z.

a

b

c

z

Figure 3.2: Edge flipping

Few papers study the behavior of the flipping mechanism in d-dimensional space.
Most notably, a centralized incremental algorithm for the triangulation construction
is proposed in [135] and, at a later time, the flipping mechanism has been proved
to always succeed in constructing the triangulation [35]. We propose a distributed
algorithm inspired by the edge flipping mechanism and mostly based on geometrical
objects.

The algorithm works in three rounds. The first one aims to discover the enclosing
d-simplex. The easiest way to achieve it consists of contacting the closest peer to the
overlay position of z. Such an overlay routing is usually done in a greedy fashion.
The message is forwarded to the overlay neighbor that reduces the remaining over-
lay distance to the destination among all neighbors. In Delaunay-based overlays,
greedy routing always succeeds [11] but it requires O(n) time in the worst case and
O(n1/d) in the average case, with n the number of nodes in O. We tackle this issue in
Section 4. The two latter rounds of the insertion process are detailed in the following.
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3.2.1 Splitting the Enclosing Simplex

A peer enclosed in a d-simplex splits it into d + 1 d-simplices. For instance, a triangle
is split into three triangles as illustrated in Figure 3.1. In Figure 3.3, a new peer z
belonging to a tetrahedron T = (a, b, c, d) splits it into four tetrahedra T0 = (a, b, c, z),
T1 = (a, b, d, z), T2 = (a, c, d, z) and T3 = (b, c, d, z).

a

b

z

c

d

Figure 3.3: Splitting the enclosing tetrahedron

The preceding round ends when the peer z receives a description of the d-simplex T
enclosing its position. This round begins by z splitting T into d + 1 non-overlapping
d-simplices. Then, it stores these simplices in a personal buffer T (z) in which it will
further store the description of all d-simplices it is involved in. Finally, the peer z
sends a hello message to its d+1 new neighbors. This message contains the former
d-simplex T and the d new simplices in which the destination is involved. In the
example of Figure 3.3, the peer z sends to its neighbor b a hello message containing
T , T0, T1 and T3.

3.2.2 Recursive Flipping Mechanism

We consider a peer a receiving a hello message from the new peer z. This message
contains a d-simplex T to be discarded and d new simplices T1, T2 . . . Td containing
both a and z.

In a first case, the simplex T does not exist in T (a). This unusual situation may be
due to communication latencies or simultaneous events. The simplex T has been
previously discarded because a peer is within C(T ), so a invalidates this simplex1.
The peer a should immediately inform z that T should no longer be considered as
a valid d-simplex. Upon reception of this message, the new peer z should cancel its
previous actions and resume the first round.

1Retrieving a peer that recently invalidated a former simplex can be eased by maintaining a dedi-
cated structure called Delaunay tree [10].
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In a normal execution, the triangulation is updated by recursively performing a flip-
ping mechanism that splits two d-simplices into d d-simplices. This operation is
called 2 − d flip. In Figure 3.4, two tetrahedra (a, b, c, z) and (a, b, c, e) result in three
tetrahedra (a, b, z, e), (a, c, z, e) and (b, c, z, e). For simplicity, we restrict the study to
one simplex T1 among the d simplices contained in the hello message received by
peer a.

a

b

e

c

z

a

b

e

c

z

Figure 3.4: A 2-3 flip

The peer a should first determine the d-simplex T ′
1 ∈ T (a) such that T ′

1 and T1 share
one common (d− 1)-simplex, e.g., T1 = (a, e0, . . . , ed−2, z) and T ′

1 = (a, e0, . . . , ed−2, e).
The peer e may be considered as the opposite of z through this (d − 1)-simplex. For
instance, in two dimensions, e is the opposite of z through the edge (a, e0), and, in
three dimensions, e is the opposite of z through the face (a, e0, e1).

If z belongs to the circum-hypersphere of T ′
1, then the peer a should inform z that

(1) the d-simplex T1 should be discarded and (2) e should be considered as a new
neighbor. This is achieved by a detect message containing both a description of
e and T1. Then, the peer a operates the 2 − d flip, resulting in d d-simplices, noted
T11, T12, . . . , T1d. One of these d-simplices does not contain a but all other should be
inserted in T (a). Meanwhile, T1 and T ′

1 are discarded.

The operation described above should be reiterated with the newly created sim-
plices. For instance, if we consider T11, the peer a should first look for the d-simplex
T ′

11 ∈ T (a) sharing a (d − 1)-simplex with T11. Then, a should verify whether the
new peer z belongs to C(T ′

11). If so, a splits T11 and T ′
11 into d d-simplices and sends

another detect message to z.

This process ends until a does not split any new d-simplex anymore. The peer a
should then disconnect from the peers with which it does not share any d-simplex in
T (a). In this algorithm, all peers involved in a invalid simplex T should perform the
edge flipping mechanism and send a detect message to z.

Algorithm 1 shows the pseudo code of the treatment at reception of a hello mes-
sage. The first test, related to inconsistency detection, returns the peer that inval-
idated T (lines 2-3). In other cases, the peer receives the notification of d new d-
simplices T1 . . . Td. It puts them on a queue Q managed by a first-in-first-out policy
(lines 5-6). Then it retrieves the d-simplex Ta (line 8). We consider a function share
which takes in argument Ta and returns a d-simplex and a peer such that the d-
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Algorithm 1: hello z T T1 . . . Td

if T /∈ T (a) then1

f ←detectInside (T )2

send “cancel T , f" to z3

else4

for i = 1 . . . d do5

Q.put (Ti)6

while Q 6= ∅ do7

Ta ← Q.pop ()8

Tb, e = share (Ta)9

if z ∈ C(Tb) then10

Ta1 . . . Tad ← split (Ta, Tb)11

for i = 1 . . . d do12

Q.put (Tai)13

remove Tb from T (a)14

send “detect e Ta” to z15

else16

insert Ta in T (a)17

simplex shares with Ta a (d − 1)-simplex and the peer is the opposite of z through
this (d − 1)-simplex (line 9). If the in-hypersphere-test fails, the d-simplex Ta is stored
(line 17). In the opposite case, Ta is split, and the recursive process is achieved by
putting the resulting d-simplices in the queue (lines 12-13). In this case, a detect
message is sent to the new peer z (line 15).

3.2.3 Discussion

We now analyze the computational cost of this algorithm by focusing on the number
of in-hypersphere tests to perform. We note k the number of neighbors of the new
peer. A neighbor, except the d + 1 peers in the enclosing d-simplex, is detected by d
peers with which it forms a d-simplex. Each detection requires one in-hypersphere-
test, so d ∗ (k − (d + 1)) operations should be performed. Moreover, there is a failing
test before to end the algorithm, so k∗d additional in-hypersphere tests are necessary.
Therefore, the total number of in-hypersphere tests is d ∗ (2 ∗ k − (d + 1)).

We then show that the computation task is fairly distributed among the neighbors.
The worst case is as follows: one peer p0 is linked with all of the neighbors of z, so
one peer discovers all new d-simplices. As the d+1 peers generating the enclosing d-
simplex do not require any test, p0 should realize k−(d+1) times the in-hypersphere
test and d additional in-hypersphere tests to end the algorithm. Therefore, the num-
ber of in-hypersphere tests performed by one neighbor of a new peer linked to k
neighbors is, at worst, k − 1.
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In order to deal with the time complexity, we are interested in the length of the worst
causality chain that may occur in the algorithm. By causality chain, we mean a hello
message with a detect message in return, this message implying a new hello
message, which produces a new detect message, and so on. The worst causality
chain refers to the largest possible hop distance in the overlay before the insertion,
between the peers of the enclosing simplex and the future neighbor. Let z be the
new peer and {p0, p1, . . . , pk} the set of its neighbors after insertion. The worst case
occurs when the enclosing d-simplex is (p0, p1, . . . pd−2, pk). The farthest peer is the
peer in the middle of the path between pd−2 and pk, so the peer p k−(d−2)

2

. The d first
peers are discovered in one round and each following detected neighbor requires
one new round, so we need at worst k−d

2
rounds.

3.3 Peer Deletion

We now focus on the deletion of a peer. A peer that gracefully leaves the system can
quickly compute the new triangulation without itself and inform its neighbors about
the new links they have to create.

However, peers may crash with no graceful behavior. The crash of a peer z ∈ O can
only be noticed by a failure detector. This crash generates a hole in the triangula-
tion. A very basic idea to fill it would be to let former neighbors of z reconstruct the
triangulation from their knowledge of former neighbors. However, in most cases,
some new connections have to be created between peers that did not know each
other before the crash of z. It would be quite costly to force each peer to discover all
former neighbors of the faulty peer before to reconstruct the triangulation. Rather,
we propose a simple but powerful algorithm that fills the hole from its boundary to
its center.

We first describe the outlines of the algorithm, then we present it in the simplest
case: when z had only d + 1 neighbors. Finally, we detail a non-trivial example in
three-dimensional space.

3.3.1 Description

Assume a peer a ∈ K(z) detecting the crash of z (see Algorithm 2). Its first task
(lines 1-2) consists of extracting from T (a) a set Tz(a) of d-simplices containing z and
a set Kz(a) of neighbors that are, to its knowledge, affected by the crash of z. Then,
the peer a retrieves the known (d − 1)-simplices which belong to the boundary of
the hole generated by the crash of z (line 3-7). We note T ?

z (a) the set of these (d− 1)-
simplices.

From the set T ?
z (a), the peer a builds some candidate d-simplices using each pair of

(d−1)-simplices sharing a common (d−2)-simplex (lines 8-11). Then, each candidate
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Algorithm 2: a detects the crash of z

Tz ← {T ∈ T (a) : z ∈ T}1

Kz ← {e ∈ T : T ∈ Tz}2

T ?
z ← ∅3

foreach T ∈ Tz do4

remove T from T (a)5

T ? ← T \ {z}6

insert T ? in T ?
z7

foreach (Ti, Tj) ∈ T ?
z , i 6= j do8

if |T1 ∩ T2| = d− 2 then9

new_T ← (T1 ∪ T2)10

insert new_T in T (a)11

foreach e ∈ Kz : e /∈ new_T do12

send “candidate new_T a” to e13

simplex is transmitted with the candidate message to all peers contained in Kz(a)
but not in the simplex (lines 12-13).

We consider now a peer b ∈ K(z) receiving a candidate message from the peer
a. The peer b should simply verify whether it invalidates this candidate simplex T ,
so its only mission is to perform an in-hypersphere test with T . If the test fails —
if b is not within C(T ) — b forwards the message to the peers in Kz(b) that do not
participate in the candidate d-simplex T . This way, the candidate message turns
around the hole, and no peer within the boundary may miss this new simplex.

Algorithm 3: candidate-fail T b

Kz ← Kz ∪ b1

insert b in K(a)2

T1, T2← (Tt ∈ T ?
z : Tt ⊂ T )3

foreach Ti ∈ {T1, T2} do4

new_T ← Ti ∪ {b}5

foreach e ∈ Kz : e /∈ new_T do6

send “candidate new_T a” to e7

If the in-hypersphere test succeeds — b ∈ C(T ) — the peer b sends a
candidate-fail message to all the peers involved in T . This message contains the
failed simplex and a description of b itself. Upon reception of a candidate-fail
message (see Algorithm 3), the peer a first retrieves the pair of (d− 1)-simplices that
had been used to build the failed candidate (line 3). Then, it builds some new can-
didate d-simplices from these (d − 1)-simplices and the previously unknown peer b
(lines 4-5). Finally, it communicates these new candidates with a candidate mes-
sage to its neighbors on the hole boundary that are not involved with this new can-
didate (lines 6-7).
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3.3.2 A Trivial Example

In the following, we propose a trivial case that clearly illustrates the benefits of the
algorithm. We assume that z had d + 1 neighbors, so the resulting hole is exactly the
missing d-simplex in the new triangulation.

Actually, the peer z participates in d + 1 d-simplices. Each neighbor of z is involved
in d out of these d + 1 d-simplices. For the peer ei ∈ K(z), the set Tz(ei) contains the
following d d-simplices:

T ei
0 = {e1, . . . , ed, z}

...
T ei

j = {ek|0 ≤ k ≤ d} ∪ {z} \ {ej} j 6= i

...
T ei

d = {e0, . . . , ed−1, z}

For ei, the hole is circumscribed by the set T ?
z (ei) of all simplices in Tz(ei) without

z. Some candidate d-simplices can be rebuilt from any pair of (d − 1)-simplices in
T ?

z (ei). But, for each pair, the resulting d-simplex T is identical. Actually the result
is only a candidate simplex new_T . As all peers in Kz(ei) are involved in new_T ,
no candidate message is sent, and ei can only wait for the potential reception of a
candidate-fail message on new_T .

So, the peer ei sends to the d neighbors K(z, t)∩K(ei, t) a candidate message contain-
ing T .

T = {Tm ∪ Tn} (0 ≤ m, n ≤ d, m, n 6= i)

For better understanding, let us rephrase this basic idea for two-dimensional space:
the hole has the shape of a triangle. It is circumscribed by three edges. The three
peers can be extracted from any pair of edges. So, the missing triangle can be built
from any pair of edges.

In this case, no message, nor in-hypersphere test are required. The candidate simplex
new_T is validated but no new connections are required.

3.3.3 A Non-Trivial Example

The following example relies on the situation depicted in Figure 3.5(a) and Fig-
ure 3.5(b). The peers a, b, d and f are in front, while the peers c and e are in the
back. The faulty peer z is inside the convex hull of all these peers. The peer z
is involved in 8 d-simplices (tetrahedra): (a, b, d, z), (a, b, e, z), (a, e, f, z), (a, d, f, z),
(b, c, d, z), (b, c, e, z), (c, d, e, z), and (d, e, f, z). The (d− 1)-simplices (triangles) defin-
ing the hole left by z are: (a, b, d), (a, b, e), (a, e, f), (a, d, f), (b, c, d), (b, c, e), (c, d, e),
and (d, e, f).
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Figure 3.5: Deletion of a node.

Consider the peer a for the rebuilding process: a is involved in 4 of the 8 tetrahedra.
Consequently it only knows 4 of the 8 triangles surrounding the hole. Its candidate
simplices are T a

1 = (a, b, d, e), T a
2 = (a, b, d, f), T a

3 = (a, b, e, f), and T a
4 = (a, d, e, f).

They are constructed from each pair of the triangles sharing one edge.

We now focus on the candidate tetrahedron T a
1 . A candidate message is sent to the

peer f , the only neighbor of a belonging to the boundary of the hole and not involved
in T a

1 . As f is not in C(T a
1 ) and f does not know any peers in the boundary and not

in T a
1 , nothing occurs. But b acts in the same way, so the peer b sends a candidate

message to the peer c which is known by b but not by a. As the peer c belongs to the
circumsphere of the tetrahedra T a

1 , it sends a candidate-fail message to a, b, d
and e.

The candidate T a
1 was built using the triangles (a, b, d) and (a, b, e). As they do not

form a Delaunay tetrahedron together, the peer a builds two new candidate tetrahe-
dra with the new neighbor c: T a

11 = (a, b, d, c) and T a
12 = (a, b, e, c). If we continue to

execute the algorithm, we will see that these two tetrahedra will not be invalidated.

The final Delaunay triangulation after the deletion of z contains five tetrahedra:
(a, b, c, d), (a, b, c, e), (a, c, d, f), (a, c, e, f), and (c, d, e, f). Two new connections are
established: (a, c) and (f, c) as shown in Figure 3.5(b).

3.3.4 Discussion

We now analyze the computational cost of the peer deletion.

If a peer leaves the system gracefully it can quickly recompute the triangulation of
its neighbors excluding itself and inform its neighbors about the new links they have
to establish. The optimal computation of the new Delaunay triangulation has a com-
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plexity of O(k · log k) where k is the number of neighbors of the peer [30]. Other
robust algorithms admit a complexity of O(k2) but simpler implementations [83].

On the other hand, if a peer a crashes its neighbors have to fill the emerged hole in
the triangulation without knowing all the peers on the boundary of that hole. As for
the insertion of a peer we focus on the number of in-hypersphere tests to perform.
In order to give an upper bound, we assume that every of the k neighbors of node
a is a neighbor of every other of the k neighbors of a and that all of them notice
a’s crash at the same time. Each one is going to create

(
k
d

)
new d-simplices and is

going to communicate them to every other of the k neighbors. Every of the k nodes
is going to perform k − d in-hypersphere tests on every new d-simplex. Therefore,
in the worst case the total number of in-hypersphere tests performed per peer is:(

k
d

)
∗ (k − 1) ∗ (k − d).

However, in most cases d is not much smaller than k, so that the first and third part
of the term are close to one. Moreover, the k neighbors are not going to notice a’s
crash at the same time, therefore the candidate messages are not going to intersect
and most of the candidate d-simplices are going to be created only once and not by
every participating neighbor again.
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CHAPTER4
Underlay Shortcuts

When structured overlays were first introduced, very little attention was payed to
exploit information about the underlay proximity of nodes for overlay routing. As
a consequence, a message sent to a destination using overlay routing can incur a
high delay penalty. To reduce the delay penalty, various proposals were made. In
CAN [98], each node measures its underlay distance to a set of landmark nodes, in
an effort to determine its relative position in the Internet and to construct an Inter-
net topology-aware overlay. Pastry [100] can be enhanced by a proximity neighbor
selection [21] where a node p selects among all the possible nodes with the appropri-
ate prefix the node with the smallest underlay distance from node p. The shorter
the prefix to be matched is, the more candidate nodes with the appropriate pre-
fix exist, and the smaller is the underlay distance between the closest node and p.
Hence, for any two consecutive hops in an overlay path pi, pi+1, . . . , pi+h−1, pi+h, the
overlay distance decreases, i.e., do(pl, pl+1) > do(pl+1, pl+2), while the underlay dis-
tance increases, i.e., du(pl, pl+1) < du(pl+1, pl+2). In practice, the underlay distance
du(pi+h−1, pi+h) of the last hop dominates the total distance traveled by that message.

Another class of overlays tries to exploit the characteristics of small world graphs.
The notion of small world, originating from social science research [80], has recently
found a lot of interest in the physics, computer science and mathematics communi-
ties [136, 137]. Observations indicate that the small world phenomenon is pervasive
in a wide range of settings such as social communities, biological environments, and
communication networks. A small world network can be viewed as a connected
graph in which two randomly chosen nodes are connected by a short path through
the graph. For instance, a grid augmented by a constant number of additional long
range links can exhibit small world features such as an average distance between
two nodes that increases only logarithmically with the total number of nodes [60].
This property implies that one can locate information stored at any random node
of a small world network by only a small number of link traversals. However, to
create the additional links, global knowledge is required. Unfortunately, such ap-
proaches [55, 71, 74, 78] have some limitations. First, the physical network topology
is not taken into account, and second, peers are not allowed to freely choose and
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change their position in the overlay. Especially the second point is crucial if one
wants to build an NVE.

In summary, we distinguish two approaches to improve overlay routing: (i) to better
match the overlay and the underlay in order to reduce the delay penalty and (ii)
to construct a small-world overlay with short overlay paths. However, up to now,
these two approaches have not been explored together. In the following, we aim to
augment the overlay with additional links in such a way that the overlay resembles
a small world. Moreover, we try to favor the physical neighbors for shortcuts [108].

4.1 Principles

Let s be the maximal number of shortcuts and S(p) the set of shortcuts of a peer
p ∈ O. These shortcuts are intended to cover the whole virtual world and to be
physically close. Our aim is to make shortcut insertion as lightweight as possible and
to optimize the coverage of the virtual world with the shorcuts. For this purpose, we
use a lazy algorithm to discover new shortcuts: a peer continuously learns about the
existence of other peers, (i) during the join procedure, (ii) while traveling the virtual
world, (iii) or simply when forwarding a message. For each unknown peer q ∈ O,
the peer p retrieves its next overlay position qo and its underlay position qu. Then,
the peer p has to decide whether peer q has to be granted as shortcut. Peer q has to
fulfill two qualifications: it has to improve the virtual world coverage of S(p) and it
has to be physically close to peer p.

The notion of physical neighbor is quite simple to define if the underlay position is
available. If the underlay distance between p and q is less than a threshold dt,
i.e., du(p, q) < dt, the peers p and q are considered to be close to each other in the
underlay, and so they are called physical neighbors. Note that this definition could
be subject to criticisms as an isolated peer may have no physical neighbors while a
very well connected one could be considered as a physical neighbor of many peers.
However, as shown in Section 4.4, both situations are improbable in a worldwide
application over today’s Internet.

For the overlay part, it is certain that q improves the coverage of the virtual world
if the number of shortcuts in S(p) has not reached the maximun number allowed.
Any additional shortcut naturally enhances the coverage. But if p has to discard
a known shortcut to insert q, it first has to measure if this opportunity is valuable,
formally if coverage(S(p)) < coverage(S?(p)) where S?(p) contains q and |S(p)|−
1 shortcuts out of S(p) such that S?(p) is the best configuration according to the
coverage function.

For the coverage function, we propose to organize shortcuts into concentric, non-
overlapping rings divided into 2d quadrants with peer p at the center. Thus, the
maximum number of shortcuts s is equal to 2d ∗ R with R the number of rings. Ac-
tually, it is likely that the peer p will not teleport to a fully randomly chosen position
in the virtual world, rather the probability that it chooses a position that is relatively
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close to its current position is important. Moreover, this partitioning in concentric
rings approximates the probability function chosen by Kleinberg in [60].

4.2 Related Work

Several recent systems provide a self-organizing overlay for large-scale peer-to-peer
applications. These systems can be viewed as providing a scalable, fault-tolerant
DHT in which any item can be located within a bounded number of routing hops,
using a small per-node routing table [21]. Note that peer-to-peer systems relying on
DHTs cannot be used as a basis for an NVE since it is not possible for a participant
to choose and to change its coordinate in the DHT and therefore in the NVE itself.

While there are algorithmic similarities between these systems, one important dis-
tinction lies in the approach they take to consider and exploit proximity in the under-
lying Internet. Chord [120], for instance, does not currently consider network prox-
imity at all. Tapestry [140] and Pastry [100] exploit locality by measuring a proximity
metric among pairs of nodes, and by choosing nearby nodes for inclusion in their
routing tables. When choosing a node to forward a message, the remaining distance
in the overlay is reduced, without moving a lot in the underlay. Only if it is unavoid-
able, big steps are made in the underlay. This results in first making big steps in the
overlay and small steps in the underlay. Approaching the destination in this way the
ratio turns; the overlay steps decrease, and the steps in underlay increase. The av-
erage total distance traveled in the overlay is only a small and constant factor larger
than the distance between source and destination in the underlying network. How-
ever, these results come at the expense of a more expensive overlay maintenance
protocol, relative to Chord. In CAN [98], each node measures its network delay to a
set of landmark nodes, in an effort to determine its relative position in the Internet
and to construct an Internet topology-aware overlay. It remains unclear to what ex-
tent the locality properties hold in the actual Internet, with its complex, dynamic, and
non-uniform topology. As a result, the cost and the effectiveness of proximity-based
routing in these peer-to-peer overlays remain unclear [21]. Tapestry and Pastry have
a natural correlation between the overlay topology and the underlying network dis-
tance, while CAN and Chord may incur high physical hop counts for every logical
hop.

None of the approaches based on the small world effect mentioned in the introduc-
tion of this chapter [55, 71, 74, 78] takes into account the underlying network topol-
ogy. Moreover, these systems define the relative location and relationships of the
overlay nodes themselves. Therefore they cannot be used for an NVE, since in an
NVE the end-users choose their location in the overlay.

In summary some work deals with the matching of the overlay and the underlay
and some other work with the construction of a small-world overlay. However, up
to know these two concepts have not been explored together.
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4.3 Algorithm

In the algorithm we propose in this chapter, whenever a peer p qualifies q as a physi-
cal neighbor, q is added to S(p). The corresponding field — a pair of integers describ-
ing the ring number and the quadrant (r, q) — is retrieved from qo and, if any, the
shortcut previously stored in this field is overwritten. That is, the shortcuts are fre-
quently renewed, reducing the probability that a shortcut is stale. Thus, it is possible
to avoid to periodically ping the shortcuts to check if they are still alive.

Initially, the set of shortcuts is empty but the join requires a greedy walk through
the overlay. In this case p may ask some of the nodes it has encountered for their
shortcuts. This means the peers are learning from each other and finding shortcuts
while communicating.

We have seen that local knowledge only is sufficient to find shortcuts. This and
the fact that shortcuts are physical neighbors is the major difference between the
algorithm we propose and the algorithm of Kleinberg [60].

These shortcuts are used for overlay routing, especially for teleportation and join pro-
cedures. The peer p has two types of neighbors: Delaunay-based neighbors K(p)
and shortcuts S(p). Peers in K(p) are close in the overlay whereas peers in S(p) are
close in the underlay. So, the idea is to use shortcuts whenever possible and to rely
on overlay neighbors only when no shortcuts are available.

Consider a message to be sent to a destination d. The following is illustrated in
Algorithm 4. When the routing procedure computes the next hop, p first tries to find
a shortcut p′ ∈ S(p) that minimizes the remaining distance in the overlay do(p′, d)
while incurring as little delay in the underlay as possible. For this purpose, the field
of d is calculated (line 1). If the field is empty, the fields (r, q) in the same quadrant of
interior rings (i.e., rings closer to the center) are checked (line 3-5). While shortcuts
stored in interior rings r − 1, . . . , 1 do not reduce the remaining overlay distance as
much as a shortcut in ring r, they will reduce the remaining distance more than any
overlay neighbor K(p). If no appropriate shortcut is found, the overlay neighbor in
K(p) closest to the destination d is selected as the next hop (line 6-10).

Using this kind of routing, a message will first use shortcuts and travel long overlay
distances but short underlay distances, and, as it approaches the destination, it will
use overlay neighbors and travel only small overlay distances but large underlay
distances. Recall that the same behavior is achieved in Pastry when using proximity
neighbor selection.

4.4 Simulation Results and Evaluation

We carry out simulations to evaluate the performance improvement due to shortcuts.
We show that a small number of shortcuts is sufficient to significantly decrease the



4.4. SIMULATION RESULTS AND EVALUATION 33

Algorithm 4: Greedy routing in an augmented Delaunay overlay
r, q← getField(d)1

closest← null2

while closest = null and r > 1 do3

closest← S(p)[r, q]4

r ← r − 15

if closest = null then6

closest← p7

foreach i ∈ K(p) do8

if do(i, d) < do(closest, d) then9

closest← i10

return closest11

number of hops and the delay of the path taken: The expected number of overlay
hops and the expected delay1 of a path are no longer O(N

1/d
o ) but can be reduced to

O(log(No)).

4.4.1 Simulation Setup

The overlay and the underlay need to be simulated together. We will first explain
how to create the underlay and the overlay and then how to assign overlay nodes to
the underlay.

Underlay: GT-ITM

Gt-itm [15, 16] is a widely-used tool to create synthetic network topologies. We used
it to generate a 2–tier topology that consists of interconnected domains, and nodes
inside each domain. Gt-itm provides us with two-dimensional coordinates for each
node and the links between them. The coordinates are used as network coordinates
indicating the position of a node (in the underlay).

End users that may participate in the overlay usually have one link only. Therefore
a big fraction of nodes must have only one link.

The second step of the simulation is to compute all shortest paths in this topology.
The delay of a shortest path is calculated by adding up the distances du between the
nodes on the path.

Let pu
i , p

u
i+1, · · · , pu

i+h−1, p
u
i+h = pu

j be the shortest path from peer pi to peer pj in the
underlay. The length of this path is the sum of the Euclidean distances of the h hops

1In the following we will use the terms distance and delay interchangeably.
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separating the two peers:
h−1∑
k=0

du(pi+k, pi+k+1).

For our simulations we need to choose the threshold dt that is used to determine
whether two nodes are physical neighbors. Figure 4.1 shows the histogram of the
underlay distances. In our case values around 80–100 ms are reasonable for dt, thus
only nodes lying in the same physical domain can be chosen as shortcuts. Note that
the threshold does not need to be adapted to the number of nodes in the underlay
N .
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underlay delay [ms]

1296 nodes
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6000 nodes
7986 nodes

Figure 4.1: Underlay delay distribution between all pairs of nodes for topologies generated
with different numbers of nodes N .

Overlay

The overlay used for the simulation uses the Delaunay Triangulation with three di-
mensions presented in Section 3.

The node distribution in a NVE is not uniform since nodes are organized in clusters.
To obtain these clusters, we use the so-called Lévy Flight [69] that produces a ran-
dom walk through space using the Lévy distribution [50] to determine the step size.
The angles at the turning points are randomly chosen. The shapes of clusters gener-
ated are highly-sample dependent, meaning that if one generates clusters again and
again keeping the same parameters, a great variety of different shapes is obtained.
Removing the path and looking only at the (turning) points, we get a distribution of
points organized in smaller and bigger clusters (Figure 4.2).

We ran simulations with uniform and clustered node distributions.

Assignment of overlay nodes to the underlay

Participants in NVEs are humans situated at the edge of the Internet. Therefore,
among the nodes generated only those with a single link may participate in the
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Figure 4.2: Node distribution obtained with Lévy Flight.

overlay. We simulated scenarios with different fractions of underlay nodes partic-
ipating in the overlay. We could not observe that this had an influence on the results
obtained.

The assignment between the nodes of the generated network and the overlay nodes
is chosen at random, which will assure that peers located in the same network do-
main are well distributed in the overlay.

This assumption is very naive, it is very likely that there is a correlation between the
location in the topology and the location in the virtual world — the overlay [13].

4.4.2 Metrics

The two most important metrics to assess the improvement due to shortcuts are the
number of hops and the delay experienced by a message.

The delay is best suited to compare the performance of overlay routing, since the
users care about the perceived delay. Another possibility is to measure the number
of overlay hops, but this is not going to reflect whether overlay nodes are physically
close or not. However, each overlay hop involves additional processing on the peers.

The memory overhead needs to be measured too, which we do by counting the av-
erage number of shortcuts per node:

SNo =

∑No

i=1 |S(i)|
No

.

The value of SNo depends on dt, since only if du(p, k) < dt peers p and k may consider
each other as a shortcut. Increasing dt leads to an increasing number of shortcuts per
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node. Only values for dt that ensure that the shortcuts stay inside one domain in the
underlay make sense, otherwise the condition that shortcuts have to be short in the
underlay is violated.

SNo also depends on the number of rings R. If each field is occupied, 2dR shortcuts
are stored per node. Therefore, SNo ≤ 2dR.

Since the peers get to know shortcuts by being part of the overlay, No messages are
sent between random peers before the performance measures are computed. This
ensures that most peers know some shortcuts.

4.4.3 Results

Let us first illustrate how our algorithm works. The example displayed in Figure 4.3
contains 1296 nodes and 3680 edges in the underlay of which 397 nodes participate
in the overlay. The path displayed is the longest one, which benefits most from the
shortcuts. Remember that the position in the overlay corresponds to the position of
the avatar in the virtual world.

(a) Path taken in the overlay, from the point at
the top to the point at the bottom. The thin
lines indicate the shortcuts of the nodes visited.

(b) Paths taken in the underlay, from the point
on the right to the point on the left. Grey lines:
path without shortcuts; dark lines: path with
shortcuts.

Figure 4.3: Path taken in the overlay and in the underlay.

Considering the overlay (Figure 4.3(a)), what is the difference between the paths that
use the shortcuts and the ones that do not? With shortcuts, there exist overlay hops to
more distant nodes, and therefore the number of hops per path is smaller. However,
this does not say anything about the routes taken in the underlay and their respective
delay.

Considering the underlay (Figure 4.3(b)), priority is given to choosing overlay hops
that are nearby in the underlay. If we compare the two different paths at the underlay
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level, we see that shortcuts can be very effective: The path without shortcuts uses 6
overlay hops and has a total delay of 11049 ms. Using the shortcuts, these values
are reduced to 3 hops and 3418 ms. For comparison, shortest path routing in the
underlay gives 2471 ms. Only the first of the three hops used is a shortcut (it is the
very long one in Figure 4.3(a)).

Figure 4.4 shows the shortcuts of a node. We see that shortcuts are distributed over
the entire region.

Figure 4.4: The lines show the shortcuts of the node having most shortcuts.

One goal of using shortcuts is to reduce the number of hops in the overlay. As
noted earlier, the expected number of overlay hops in an overlay based on the
DT is O(N

1/d
o ), for the three dimensional implementation used in our example it is

O(N
1/3
o ). Using shortcuts, the expected number of hops can be reduced toO(log(No))

(Figure 4.5(a)). The same is true for the delay (Figure 4.5(b)).
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Figure 4.5: Average hop count and delay of 100 randomly chosen paths, depending on the
size No of the overlay network. (dt = 80 ms)
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To control the memory requirement introduced by the shortcuts, the threshold dt can
be adjusted. Increasing dt leads to more shortcuts per node but also to smaller hop
counts and delays. Adding only a few shortcuts already has a significant impact
(Figure 4.6). After a certain point, adding more shortcuts does not significantly re-
duce the hop count or the delay anymore. The sweet spot lies around dt = 80. It
directly depends on the network topology. In the topology generated with gt-itm,
the domains have a diameter of about 100 ms. Therefore it does not bring much
improvement to choose a threshold bigger than dt = 100. If dt is increased so much
that nodes of other domains can be considered as shortcuts, the advantage of the
short shortcuts is lost. If dt is too small not all nodes of the treated domain can be
shortcuts, less shortcuts are chosen, and therefore the performance decreaeses.
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Figure 4.6: Number of shortcuts per node and the average hop count as a function of the
threshold dt (No = 18000 nodes).

Among all possible paths the very short ones, with only one or two overlay hops,
will not benefit a lot (or even not at all) from the shortcuts. However, particularly
the long paths with at least 10 hops benefit a lot from shortcuts. In Figure 4.7 the
complementary cumulative distribution function (CCDF) of the number of hops and
the delay is plotted. We see that shortcuts significantly reduce both the number of
hops and the delay.

In Figure 4.7(a), for instance, we see that without shortcuts 20% of the longest paths
have between 18 and 27 hops, while with shortcuts 20% of the longest paths have
only between 7 and 12 hops. Looking at the distribution of a metric is more mean-
ingful than just comparing means. In fact, it is the long paths that particularly affect
the user-perceived latency. A reduction in the tail of the hop count and delay is
therefore very important.

While not all nodes have the same number of shortcuts, the variation in the number
of shortcuts is small as can be seen in Figure 4.8(a), which depicts the CCDF of the
fraction of shortcut fields that are filled with shortcuts for different numbers of rings
R. When we increase R, fewer fields are filled. For R = 1 nearly all nodes find a
shortcut for each field.

The width of each ring depends on the number of rings, since the total space covered
remains always the same. When doubling the number of rings R, the width of each
ring is halved. Therefore, with increasing R, it will become less likely to find an ap-
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Figure 4.7: Complementary cumulative distribution function of hop count and delay for 100
randomly chosen paths (No = 18000 nodes, dt = 80 ms).

propriate shortcut for each field. This can be seen in both Figures: With increasing R,
the fraction of the fields filled decreases (Figure 4.8(a)). With increasing ring number
r, the fraction of the fields filled decreases (Figure 4.8(b)), which means that rings
towards the center have more fields filled with shortcuts than outer rings.
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(a) CCDF of the number of shortcuts per node.
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Figure 4.8: Distribution of the number of shortcuts per node and per ring for different num-
bers of rings R (No = 18000 nodes, dt = 80 ms).

Figure 4.9(a) shows the evolution of the number of shortcuts per node depending on
the number of rings. The average number of shortcuts grows logarithmically with
the number of nodes. The absolute number of shortcuts remains in the order of a
few tens, which means that the storage overhead will be very low.

With increasing R, the number of hops on a path decreases, since each node stores
more shortcuts. Figure 4.9(b) shows the average number of hops for 100 randomly
chosen paths. The first ring introduces the biggest benefit (compared to an overlay
without shortcuts); with each additional ring the added benefit decreases.
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Figure 4.9: Average number of shortcuts per node and average hop count of 100 randomly
chosen paths, as function of the number of rings R (No = 18000 nodes).

By adding more rings, each peer will have more shortcuts and therefore the average
hop count and delay will be reduced. To evaluate the tradeoff between hop count
reduction vs. additional storage cost, we plot in Figure 4.10 the hop count reduction
as a function of the number of rings, and therewith shortcuts. We see that the benefit
of additional shortcuts decreases rapidly. We propose to set R to 3 or 4, which limits
the shortcuts per node to 24 or 32 in the 3 dimensional case.
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Figure 4.10: Reduction of the average overlay hops per added shortcut per node, depending
on the number of rings (No = 18000 nodes).

4.5 Conclusion

As a conclusion, we have shown that already a very small number of well chosen
shortcuts significantly decreases the additional routing delay introduced by the over-
lay network.
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Dynamic and Distributed Clustering

In this chapter we present another step of our approach to achieve scalability in
NVEs that is based on the properties of a social network of people who are using the
system. A social network is a set of people with interactions among them [67, 86].
In recent years, social networks have been studied with respect to properties such
as degree distribution, the small world effect, the search ability, and clustering. If
people interact in the virtual world as described by the social networks for the real
world, they will tend to form clusters.

In this case, one can identify these clusters and limit the scope of queries to the re-
spective cluster, avoiding to flood the entire network.

The second motivation for clustering peers is to abstract a cluster of peers into a
single object and to allow faster navigation in the virtual world: not from peer to
peer but from cluster to cluster. In this case, another network on top of the overlay
of the nodes is needed: A cluster overlay network.

Another benefit using clusters is to avoid that a peer p that travels through the virtual
world must receive a hello message from every peer that gets within its proximity,
which consumes bandwidth and significantly slows down the traveling peer. In-
stead, it would be desirable that only one peer among all the peers of a cluster sends
information about the cluster to a traveling peer p. Only if p comes so close to the
cluster that it could be a part of it, p gets information about the inner structure of the
cluster.

We propose a distributed and dynamic algorithm for the clustering of peers (DDC)
in a virtual world based on a fully distributed P2P network [109, 111]. DDC is not
only applicable to Networked Virtual Environments (NVEs), but to all proximity
graphs with a clustered distribution of the nodes where each node only knows its
immediate neighbors. Some possible fields of application for DDC are thus:

• Network positioning systems relying on coordinates [25, 26, 87, 90, 127]. In
such systems each host is assigned a position in a d-dimensional space. The

41
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network distance between two hosts is estimated by computing the distance
using their coordinates.

• Latency-driven content delivery networks [125]. DDC can not only ease the de-
tection of a group of nearby hosts, but also the accurate selection of the location
for the replicas.

• End system multicast such as Narada [54], which is targeted towards medium-
sized groups. By clustering peers and establishing multicast communication
first between clusters and then within each cluster, Narada can scale to much
bigger groups.

• Gossip-based (epidemic) protocols [49, 133] spread messages in a group in a
randomized peer-to-peer fashion much like the spread of rumor in society, or
of a contagious disease in a population. DDC could be used in such protocols
to define groups of peers.

The rest of this Chapter is organized as follows: First we introduce the definitions
necessary for the description of our algorithm, called DDC. Following we describe
related work on clustering. In Section 5.3 we describe our algorithm DDC. In Section
5.4 we evaluate the algorithm and present some simulation results.

5.1 Principles

The set of points P is partitioned into m subsets CL1, . . . , CLm, called clusters.
m⋃

i=1

CLi = P

CLi ∩ CLj = ∅, 0 < i, j ≤ n, i 6= j

Each peer p maintains two lists: a list D(p) of its direct neighbors (e.g., its Delaunay
neighbors) and a second list C(p) of its cluster neighbors. Additionally, peer p stores
the identifier cid(p) of the cluster it belongs to. Note that C(p) ⊆ D(p) and that
C(p) ⊆ CLcid(p). C(p) = D(p) if peer p is a inner–cluster peer, that means all neighbors
of peer p are in the same cluster as peer p itself, which implies that all links incident
to peer p are intra–cluster links.

For a peer p, let Mean(p) be the mean length of connections from p to its neighbors
pi ∈ D(p) in the Delaunay triangulation. That is

Mean(p) =

∑|D(p)|
i=1 d(p, pi)

|D(p)|
.

For a peer p, let Dev(p) be the standard deviation of the length of these links. That is

Dev(p) =

√∑|D(p)|
i=1 (d(p, pi)−Mean(p))2

|D(p)|
.



5.2. RELATED WORK 43

globalMean(P ) and globalDev(P ) are the respective correspondents to Mean(p) and
Dev(p), this time for all p ∈ P . They are defined as follows

globalMean(P ) =
n∑

i=1

Mean(pi)/n,

globalDev(P ) =
n∑

i=1

Dev(pi)/n.

For a peer p, let ClusterMean(p) be the mean length of connections from peer p to its
cluster neighbors pi ∈ C(p). For the definition of ClusterMean(p), ClusterDev(p),
globalClusterMean(P ) and globalClusterDev(P ) simply D(p) is replaced with C(p)
in the definitions of Mean(p), Dev(p), globalMean(P ) and globalDev(P ) respectively.

Cluster analysis has been a research topic for decades. However, most of the pro-
posed algorithms only deal with static data, and are centralized. For our problem,
we need a distributed clustering algorithm that can handle joins and leaves of peers.
Also, each peer p that executes the algorithm only knows its direct neighbors D(p)
and not all n peers in the system.

5.2 Related Work

There are two main classes of clustering algorithms: threshold-based and density
deviation-based algorithms.

5.2.1 Threshold-Based Algorithms

Kang and others [58] presented a clustering algorithm relying on the DT . The main
idea is to remove Delaunay edges whose length is greater than a threshold t, and
in a second step to remove clusters whose number of objects is less than a given
number cn. This centralized algorithm could be adopted to a distributed one, but
the main disadvantage remains: the thresholds t and cn are global values, if there
exist high–density and low–density clusters, they are not recognized properly.

Based on a idea similar to the one of Kang and others, Eldershaw and Hegland [37]
have also proposed a clustering criterion with the same inconvenience of the global
threshold.

5.2.2 Density Deviation-Based Algorithms

Estivill–Castro et al. [39] first suggested a density-based criterion for nodes orga-
nized via a DT , referred to as long–short criterion. The link pipj that connects two
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points pi, pj 0 < i, j ≤ n, i 6= j that are neighbors in the DT is a ”short” intra–cluster
link – connecting points inside a cluster – if

d(pi, pj) < Mean(pi)− w ·Dev(pi) (5.1)

else it is a ”long” inter–cluster link – connecting points in different clusters.

The idea behind this criterion is to combine spatial proximity and spatial density. In
a Delaunay triangulation, a point p on the border of a cluster has a much larger value
of Dev(p) than an inner cluster point, since p has both, short distances to neighbors
in the same cluster and long distances to neighbors that are not in the same cluster.
On the other hand, peers inside a cluster have a smaller standard deviation of the
distances to their neighbors since all distances inside a cluster a relatively short and
of similar length.

The parameter w scales the granularity of the clusters. It does not depend on local
conditions. To get satisfactory results, w must be adapted to the overall node distri-
bution, which is not known locally. In some cases, mainly for w close to 1, the right
side of the inequality (5.1) can be negative, which implies that peer pi forms a cluster
of its own.

The algorithm presented in [38] is centralized and requires global knowledge about
all nodes, which allows to replace w ·Dev(pi) by globalDev(P ).

5.3 Algorithm

In this section we describe our dynamic and distributed clustering algorithm (DDC).
Figure 5.1 shows the result of DDC for a set ot 1000 peers.

5.3.1 Distribution

The long–short criterion (5.1) must be adapted to avoid errors in the cluster deter-
mination. In the version presented in [39], two Delaunay neighbors pi and pj may
classify their connecting link pipj differently. Peer pi may come to the conclusion
that it is an intra–cluster link, while peer pj may classify the same link pjpi as an
inter–cluster link.

To avoid this type of error, the classification criterion must be symmetric. For this
purpose, we define that a link from peer pi to peer pj is an intra–cluster link if

d(pi, pj) < Mean(pi)−w ·Dev(pi) and d(pi, pj) < Mean(pj)−w ·Dev(pj) (5.2)
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Figure 5.1: An example of 1000 peers clustered with DDC.

else the link is an inter–cluster link. This approach unfortunately leads to a highly
scattered clustering because in many cases one of the two conditions is not met.

Instead, DDC uses a weighted average of the local criteria of both peers: The link
from pi to pj is a intra–cluster link if

d(pi, pj) <
Mean(pi)− w ·Dev(pi) + Mean(pj)− w ·Dev(pj)

2
(5.3)

else it is a inter–cluster link. Criterion (5.3) is symmetric. At the same time it classifies
more links as intra–cluster links than criterion (5.2).

For the comparison of the simulation results for the three criteria see Section 5.4.

5.3.2 Dynamics

The main difference of DDC compared to [39] is that in our field of application there
is no global view and that the nodes are inserted and removed dynamically, which
may result in splitting or merging of existing clusters.

In the following, we describe the insertion of a new peer that will lead DDC to adapt
the clustering.

The first and second peer in the NVE each form a cluster of their own. Every newly
arriving peer p checks if it is near enough to its closest Delaunay neighbor c (Alg. 5,
line 1) to join its cluster cid(c) according to the used long–short criterion (line 2).

The other neighbors need not be considered in this first step. If peer p is close enough
to peer c it joins the cluster of peer c (line 3+4), if not, peer p forms a cluster of its own
(line 10). It is in particular not possible that peer p is near enough to anyother peer to
join its cluster if it is not near enough to its closest Delaunay neighbor c. The chosen
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Algorithm 5: Insertion (executed by peer p)
c← closest(D(p))1

if intra-cluster (c,p) then2

C(p)← (C(c) ∩D(p)) ∪ c3

cid(p)← cid(c)4

foreach pi ∈ C(p) do5

send message to pi, to make it do:6

C(pi)← C(pi) ∪ p7

p.redetermination ()8

else9

cid(p)← new unique cluster id10

cid may already exist somewhere else in the network; this is not a concern as long
as cid is unique in the surrounding of peer p. This can be achieved by choosing an
random number out of [1..264].

Due to the join of peer p, the density near p and therefore near every peer pi ∈ D(p),
expressed by Mean(pi) and Dev(pi), changes. First, peer p updates its cluster neigh-
bor list C(p) by adding all those peers pi ∈ D(p) with cid(pi) = cid(n) (line 3) and
notifies them so they can update their respective cluster neighbor list (line 5-7). Sec-
ond, it redetermines the cluster repartition of its neighbors (line 8).

We now focus on the redetermination procedure (Alg. 6) which is executed by the
newly inserted peer p. It therefore performs a test with the long-short criterion on all
its Delaunay neighbors D(p) (line 3+6, the function intra-cluster returns true if
the link is an intra–cluster link according to the criterion used), and checks whether
the result matches the neighbor classification according to D(p) and C(p). If it does
not match, the cluster lists are updated (line 4+7), and the peers concerned continue
with the split–procedure (Algorithm 7) or the merge–procedure (Algorithm 8).

Algorithm 6: Redetermination (executed by peer p)
cid← new unique cluster id1

foreach n ∈ D(p) do2

if n ∈ C(p) and not intra-cluster(n,p) then3

C(p)← C(p) \ n4

n. split(cid)5

if n /∈ C(p) and intra-cluster(n,p) then6

C(p)← C(p) ∪ n7

n. merge(cid(n),cid(p))8

Split Assume that peer n ∈ D(p) and n ∈ C(p), where are according to the long–
short criterion n /∈ C(p): in this situation peer n and peer p are too far away to be
connected via an intra–cluster link (Algorithm 6, line 3). This means that peer p was
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inserted so close to peer c that peer n is not any more near enough to c to be in the
same cluster as peer c. In this case, it seems that the cluster containing the peers c, n
and p must be split (Figure 5.2).

We still do not know if it really has to be split. The two peers n and p are connected
via a long inter–cluster link, but perhaps some other peers are positioned around
them in a way that keeps together the cluster. The next step tries to identify a path
via intra–cluster links from peer n to peer p, if this succeeds the cluster does not need
to be split.

To do so, we assume that the cluster must be split and assign a new unique cluster
identifier to peer n (line 5). All peers close enough to peer n adopt this new cluster
id and recursively check their neighbors in the cluster that do not already have the
new cluster id.

We now consider peer n ∈ C(n) on the reception of the split message from peer p
(Algorithm 7).

Algorithm 7: Split(cid) (received by peer n)
if cid(n) 6= cid then1

cid(n)← cid2

foreach ni ∈ C(n) do3

if intra-cluster (ni,n) then4

ni. split (cid)5

else6

C(n)← C(n) \ ni7

n
c

b

d

p

Figure 5.2: Split of the cluster cn due to the arrival of peer p. The solid lines show the links
and the clusters before the split, the dashed lines afterwards.

If this is the first time peer n gets this split message (line 1), it updates its cluster
identifier to the unique cid generated by peer p (line 2) and checks if a peer ni ∈ C(n)
passes the long-short criterion (line 4). The peers that pass will all execute split and



48 CHAPTER 5. DYNAMIC AND DISTRIBUTED CLUSTERING

change their cluster identifier to cid(n). The peers that fail the test are removed from
C(n) (line 7) and keep their old cluster identifier cid(c). This is mainly the case for
the peer that executed the redetermination procedure (Algorithm 6) and sent the first
split message. If the cluster really needs to be split, some of the cluster peers get the
new cluster identifier cid(n), the other peers keep the old one cid(c). In the example
presented in Figure 5.2, both peers contained in C(n), peer c and peer p, fail the long-
short test (line 4) and are therefore removed from C(n) (line 7). The split–procedure
terminates here.

It might happen that peer c and peer n are too far away to be connected by an
intra–cluster link but nevertheless are part of the same cluster because there exists a
path of intra–cluster links connecting them. In this case the recursive split message
finds its way back to peer n, and all peers of the cluster get the new cluster number
cid(n). The cluster keeps its form and is not split but simply renamed.

Merge Assume that peer n ∈ D(p) and n /∈ C(p) but according to the long–short cri-
terion n ∈ C(p): in this situation peer n and peer p are close enough to be connected
via an intra–cluster link, but they are not part of the same cluster yet (Algorithm 6,
line 6). That means peer p was inserted in between two existing clusters CLcid(n) and
CLcid(c) and interconnects them (Figure 5.3).

We now consider peer n ∈ C(p) after the reception of the merge message from peer p
(Algorithm 8). If this is the first time peer n gets this merge message (line 1), it changes
its cluster identifier cid(n) to cid(c) (line 2) and tells every peer ni ∈ C(n) to propagate
the new cluster identifier cid(n) = cid(c) to their respective cluster neighbors C(ni)
(line 4+5). The sender of the merge message, peer ni, is added to C(n) (line 8). This
results in a merge of cluster cid(n) and cid(c) to cluster cid(c), all peers of the cluster
cid(n) change their cluster identifier to cid(c).

b c

nd

p

Figure 5.3: Merge of the cluster CLcid(c) and CLcid(n) due to the arrival of peer p. The solid
lines show the links and the clusters before the split, the dashed lines afterwards.
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Algorithm 8: Merge(oldcid,newcid) (received by peer n)
if cid(n) = oldcid then1

cid(n)← newcid2

foreach ni ∈ D(n) do3

if ni ∈ C(n) then4

ni. merge (oldcid,newcid)5

else6

if intra-cluster (n,ni) then7

C(n)← C(n) ∪ ni8

The cluster redetermination in case of a peer departure functions in a similar way
as the case of a peer joining: Either the cluster of the closest peer – who handles the
departure in the Delaunay triangulation – must be split or, it must be merged with
another cluster.

5.3.3 Proof of termination

Each peer p that joins has one closest neighbor c only. Either peer p does not join
c’s cluster, in this case the algorithm ends, or peer p joins c’s cluster and launches
the redetermination procedure (Algorithm 6), which is only executed once per join or
leave event.

At most |C(p)| − 1 split messages are sent by peer p to all cluster neighbors except to
node c.

Recursively, a receiver n of a split message sends at most |C(n)| − 1 new split mes-
sages. Out of these t messages (t = |D(p) ∩ D(n)|) are directly ignored. Eventually,
every peer of the cluster got one message, the algorithm terminates here since the
condition (Algorithm 7, line 1) is false. This is a simple “flooding” of the cluster con-
cerned, whereas no peer runs the split procedure twice and sends messages a second
time.

Exactly the same statements are true for the merge procedure. The cluster concerned
is simply renamed, while it is assured that no peer executes merge twice (Alg. 8,
line 1).

5.4 Simulation Results and Evaluation

In this section, we describe the simulation environment, the choice of the clustering
criterion and the choice of the clustering threshold w. Moreover, we show that DDC
deals well with all sorts of node distributions.
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5.4.1 Generation of a Clustered Peer Distribution

To evaluate DDC, first clusters of peers must be generated. For this purpose, we use
the so called Lévy Flight [69] that produces a random walk through the plane or the
space where the Lévy distribution [50] determines the step size.

The Lévy distribution has mathematical properties that discourage a physical ap-
proach. Generally it may be expressed as

L(x) =
1

π

∫ ∞

0

e−γqβ

cos qx dq

and is known as symmetrical Lévy stable distribution of index β (0 < β ≤ 2) and
scale factor γ (γ > 0). For simplicity we set γ = 1. It has infinite variance and an
analytical form known only for a few special cases, as the Cauchy and the Gauss
normal distribution. Its tail has a power-law decay, it is heavy tailed.

(a) With β = 0.55 one big step dominates
the distribution.

(b) With β = 1.95 the clusters are near together
but still sharply separated.

Figure 5.4: The results of two Lévy Flights with 10,000 nodes each. The lines show the way
of the flight.

Note that the characteristic size of the system is the size of the largest step and that
the flight is self-similar at higher magnifications. The shapes of clusters generated
are highly sample-dependent, meaning that if one generates clusters again and again
keeping the same parameters, a great variety of different shapes is obtained. Remov-
ing the path and looking only at the turning points, we get a distribution of points
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having smaller and bigger clusters. The degree of clustering depends on β, decreas-
ing it means that long jumps are made longer, while short jumps are made shorter.
The tail of the distribution gets heavier. Yet the flight is rescaled to fit in a graph of
a fixed size, so that the visible effect of increasing β is that the clusters become iden-
tifiable. Each cluster is made to appear increasingly tightly packed and therefore
increasingly separate from neighboring clusters [75].

The implementation works by inverting the distributive function approximating the
Lévy distribution, which is given by

Ls(ξ) = ξ−
1
β − 1,

where ξ is uniformly distributed over [0, 1] [50].

The angles at the turning points are chosen randomly: Set up a coordinate system
(z, φ) where z is an arbitrary axis, (z = −r, . . . , r, where r is the sphere’s radius),
and where φ is the longitude, which runs between 0 and 2π. To generate a random
point on the sphere, it is necessary only to generate two random numbers, z and
φ, each with a uniform distribution. To find the latitude θ of this point, note that
z = r sin(θ), so θ = arcsin( z

r
); its longitude is simply φ. In rectilinear coordinates,

x = r cos(θ) cos(φ), y = r cos(θ) sin(φ), z = r sin(θ) = z. (x, y, z) are not independent
but constrained by x2 + y2 + z2 = r2.

Figure 5.4 shows the results of two Lévy Flights with β = 0.55 and β = 1.95 contain-
ing 10,000 points each. In both cases the clusters are sharply separated. For β = 0.55
due to the ”very” heavy tail of the distribution one big step dominates, whereas for
β = 1.95 the clusters are nearer together but still well defined. To simulate a NVE,
values for β near 2 seem to be appropriate.

5.4.2 The choice of the clustering criterion

In Section 5.3 we introduced three different clustering criteria. The metric to
compare the clustering results obtained with DDC using the three criteria is
defined as follows: Remember the definition of globalMean(P ), globalDev(P ),
globalClusterMean(P ) and globalClusterDev(P ) (refer to Section 4.1). If the clus-
tering is well done globalClusterMean(P ) is lower than globalMean(P ) since the
long links from nodes lying on the clusters boundaries to non–cluster neighbors
are cut off. The same is true for globalClusterDev(P ) and globalDev(P ). However
one can not postulate that the better the clustering is done, the bigger the quotients

globalMean(P )
globalClusterMean(P )

and globalDev(P )
globalClusterDev(P )

get, since in this case the partition of one node
per cluster (m = n) would be optimal. Therefore the total number of clusters m has
to be considered as well.

The metric to compare the different criteria is defined as follows:

ClusteringQuality =

globalMean(P )
globalClusterMean(P )

m
.
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Figure 5.5: ClusteringQuality dependent on w and β for the three clustering criteria (average
values of 30 runs with 1,000 nodes each).

In Figure 5.5 the values of ClusteringQuality are plotted. The values are indepen-
dent of β and decrease with decreasing w. This is as expected, since β has no influ-
ence on the cluster recognition. Note that the quotient is independent of β because
both the globalMean(P ) and the globalClusterMean(P ) are in the same way depen-
dent on β. With decreasing β these two values increase. w stands for the cluster
recognition threshold, for its optimal value refer to the next section.

As expected in Section 5.3 the criterion (5.3) is the best suited one. In the following
Sections we therefore run the simulations with this criterion only.

5.4.3 The choice of the clustering threshold w

Since no global view of the NVE exists, the optimal value for w cannot be derived
from the peer distribution but must be chosen in advance.
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Figure 5.6: The number of inner–cluster nodes as a function of w and β (average values of 10
runs with 1,000 nodes each).

Values between 0 and 1 are reasonable for w. To find a value for the distributions
created with a Lévy Flight, we run simulations for w = 0.1 . . . 1.0 with step size 0.1
and β = 0.2 . . . 2.0 with step size 0.05. As can be seen in Figure 5.6 the results are
independent of β. Thus, DDC is well adapted to all possible degrees of clustered
node distribution. The results depend on w, in the Figure a “knee“ at w = 0.6 is
observable. The number of inner–cluster nodes (all nodes n for which C(n) = D(n))
is stable for 0 < w < 0.6 and begins to decrease at w ≈ 0.6. For w < 0.6 there exists
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only one cluster in most cases, therefore the number of inner–cluster nodes is equal to
the total number of nodes. The same observations as for the number of inner–cluster
nodes can be made for the number of clusters and the number of cluster neighbors
per node. Therefore, we come to the conclusion that the choice w = 0.6 is suitable
for determining clusters in distributions generated with the Lévy Flight.

Figure 5.7 shows an example with only 50 peers to point out the influence of w on the
clustering result. In this case both choices for the threshold w make sense, depending
on one’s needs.

(a) w = 0 (b) w = 0.6

Figure 5.7: Clustering results with w = 0 (two clusters) and with w = 0.6 (four clusters).

5.4.4 Difficult cases

In section 5.4.2 we already showed that DDC deals well with all sorts of node distri-
butions generated with the Lévy Flight. Moreover, we simulated two special cases,
first two clusters that are connected via a bridge of nodes, and second a high–density
cluster surrounded by some sparse points.

Bridges between clusters If two clusters are connected via a bridge (Figure 5.8) the
two clusters can not be distinguished using local knowledge. With the help of the
clustering criterion it is possible to assume that long links are links between peers in
different clusters, because they are too far away to be in the same cluster. Whereas
we assume that short links are always intra–cluster links, which is not always true.
Sometimes these very short links can form bridges between clusters. These bridges
are not recognized properly since only local (one hop) knowledge is available: clus-
ters connected by bridges are seen as one cluster by the merge procedure. For the
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application in a NVE that does not matter because we assume that peers acting in
the NVE do not deliberately form bridges which does not give any benefit to them.

Figure 5.8: Two clusters connected by two bridges are not properly distinguished.

Density variations In Figure 5.9 one cluster lies inside some relative sparse points.
The algorithm detects the inner high–density cluster and also clusters the sparse
points, totally independent of their shape. That is impossible to an algorithm with a
global threshold.

Figure 5.9: One high–density cluster containing 100 points, and some 50 sparse points
around it.
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5.5 Conclusion

In this Chapter we have introduced algorithms for the dynamic and distributed clus-
tering of peers. Essentially for these algorithms is the symmetric clustering criterion
that allows two peers to classify their common linnk it in the same way.
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CHAPTER6
Conclusion of Part I

“That theory is worthless. It isn’t even wrong!”
– Wolfgang Pauli –

In this part of the thesis we presented a set of algorithms for the dynamic mainte-
nance of a distributed overlay network based on the Delaunay triangulation of the
entities. The entities can have a position in any d−dimensional space. We consider
here the arrival of new entities and the ungraceful leave of an entity. We show that
the algorithms we propose succeed in re-constructing the Delaunay triangulation
through a self-stabilization scheme. In two dimensions it is possible to rely on an an-
gular feature that is not available in higher dimensions. However, considering three
to d dimensions the algorithms remains unchanged.

We showed how a Delaunay-based overlay can be augmented in very simple way
by additional shortcuts to build a small-world overlay that will reduce both, the
average number of hops and the delay. When choosing shortcuts, we exploit the fact
that nodes close to each other in the underlay may be far away in the overlay.

The idea of shortcuts is not limited to Delaunay-based overlays but can be used in
other structured overlays. A promising candidate is CAN, where each node only
knows overlay nodes that are close-by, and shortcuts can be used to increase the
overlay distance traveled at each hop.

We moreover presented DDC, a dynamic and distributed algorithm to cluster nodes
in a peer-to-peer–based virtual world. Clusters of different shapes and density are
detected. The dynamic approach copes with peer insertion and deletion without
having to restart the cluster detection from scratch. It tests locally if the density
changed so much that a cluster has to be split or that two cluster have to be merged.
It is very robust and can be adapted to all sorts of distributions with one tuning
parameter.

Concerning the clustering one open issue remains: some thresholds are fixed con-
stants and need to be fixed dependent on the properties of the system.

57
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One motivation for the clustering is to define a natural limit for the scope of a query
in order to avoid flooding the entire network of peers. The other motivation is to
procure an abstract view of a group of peers – a cluster – to other peers that are far
away from this cluster.



Part II

Measurements of real world
peer-to-peer networks
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CHAPTER7
Introduction

“Definition of Statistics: The science of produc-
ing unreliable facts from reliable figures.”

– Evan Esar –

Peer-to-Peer Systems have seen a tremendous growth in the last few years, and
peer-to-peer traffic makes a major fraction of the total traffic seen in the Internet. The
dominating application for peer-to-peer is file sharing. Some of the most popular
peer-to-peer systems for file sharing have been Napster, FastTrack, BitTorrent, and
eDonkey, each one counting a million or more users.

An appealing solution to organize peers and content in a overlay network are the
so called Distributed Hash Tables (DHTs). They have been actively studied in the
literature and many different proposals have been made on how to organize peers
in a DHT. However, very few DHTs have been implemented in real systems and
deployed on a large scale. One exception is KAD, a DHT based on Kademlia, which is
part of the eDonkey network, a peer-to-peer file sharing system with several million
simultaneous users.

Since all these systems are mainly used by home-users and since the content shared
is typically copyright-protected, the users of these systems often stay only connected
as long as it takes for them to download the content they are interested in. As a
result, the user population of these peer-to-peer systems is highly dynamic, with
peers joining and leaving all the time. This major issue in peer-to-peer networks is
called churn.

This thesis presents an in-depth study of KAD. We want to understand KAD with
the goal to suggest some improvements of the present algorithms. The focus of our
interest lies in the user behavior, the duration of their online sessions, the frequency
with which they reconnect to the network, their availability, and the overall time
span they use KAD. These metrics express to some extend the satisfaction of the
users with the existing system, but moreover they can be used to tune the parameters
chosen by the developers of KAD and thus improve the performance or reduce the
overhead.
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In order to improve the performance of the publish and search algorithms in KAD
we want to analyze in detail the design of those algorithms, and especially the im-
plementation of the content lookup procedure of KAD in the aMule client. These
analyses are going to be complemented by measurement results of the publish and
search overhead. We do this again with the goal to improve the performance of KAD,
indeed we present a new content lookup scheme that can be integrated in aMule
without fundamental modifications of the client.

While measuring the user behavior of KAD we stumbled upon a set of vulnerabilities
that made the measurements possible in the first place. Neither is the privacy and
anonymity of the users guaranteed, nor is the data safe from being corrupted or
polluted by other parties.

7.1 Contributions

To learn about the users’ behavior and especially about churn we developed Bliz-
zard, a peer crawler for KAD. The speed of Blizzard allows us to crawl the entire KAD
ID space, which was never done before. We have been crawling a subset of KAD
continuously for almost six months at a high frequency, and we obtained informa-
tion about geographical distribution of peers, session times, peer availability, and
peer lifetime. We found that session times are Weibull distributed and show how
this information can be exploited to make the publishing mechanism much more
efficient.

Blizzard allows us to measure the user behavior but not the shared content in KAD.
Therefore we designed and implemented Mistral, a content spy that can capture up
to ten million references to published content in several hours. In a first evaluation,
we noticed that publishing new content in a KAD system is much more expensive
than searching and retrieving existing content. Indeed, measurements show that
of all the Internet traffic generated by KAD-based peer-to-peer networks, 90% is for
publishing and 10% for retrieving existing files. Moreover, the most frequently pub-
lished keywords are meaningless stopwords. We propose to add a stopword filtering
mechanism to the search and publish procedures of KAD-based peer-to-peer systems.

While implementing Mistral, we learned a lot about KAD, we have been both fasci-
nated and frightened by the possibilities KAD offers. It is indeed simple to exploit
KAD, e.g., mounting a Sybil attack in KAD is not prevented by any mechanisms and
allows to compromise the privacy of KAD users, to compromise the correct operation
of the key lookup, to “delete” content, and to execute a DDoS attack with very little
resources. Also, overwriting content with a so called pollution attack is easily feasible.
We tested this type of attack against the Storm worm botnet that uses a KAD protocol
for communication. It is one of the first botnets that relies on a peer-to-peer protocol
for communication. Botnets, networks of compromised machines under a common
control infrastructure, are commonly controlled by an attacker with the help of a
central server: all compromised machines connect to the central server and wait for
commands.
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Among the different publishing schemes, KAD adopts a publishing node centric
approach: the responsibility of the content and its maintenance is on the publishing
node, while the references to it are announced and stored in the peer-to-peer system.
In order to make the references available independently of node dynamics, a peer in
KAD publishes multiple copies of a reference by selecting different nodes around the
target that is determined by the key of the reference. As time goes by, some replicas
may disappear, or new peers may arrive and take place in between the copies.

The actual presence of the references is then scattered: some entries in the routing
tables may be missing since the peers arrived recently, or may be stale since the
peers already left the system. In case of content retrieval, where these references are
searched around the target where they should be published, robust search mecha-
nisms are necessary. We developed a qualitative analysis of the current implemen-
tation to understand the impact of the design parameters on the latency of the over-
all content publishing/retrieval process. We obtained through measurements many
interesting properties of the KAD system, such as the probability that an entry in
the routing table is stale, or the round trip delay of the messages: Finally we eval-
uate through measurements the key performance metrics, such as overall content
retrieval latency, the number of hops needed, and message overhead of the content
retrieval process.

Network Coordinates allow to estimate the latency among a large number of hosts
in a scalable way. Recently, Azureus, a popular implementation of BitTorrent, has
implemented network coordinates. We have developed a crawler that allows us
to obtain from over one hundred thousand peers running Azureus their network
coordinates and to measure the network and application level round trip times to
these peers.

Our measurements confirm that network coordinates allow to correctly estimate the
round trip time between two peers. Our measurement also show that the round trip
times from our crawling host to a set of peers located in the same country can vary
between a few tens of milliseconds to more than one second. This high variance
is due to the large buffers in the ADSL access links, which can increase the round
trip time by hundreds of milliseconds. As a consequence, network coordinates and
round trip estimations in general cannot be used to select peers that are “nearby”,
such as peers connected to the same ISP or located in the same country.
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CHAPTER8
Background and Methodology

KAD is a Kademlia-based [77] peer-to-peer DHT routing protocol that is imple-
mented by several peer-to-peer applications such as Overnet [89], eMule [34],
aMule [1], AZUREUS [6], and lately the Storm Worm [51]. The two open–source
projects eMule and aMule do have the largest number of simultaneously connected
users since these clients connect to the eDonkey network, which is a very popular
peer-to-peer system for file sharing. Recent versions of these two clients implement
the KAD protocol.

Similar to other DHTs like Chord [120], Can [98], or Pastry [100], each KAD node has
a global identifier, referred to as a KAD ID, which is a 128 bit long random number
generated using a cryptographic hash function.

Peers are identified by the so-called KAD ID, which was up to now assumed to be
persistent. However, we observed a large number of peers that change their KAD
ID sometimes as frequently as after each session. This change of KAD IDs makes
it difficult to characterize end-users. However, by tracking end-users with static IP
addresses, we could measure the rate of change of KAD IDs per end-user and the
end-user lifetime.

However, in most cases, using the KAD ID, a particular peer can be tracked even after
a change of its IP address. This is important since many ISPs reassign IP addresses
to their customers as often as once a day.

8.1 Routing in Kademlia

Routing in KAD is based on prefix matching: Node a forwards a query destined to a
node b to the node in his routing table that has the smallest XOR-distance to b. The
XOR-distance d(a, b) between nodes a and b is d(a, b) = a⊕ b. It is calculated bitwise
on the KAD IDs of the two nodes, e.g., the distance between a = 1011 and b = 0111
is d(a, b) = 1011 ⊕ 0111 = 1100, and the distance between a = 1011 and c = 1100 is
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0111. Thus a is closer to c than to b since d(a, b) = 1100 > d(a, c) = 0111. The fact that
this distance metric is symmetric is an advantage compared to other systems, e.g.
Chord, since in KAD if a is close to b, then b is also close to a. Therefore, a node a that
announces its existence to a node b might be added by node b to its routing table.

The entries in the routing tables are called contacts and are organized as an unbal-
anced routing tree: A peer P stores only a few contacts to peers that are far away
in the KAD ID space and increasingly more contacts to peers closer in the KAD ID
space. For further details of the implementation see [77, 122]. For a given distance,
P knows not only one peer but a bucket of peers. Each bucket can contain up to ten
contacts, in order to cope with peer churn without the need to periodically check if
the contacts are still online. Each contact consists of the node’s KAD ID, IP address,
TCP and UDP port. The left side of the routing tree contains contacts that have no
common prefix with the node a that owns the routing tree (XOR on the first bit re-
turns 1). The right side of the routing tree contains contacts that have at least one
prefix bit in common. This tree is highly unbalanced The right side of each tree node
is (recursively) further divided into two parts, containing on the left side the contacts
having no further prefix bit in common, and on the right side the contacts having at
least one more prefix bit in common. A bucket of contacts is attached to each leaf of
the routing tree. Each bucket can contain up to ten contacts in order to cope with
peer churn without the need to periodically check if the contacts are still online.

To route a message towards its destination the next hop is chosen from the bucket
with the longest common prefix to the target. Routing to a specific KAD ID is done in
an iterative way, which means that each peer, on the way to the destination, returns
the next hop to the sending node. While iterative routing experiences a slightly
higher delay than recursive routing, it offers increased robustness against message
loss, and it greatly simplifies the crawling of the KAD network.

8.2 Two-Level Publishing in Kademlia

A key in a peer-to-peer system is an identifier used to retrieve information. KAD
distinguishes between two different keys:

• A source key that identifies the content of a file. It is computed by hashing the
content of a file.

• A keyword key that classifies the content of a file and is computed by hashing
a single token from the name of a file.

In KAD each key is not published just on a single peer that is numerically closest to
that key, but on 10 different peers whose KAD ID agrees at least in the first 8-bits
with the key. This zone around a key is called the tolerance zone.

Figure 8.1 shows an example of the publishing process. A peer wants to publish a
file with the name the_matrix. This filename will result in two keywords, “the”
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Figure 8.1: Sketch of the 2-level publishing scheme

and “matrix”. All relevant references to the original file are generated, such as the
source key and the the keywords with the attached metadata. Next, the keywords
“the” and “matrix” are published, pointing to the source key. Finally, the source key
is published, with a pointer to the publishing peer.

Keys are periodically republished: source keys every 5 hours and, keyword keys
every 24 hours. Analogously, a peer on which a source key or keyword key was pub-
lished will delete the information after 5 and 24 hours respectively. Re-publishing is
done in exactly the same way as publishing.

The KAD system is designed to prevent free-riding: anyone who retrieves a file from
KAD also becomes a server for that file, and he publishes this fact to the rest of the
world. Thus, new publications are a consequence of successful retrievals.

The peer that accepts the publish message for a keyword returns the load factor to
the publishing peer. The load factor takes values between 0 and 100 and is computed
as a function of the number of publications for the specific keyword and the total
number of publications the peer received and stored. If the load factor is below 20,
the default republishing delay of 24 hours is kept; otherwise it is adjusted as follows:
republishing delay = load factor

100
∗ 7 ∗ 24. The maximum republishing delay can thus be

as long as 7 days.

The four most important message types for the route, publish, and search process
are:

• hello: to check if the other peer is still alive and to inform the other peer about
one’s existence and the IP address and KAD ID.

• route request/response(kid): to find peers that are closer to the KAD
ID kid.

• publish request/response: to publish information.

• search request/response(key): to search for information whose hash is
key.
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8.3 Crawling Peers with Blizzard

The three major challenges in crawling a peer-to-peer network are

• The time necessary to carry out a single crawl, which should be as small as
possible to get a consistent view of the system.

• The frequency of the crawls, i.e., the time elapsing between two consecutive
crawls should be small (no more than a few minutes) in order to achieve a high
resolution for metrics such as session length.

• The duration of the crawl, which should be in the order of many months, to be
able to correctly capture the longest session and inter-session lengths.

As mentioned earlier we have developed Blizzard, our own crawler for KAD, with
the aim to crawl KAD very frequently and over a duration of several months. Our
crawler logs for each peer P the time of the crawl, the IP address of P , the KAD ID
of P , and whether or not P has responded to the crawler.

In a large peer-to-peer system such as KAD, peers are constantly joining and leav-
ing, which makes it difficult to get a consistent view of the system. Therefore, the
overall duration of a single crawl should be as short as possible. To speed up a
single crawl, previous crawlers (such as the one developped by Stutzbach and Re-
jaie in [123]) were often distributed and ran simultaneously on multiple machines.
However, we noticed that in a distributed crawl a lot of CPU time is used up for
the synchronization between the different machines. To make our crawler run very
fast, we decided to run Blizzard on a single machine and to keep all relevant infor-
mation in main memory. The implementation of Blizzard is straightforward: It starts
by contacting a seed peer run by us. Then it asks the seed peer for a set of peers to
start with and uses a simple breadth first search and iterative queries. It queries the
peers it already knows to discover new peers. For every peer returned, the crawler
checks if this peer has already been discovered during this crawl. We use a hash ta-
ble of already discovered peers that fits in main memory, which makes this test very
efficient. After one crawl is completed, the results are written to disk.

At the beginning of each crawl, the number of new peers discovered grows expo-
nentially before it approaches asymptotically the total number of peers in KAD. At
some point the crawl needs to be stopped, otherwise the crawl accuracy decreases
since new peers are joining the system all the time [121]. We choose to stop querying
new peers when 99% of the peers discovered have been queried. We then wait for
30 more seconds for late replies before terminating the crawl.

Not all the peers discovered can be contacted directly by the crawler. Approximately
half of the peers queried do not respond to the crawler. There are two main reasons
why a peer does not respond to our queries: either the peer has left the system, or
the peer is behind a NAT that blocks our query. For the crawler it is not possible to
distinguish between these two cases.
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The crawler is implemented as two asynchronous threads: One thread to send the
route requests(kid) (Algorithm 9) and the other one to receive and parse the
route responses (Algorithm 10). A list that contains all the peers discovered
so far is used and maintained by both threads. The receiving thread adds the peers
extracted from the route responses(kid) to the list, whereas the sending thread
iterates over the list and sends 16 route requests(kid) to every peer in the list.
The value of the KAD ID kid is different in each of the 16 route requests. Care is
taken to assure that each value of kid falls in a different bucket of the peer’s routing
tree, which allows us to minimize the overlap between the sets of peers returned in
the response.

Algorithm 9: send thread (is executed once per crawl)
Data: peer: struct{IP address, port number, kid}
Data: shared list Peers = list of peer elements
/* the list of peers filled by the receive thread and worked

on by the send thread */
Data: int position = 0
/* the position in the list up to which the peers have

already been queried */
Data: list ids = list of 16 properly chosen kid elements
Peers.add(seed); /* initialize the list with the seed peer */1

while position < size(Peers) do2

for i=1 to 16 do3

destkid = Peers[position].kid ⊕ ids[i]; /* normalize the bucket to4

the peers position */
send route requests(destkid) to Peers[position];5

position++;6

Algorithm 10: receive thread (waits for the route response messages)
Data: message mess = route response message
Data: peer: struct{IP address, port number, kid}
Data: shared list Peers = list of peer elements
/* the list shared with the send thread */
while true do1

wait for (mess = route response) message; foreach peer ∈ mess do2

if peer /∈ Peers then3

Peers.add(peer);4

There are various pitfalls when crawling a peer-to-peer system for such a long du-
ration, such as incomplete data due to crawler crashes, loss of network connectivity,
or random failures due to temporary network instability. To address these prob-
lems, we run simultaneously two instances of our crawler, one at the University of
Mannheim, Germany, connected to the German research network, and a second one
at Institut Eurécom, France, connected to the French academic network. Running
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two crawls in parallel turned out to be very useful: at some point, due to network
problems, one instance of the crawler was seeing fewer peers than the other one.
Also, occasionally, one of the two crawlers crashed.

The main difficulties while implementing the crawler were to

• parse the packets, since the protocol is not well documented and since the
aMule implementation uses their own data types and byte order to build the
packets.

• implement the function to look up if an <IP address, port> combination already
exists. The first idea was to use a database, however, it turned out to be too
slow. Since every entry only takes 100 bytes, it is possible to maintain the queue
in main memory. However a adequate structure had to be found to answer the
contains question. A hash map was the solution to this problem.

8.3.1 Data Cleaning

Hole stuffing

Crawling a representative subset happens periodically with a new crawl every five
minutes, with the two crawlers at the Universität Mannheim and Eurécom being
synchronized. A peer that replied to at least one of the two crawlers during round
i is considered to be up at round i 1. The snapshots obtained by both crawlers are
not always identical. The difference in the number of peers discovered is sometimes
in the order of 10%; most of the time the difference is less than 1%. Analyzing these
differences reveals that the peers seen by one crawler but not by the other one are
well distributed over all countries and the entire IP address space. We conclude that
the temporarily seen large discrepancies up to 10% in the number of peers are due
to local network restrictions, e.g., bandwidth shaping or overloaded routers, close to
the site of one of the crawlers.

However, we realized that a peer that is up may occasionally be declared by both
crawlers as not responding, i.e., considered as being down. One reason can be that
the peer is overloaded and does not reply to our query. To validate this hypothesis
we ran a KAD peer on an ADSL line: when neither the machine nor the peer appli-
cation was heavily loaded it always responded to the crawlers. When the machine
was loaded with heavy calculations the peer still responded. However when the
KAD peer was loaded with a large number of simultaneous downloads it frequently
did not respond to our crawlers.

Another reason can be that the path between the two crawlers and the peer is dis-
rupted somewhere close to the peer. In both cases, the crawlers will not receive a
response from the peer even when it is up and running. While it is not possible to

1As we can see in Algorithm 9 the crawler sends 16 route requests to each peer. A peer is consid-
ered alive if at least one route response is received by the crawler.
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tell exactly why a peer is not answering, we implemented the following data clean-
ing rule that we consider “reasonable”: When a peer P that has been reported up
at round i − 1 does not reply to either of the two crawlers during the next round i
and then replies again during round i + 1, then peer P will also be considered up at
round i.

We refer to this filtering mechanism as eliminating one hole. One can of course
generalize this approach to eliminating i holes, which means considering a peer that
responded during crawl k, then did not respond for up to i consecutive crawls before
responding again, as being continuously up from crawl k to crawl k + i + 1.

Since we have no answer as to what data cleaning technique is the most appropriate,
we ran different experiments where we eliminated i holes, with i ∈ {0, 1, 2, 3, 5}. The
resulting Cumulative Distribution Functions (CDFs) of the session times are shown
in Figure 8.2, and the first two moments of the session times in Table 8.1. Of course,
the bigger the holes we eliminate the larger the mean session times. However, it
is important that independent of the number of holes eliminated, the session times
could always be a perfect fit using a Weibull distribution, which is described by two
parameters, referred to as scale and shape. We will come back to this in section 9.2.6.

For the rest of this section we will use the data with 1 hole eliminated.
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Figure 8.2: CDF of the session times (1, 2, 3, and 5 hole(s): after data cleaning, 0 hole: raw
data without data cleaning).

Weibull Session times
Eliminating Scale shape mean std dev.

Raw data 55.91 0.52 113.73 297.41
1 hole 97.62 0.56 169.21 405.26
2 holes 129.53 0.61 199.62 455.9
3 holes 144.28 0.63 215.8 486.2
5 holes 165.4 0.65 238.38 525.25

Table 8.1: Session characteristics before and after data cleaning. Eliminating i holes means
that we consider a peer as connected even if it does not respond during i consecutive crawls.
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Artifacts

There are two different types of artifacts one can notice in the crawl results:

• There are IP addresses that host many KAD IDs (cf. Section 8.2).

IP address Country # of KAD IDs
219.144.16.135 CN 197
83.35.252.57 ES 190
84.185.82.103 DE 189
88.3.70.67 ES 177
213.197.129.54 LT 144
87.203.219.36 GR 135
200.203.111.117 BR 125
221.238.129.241 CN 113
201.15.49.126 BR 112
86.100.3.250 LT 110

Table 8.2: Many KAD IDs running on one IP address.

In some cases all the peers have the same hash value on successive port num-
bers. These are single entities analyzing the KAD network or trying to gain
higher download speeds. One can see that all these peers are run indeed on
one single physical machine since the measured RTTs are very close to each
other (Table 8.3).

Recently, Pietrzyk et al. [91] monitored a population of about 20,000 ADSL
clients belonging to a major ISP in France. About 20% of the peers change
their KAD ID regulary, using a new KAD ID for every new session. Sometimes
running sessions are even interrupted only to immediately reconnect using a
new KAD ID. This analysis confirms our findings crawling KAD.

IP address port Country KAD ID rtt
83.35.252.57 50837 ES 9dcccb9d 543
83.35.252.57 50666 ES 9dcccb9d 361
83.35.252.57 50265 ES 9dcccb9d 613
83.35.252.57 50749 ES 9dcccb9d 513
83.35.252.57 50875 ES 9dcccb9d 545
83.35.252.57 50670 ES 9dcccb9d 457
83.35.252.57 50366 ES 9dcccb9d 571
83.35.252.57 50535 ES 9dcccb9d 567
83.35.252.57 50831 ES 9dcccb9d 503
83.35.252.57 50842 ES 9dcccb9d 476

Table 8.3: A single IP address and KAD ID but many different ports.

In other cases, the peers have different random hash values and non-
consecutive port numbers. These are clients sharing the same public IP ad-
dress behind a NAT. Since we deal with different physical machines, also the
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measured RTTs are very different from each other. Peers that did not reply are
marked with -1 (Table 8.4).

IP address port Country KAD ID rtt
221.238.129.241 44457 CN 68d0ad00 -1
221.238.129.241 30709 CN 3db7742b 324336
221.238.129.241 37411 CN d40e7f35 -1
221.238.129.241 34681 CN 22ff4d0c 416
221.238.129.241 19089 CN e05d2942 -1
221.238.129.241 12855 CN dd344f05 1925
221.238.129.241 7904 CN 0be4b864 554
221.238.129.241 64076 CN 363bfc47 422

Table 8.4: Peers behind a NAT: One IP address and many ports and KAD IDs.

• The same hash is used by many different peers with different IP addresses.

For the evaluation we filtered out all these artifacts.

8.4 Spying for Content with Mistral

In this section we explain how to get an overview of the content in KAD using our
content spy Mistral. It is based on the same principle as the sybil attack [28, 31, 33].
We introduce a large number of our own peers, the sybils, into the network, all con-
trolled by one machine. Positioned in a strategic way in the KAD space but physically
all running on the same machine, the sybils can gain control over a fraction of the
network or even over the whole network. The fact that all sybils run on the same
machine has the advantage that data collection is much easier. The sybils can moni-
tor the traffic or even abuse the KAD protocol: routing requests may be forwarded to
wrong directions or rerouted to entities under our control.

We insert a large number of sybil peers into the network and propagate information
about them into the routing tables of the real peers. The first step involves learning
about the peers present in the network; we thus crawl the peers with Blizzard. A
query message asking for peers in a certain region of the KAD space includes the KAD
ID of the asking peer; thus, we send it only after we got the KAD ID by crawling. The
fact that the KAD ID of the receiver has to be known to query a peer is actually the
only security feature in the KAD protocol. The query thus publishes the IP address
of the machine running Mistral.

Note that so far the KAD IDs of the sybils are not yet known to other peers. In a
second step, we send hello messages to the peers we have learned about during
the Blizzard crawl. A hello message includes the KAD ID of the sender; we can
choose it freely. The first 24 bit are chosen at random, while the 96 remaining bits are
fixed. This is a signature of our sybils, allowing us not only to trace them by their IP
address but also by their KAD ID.
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The routing queries reaching the sybils are always answered with other sybils. The
returned KAD ID is closer to the target included in the query than the receiver of the
query, thus the querying peer has always the impression of approaching the target.
Once the requester gets close enough to the target, it queries a sybil for the content
itself and not for any closer peers. Our sybil stores the search request and returns a
fake source entry. This source entry points to our machine. As a consequence, the
real peer tries to start to download which is not successful.

Not only routing and search requests are hitting our machine but also requests to
publish. As stated above, these are especially interesting since they are much more
frequent than search requests. Whereas search requests are always launched by a hu-
man, publish requests are automatically and regularly launched by the KAD clients.
Also, the publish information is richer than the search requests: it includes the full
file name, the KAD ID of the source and a significant amount of metadata on the file.
As explained above, the filename is tokenized and published on the hash of each of
its tokens (keywords). The answer to a publish request is the load of the peer ad-
dressed. We always answer with a very low load, thus we attract more and more
publish requests to our sybils.

An 8-bit zone contains the peers whose KAD ID agrees in the first 8 bits, thus each
zone can theoretically contain 2120 hash values. We actually observe between 12,000
and 25,000 peers per zone. The entire KAD network contains 256 8-bit zones and
between 3 and 5 million peers. It is possible to spy on one zone of the KAD network
only by restricting the returned KAD IDs to a certain prefix. Into a zone we can insert
65,356 distinct sybils to be sure to catch at least one of the ten publish messages for
a keyword or a source and at least one of the three search messages that are sent per
user-initiated search.

To resume, the Mistral spy works as follows:

• First, crawl a zone Z of the KAD ID space using our crawler Blizzard to learn
about the peers P currently online whose KAD IDs are in Z .

• Then, send hello requests to the peers P in order to “poison” their routing
tables with entries that point to our sybils. The peers that receive a hello
request will add the sybil to their routing table if the corresponding bucket of
the routing table is not filled.

• Later, when a route request(kid) initiated by regular peer P reaches a
sybil that request will be answered with a set of sybils whose KAD IDs are closer
to the target in case the kid falls into the zoneZ , and will be ignored otherwise.

This way, P has the impression of approaching the target. Once P is “close
enough” to the target KAD ID, it will initiate a publish request or search
request also destined to one of our sybil peers. Therefore, for any route
request that reaches one of our sybil peers we can be sure that the follow-up
publish request or search request will also end-up on the same sybil.

• Store the content of all the requests received in a database for later evaluation.
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A key is published ten times and for a content search three parallel search requests
are issued. For our spy scheme to work as intended, the optimum would be to attract
exactly one copy of every search or publish request. In this way, publish and search
requests would also “terminate” on regular peers that would correctly execute them,
avoiding any disruption of KAD due to our spy. There are two parameters to control
the level of intrusiveness: The number of sybils placed in a zone and the rate at which
sybils are announced to regular peers.

Content Crawler Another possibility to learn about the content in KAD is to search
for all keywords. First of all one needs to know all these keywords. However, it
is impossible to know all keywords used. We implemented a content crawler that
searches for a given seed keyword using an exhaustive search procedure. First the
tolerance zone around the keyword is crawled for peers, then all these peers are
queried for the keyword. The file names that are returned to these queries are parsed
and the keywords learned are again searched for. This method works very well, we
where able to obtain 4 million keywords and tens of millions of files in the period of
some days. However it would take months to crawl the entire content in KAD with
the available resources we have.

8.5 Azureus

The DHT Kademlia [77] is also implemented in AZUREUS [6]. The user base is about
1 million concurrent users, which is smaller compared to eMule and aMule 9.1.1.
Azureus is currently one of the most popular clients for BitTorrent. For a given file,
the protocol embodies three main roles: a tracker, seeders, and peers. Trackers are
typically web servers: seeders and peers are transient clients. The initial seeder is the
source of the file. It divides the file into small pieces, creates a metadata description
of the file and sends this description to the tracker. Peers discover this file descrip-
tion through some out-of-band mechanism (e.g., a web page) and then begin looking
for pieces of the file. Peers contact the tracker to bootstrap their knowledge of other
peers and seeds. The tracker returns a randomized subset of other peers and seeds.
Initially, only the initial seeder has pieces, but soon peers are able to exchange miss-
ing pieces with each other, typically using a tit-for-tat scheme. Once a peer acquires
all of the pieces for a file, it becomes a new seeder. The set of clients actively sharing
a file is called a swarm. In AZUREUS, file descriptors and other metadata are stored
in a Kademlia-style DHT, in which all clients participate.

8.6 Vivaldi Network Coordinates

Internet coordinate systems allow a host to predict the round trip times to other
hosts without actually measuring them. A coordinate system can be used to decide
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from which peer in a peer-to-peer network to fetch a data item from. Explicit mea-
surements are often unattractive because the cost of measurement can outweigh the
benefits of exploiting proximity information. Coordinates are assigned to hosts such
that the distance computed using coordinates predicts the RTT between these hosts.
Simulation-based systems map nodes and latencies into a physical system whose
minimum energy state determines the node coordinates.

Vivaldi [26] calculates the coordinates as the solution to a spring relaxation problem.
The system envisions a spring between each pair of nodes, with the resting position
of the spring equaling the network latency between the pair. Each node successively
updates and refines its own position by taking into account newly reported RTT
measurements toward its communication partners. Since this information is pig-
gybacked on other network messages, e.g., route requests, no additional messages
are sent through the network. In other words, nodes allow themselves to be pulled
or pushed by a connected spring. A network embedding with a minimum error is
found as the low-energy state of the spring system.

Vivaldi uses Euclidean coordinates of d dimensions augmented with a height value
xh: x = x1, . . . , xd, xh. The coordinates without the height can be seen as a high
speed Internet core to which are end users attached. The last mile that may suffer
from queuing delays due to large buffers, e.g., in the case of ADSL, is represented by
the height value. Without using the height, the coordinate space would be distorted
since it is possible to measure latencies in the order of seconds between peers in the
same country, which is more than the propagation time needed to make the tour of
the globe (≈500 ms). A packet sent from one node to another must travel the source
node’s height, then travel in the Euclidean space, then travel the destination node’s
height. Even if the two nodes have the same height, the distance between them is
their Euclidean distance plus the two heights. This is the fundamental difference
between height vectors and adding a dimension to the Euclidean space. Intuitively,
packet transmission can only be done in the core, not above it. To calculate the dis-
tance between two nodes x and y, first the distance of their Euclidean coordinates is
calculated, then the heights of both nodes are added:

dist(x, y) =

√√√√ d∑
i=1

(xi − yi)2 + xh + yh.

In a normal Euclidean space, a node that finds itself too close to another node will
move away from the other node. A node that finds itself too close to nodes on all
sides has nowhere to go: the spring forces cancel out, and it remains where it is. In
the height vector system, the forces cancel out in the Euclidean plane, but the height
forces reinforce each other, pushing the node up away from the Euclidean plane.
Similarly, a node that finds itself too far away from other nodes on all sides will
move down, closer to the plane.
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Peer behavior in KAD

In this chapter, we focus on a single peer-to-peer system, namely KAD, which is the
publishing and search network of eDonkey. We want to characterize KAD in terms of
metrics such as arrival/departure process of peers, session and inter-session lengths,
availability, and lifetime.

To obtain the relevant raw data we decided to “crawl” KAD. Each crawl gives a
snapshot of the peers active at that instant.

While peer-to-peer systems have been explored previously using a crawler, the du-
ration of these crawls was limited to a few days at best. We were able to crawl KAD
for almost six months at a frequency of one crawl every five minutes, which makes
a total of 51,552 snapshots. We obtain a number of original results such as:

• Session lengths are heavy–tailed, with sessions lasting as long as 78 days and
are the best characterized by a Weibull distribution, with shape parameter k <
1. One property of Weibull distributed session lengths is that a peer that has so
far been up for t units of time will – in expectation – remain up for a duration
that is in the order of O(t1−k). We can exploit this fact to use the past uptime in
order to predict the remaining uptime.

• For many peers, the amount of time a peer is connected per day, called daily
availability, varies a lot from one day to the next. This makes it difficult to
predict daily availability

• Contrary to what was known up to now, KAD IDs are not persistent and can
change as frequently as once per session. By using a subset of peers with static
IP addresses we can also show that the end-user lifetime is significantly longer
than KAD ID lifetime with 50% of the peers participating in KAD for six month
or more.

• When classifying peers according to their geographic origin, the peers from
China make about 25% of all peers seen at any point of time and Europe is the
continent where KAD is most popular. We also see a big difference between

77
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peers in China and Europe with respect to some of the key metrics such as
session length or daily availability.

The following two sections present the results of our crawl. Section 9.1 will provide
general information such as the number of KAD users and their geographic distribu-
tion and will also discuss KAD ID aliasing and its implications [112, 117]. Section 9.2
will focus on statistics related to session times that are very relevant for the opti-
mization of certain design parameters of KAD such as the republishing interval and
metrics that characterize the daily usage behavior of KAD clients [114].

9.1 Global View of KAD

In this section, we will present results obtained via a full crawl of KAD, such as the
total number of users, the geographic distribution of the users, and the distribution
of the KAD IDs over the hash space. We will and compare these results where ap-
propriate to the ones obtained via the zone crawl. Moreover we will characterize the
fact of IP address aliasing and KAD ID aliasing.

9.1.1 Full Crawl

The speed of Blizzard allows us to crawl the entire KAD ID space, which was never
done before. Such a full crawl of KAD takes about 8 minutes. The first million dif-
ferent peers are identified in about 10 seconds, the second million in 50 seconds,
thereafter the speed of discovery decreases drastically since most peers returned in
the route response messages have already be seen before during the same crawl
(Figure 9.1). A full crawl of KAD produces about 3 GBytes of inbound and 3 GBytes
of outbound traffic.
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Figure 9.1: The number of discovered peers approaches asymptotically the total number of
peers in the network.

A full crawl was done once a day from March 20, 2007 to May 25, 2008.
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During each full crawl, we found between 3 and 4.3 million different peers. Between
1.5 to 2 million of these can be directly contacted by our crawler. The other peers
either have left the system or are located behind NATs or firewalls. In the rest of
this chapter we will only report statistics on the peers that our crawler could contact
directly.

As we can see in Figure 9.2 the number of peers seen varies according to a diurnal
and a weekly patterns and reaches its peak during the weekend, where the popula-
tion is about 10% higher.
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Figure 9.2: The number of KAD peers available in entire KAD ID space depending on the
time of day.

In Figure 9.3, we plot the distribution of the percentage of peers seen per country on
August 30, 2006. Using the Maxmind database [76] to resolve IP addresses to coun-
tries and ISPs. The continent with the highest percentage of peers is Europe (Spain,
France, Italy and Germany), while the country with the largest number of peers is
China. Less than 15% of all peers are located in America (US, Canada, and South
America). We can also see that the geographic distribution of the peers obtained
with the two zone crawls of an 8-bit zone each is very close to the result obtained
with the full crawl, which is to be expected since the KAD IDs are chosen at random.
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Figure 9.3: Histogram of geographic distribution of peers seen.

In fact, we see from the results of the full crawl that the peers are uniformly dis-
tributed over the hash space, except for some outliers (Figure 9.4). All the outliers
are due to modified KAD clients that use the same KAD ID and are always limited to
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one country (Korea, Spain, Israel, China, Argentina). The outlier in zone 0xe1 is a
modified client used in Israel, for which we counted 25069 instances.

The other outliers are modified clients (mods) as well, they are always limited to one
country to one language zone. The people using mods are sort free-riders. The over-
head is divided among them, but they can use the network a anyone else. However
if too many people are using mods the performance decreases, since the people us-
ing the same hash can not see one another, and therefore can not download one from
another. Furthermore the DHT gets less stable.

We also saw that the US-based company named Media Defender is running up to
250,000 instances of KAD, with KAD IDs that systematically cover the entire KAD ID
space. By carrying out a so called Sybil attack 8.4, Media Defender is able to closely
monitor all publish and search activities of all peers in KAD. We have “filtered out”
these “anomalies” from our trace data since we are interested in characterizing the
behavior of ordinary KAD peers.
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Figure 9.4: The distribution of the peers over the hash space. The 256 8-bit zones on the
x-axis go from 0x00 to 0xff.

Since the full crawl was quite expensive in terms of resources, we will extensively
rely on the zone crawl to obtain much of the relevant information about KAD.

9.1.2 Zone Crawl

A full crawl generates an extremely high amount of trace data and of network traffic
(with peak data rates close to 100 Mbit/sec). Also carrying out just 3 crawls per
day is not really sufficient to capture the dynamics of KAD peers at short timescales,
which is needed to measure e.g. session times. For this reason, we decided to carry
out a zone crawl on a 8-bit zone, where we try to find all active peers whose KAD ID
have the same 8 high-order bits. Such a zone crawl, that explores one 256-th of the
entire KAD ID space, takes about 2 seconds and generates 25MB of traffic (Figure 9.5).
Note that only after the first replies arrive (after 500-600 msecs) the exponential grow
in the number of discovered peers can start.

The output of a zone crawl looks like this:
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Figure 9.5: The time needed to crawl one zone, a 1
256 part of the total KAD network.

crawl zone 0xa1
time 1855ms
packets received: 71757 unique IP/port: 9028
packets sent: 131968
traffic in: 16.15 MB
traffic out: 9.69 MB
5134 of 9028 are alive

The high resolution and long duration zone crawl from September 23, 2006 to March
20, 2007 (179 days) allowed us to collect 51,552 snapshots (one every 5 minutes) of a
subset of all KAD peers. In this section, we will use the results of a full crawl to vali-
date that the subset of KAD peers captured via a zone crawl is indeed a representative
sample of the peers in KAD.

In Figure 9.6(a), we plot the number of peers seen that originate from China and
some European countries. The number of peers in each country follows a diurnal
pattern, with a peak around 9 PM local time. The eight hour time shift between
Europe and China is clearly visible.

The most important providers do all come from the countries accommodate most of
the KAD peers. As for the countries of origin also for the ISPs a diurnal pattern can
be detected (Figure 9.6(b)).

Table 9.1 summarizes the basic findings on the zone crawl. The peers seen came
from 168 different countries and 2,384 providers. For the KAD IDs seen the 1st day
of our zone crawl, we observe that about one third of the peers come from Europe
and about one fourth from China. If we compare the lifetime of the peers, which is
defined as the difference between the time a given KAD ID was seen the last time and
the time this KAD ID was seen the first time, we notice that the lifetime of peers in
China is much smaller than the one for peers in the other countries. More than half
of the peers in China were seen for the duration of only one session. We will come
back to this point in subsection 9.1.3.
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Figure 9.6: Peer arrivals between two crawls during the first week.

Total China Europe Rest
Different KAD IDs 400,278 231,924 59,520 108,834

Different IP addresses 3,228,890 875,241 1,060,848 1,292,801
KAD IDs seen for a single session 174,318 131,469 11,644 31,205

KAD IDs with LT ≤ 1 day 242,487 183,838 15,514 43,135
KAD IDs seen for the first time on

- 1st crawl 5,670 455 2,879 2,336
- 1st day 18,549 4,535 6,686 7,328

- 60th day 1,893 1,083 259 551
KAD IDs seen for the first time on 1st day

- with LT ≤ 1 day 2,407 1,568 286 553
- 1 day < LT ≤ 1 week 1,368 497 393 478

- 1 week < LT ≤ 1 month 2,735 791 944 1,000
- LT > 1 month 12,039 1,679 5,063 5,297
- LT > 3 months 8,423 936 3,679 3,808

avg. of the median session
time per peer (minutes) 165 103 326 210

avg. of the median-inter session
time per peer (minutes) 1,341 586 2,825 2,136

Table 9.1: Key facts about the zone crawl spanning 179 days organized by country of origin
(LT=Lifetime).

Arrivals and Departures

Since we crawl the same zone in KAD once every 5 minutes, we can determine the
number of peers that join and leave between two consecutive crawls. Knowing the
arrival rate of peers is useful since it allows us to model the load in KAD due to newly
joining peers. Each time a peer joins, it first contacts other peers for information to
populate its routing table, before it publishes the keywords and source keys for all
the files it will share.
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In Fig. 9.7(a) we depict the CDF of the number of peers that arrive and that depart
between two consecutive zone crawls. We see that the distributions for arrivals and
departures are the same. This is to be expected, since we observe the system in
“steady state”: in this case, the system should behave like G/G/∞, for which, ac-
cording to Little’s Law, the arrival rate is equal to the departure rate [81]. The arrival
process is very well described by a Negative Binomial distribution (Figure 9.7(b)).
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Figure 9.7: Peer arrivals between two crawls during the first week.

Given that KAD IDs are uniformly distributed, we can estimate the total number of
peers in KAD by simply counting the number of peers in a zone and multiplying this
value by the number of zones (256 zones). Using Chernoff Bounds (see [82] Chapter
4) we tightly bound the estimation error.

Let N(t)part be the number of peers counted during a zone crawl of an 8–bit zone at
time t and N̂(t) := 256∗N(t)part the estimate for the total number of peers in the KAD
system. The true value N(t) for total number of peers at time t is very close to the
estimate N̂(t), with high probability. More precisely: Prob[|N(t) − N̂(t)| < 45000] ≥
0.99, which means that our estimate N̂(t) has most likely an error of less than 3% for
a total population of at least 1.5 million peers.

9.1.3 Aliasing

IP Address Aliasing

It has been known for several years [8, 64] that many peers frequently get assigned
new IP addresses, which is referred to as IP address aliasing. For instance, we know
that some ISPs in France change the IP address of their ADSL customers approxi-
mately every 24 hours, while others assign static IP addresses to their clients. We
observed a total of 400,278 distinct KAD IDs and 3,228,890 different IP addresses (see
Table 9.1). In Europe, a peer has on average about 18 IP addresses, whereas in China
the number is 4 IP addresses per peer. About 80% of the peers in China have only
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one IP address since their lifetime is much shorter than the lifetime of peers in other
parts of the world. We saw that the number of different IP addresses per peer is
strongly correlated with the peer lifetime (Figure 9.8).
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Figure 9.8: The number of different IP addresses reported per KAD ID.

KAD ID Aliasing

Up to now it was assumed that KAD IDs are persistent, i.e., the same end-user of
KAD permanently keeps the same KAD ID across all its sessions. As it turns out, this
is not true. We refer to the fact that KAD IDs are non-persistent as KAD ID aliasing.

We see in our zone crawl approx. 2,000 new KAD IDs a day, which means that for
the entire KAD system the number of new KAD IDs per day is around 500,000. If we
extrapolate, this makes about 180 Million KAD IDs a year. It is hard to believe that
there exist such a large number of different end-users of KAD.

Figure 9.9 reports the number of new KAD IDs per day. i.e., KAD IDs seen for the first
time, according to country of origin. More than 50% of the new KAD IDs are from
peers in China, which is more than one order of magnitude greater than the number
of new KAD IDs seen for any other country such as Spain, France, or Germany.

We were curious to find out whether it is plausible that many end-users really stop
using KAD after one session, or whether the same users come back with a different
KAD ID. To investigate KAD ID aliasing, we need to look for peers with static IP ad-
dresses, which we can track for non-persistent KAD IDs. We know that, for instance in
France, one of the ADSL providers (Proxad) assigns static IP addresses to customers
who are located in areas where the service offer is completely “un-bundled”.

Our hypothesis is that a peer that keeps the same IP address and port number for 10
days is assigned a static IP address. Therefore, we take the logs of the two full crawls
(cf. Section 9.1.1) of March 20, 2007 and March 30, 2007 and extract the 140,834 peers
that have the same IP address, port number and KAD ID in both crawl logs. IP
addresses running more than one KAD ID are filtered out. This way we exclude all
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Figure 9.9: New KAD IDs according to country of origin.

users having dynamically assigned IP addresses, moreover we exclude all users with
static IP addresses who were not online on March 20 and March 30. We call this set
of peers a pivot set.

Since this heuristic is very strict, the number of users with static IP addresses is un-
derestimated. However the pivot set still contains enough peers to make statistically
meaningful statements. 32% of the peers in the pivot set come from Spain, 18% from
France, 5% from Poland and Italy, 4% from the US and Taiwan, and 3% from Israel
and Argentina.

We then take the logs of the full crawls starting March 31st, 2007 to look for peers in
the pivot set that have changed their KAD ID.
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Figure 9.10: The fraction of peers in the pivot set that changed their KAD ID at least once.

In Fig. 9.10, we plot the fraction of peers from the pivot set that change their KAD
ID at least once. Since we perform a full crawl only once a day, we are not able
to estimate the rate of change of the KAD IDs. Instead, we can only detect which
peers have changed their KAD ID. We see that a significant fraction of end-users in
different countries change their KAD ID over time. After seven months, more than
one third of the end-users in Spain and France changed their KAD ID at least once.

A very recent study confirmed that KAD ID aliasing is quite common. Pietrzyk et
al. [91] monitored a population of about 20,000 ADSL clients in France for ten days.
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About 20% of the peers change their KAD ID for every new session and some peers
change it even during a session. In comparison to clients that do not change their
KAD ID, these peers have longer session times, whereas the amount of files they
share is significantly smaller. It seems that peers who frequently change their KAD
ID do so in order to improve their anonymity.

Implications of KAD ID Aliasing The fact that the KAD ID assigned may be non-
persistent obliges us to distinguish between a peer and an end-user:

• A peer is an instance of KAD identified by a fixed KAD ID.

• An end-user is a physical person that launches a peer to participate in KAD. The
same end-user can, at different times, participate in KAD via different peers.

When KAD ID aliasing occurs, it is not really possible to characterize the lifetime of
end-users tracking KAD ID, as compared to the lifetime of peers. All we can extract
from our crawl data is the lifetime of peers, which provides us with a lower bound
on the lifetime of end-users. We will see in section 9.2.6 how we can use the peers in
the pivot set to estimate the lifetime of end-users.

9.2 Peer View

In this section, we will present metrics that describe the behavior of individual peers,
such as lifetime, session and inter-session time, residual uptime, and daily avail-
ability using the observations made with our 179-day zone crawl. To estimate the
end-user lifetime we also make use of the data obtained via the full crawl.

Using these metrics we will compare the peer behavior of different countries. Know-
ing the session statistics allows us (i) to validate implementation choices of KAD and
(ii) to make suggestions on how to improve the efficiency of KAD (cf. Section 9.4).

We will mainly focus on the peers that were first seen on the 1st day of our crawl,
since we could observe them for the longest period of time. For reference, we will
occasionally compare the results with those obtained for the peers seen the first time
on day 60. We have chosen day 60, since the largest inter-session times observed
very rarely exceed 60 days, which allows us to assume that the peers we see for the
first time on day 60 have most likely newly joined the system.

9.2.1 Session Statistics

Most of the peers will not be online, i.e., connected to KAD, all the time. By crawling
KAD every five minutes, we can determine precisely for each peer k the instances
tj1(k), ..., tjn(k) when k joined and the instances tl1(k), ..., tln(k) when k has left KAD.
We define the session length as the time a peer was present in the system without



9.2. PEER VIEW 87

any interruption, i.e., tli(k)− tji (k) for i ∈ {1, ...,m}. For the peers that were online on
the first crawl, we did not consider the first session, since we can not know when it
began. Analogously, we did not consider the sessions that were still ongoing during
our last crawl.
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Figure 9.11: CCDF of the number of sessions per KAD ID.

In figure 9.11 the number of sessions per KAD ID is plotted. In figure 9.11(a), we
compare the distributions of the number of sessions of peers seen in the first crawl,
the first day up from second crawl and in the 60th day. Note that the peers seen in
the 60th day were observed only 120 days wile the peers of the two other set are
observed for 180 days.
60% of peers seen in the 60th day have only one session time. This percentage fall
down to 18% for the set Up from second crawl and to less than 5% for the peer seen
in the first crawl. (As we observe the 60th day peer for 120 days, this observation is
not influenced by the difference of duration of the crawl). This observation can be
explained by the fact that more than 90% of the peers of the 60th day are Chinese.
This our belief of the existence of a modified KAD client in china. Among the peers
seen on the first day, 20% have more than 100 sessions.

Figure 9.11(b) shows the difference between the CCDF of the number of session be-
tween peers coming from China and peers coming from Europe. First, we note that
the distribution of European peers is very similar to the one of peers seen in the first
crawl. Which mean that the most stable peers are from Europe.
30% of Chinese peers have only one session time compared to 5% for the European
peers.
30% of peers in first day are Chinese, while in the first crawl they were only 8%.

The session length of the peers seen in the first crawl is about twice that of the peers
seen for the first time during later crawls of day 1 (Fig. 9.12). When we crawl KAD
for the first time, we have a much higher chance of seeing peers that are connected
“most of the time” than peers that are connected from time to time and only for short
periods. This means that a single crawl of the system cannot give a representative
picture of the characteristics of the peers: Instead, we need to sample the system
many times.
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For the peers seen in the first crawl, we observe session times (in minutes) with a
mean = 670, standard deviation = 1741 and median = 155. For the peers seen during
the remaining crawls on the first day these values are only about half as large with
mean = 266, standard deviation = 671 and median = 75. In both cases, the coefficient
of variation, which is defined as the ratio between standard deviation and mean,
which characterizes the “variability” of a distribution, is between 2 and 3.
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Figure 9.12: CCDF of the session lengths per KAD ID for different peer sets.

Weibull fit of the session time distribution

The empirical distribution of the session length exhibits a considerable tail. At least
0.1% of the sessions are longer than 1 week and the longest session observed is 78
days. We did a distribution fitting for the session times and found that the Weibull
distribution provides a very good fit as we can see in Figure 9.14 (See Table 8.1 for
Weibull parameters).

Using only the session length samples larger than 15 minutes, the fit passes the Kol-
mogorov-Smirnov (goodness of fit) test. However, for the small session lengths of 5,
10, or 15 minutes, the fit is not good due to the too large granularity of time between
two crawls (5 minutes).
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Figure 9.13: Weibull fit of the session time distribution of the peers seen first day.
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Figure 9.14: QQplot of Session length distribution versus Weibull distribution for peers seen
in the first crawl.

The Weibull distribution has two parameters k > 0 (shape) and λ > 0 (scale). The
Weibull distribution with k < 1 is part of the class of the so-called sub-exponential
distributions, for which the tail decreases more slowly than any exponential tail [43].
Sub-exponential distributions are a subclass of the class of heavy-tailed distributions
[12]. This implies that knowing the past (uptime) of a peer allows us to predict the
future (residual uptime). More formally, if S denotes the session length then the
expected residual uptime is E[S − t|S > t] ∼ O(t1−k), i.e., it grows sub-linearly. For
comparison: if S where Pareto distributed, the growth of its residual uptime would
be linear, i.e., O(t).

9.2.2 Remaining Uptime

Figure 9.15 shows the expected residual uptime for the scale and shape values that
describe the session length of peers seen in the first crawl. There is a nice fit between
the empirical values and the interpolation using a function whose growth is O(t1−k).
We see that for small observed uptime values the remaining expected uptime values
are considerable: A peer that has been up for 1,000 minutes will have a remaining
expected uptime of 1,500 minutes. Based on their data set, which did not contain any
sessions longer than 1 day, Stutzbach and Rejaie [123] concluded that KAD sessions
times could be fit either by a log-normal or a Weibull distribution. Our crawl, which
allowed us to observe sessions that lasted several weeks, confirms this point.

The eMule and aMule implementations of KAD only publish on peers that have been
up for at least 2 hours. Source keys will expire after 5 hours and keyword keys after
24 hours. We may ask whether selecting a peer that has been up for at least 2 hours
will increase the chances that this peer will be up for another 5 or 24 hours.

In Fig. 9.16, we plot the remaining uptime of peers given that they have already been
up 5 minutes, 1h, 2h, or 8h. For this analysis we choose the set of peers seen in the
first crawl since this is the view a joining peer has of the system. We see that a higher
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Figure 9.15: Expected residual uptime for k = 0.54, λ = 357 (for peers seen in the first crawl).

10
1

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uptime Remaining in minutes 

C
C

D
F

 

 

Up 8h
Up 2h
Up 1h
5 min

One Day5 hours

Figure 9.16: CCDF of the remaining uptime of peers, given the uptime so far, for peers seen
in the first crawl.

uptime translates into a higher remaining uptime. This means that the minimum
age-based peer selection as implemented in eMule and aMule is a sensible policy.

Only about 20% of the peers with an uptime of 2 hours will remain up for at least
another 24 hours. Therefore, the only way to ensure that keywords remain available
for 24 hours is to publish information about a keyword on more than one peer, as is
done by eMule and aMule.

Trying to increase the lifetime of published content only makes sense for those peers
that are themselves highly available. Therefore, the publication strategy needs to
choose the content lifetime as function of both, the past availability of the publishing
peer and the availability of the peers where the data is going to be published.

9.2.3 Next Session Time

One may ask the question whether consecutive sessions are correlated in length. If
there is a strong positive correlation, one could use information about past session
lengths as a predictor of the length of future sessions: If a publishing peer could



9.2. PEER VIEW 91

predict its session time it could then choose the optimal value for the expiration time
of the information it publishes in KAD.

If we take all session length samples and compute the coefficient of correlation over
consecutive session lengths we obtain a value of 0.15, which indicates that there is
almost no correlation. However, if we only consider session lengths up to 1 day, there
is considerable positive correlation of 0.85, which was also observed by Stutzbach
(Figure 10(b) of [123]). This example nicely illustrates how incomplete data due to
too short crawling duration can have a major impact on the conclusion one is able
to draw from the observations. We also computed the conditional probability for
session i + 1 to last at least 1 day given that session i has lasted 1 day or longer and
obtained a value of 0.34 (Figure 9.17).
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Figure 9.17: Correlation between consecutive session lengths of the peers seen.

9.2.4 Inter-Session Time

The inter-session time is defined as the time a peer k is continuously absent from
the system, i.e., tji+1(k) − tli(k) for i ∈ {1, ..., n}. Figure 9.18(a) depicts the CCDF of
the inter-session times.

The peers seen in the first crawl have, on average, not only longer session times but
also smaller inter-session times than peers seen the first time in later crawls (cf. Ta-
ble 9.1). The average inter-session time is 1110 minutes for peers seen in the first
crawl compared to 1349 minutes for peers seen first during crawls 2 up to 288. Peers
in China have much shorter inter-session times than peers in Europe (cf. Table 9.1).
The longest inter-session time observed is 177 days.

For the inter-session times we could not find a distribution that matches well our
observed data. In particular, the Weibull distribution did not fit (Figure 9.18(b)).
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Figure 9.18: CCDF of the Inter-Session times of the peers.

9.2.5 Lifetime of Peers

For a given KAD ID k, let tj(k) be the time this KAD ID is seen joining KAD for the
first time, and let tl(k) be the time this KAD ID is seen for the last time. The lifetime
of KAD ID k is defined as tl(k)− tj(k). Since our crawl is of a finite duration, we can
never be sure if a peer with KAD ID k will not come back after we stopped crawling.
To make such an event very unlikely, we have decided to compute the lifetime only
for peers with KAD IDs seen for the last time 60 days or more before the end of our
crawl. We set the cut-off at 60 days, since the inter-session times seen are very rarely
longer than 60 days.

Since at time tl(k) we do not know whether peer k will re-join KAD later, it is clear
that our definition of lifetime gives a lower bound on the actual lifetime of a peer.

Figure 9.19 depicts the the CCDF of lifetime for KAD IDs seen for the first time during
the first crawl, on the first day, and for the first time on the 60th day. It is striking to
notice that the KAD IDs first seen on day 60 have a much lower lifetime than the KAD
IDs seen the first day. In fact, only 40% of the KAD IDs that were first seen on day 60
will be seen for more than one day. Among the peers seen on the first day, about 2/3
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of the peers have a lifetime longer than one month and close to 45% have a lifetime
longer than three months.

As we know from table 9.1, more than half of the KAD IDs first seen on day 60
are from peers in China; it is for these peers that we could clearly establish that
participants change their KAD IDs.
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Figure 9.19: CCDF of the lifetime of peers seen during the 1st crawl, first day up from the
second crawl, and on day 60.
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Figure 9.20: CCDF of the lifetime of the peers seen on the first day according to country of
origin.

Figure 9.20 depicts the complementary cumulative distribution (CCDF) of the peers
seen on the first day. There is a big difference in the lifetime of peers from China
as compared to Europe: more than a third of the Chinese peers disappear after only
one day and only 10% have a lifetime of more than 150 days, while close to 40% of
the peers in Europe have a lifetime of more than 150 days.

In fact the lifetime of KAD IDs strongly depends on the number of times a peer re-
connects to the system. About 30% of the Chinese peers use the same KAD ID for
only one session compared to 5% for the European peers (cf. Figure 9.11(b)), which
explains the difference in peer lifetime seen in Figure 9.20.
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9.2.6 Lifetime of End-users

The lifetime of end-users expresses in some way the satisfaction of end-users. If
users come back again and again it means that they rely heavily on peer-to-peer file
sharing for accessing and exchanging content with other users.

Due to KAD ID aliasing (cf. Section 9.1.3) we can not estimate the lifetime of end-
users by measuring the lifetime of KAD IDs (cf. Section 9.2.5). The only way to mea-
sure the lifetime of end-users is to analyze peers from the pivot set that we already
used in section 9.1.3 to measure aliasing of KAD IDs. Since the pivot set contains
over one hundred thousand peers from numerous countries we expect that these
peers are representative of all peers in KAD. In Figure 9.21, the CCDF of the lifetime
of end-users is plotted. End-user lifetimes are significantly larger than peer lifetimes
(see Figure 9.20). 50% of the end-users have been using KAD for 6 months and more.
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Figure 9.21: CCDF of the lifetime of the end-users having static IP addresses and port number.

9.2.7 Daily Availability

Characterizing availability is important for building efficient distributed applica-
tions such as overlay multicast or distributed file systems. For instance, availabil-
ity guided file placement can help reduce the cost of object maintenance [79], which
may potentially be prohibitive as was pointed out by Blake [9].

Availability in the case of KAD measures the usage behavior, i.e., how many hours a
day users are connected and how they use KAD over longer time periods such as
weeks.

Daily availability measures the fraction of time a peer is connected per day. Daily
availability expresses the “intensity” of participation of users in the exchange of files.
For a given peer P , we define daily availability of P as the percentage of time P was
seen online that day. For a peer that was first seen at day i and last seen at day j,
we will get a time series of daily availability values that has j − i + 1 elements. We
define the mean daily availability as the average of those j − i + 1 values.
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Figure 9.22: CDF of the mean daily availability of peers seen the first day.

Peers in China spend much less time per day connected than peers in Europe
(Fig. 9.22). The “online times” for peers in Europe are quite impressive, with 40%
of the peers being connected more than 5 hours per day and 20% even more than 10
hours per day.
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Figure 9.23: Daily availability in hours of 50 randomly chosen peers seen in the first crawl.

Figure 9.23 plots the daily availability (in hours) time series for a random set of peers
over a duration of 100 days. While there are a few peers for which the daily avail-
ability changes little over time, most of the peers exhibit daily availability values that
vary a lot.

9.3 Related Work

Studies measuring peer-to-peer networks may have different goals, such as ana-
lyzing the traffic patterns [102, 131]; learning about the content shared in the net-
work [22, 41, 101]; or learning about the peers, their geographical distribution [41],
their latency to the measurement site or their bandwidth [64, 101], and the user be-
havior expressed e.g. in session times or peer availability [8, 22, 64, 101, 123, 129].
There are also different ways to measure peer-to-peer networks, which can be either
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passive or active. Passive techniques consist of (i) instrumenting a client that cap-
tures all the traffic [131] sent and received, (ii) analyzing the central log file such as
the track log of BitTorrent [56], or capturing the traffic of a whole network, e.g. at the
POP or an ISP [91, 102].

Active techniques consist in crawling the peer-to-peer system. In some systems,
such as Napster or eDonkey, it is sufficient to contact the server(s), instead of every
single peer [22, 96, 101]. If one wants to know all peers in a DHT, such as Overnet
or KAD, it is necessary to contact every single peer and to query it for contacts in its
routing tables. Here crawling is equivalent to a graph exploration. Finding all peers
amounts to building the transitive closure of the graph. Examples of DHTs studies
that employ crawling are [8, 41, 64, 96, 123].

Overnet was the first widely deployed peer-to-peer application that used a DHT,
namely Kademlia. The implementation of Overnet is proprietary and its opera-
tion was discontinued in September 2006 after legal action from the media industry.
Overnet has been the subject of several studies [8, 64] and up to 265,000 concurrent
users have been seen online. In our study we use the active measurement approach
and want to learn about peer behavior. One study relevant to our work is by Bhag-
wan et al. [8] where a set of 2,400 peers in Overnet was contacted every 20 minutes
over two weeks. This study discusses the IP aliasing problem which results from the
fact that many peers periodically change their IP address. Therefore, in order to
properly compute session times and other peer-specific metrics, one needs to use a
globally unique identifier for each peer. This study also indicates, that for systems
where peers leave permanently, the mean peer availability decreases as the observa-
tion period considered increases.

KAD is the first widely deployed open-source peer-to-peer system relying on a DHT.
Two other studies on KAD that are very relevant to our work have been published by
Stutzbach and Rejaie. The first one explains in detail the implementation of Kadem-
lia in eMule [122] and the second one [123] compares the behavior of peers in three
different peer-to-peer systems, namely BitTorrent, Gnutella and KAD. The results
obtained for KAD are based on crawling a subset of the KAD ID space. We call a con-
tinuous subset of the total KAD ID space that contains all KAD peers whose KAD IDs
agree in the high order k bits a k-bit zone. Stutzbach and Rejaie have implemented
a custom crawler that allowes them to crawl a 10-bit zone in 3-4 minutes and a 12-bit
zone in approximately 1 minute [123]. A total of 4 different zones were crawled, each
one being crawled for 2 days. The short duration of the crawls implies that the max-
imum values for some metrics such as session times or inter-session times that can
be observed are naturally limited to 2 days. The paper by Stutzbach and Rejaie [123]
is the most relevant to our work and we will refer to the results reported on several
occasions. As we will see, our work significantly extends the findings of Stutzbach
and Rejaie. It confirms some of their findings but disagrees in other places. This
disagreement is in part due to the fact that a crawl duration of two days is too short
with respect to some of the key metrics such as session durations.

Le Fessant at al. [41] crawled eDonkey for one week and connected 55,000 out of
230,000 peers. The geographical distribution of these peers is very similar to the one



9.4. DESIGN IMPLICATIONS 97

we have observed (cf. Section 9.1.2), except for the large number of Chinese peers
that we see.

In 2002, Saroiu et al. [101] presented one of the first measurement studies for Gnutella
and Napster. They developed their own crawler that connects, in the case of Napster,
to each of the 160 servers and asks for the connected clients. The Gnutella crawler
explores the graph of neighbor relations, every crawl is stopped after two minutes,
during which about 10,000 peers are discovered.

The Gnutella crawl spans 8 days and the Napster crawl spans 4 days.

For the lifetime measurements, they monitored 17,125 Gnutella peers over a period
of 60 hours and 7,000 Napster peers over a period of 25 hours. They pinged each
Gnutella peer every seven minutes and Napster peer every two minutes.

For both Gnutella and Napster, Saroiu et al. report median session times of about 1
hour, which is half the time compared to the peers in KAD (cf. Section 9.2.1). This
difference might be due to the fact that the study of Saroiu et al. was performed 5
years ago, and that cheap broadband connections where not largely available and
that large files that take a long time to download where not yet available on peer-to-
peer networks.

Chu et al. [22] repeated the measurements of Saroiu et al. and extended them to a
duration of six weeks measuring session lengths and content popularity. They ana-
lyzed the node availability and come to the results that due to the longer observation
period, sessions with shorted duration are more dominant in the distribution than
stated by Saroiu et al.

Qiao and Bustamante [96] compared the performance of structured and unstruc-
tured Overlay networks for the case of Overnet and Gnutella. For their study they
performed session measurements for 7 days and reported median session times of
71 minutes for Gnutella and of 135 minutes for Overnet, which is very close to our
results for KAD (cf. Section 9.2.1). In [14] the same authors present a new peer-to-
peer system that makes use of the expected session times of the peers that follows a
heavy-tailed Pareto distribution in order to improve resilience to churn.

Tian and Dai [129] analyzed the logs of Maze, a Chinese peer-to-peer network with
about 20,000 concurrent users. All users are connected via the high speed Chinese
research network. Although it is a peer-to-peer network, all peers connect every 5
minutes to a central server that writes a global log file. This enables an analysis to be
made.

9.4 Design Implications

The results presented in this paper can be used to validate design choices made by
the developers and improve the performance of the implementation of KAD in var-
ious ways: In today’s implementation of KAD, a source key that points to the peer
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that holds the content will expire 5 hours after it has been published. On the other
hand, the median session length of peers is only 155 minutes and less than 40% of the
sessions are longer than 5 hours (cf. figure 9.12). This means that in more than 60%
of the cases, a peer that publishes a source key will leave KAD before the reference to
that file expires. As a consequence, many references to sources will be stale, result-
ing in unsuccessful attempts to download that file. An improvement of the current
implementation could be to first publish a source key with an expiration time much
smaller than 5 hours. Each time the published source key expires, the peer that owns
the file republishes the source key, progressively increasing its expiration time.

In [116] we measured that the total traffic in KAD due to publishing is about 100 times
higher in volume (bytes) than the total search traffic. In a follow-up to this measure-
ment study, we have shown how to exploit the fact that session times are Weibull
distributed in order to reduce the publish traffic by one order of magnitude [18].

We have seen (cf. Section 9.2.1) that for peers with session times less than one day,
the duration of the next session is highly correlated to the duration of the previous
session. This means that a peer could set the initial expiration time of a source key
using the value of its last session time.

Peers seen first during the very first crawl have much higher mean session durations
and smaller inter-session times than peers seen later for the first time. As already
suggested by Stutzbach and Rejaie [123], this fact can be exploited to find “more
stable” peers without knowing anything about the history of the peers: One simply
“crawls” KAD once and selects the peers that are online at that instant.

The design of KAD is very robust in view of non-standard behavior, such as KAD ID
aliasing, which does not affect the routing and lookup performance of the DHT.

9.5 Conclusion

In this chapter we have investigated the user behavior of KAD, which is currently
the only DHT deployed on a large scale. Studying KAD poses a number of unique
challenges to be addressed. To obtain the necessary data,

• We have implemented a very fast and highly efficient crawler of KAD. The
speed of our crawler made it possible, for the first time ever, to carry out a full
crawl of the entire KAD system. It also allowed us to track the behavior of a
representative subset of KAD peers (with a precision of ± 5 minutes) over a
period of almost six months. To the best of our knowledge this is the longest
crawl of a peer-to-peer system ever carried out.

• We need to crawl for such a long duration to unambiguously identify the peers
that joined KAD for the first time and to “capture the tail” of the session and
inter-session time distributions, which is in the order of months.
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• To be able to cope with transient network and machine failures, we ran two
crawlers in parallel and we “post-processed” our measurements to account for
missing replies of peers that are overloaded.

We have carried out a full crawl once a day in order to

• Validate that crawling a single zone will return a sample of the peers in KAD
that is representative of the entire KAD network.

• Obtain a subset (pivot set) of peers with static IP addresses that can be used
to estimate the rate of change of KAD IDs and the lifetime of end-users and not
only the lifetime of KAD IDs.

• Detect various “anomalies” such as thousands of peers with the same KAD ID
or a company “observing” the entire search and publish traffic via thousands
of sybil peers.

Our high resolution zone crawl lead to a number of interesting findings:

• Session times are heavy tailed following a Weibull distribution.

• KAD IDs are not necessarily persistent as was assumed up to now. Neverthe-
less, the most important metrics such as session times and inter-session times
are not affected by the non-persistent KAD IDs.

• The total number of peers online at any time can be precisely estimated.

• Peers in China differ significantly from peers in Europe with respect to key
metrics such as session time, inter-session time, peer lifetime, and daily avail-
ability.

• The majority of clients use KAD every day for many hours.

• Since most of the content is copyright protected and the sharing of such content
is illegal, users take measures to reduce the risk of being tracked by changing
their KAD ID frequently or by staying connected only as long as necessary to
download the desired content.

The full dataset of the zone crawl and of the full crawl are available on the Web
http://www.eurecom.fr/~btroup/kadtraces.

http://www.eurecom.fr/~btroup/kadtraces
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CHAPTER10
Content in KAD

The KAD system is designed to prevent free-riding, anyone who retrieves a file from
KAD also becomes a server for that file, and he publishes this fact to the rest of the
world. Thus, new publications are a consequence of successful retrievals. To investi-
gate the publishing process of KAD, we designed and implemented our own content
spy, Mistral, that is described in detail in Section 8.4.

We first launched Mistral on the entire KAD ID space. The load on our machine was
too large, and not all the queries could be satisfied and recorded. Since spying on
the entire KAD ID space was not possible, in May 2007, we spied on 20 different 8-bit
zones (such a zone contains the peers having the 8 first bit in common) of the KAD
ID space during 24 hours1, which allowed us to obtain a number of original results.
We observed for a single 8-bit zone :

• More than 1.5 million distinct users,

• More than 1.4 million different references to published files,

• More than 42,000 different keywords were published and only 1,100 searched,

• Per minute, about 1,000 search requests, 10,000 publish requests and 25,000
route requests, which amounts to a load of approximately 400 KByte/sec for
the incoming and approximately 200 KByte/sec for the outgoing traffic.

• Publishing generates ten times more messages than searching. Moreover, pub-
lish messages are ten times larger than search messages. Thus, the total number
of bytes transmitted differs in two orders of magnitude.

• The popularity of the keywords is not at all uniformly distributed, as it was
also observed for other DHTs [23, 103].

• The most popular keywords are meaningless stopwords.

1This is the minimum observation time required to catch also rare keywords since the typical
keyword republishing interval is 24 hours.
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These results led us to look into means how to reduce the publishing overhead effec-
tively without reducing the retrieval success rate of the KAD system.

From the indexing and retrieval literature, it is well known that eliminating stopwords
helps to reduce unnecessary searches. Stopwords are very common words of a lan-
guage that do not contribute much to the power of an index; examples are “the”, “a”
or “what” that occur frequently without adding much meaning. When a full-text
index is built, these stopwords are usually excluded. For example, in the English
language, 26 stop words make up 33% of a text.

All DHT-based peer-to-peer systems index files based on the file names, and so does
KAD. However, KAD’s only mechanism related to stopwords is to leave out all one-
and two-letter words when creating an index for a file name. This does not seem to
be an efficient solution. As a consequence, we decided to

• Measure the performance of a KAD-based peer-to-peer system with Mistral,

• Provide a specific set of stopwords and exclude these stopwords from the index
creation and search process,

All the measurement techniques Mistral makes use of are based on the Sybil at-
tack, which was first defined by Douceur [33] as “the forging of multiple identities”.
Mounting a Sybil attack is very easy in KAD and allows to compromise the privacy
of KAD users, to compromise the correct operation of the key lookup, to “delete”
content, and to mount DDoS with very little resources [113]. We will relate some of
our findings and point out how KAD can be used and misused.

Another type of attack, the content pollution attack, does not imply forging identities.
To make a keyword unaccessible to the peers, a large number of fake files (sources) is
published under the hash of the keyword to attack. The peers hosting the keyword
are going to return these fake publications to the content search request by benign
peers. We use this type of attack to disrupt the communication in the peer-to-peer
network formed by the Storm bots. This network is also based on Kademlia, even if
the implementation differs in some details from the KAD implementation.

In this Chapter, we will first explain the Sybil attack – and its derivatives, the Eclipse
attack and the Pollution attack – since our measurements on the content are based
on these attacks. In Section 10.3, we present the results obtained with our content
spy Mistral. We propose to exclude stopwords from the publishing process in order
to decrease the load in Section 10.4. Before concluding in Section 10.6, we present
the related work.

10.1 The Sybil Attack

We want to find out in the least intrusive way what type of content is published
and searched for into a zone Z of the KAD network. For this, one needs to introduce
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sybils in the zoneZ and to make them known, so that their presence is reflected in the
routing tables of the regular, i.e., non-sybil peers. For details, we refer to Section 8.4.

10.1.1 Eclipsing Content

A special form of sybil attack is the eclipse attack [105] that aims to separate a part
of the peer-to-peer network from the rest. The way we perform an eclipse attack
resembles very much that of the sybil attack described above, except for the KAD ID
space covered being much smaller.

Again, as for the sybil attack, not the sheer number of introduced sybils is important,
but, first of all, how well they are known by the benign peers. The challenge is to
pollute the routing table of every benign peer in a way that every request is forwarded
to a sybil. The crawling for new peers and the annoucement of the sybils therefore
have to go on during the whole time of the attack. As soon as the crawling and the
announcing are stopped, newly joining peers may also learn about some non-sybil
peers.

In order to eclipse a particular keyword K, we position a certain number of sybils
closely around K, i.e., the KAD IDs of the sybils are closer to the hash value of K
than the KAD IDs of any real peer. We then need to announce these sybils to the
regular peers in order to “poison” the regular peers routing tables and to attract
all the route requests for keyword K. Our experiments showed that as few as
eight sybil peers are sufficient to make sure that all search requests for K will
terminate on one of the sybils. That means that the keyword is invisible, eclipsed, to
all the participants in the KAD network. Our search attempts with a large number of
clients at different positions in the hash space show that already 3 to 5 minutes after
the start of the eclipse attack the routing tables of the benign peers are poisoned and
there is an absolute certainty that a lookup ends on one of our sybils. After stopping
the attack, it takes some minutes for the benign KAD peers to recover, i.e., to remove
the sybils from their routing tables.

message type keyword
(messages per
min)

the dreirad

route 41801 818
hello 1091 433
publish 12360 290
search 704 49
Total incoming
bandwidth
(KByte/sec)

186 32

Table 10.1: Traffic seen by the sybils that eclipse the keywords the and dreirad.
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Note that even if the keyword K cannot be found anymore using the search algo-
rithm employed in KAD, it does still exist on the regular peers where it was originally
published.

Depending on the popularity of the content to be eclipsed, the resource consumption
varies as we can see in table 10.1. This data was collected using 32 sybils all running
on the same physical machine. We see that it is possible to eclipse content using a
very limited amount of resources.

10.1.2 DDoS Attacks

A sybil attack can also be used to launch a DDoS attack enlisting a large number of
peers that participate in KAD. As for the previous two attacks, we need to place sybil
peers. However, in difference to the eclipse attack where incoming search queries
have been dropped by the sybil peer, the sybil peer now replies to the request and
includes the IP address of the “target” to be attacked in its response.

Depending on the number of sybils and their placement in zones that receive more or
less search traffic, the amount of attack traffic can be controlled. We have tried such
an attack against some of our own machines that were hit by an incoming traffic in
the order of several Mbits/sec.

These kinds of attacks are already happening in the Internet. A news release by Pro-
lexic from earlier this year reports [94] that DDoS attacks using peer-to-peer systems
that involve more than 300,000 peers have recently been observed.

10.2 The Content Pollution Attack

In this Section, we describe the content pollution attack against the peer-to-peer net-
work run by the Storm Worm. We at first give some background on botnets before
we detail the attack and discuss the results.

A bot is a computer program installed on a compromised machine which offers a
remote control mechanism to an attacker. Botnets, i.e., networks of such bots under
a common control infrastructure, pose a severe threat to today’s Internet: Botnets are
commonly used for Distributed Denial-of-Service (DDoS) attacks, sending of spam,
or other nefarious purposes [24, 52, 97]. Today, we are encountering a new genera-
tion of botnets that use peer-to-peer style communication. These botnets do not have
a central server that distributes commands and are therefore not directly affected by
botnet tracking. Probably the most prominent peer-to-peer bot currently spreading
in the wild is known as Peacomm, Nuwar, or Zhelatin. Because of its devastating suc-
cess, this worm received major press coverage [45, 63, 85] in which — due to the
circumstances of its spreading — it was given the name Storm Worm (or Storm for
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short) [119]. This malware currently is the widest-spread peer-to-peer bot observed
in the wild.

For finding participating bots within the peer-to-peer network and receiving com-
mands from its controller, the first version of Storm Worm uses OVERNET, a
Kademlia-based [77] routing protocol. OVERNET is implemented by Edonkey2000,
that was officially shut down in 2006, but still benign peers are online in this net-
work, i.e., not all peers within OVERNET are bots per se.

In October 2007, the Storm botnet changed the communication protocol slightly.
From then on, Storm does not only use OVERNET for communication, but newer
versions use their own peer-to-peer network, which we choose to call the Stormnet.
This peer-to-peer network is identical to OVERNET except for the fact that each mes-
sage is XOR encrypted with a 40 byte long key.

To measure the number of peers within the whole Storm network, we ran our crawler
Blizzard (Section 8.3) on OVERNET and Stormnet. The speed of our crawler allows us
to discover all peers within OVERNET 20 to 40 seconds (depending on the time of
day).

Using our adapted content spy Mistral (Section 8.4), we are able to monitor requests
within the whole network.

After having crawled the network and spying on the requests issued by the bots, the
next step is to disrupt the communication between the bots. To prevent bots from
retrieving search results for a certain key K, we publish a very large number of files
using K. The goal of the pollution attack is to “overwrite” the content previously
published under key K. Since the Storm bots continue to publish their content as
well, this is a race between the group performing mitigation attempts and the in-
fected machines.

To perform this attack, we again first crawl the network and then publish files to
all those peers having at least the first 4 bits in common with K. This crawling and
publishing is repeated during the entire attack. A publishing round takes about 5
seconds. We try to publish on about 2,200 peers during this time. About 400 of these
peers accept our publications. The peers that do not respond did either previously
leave the network and could not be contacted because they are behind a NAT gate-
way, or are overloaded and could not process our publication.

Once a search is launched by any regular client or bot, it searches on peers closely
around K and will then receive so many results (our fake announcements) that it is
going to stop the search very soon and not going to continue the search farther away
from K. That way, publications of K that are stored on peers far away from K do
not affect the effectiveness of the attack as they do for the eclipse attack.

We evaluate the effectiveness of the pollution attack by polluting a hash used by
Storm and, at the same time, searching for that hash. We do this using two different
machines, located at two different networks. For searching, we use kadc [57], an
open-source OVERNET implementation, and an exhaustive search algorithm we de-



106 CHAPTER 10. CONTENT IN KAD

veloped. Our search method is very intrusive, it crawls the entire network and asks
every peer for the specified content with key K. Figure 10.1(a) shows that the num-
ber of Storm content quickly decreases in the results obtained by the regular search
algorithm, then almost completely disappears from the results some minutes after
the attack is launched, and finally comes back after the attack is stopped. However,
by modifying the search algorithm used, by asking all peers in the network for the
content and not only the peers close to the content’s hash, the storm related content
can still be found (Figure 10.1). Our experiments show that by polluting all those
hashes that we identified to be storm hashes, we can disrupt the communication of
the botnet.
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Figure 10.1: The number of publications by Storm bots vs. the number of publications by
our pollution attack.

10.3 Spy Results

Let us first quantify the resources required to introduce sybil peers into the entire
KAD ID space using Mistral. Three million online peers that have to be crawled
regularly with Blizzard, at least every two hours, to cope with the churn in the system.
Each crawl accounts for 4 GByte of traffic. Afterward, the sybils must be announced
to those peers. Assume that we only announce the 256 closest sybils to each peer:
one announcement costs 50 bytes plus another 50 bytes for the ack; that accounts for
3, 000, 000 ∗ 256 ∗ 2 ∗ 50 bytes = 72 GByte. Announcements must be done periodically.
On average, Sybil announcements generate about 40 MBytes/s of traffic. Moreover,
the sybils will also attract search and publish messages. This clearly shows that from
the bandwidth point of view it is not possible, with our resources, to place sybils in
the entire network.

Placing only 256 sybils in each 8-bit zone, we get a total of 65,536 sybils. On the aver-
age, one sybil will send and receive ten 100 bytes packets per second. That generates
10 ∗ 100 ∗ 65, 536 bytes/s or 60 MBytes/s. Moreover, every two hours, 40 GByte are
needed for the crawling of the network and the announcement of the sybils, creating



10.3. SPY RESULTS 107

an additional 12 MBytes/s. That clearly shows that from the bandwidth point of
view it is not possible to place sybils in the entire network.

We once tried to launch our spy Mistral on the entire KAD ID space. The load on
our machine was so high that not all the queries could be satisfied and recorded.
Despite all these problems, we obtained interesting results. Figure 10.2 shows that
the popularity of the keywords is not at all equally distributed. The peaks related
to the words “and”,”com”,”for”, and “dvd” are clearly visible. All these words are
meaningless stopwords. Note that this figure is incomplete, not all the popular key-
words appear, since the machine running the measurements was overloaded and
had to drop many requests. The load among the peers is clearly unbalanced. KAD
peers that by misfortune have a KAD ID close to a peak assume much more load than
other peers.
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Figure 10.2: The number of publish messages in different zones of the KAD ID space.

The hash values of the search requests, the keywords publish requests, and the key-
words themselves are uniformly distributed over the KAD ID space. The same is true
for the source search requests and the source publish requests. We also know from
our earlier measurements with Blizzard that the peers are uniformly distributed as
well on the KAD ID space (Section 9.1.1).

This property allows us to estimate the total number S of sources (files) in the system
by simply counting the number of sources in a zone. Let Spart be the number of
sources counted in an 8–bit zone, and Ŝ := 256 ∗ Spart the estimate for the total
number of sources in the KAD system. Using Chernoff bounds (see [82], Chapter 4),
we tightly bound the estimation error. Indeed, Prob(|S − Ŝ| < 45000) ≥ 0.99, which
means that our estimate Ŝ most likely has an error of less than 3% for a total number
of at least 80 million sources.

What type of content is behind these 80 million sources? Almost two third of it are
audio files, followed by video files, software, documents, and images (Table 10.1(a)).
The most frequently used audio format is mp3 with 87% of the audio files (Ta-
ble 10.1(b)). Half of the files are encoded with a bitrate of 128kbps, a quarter with
the higher bitrate of 192kbps. Regarding the video formats, the battle is not yet de-
cided: 34% of avi files, 24% of wmv files, and 16% of mpg files (Table 10.1(d)). One is
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not surprised that, for documents, the most frequently used format is pdf with 43%
(Table 10.1(e)).

(a) The fractions of the dif-
ferent file types.

file fraction
type
Audio 0.61
Video 0.15
Software 0.11
Document 0.05
Image 0.05

(b) The audio formats
used.

audio fraction
format
mp3 0.87
wma 0.02
mid 0.01

(c) The audio bitrates
(kbps) used.

bitrate fraction
(kbps)
128 0.50
192 0.26
160 0.06
320 0.05
256 0.02

(d) The video formats
used.

video fraction
format
avi 0.34
wmv 0.24
mpg 0.16
mkv 0.09
rmvb 0.04
asf 0.04
mpeg 0.03
rm 0.02

(e) The document formats
used.

document fraction
format
pdf 0.43
txt 0.17
doc 0.10
nfo 0.06
htm 0.02
html 0.01
ppt 0.01

Table 10.2: An overview of the file types and the file formates used in KAD. If the fractions
do not sum up to 1.00, marginal types/formats have been omitted.

The file sizes strongly depend on the type of the files. For audio, about 90% of the
files have a size between 2MB and 10MB. Whereas for video the distribution is larger,
the sizes of a typical divx movie (about 730MB), and of a movie encoded with half
the tv resolution (360MB) are noticeable. More than half of the documents are less
than 10KB long, these are probably readme files or the like (Figure 10.3).
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Figure 10.3: The CDF of the file sizes split by file type.
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We did also encounter pollution, what we define as files that are announced with a
wrong file name. For each file, a hash on its content is computed, therefore files can
be securely distinguished from each other. Mainly porn movies are announced with
file names of recent cinema movies. A file that has two (or more) different names is
not necessarily polluted, a user may simply have removed some words (e.g. divx,
fr) from the title. We consider about 5% of the files to be polluted (Figure 10.4). The
maximum number of different titles for one file was 395.
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Figure 10.4: The number of distinct file names per file (identified by the hash of its content).

10.4 Reducing the Publish Actions

Our measurements show that there are ten times more publish messages than search
messages. This is due to the fact that search actions have to be induced by a hu-
man participant in contrast to publish messages: the client application publishes all
the shared content regularly. Moreover, a publish message is 10 times bigger than a
search message since it does not only contain a keyword but also metadata describ-
ing the published content. Thus we focus on improving the performance of KAD by
reducing the number of publish actions.

The number of times a keyword publication is observed versus the ranking of the
keyword for the 8-bit zones 0xe3 and 0x8e are shown in Figure 10.5 in log-log scale.
Rank 1 is the most popular keyword. If each curve was to be a straight line, then the
popularity of keywords would follow a Zipf-like distribution (i.e., the probability
of seeing a publication message for the i’th most popular keyword is proportional
to 1/iα [107]). We used Matlab’s curve-fitting tools to estimate the value of α for the
curve. The value of α is the same for all zones: α ≈ −1.63. It is near the most popular
keywords where the zones differ by an order of magnitude.

We picked two zones as examples. The zone 0xe3 contains the keyword “the”,
whereas the zone 0x8e does not contain any popular keywords. The keyword “the”
in zone 0xe3 accounts for 30% of the total load in the zone. In total 1,518,717 publish
requests with the keyword “the” hit our sybils in 24 hours. Whereas, in zone 0x8e,
the most popular keyword accounts only for 5% of the load. In this zone, the most
popular keywords are almost equally popular.
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Figure 10.5: The number of publications per keyword for two different zones.

Not only the zone as a whole benefits from not publishing stopwords, but espe-
cially single peers close to the stopwords’ hashes. Qiao and Bustamante [96] nicely
describe the load balancing mechanism of Overnet, which relies on the same mech-
anisms as KAD. They state that peers close to hot spots are experiencing only 50%
more overhead than other peers. However, all their measurements were done with
search requests only. They simply show how widely a keyword is spread over the
hash space. However, our measurements with Mistral show that the publish mes-
sages always hit those machines first that are close to the hash of the popular key-
word. Only if these machines are overloaded, the publisher tries to contact machines
more distant from the hash of the keyword. Figure 10.6 shows the number of queries
that hit our ten most loaded sybils in the two zones 0xe3 and 0x8e. The popular
keyword “the” in zone 0xe3 is mainly responsible for the high load on these syblis.
The sybils with a lower rank have the same load in both zones.
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Figure 10.6: The number of queries received by the sybils for two different zones.

In figure 10.7, the returned load values that are obtained by publishing to keywords
whose hashes are very close to each other in the hash space are plotted: “the” and
“cassaforte”. Close to the hash value of “the”, the peers are overloaded in such a
way that also the keyword “cassaforte” can not be published.

The popular keywords that make the difference between the zones are all stopwords.
Table 10.3(a) shows specific stopwords for KAD file names which augment the set
believed to be used in Google (Table 10.3(b)). We propose to use the union of Ta-
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Figure 10.7: The number of queries received by the sybils around two keywords.

ble 10.3(a) and Table 10.3(b) as stopwords. The number of peers on which a stop-
word is published as well as the number of files containing the stopword have been
determined by first crawling the peers around the stopword with Blizzard and then
by querying all those peers for the stopword. Excluding these words from the pub-
lishing process does not affect the usability of the system, as a user can still specify
the filetype (documents, music, movies, etc.) he is looking for.

A DHT is not meant to be browsable, it is not designed to keep a complete list of the
content. However, for the moment, this is exactly what happens when publishing
keywords like “avi”, “english”, “french”, “divx”, “dvdrip”, etc. Users who want to
download an English movie simply search for “dvdrip” and “english”. These search
requests result in a random selection of all files containing these keywords in their
title.

Not only the popularity expressed by the number of publish request, but also by
the number of distinct publishers, identified by their IP addresses, follows a Zipf
distribution.

Unlike for the keywords, the popularity of the sources is much better balanced inside
the zones and between the zones. The most popular source accounts only for 0.1%
of the source publish traffic.

Improve the content availability Changing the implementation of KAD in a way
that the content is not published every 24 hours on 10 peers but every 5 days on 50
peers, which results in the same amount of overhead, one can significantly improve
the availability of the content (Figure 10.8).

Trying to augment the live time of published content is only important for those
peers that are highly available themselves. It is therefore necessary to know its own
past availability as well. If a peer is very volatile, it does not make sense to publish
metadata pointing to itself on high available peers, since these pointers will be bro-
ken if the peer itself is going off line. That means that the publish strategy has to be
adopted to the peer’s own past availability as well as to the availability of the peers
where the meta-data is going to be published. This observation leads us to design an
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(a) The stopwords for KAD

stopword # peers # files
avi 491 8101

xvid 479 13683
192kbps 437 8005

dvdscreener 413 12343
screener 433 7377

jpg 456 10529
pro 303 8378
mp3 482 12019
ac3 424 8045

video 468 10478
music 335 8558
rmvb 454 13643
dvd 450 10194

dvdrip 560 13235
english 388 7849
french 377 9468
dreirad 28 30

(b) The Google stopwords

stopword # peers # files
about 513 7608

are 330 7282
com 463 11550
for 549 12303

from 399 8345
how 542 8282
that 423 9148
the 487 14502
this 452 8510

what 394 7710
when 294 7241
where 431 9445
who 302 7742
will 458 7976
with 338 8543
www 391 11203
and 577 13706

Table 10.3: The Google and KAD stopwords with more than two letters, the number of peers
storing them, and the number of files containing them. For comparison, the rare keyword
“dreirad” is shown.
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Figure 10.8: The minimum availability of 10 publishes during 1 day compared to 50 pub-
lishes during 5 days.

improved publish scheme that maintains the same degree of availability for the in-
formation published while reducing the amount of traffic by one order of magnitude
[18].
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10.5 Related Work

Attacks in KAD There has been a small body of work that addresses the issue of
DDoS attacks using peer-to-peer systems. Naoumov et al. [84] discuss attacks for
the case of the now defunct Overnet system. Since routing in Overnet resembles
closely routing in KAD, their findings are very relevant to KAD. Two types of attacks
are identified: Index poisoning attacks where bogus records are inserted into the
overlay in order to direct peers searching for content to a target host that will become
the victim of the DDoS attack. Routing poisoning attacks where many peers are
tricked into adding the target host into their routing table. As a consequence the
target host will receive a lot of signaling (query, publish and maintenance) traffic.

El-Defrawy et al. [36] have investigated index poisoning attacks in BitTorrent and
Athanasopoulos et al. [4] discuss how to launch DDoS attacks in Guntella, an un-
structured peer-to-peer file sharing system.

There exist quite a few proposals in the literature to improve the security of DHTs.

DHT-based overlay systems are susceptible to various attacks launched by malicious
peers that may corrupt data, deny response to lookup queries, or impersonate other
peers so that data objects may be stored on rogue peers.

In DHTs-based systems, each node has a global identifier ID, which is generated
when the client application is started for the first time. If an attacker controls a frac-
tion, even small, of nodes with smartly chosen IDs, it can eclipse correct nodes and
prevent correct overly operation. The malicious nodes may be different entities or
the same entity with many identities (IDs).

Sit et al. [106] provide a clear description of security considerations that involve peers
that do not follow the protocol correctly: routing deficiencies due to corrupted rout-
ing lookup nd updates; vulnerability to partitioning when new peer joins and con-
tacts malicious peers; lookup and storage attacks; inconsistent behaviors of peers;
denial of service attacks; and unsolicited responses to a lookup query. They argue
that the peer’s identifier assignment must be done in a verifiable way, and that the
identifier must not be chosen by the node itself. However, they mention that a central
identification authority is not desirable in all situations.

Douceur [33] was the first to consider the problem of multiple identities in the con-
text of DHT-based peer-to-peer systems (The Sybil attack). He showed that without
the use of a centralized authority that certifies all nodes, it is impossible to prevent
this attack.

Castro et al. [20] presented a design and analysis of techniques for secure peer join-
ing. They propose to certify the node IDs by a set of trusted certification authorities
(CAs). Node ID certificates are signed by the CAs, which use a public key that must
be known by all network nodes. To prevent an attacker from obtaining certificates,
they propose to bind the ID to peer’s IP address, or require paying money for certifi-
cate.
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Rowaihy et al. [99] propose an admission control system that mitigates Sybil attacks
by adaptively constructing a hierarchy of cooperative admission control nodes. This
creates a tree structure with static root. A node wishing to join the network is se-
rially challenged using a hash puzzle by the nodes from the leaf to the root. Each
challenger node creates a cryptographic puzzle based on a hash function and the
solver has to invert the hash. As hash-functions are non-invertible, the solver must
use brute force to find the solution, which will require a large number of attempts.
This solution relies on the limitation of computational power of the joining node,
however, it may still allow a resourceful attacker to launch a substantial attack, es-
pecially if the potential for damage is disproportionate to the fraction of the system
that is compromised.

Yu et al. [139] propose SybilGuard, a protocol for limiting the corruptive influence of
the Sybil attack. SybilGuard is based on social network among user identities, when
an edge between two identities indicates a human-establish trust relationship. Mali-
cious users can create many identities but will have only few trust relationships. The
deployment of SybilGuard requires the existence of a well-connected social network,
which not the case of todays DHT-based peer-to-peer systems.

While a successful Sybil attack can be used to mount an Eclipse attack, Eclipse attacks
are possible even in the presence of an effective defense against Sybil attacks. To de-
fend against eclipse attacks, Castro et al. [20] proposed the use of Constrained Rout-
ing Tables (CRT), where a node’s neighbor set contains nodes with identifiers closest
to well-defined points in the identifier space, which leaves no flexibility in neighbor
selection and therefore prevents optimizations like proximity neighbor selection, an
important and widely used technique to improve overlay efficiency [21, 47]. In addi-
tion to CRT, Singh et al. [104, 105] propose to bound the in- and out-degree of over-
lay nodes, and present a defense strategy based on anonymous auditing of nodes’
neighbor sets. If a node has significantly more links than the average, it might be
a malicious node, and then it can be removed from the neighbor sets of the correct
nodes.

Stopwords in peer-to-peer systems Stopwords have been used for decades in in-
dexing and retrieval; we thus concentrate on the use of stopwords in the context of
peer-to-peer systems.

In [92] and [61], the authors describe an indexing system for the World Wide Web
based on a peer-to-peer system. Their idea is that peer-to-peer systems should be
able to build good search indexes in a distributed fashion, enabling Web searches
in a much more scalable way than traditional (centrally coordinated distributed)
search engines. These papers introduce the concept of “Highly Discriminative Keys”
(HDKs): these are a selection of “rare” keys occurring in a text document. Based on
these HDKs, they build a peer-to-peer index that they evaluate experimentally af-
terwards. They use up to 120,000 Reuters news articles; and then apply 250 English
stopwords and a stemmer when they construct a search term from the full text. This
is different from our approach: we do not intend to support full-text searches over
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the entire document, we are just trying to enhance the indexing for file names in
peer-to-peer systems.

The authors of [2] present a general four-layer architecture for a peer-to-peer-based
information retrieval system that is used to build a scalable index. They illustrate
the functionality of their approach by describing how a concrete indexing system
could be built with those four layers; in this context, stopwords are used to improve
the precision on layer 4. Again, this architecture is more general and aims at build-
ing a full-text search engine. Their system is not implemented and no performance
measurements are presented in the paper.

In [124], another approach for scalable Web search is proposed. The authors use a
technique developed by R. Fagin to merge the result sets of single-term queries more
efficiently than by just loading all of them onto a single site. Fagin’s idea is based
on sorted inverted lists that are efficiently merged across sites. The authors exclude
stopwords in their searches, without specifying details. Experimental results with
120 million Web pages show a low communication overhead for multi-site queries
based on Fagin’s idea. However, it is not quite clear where peer-to-peer technology is
used, and again, unlike in our system, the purpose is the construction of an efficient
full-text index.

Detailed measurement results from a study of Gnutella and Overnet (a precursor of
KAD) are presented in the paper of Qiao and Bustamante [96]. Among other things,
the authors evaluate the performance of queries in Overnet. Of particular interest
to our work are their results on queries to popular keywords (stopwords are very
popular keywords). They conclude that these are handled well by Overnet, because
it distributes the query load to multiple peers whose hash IDs are “close enough” to
the hash of the keyword: the more popular the keyword, the broader the hash range.
Our measurements contradicted this conclusion: first, considerable overhead is gen-
erated by initially querying the peer with the closest hash to the popular keyword
who answers with “too busy”; this goes on with an gradually less precise hash value
until a peer is found that is able to answer. Thus, a considerable additional load is
imposed on the peers next to popular keywords. Second, we do not only consider
the querying, but also the publishing load, which is much higher.

10.6 Conclusion

Distributed systems for content sharing are presumably believed to be more robust
against attacks than centralized systems having a single point of failure. However,
in practice, this may not be the case as long as the Sybil attack is possible. We have
discussed the implications of the Sybil attack in the case of KAD, which is the largest
DHT currently deployed:
The privacy of the end-users can easily be compromised, KAD itself can be arbitrary
disrupted, and the peers that participate in KAD can be enlisted against their will to
participate in a DDoS attack. Any of these attacks can be launched from a single PC
connected to the Internet via a broadband connection. Another type of attack we
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studied is the pollution attack. We presented experimental results of the feasibility
of this kind of attack against the Storm worm.

We have reported our findings obtained from spying on KAD, the largest currently
deployed DHT. We developed Mistral, a content spy, that allows us to gain an
overview of the content published and searched in KAD. Our observations show
that the publication process in KAD is responsible for more than 90% of the total
network traffic. Moreover, we note that the load is highly unbalanced between the
peers. The peaks of load are due to very popular keywords that are most often mean-
ingless stopwords. We then have proposed to add a stopword exclusion step into all
KAD based peer-to-peer systems. Our results show how this equalizes the load on
the peers storing the keywords, and, as a consequence, improves the overall system
performance. There is no drawback to stopword exclusion since stopwords do not
carry much meaning.



CHAPTER11
Content Access in aMule

The previous Chapters describe Kademlia in a general way, followed by measure-
ment results from the eDonkey network. In this Chapter we analyze in detail the
Content Access in the aMule implementation of KAD. Note that for other implemen-
tations of KAD the details may differ.

The aim of our study [115] is to evaluate the performance of the current implemen-
tation of content management. We identify its basic building blocks and we analyze
the interactions among them.

The main contribution of our work can be summarized as follows:

• We develop a qualitative analysis of the current implementation to understand
the impact of the design parameters on the latency of the overall content pub-
lishing/retrieval process;

• We characterize through measurements many interesting properties of the KAD
P2P system, such as the probability that an entry in the routing table is stale, or
the round trip delay of the messages;

• We evaluate through measurements the performances, in terms of overall con-
tent retrieval latency, the number of hops needed, and message overhead, of
the content retrieval process;

• We propose an alternative approach – called Integrated Content Lookup – for the
content retrieval process, by strongly coupling it with the lookup process and
we develop a qualitative analysis of this scheme.

The analysis highlights some performance issues with the current implementation:
the decoupling of the lookup phase and the content retrieval phase has an adversar-
ial impact on the performance of the retrieval process.

These issues are addressed by the Integrated Content Lookup scheme we propose.
The measurement-based characterization of the KAD P2P system shows that (i) a
large fraction of peers in the routing table that are stale and (ii) the empirical distri-
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bution of the message delay presents a non-negligible tail. These results should be
taken into account in the design of the content management process, since they have
a strong impact on the overall lookup delay.

11.1 Architecture

The basic operations that each node has to perform can be grouped into two sets:
routing management and content management. Figure 11.1 shows some of the basic
building blocks of the software architecture.
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Figure 11.1: Software architecture of KAD.

Routing management takes care of populating the routing table and maintaining it.
The maintenance requires to update the entries – called contacts – and to rearrange
the contacts accordingly. A peer stores only a few contacts of peers that are far away
in the KAD ID space and increasingly more contacts to peers closer in the KAD ID
space. If a contact refers to a peer that is offline, we define the contact as stale. In
order to face the problem of stale contacts due to churn (departure of peers), KAD
uses redundancy, i.e., the routing table stores more than one contact for a given dis-
tance. The routing management is responsible also for replying to route requests
sent by other nodes during the lookup (Sect. 11.1.1). Since in this chapter we focus
on content management, we do not go into the details of the routing procedure (the
interested reader is referred to [122]). The only information we use is the probability
that a contact contained in the routing table is stale: pstale.

Content management takes care of publishing the information about the objects the
peer has, as well as retrieving the objects the peer is looking for. We summarize
these two operations with the term content search, since they actually use the same
procedure (Sect. 11.1.2). In both cases the peer has a target KAD ID (of the objects it
wants to publish or it wants to retrieve) that it needs to reach. The KAD ID of an
object is obtained by hashing the keywords in its filename. Since the peer routing
table does not contain the KAD ID of all peers, the peer needs to build a temporary
contact list, called candidate list or simply candidates, which contains the contacts
that are closer to the target. The temporary list building process – called lookup – is
done iteratively with the help of the other peers. Since the lookup process and the
content search process represent the focus of our study, we explain them in detail in
the following sections.
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Note that the content management operations deal also with reply to content
searches made by other peers. This aspect (not shown in Fig. 11.1) is not considered
in our study since it is not relevant for us.

11.1.1 Lookup

The lookup procedure is responsible for building the candidate list with contacts
that are closest to the target KAD ID, i.e., contacts with the longest common prefix
to the target. The procedure, along with the main data structures, is summarized in
ProcedureLookup.

Procedure Lookup
Data: hash(128bit): target = hash of the target
Data: list: candidates = peers to query, ordered by their distance to target
Data: list: queried = peers queried with route requests
Data: list: answered = peers that replied to route requests
Data: final int: α = initial degree of parallelism
Data: final int: β = number of contacts requested
Data: final int: t = seconds to wait for route request messages
Data: timestamp: timeout /* timeout for route request messages */

Data: int: lookuptime = 0 /* time the lookup process is running */
Data: int: objectcount = 0 /* number of object references received */
Data: int: contentreplies = 0 /* number of content replies received */

Initialization:1

candidates.insert(50 closest peers to target from our routing table);2

send route request(target,β) to first α candidates;3

queried.insert(first α candidates);4

timeout = now + t;5

6

When route response is received do7

timeout = now + t;8

answered.insert(sender);9

foreach contact ∈ response do10

if contact not ∈ candidates and contact not ∈ queried then11

candidates.insert(contact);12

if dist(contact,target) < dist(sender,target) then13

/* approaching the target */
if contact is in the α closest contacts to the target then14

send route request(target,β) to contact;15

queried.insert(contact);16

17

The source peer first retrieves from its routing table the 50 closest contacts to the
destination and stores them in the candidate list. The contacts are ordered by their
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distance to the target, the closest first. Most probably those 50 contacts are too far
away from the target, so that the desired content is not stored on them.

The discover process is done starting from this initial candidate list in an iterative
way. The source peer sends a request to the first α contacts (by default α = 3). The
request is called route request. The source peer remembers the contacts to which a
route request was sent. A route request asks by default for β = 2 closer contacts
contained in the routing tables of the queried peers. A timeout is associated to the
lookup process. In case the source peer does not receive any reply, it can remove the
stale contacts from the candidate list and it can send out new route requests.

As soon as one route response arrives, the timeout is reset and for each of the β
contacts in the response it is checked if the contact has not already been queried and
it is not already in the candidate list. A route request is sent if (i) the new contact is
closer to the target than the peer that provided that contact, and (ii) it is among the
α closest contacts to the target. This implies that in the extreme case for every of the
α incoming route responses min(α, β) new route requests are sent out.

If the returned contact is not among the α closest known contacts it is simply stored
in the candidate list: for later use in case some queried nodes do not respond to the
route requests.

Figure 11.2 illustrates an example of the lookup process. On the top we show the
evolution of the candidate list, where we use the flags ‘s’ and ‘r’ to record if a route
request has been sent or a route response has been received respectively. α is set to
3 and β is set to 2. The initial list is composed of contacts a, b, c and d. The distance
in the vertical axes indicates the XOR-distance to the target. At the beginning, the
source peer sends a route request to the top α contacts a, b and c. Contact c is stale
and will never reply. The first response comes from b and contains β contacts, e and
f , that the source peer does not know. The new contacts are inserted in the candidate
list: since they are closer to the target than the other candidates, a route request is
sent to them. At this point the response of a arrives. The new contacts, g and h, are
inserted in the candidate list. Since contact h is not among the top α contacts, no
route request is sent to h. After some time, the source peer receives the response of
e, but only one of the contacts is inserted in the candidate list, since the other one is
already present in the list.

The Procedure Lookup terminates when the route responses contain only contacts
that are either already present in the candidate list or farther away from the target
than the other top α candidates. At this point, no new route request is sent and the
list becomes stable. The stabilization of the candidate list represents a key point for
KAD. In fact, the source peer has to exhaustively search for all the contacts around
the target. We show in Sect. 11.2 how the stabilization influences the performance.



11.1. ARCHITECTURE 121

c

a
f

g

b

i

s   r

b
c

f
h

e
g

a

a
b
c

e
f

s   r

b
c
d

a
s   r s   r

b
c

f
h

e
g

a

i

e

e,f g,h i,g

(stale)

(stale)

time

X
O

R
−

di
st

an
ce

 to
 th

e 
ta

rg
et

Figure 11.2: Example of lookup (α = 3; β = 2).

11.1.2 Content Search

When the candidate list becomes stable, the source peer can start the content search
process. The designers of KAD decided to consider a contact sufficiently close to the
target if it shares with it at least the first 8 bits. The space of KAD IDs that satisfy this
constraint is called tolerance zone.

Each candidate that falls in the tolerance zone can be considered for storing or re-
trieving a reference. The process is described in ProcedureContent Search.

In the implementation of KAD, there is no direct communication between the Pro-
cedureLookup and the ProcedureContent Search, i.e., when the candidate list
becomes stable, the ProcedureLookup does not trigger the ProcedureContent
Search. The stabilization of the candidate list means that in the last t seconds no
route responses are received, where t is the timeout set to 3 seconds by default. This
can happen for two reasons: the closest peers to the target have been found or the
queried peers did not reply, i.e., the top α contacts in the candidate list are stale, or
overloaded, or the messages were lost.

The solution adopted by KAD to handle these two different situations is a periodic
execution of the ProcedureContent Search: every second the procedure checks
if the candidate list has been stable for at least t seconds. In this case, the procedure
iterates through the candidate list: a content request is sent if (i) a route request was
sent to the contact, (ii) the contact replied with a route response and (iii) the contact
belongs to the tolerance zone. The content request contains a ‘store reference’
type in case of publishing and a ‘search reference’ type in case of content re-
trieval (line 13). When the procedure iterates through the candidate list and finds a
contact that has not been queried, it sends a (single) route request, actually restarting
the ProcedureLookup. This is useful in case the lookup gets stuck (line 15).
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Procedure Content Search (Publish or Retrieval)
Every 1 sec do1

if not stopsearch then2

lookuptime++;3

if lookuptime > 25 then4

stopsearch← true;5

if candidates is empty then6

stopsearch← true;7

if timeout ≤ now then8

/* candidate list is considered stable */
for i← 0 to candidates.size do9

contact = candidates.get(i);10

if contact ∈ queried then11

if contact ∈ answered and contact in tolerance zone around target then12

/* the timeout triggers the actual content search.

*/
send content request(TYPE, target) to contact;13

candidate.remove(contact);14

else15

/* the timeout triggers a new route request. */
send route request(target,β) to contact;16

queried.insert(contact);17

return;18

19

When content response is received do20

contentreplies++;21

if peer is publishing then22

if contentreplies > 10 then23

stopsearch← true;24

return;25

else26

foreach object ∈ response do27

objectcount++;28

if objectcount > 300 then29

stopsearch← true;30

31

When a content response is received, a counter is incremented. In case of content
publishing, the maximum value for this counter is set to 10: in order to face churn
each reference is published to 10 different peers that belong to the tolerance zone.
In case of content retrieval, the response contains one or more objects with the re-
quested reference and the maximum value for the counter is set to 300, i.e., at maxi-
mum 300 objects that contain the reference are accepted.
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The main loop is stopped for one of the following three reasons: either the maximum
search time is reached (lines 4-5), or there are no more contacts to query (lines 6-7),
or enough content response have been received (lines 22-30).

11.2 Analysis of the Content Search Process

The content management process in KAD is divided into two procedures – Lookup
and Content Search. The latter contains in a single module both content publish-
ing and retrieval. Nevertheless, the aims of the two tasks – publishing and retrieval
– are completely different. On the one hand a peer should try to publish the different
replicas as close as possible to the target: this requires a candidate list to be stable, a
result that can be obtained with large timeouts – note that, as explained above, a sta-
ble candidate list does not necessarily mean that the contacts are close to the target.
On the other hand, a peer should look for the content as soon as it is sufficiently close
to the target, i.e., when it enters in the tolerance zone: in this case a stable candidate
list is not necessary.

In this section we analyze the impact on the performance of the content management
approach adopted by KAD. The main performance metric for the content search
process is the overall lookup latency, i.e., how long it takes to reach the target and find
the content. The delay is mainly influenced by the following parameters:

pstale probability that a contact is stale;
d round trip delay between two peers;
h number of iterations (hops) necessary to reach

the target;
α number of route requests sent initially;
β number of closer contacts asked for by a route

request;
t time waited for route response messages.

While pstale, d and h cannot be controlled by the content management process, α, β
and t do depend on the implementation.

11.2.1 Qualitative Analysis of the Latency

Lookup Latency.

For the analysis of the delay, let FRTT(d) be the cumulative distribution function
(CDF) of the round trip delay for the single hop (see for instance the empirical CDF
found with measurements and shown in Figure 11.5). At the first iteration (hop and
iteration are used interchangeably) α messages are sent. We assume that the proba-
bility that all the α contacts are stale, pα

stale, is negligible.
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Among the initial α messages, only α(1−pstale) replies are received. At each response,
γ = min(α, β) messages can be possibly sent out. The maximum number of messages
at the second hop, ρ2, max, is then α(1−pstale)γ. In the following hop, only a fraction of
(1−pstale) of contacts reply and each response can trigger γ new requests. In general,
the maximum number of messages at hop i, ρi, max, is

ρi, max = α[(1− pstale)γ]i (11.1)

and the cumulative maximum number of messages up to hop h, ρh, max, is

ρh, max = α

h−1∑
i=0

[(1− pstale)γ]i. (11.2)

In practice, some contacts in the replies are already known or they are not inserted in
the top α positions of the candidate list, so the actual total number of messages sent
up to hop h will be ρh ≤ ρh, max. Figure 11.3 shows ρh, max and ρh for two settings for
the parameters α and β. The value of pstale used to compute ρh, max and the value of ρh

have been found by measurements as will be explained in Sect. 11.3. We consider up
to three hops, since, as we will see in Sect. 11.3, more than 90% of the lookups reach
the target in less than four hops. The actual number of messages sent is close to the
maximum we computed in case of default values for α and β (3 and 2 respectively). If
we increase α and β both to 4, we receive more duplicates or not interesting contacts,
thus the actual total number of messages is far less than the maximum.
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Figure 11.3: Number of messages sent during lookup.

The candidate list stabilizes only after the last response is received, thus the stabiliza-
tion time corresponds to the maximum round trip delay over all the route requests
that were sent. To simplify of the analysis, we assume that all messages are sent at
the beginning1. The CDF of the lookup delay can be found considering that the max-
imum of two random variables, which corresponds to the product of their CDFs (see
[19], Eq. 2.6), thus we obtain

Flookup(d) = FRTT(d)ρh . (11.3)

1This is an unrealistic assumption that provide optimistic results; for our purpose, this coarse
analysis is sufficient to understand the impact of the parameters.
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If we increase α or β (or both), ρh increases, i.e., more messages are sent. The higher
ρh is, the longer the source peer has to wait for the candidate list stabilization, since
it has to wait for all the responses. This is the contrary of what one would expect,
namely that sending more messages should increase the chances to reach the target
faster. This means that with the current scheme it is not possible to reduce the lookup
latency by increasing the parameters α and β.

Content Retrieval Latency.

Once the candidate list is stable, the lookup process terminates. At this point the
content retrieval process waits for t seconds (timeout) before starting to send the
content requests. This adds to the overall latency t seconds, plus a random delay
uniformly distributed between zero and one second, due to the periodic execution of
the ProcedureContent Search. Moreover there is an additional round trip delay
due to the content request message.

Overall Lookup Latency.

In summary, the overall latency of the content retrieval process is composed by dif-
ferent terms. Let flookup(d) be the probability density function (PDF) of the lookup
latency, i.e., the derivative of Flookup(d) found in Eq. (11.3). The PDF of the overall
lookup delay, foverall(d) can be found by considering that the sum of two random
variables corresponds to the convolution of their PDFs, denoted with the symbol ‘∗’.
We obtain

foverall(d) = flookup ∗ δt ∗Unif(0,1)(d) (11.4)

where δt is the Dirac’s delta function translated in t (the timeout value) and Unif(0,1)

is the PDF of a random variable uniformly distributed between 0 and 1. For sim-
plicity we do not consider the additional round trip delay due to the content request
message since it can be correlated with the lookup delay. The CDF of the overall
lookup delay, Foverall(d), can be found by integrating Eq. (11.4). Figure 11.4 shows
the CDFs of the overall lookup latency for different values of α and β. The input
CDF of the round trip delay, FRTT(d), and the value of ρh have been obtained by mea-
surements as we will explain in Sect. 11.3. As already observed, by increasing the
design parameters α and β, the overall lookup latency increases. The fact that the
lookup process and the content search are decoupled results in an overall delay that
is strongly dependent on the value of the timeout t.

11.3 Evaluation

In this section we measure the performance of the content management in KAD. We
first evaluate the external factors that we cannot influence: pstale, the empirical CDF
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Figure 11.4: Overall Lookup Latency Foverall(d): qualitative analysis (t = 3).

of the round trip delay FRTT(d) and the empirical CDF of the number of hops h. Then
we study the current implementation and the impact of α, β, and t.

11.3.1 Measurement Tool and Methodology

For our measurements we have instrumented an aMule client [1] to log all the mes-
sages related to content management: route requests and route response, as well as
content search and content response. Given a keyword, the client determines the tar-
get KAD ID and starts the ProcedureLookup and the ProcedureContent Search.
For each message, we register the timestamp, and for lookup responses we register
the contacts returned, so that we can evaluate the evolution of the candidate list.

We have extracted 1251 keywords from movie titles found on IMDB [128] and we
use them as input for the instrumented client. The hashes of these keywords are
uniformly distributed over the hash space. The metrics that can be derived from the
collected data are:

pstale: the probability of stale contacts, found as ratio between the number of requests
sent and responses received;

CDF of d: empirical cumulative distribution function of the round trip delay for a
single message;

CDF of h: empirical cumulative distribution function of the number of hops neces-
sary to reach the target (the first peer that replied with the content);

CDF of the Overall Lookup Latency: empirical cumulative distribution function of
the delay between the first route request sent and the first content response re-
ceived;

Overhead: The number of route request messages sent during a lookup process.

The initial number of route requests launched is set to α = 3; the number of contacts
contained in the route response is set to β = 2. The timeout is equal to t = 3 seconds.
These are the default values in aMule [1]; we perform a set of experiments by chang-
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ing these values and we evaluate the impact of them on the overall lookup latency
and on the overhead.

11.3.2 Basic Characteristics

Staleness (pstale).

The first parameter we analyze is pstale, the probability that a contact is stale. We
perform the same set of experiments with two different access networks and we have
found a value of pstale approximately equal to 0.32. This value has a strong impact on
the performance: one third of the contacts are stale, so a lookup process with low α
may get stuck with high probability. With the default value α = 3 this happens with
probability pα

stale = 0.03. We will see that this value is partly responsible for the tail
of the empirical CDF of the overall lookup latency (see Fig. 11.9).

Round Trip Latency (d).

The other interesting metric that is independent from the client settings is the round
trip delay of messages. Figure 11.5 shows the results of our measurement obtained
from two different access networks.
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Figure 11.5: Empirical CDF of the round trip delay for route requests.

Almost 80% of the responses are received within 700 msecs after the request was
sent. Nevertheless the distribution has a long tail, and this also will have an impact
on the overall lookup latency.

Number of Hops (h).

Figure 11.6 shows the empirical CDF of the number of iterations necessary to reach
the target. It is interesting to note that at maximum 5 hops are necessary, and in more
than 90% of the cases 3 hops are sufficient. This means that, since the KAD network
has more than one million concurrent users (Section 9.1.1), the routing tables are very
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detailed (about 1,000 contacts). Table 11.1 shows the number of bits gained towards
the destination per hop. Initially in average a peer has already nearly one bit in
common with the target.
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Figure 11.6: Empirical CDF of the number of hops.

hop bits gained
init 0.98
1 6.13
2 6.02
3 5.24
4 2.30
5 0.00

Table 11.1: The average number of bits gained toward the destination per hop.

Once the content is found, we can evaluate the number of bits in common between
the KAD ID of the keyword we searched for and the KAD ID of the contact that
replied with the content. This helps in understanding how much the content is
spread around the target. Figure 11.7 shows the empirical CDF of the number of
bits in common between the replying peer and the content hash. The wide support
of the empirical CDF indicates that many keywords can be far from the correspond-
ing target. In Sect. 11.3.4 we will use this observation in order to study the impact of
the timeout.
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Figure 11.7: Empirical CDF of the bits in common between the peers replying to the search
requests with the desired content and the hash of the content.
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Actually this is not true for all the keywords. It depends on the popularity of a
keyword how widely it is spread in the hash space (Figure 11.8). These results are
obtained with an exhaustive search we implemented: first the entire zone around
the searched keyword in the hash space is crawled to learn about all peers, second
all these peers are queried for the desired content. Rare keywords (as “dreirad” or
“fahrrad”) have more bits in common with the peers they are stored on, compared
to popular keywords (as “the”, “french”, or “german”).
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Figure 11.8: The CDF of the bits in common between the peers hosting a content and the
hash of the content.

11.3.3 Impact of Different Degrees of Parallelism α

In Figure 11.9 we show the empirical CDF of the overall lookup latency when the
parameter α varies from 1 to 7 (its default value is 3). We note a significant difference
between the case α = 1 and the cases α ≥ 2, which is due to the high value of pstale.
In case of α = 1, at each hop only one message is sent; if the contact is stale and the
message is lost, the process has to wait for the timeout to expire. This has a strong
impact on the overall lookup latency.

With α = 2, the probability that the top 2 contacts are all stale decreases significantly.
For instance, with pstale = 0.32, the probability that at the first hop both contacts are
stale is p2

stale = 0.1. Therefore, the impact of the timeout due to stale contacts on the
overall lookup latency reduces, and becomes negligible for α ≥ 3.

With α ≥ 3, the different empirical CDFs seems to overlap. If we look in detail
at the median (Table 11.2, with β = 2 and t = 3), we see that, as α increases, the
median of the overall lookup latency increases. This result was predicted by our
qualitative analysis in Sect. 11.2.1 (c.f. Fig. 11.4). The higher α, the more messages
the source peer sends (ρh), the longer it takes for the candidate list to stabilize, since
it is influenced by the delay of the last received response.

As also shown in the qualitative analysis in Sect. 11.2.1, the support of the empirical
CDF starts at d = 4 seconds. In the best case, in fact, the candidate list stabilizes
after approximately 100 milliseconds (each hop takes at least 40 msec, and the mean
number of hops is 2.5). Once the list is stable, the source peer has to wait for the
timeout (t = 3 seconds), and for the periodic execution of the ProcedureContent
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Figure 11.9: Empirical CDF of the overall lookup latencies as a function of the degree of
parallelism α (β = 2; t = 3).

Search (in average, 500 msec). If we consider also the application level processing
delay, we obtain almost 4 seconds.

As far as the overhead is concerned, Table 11.2 shows the average number of mes-
sages sent for different values of α (left hand side of the table, with β = 2 and t = 3).
The number of messages sent increases linearly with increasing α.

α β = 2; t = 3 β = 2; t = 0.5
average # of median average # of median

messages lookup messages lookup
ρh latency ρh latency

1 8.5 9.5 10.4 5.6
2 11.5 6.6 12.8 2.4
3 13.7 5.8 15.2 2.3
4 16.9 6.1 18.0 2.3
5 20.0 6.4 20.6 2.2
6 22.9 6.5 24.0 2.3
7 26.5 6.5 27.7 1.8
8 30.0 6.6 30.4 1.6
9 32.9 6.6 34.0 1.5
10 36.7 6.6 36.8 2.2

Table 11.2: The overall lookup latency and the number of messages sent per lookup depend-
ing on α for different configurations.

11.3.4 Impact of the Timeout t

The default timeout t in aMule is set to three seconds. This implies that the candi-
date list must be stable for three seconds before the content can be requested. As we
showed in Sect. 11.3.2 (Fig. 11.7), the contacts that hold the content may be spread
around the target. This means that we could start asking for the the content as soon
as the lookup finds a candidate in the tolerance zone, without waiting for the candi-
date list stabilization.
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One possible way to obtain the above result is to decrease the time the Proce-
dureContent Search has to wait before starting iterating through the candidate
list, i.e., we can decrease the timeout t.

As for α, also t can be changed locally at our instrumented client, without need to
update all participants in the network. In Figure 11.10 we show the empirical CDFs
of the overall lookup latency for different timeouts for the route request messages.
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Figure 11.10: Empirical CDF of the overall lookup latencies as a function of the route request
timeout t (α = 3;β = 2).

As the timeout decreases, its influence on the overall latency becomes less signifi-
cant: reducing the timeout from the default value of 3 seconds to 0.5 seconds de-
creases the median lookup latency by 60%, from 5.8 to 2.3 seconds. Note that further
reducing the timeout would have no effect, since the periodic execution of the Pro-
cedureContent Search is set to 1 second. Similar results are obtained using a
different access network, a common ADSL line (see Fig. 11.11).
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Figure 11.11: Empirical CDF of the overall lookup latencies depending on the route request
timeouts for an ADSL client. (α = 3;β = 2; t = ∗)

In Table 11.2 we show the overhead for a timeout t set to 0.5 seconds (right hand side
of the table). If we compare the default case α = 3, t = 3 with the case α = 3, t = 0.5,
we see that the overhead is slightly increased: this is mainly due to the the fact that
the timeout is also used to trigger new route requests, and, if the responses to the
initial α requests arrive later than t = 0.5 seconds, new requests are sent out.
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Table 11.3: The overall lookup latencies and the number of messages sent per lookup de-
pending on t for different configurations.

t α = 3; β = 2 α = 1; β = 2
average median average median

# of lookup # of lookup
messages latency messages latency

0.5 16.2 2.3 11.4 5.5
1 15.6 3.4 10.9 5.6
2 15.2 4.9 10.2 7.8
3 14.7 5.8 9.5 9.5
4 14.7 7.4 9.1 10.9
5 14.4 8.2 8.7 12.7

In Table 11.3 we show the overhead and the lookup latency for different values of the
timeout t. While the median lookup latency decreases significantly for decreasing t
the average number of messages sent increases only slightly.

For the peer running at Eurécom a route request timeout set to 0.5 seconds would
be optimal, since there is the sweet spot in the distribution of the route re-
quest/response RTTs (Figure 11.10). Measurements confirmed that peers being con-
nected to the Internet via a standard ADSL connection do have the same optimum
value for the timeout (Figure 11.5). For peers having a poor connection to the Inter-
net this value needs to be adapted. We suggest to keep in memory a running average
of the RTT as done in TCP and adjust the timeout accordingly. In other applications
the timeout is usually set to two or three times the RTT. Since this application does
not depend on a specified message, but the goal is to decrease the lookup time, it
makes sense to set the timeout tighter. Some messages may come in late, but the
approach toward the targets goes on.

11.3.5 Impact of the Number of Contact Asked For

Once observed the gain that can be obtained by eliminating the effect of the timeout,
we want to evaluate the impact of the parameters α and β on the overall lookup
delay. Recall that β is the number of closer contacts that are asked for by a route
request message. Unfortunately, this parameter cannot be chosen freely in the source
code, but can be only set to 2, 4, or 11. We performed measurements for β = 4 and
varying α.

Figure 11.12 shows the results we obtained with different settings. The more mes-
sages we send, the more the overall lookup latency is reduced. This comes at a cost of
increased overhead. For instance, for α = 5 and β = 4 the mean number of messages
is equal to 29. By increasing further the values of the parameters, we are not able to
notice a significant improvement in the empirical CDF, since the periodic execution
of the ProcedureContent Search determines the overall lookup delay.
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Figure 11.12: Empirical CDF of the overall lookup latencies varying α and β.

11.4 Improving the Content Lookup

The evaluation of the impact of the timeout t on the overall lookup latency suggests
that a different approach to the content management process would bring a substan-
tial gain.

The idea is to differentiate the software architecture according to the two different
aims – publishing or retrieval. For content publishing, the main issue is the role of
the timeout in the stabilization of the candidate list: a timeout occurs when candi-
dates do not reply or when candidates reply with contacts that are not closer than
the other candidates. The former increases the total delay and should be considered
separately. The solution is then to decouple the timeouts for the two different situa-
tions. At this point, we believe that the approach to wait until the list is stable before
publishing (because it contains the best candidates possible) is the best one.

Instead, for the content retrieval, this process should be strictly coupled with the
lookup process: as soon as the lookup finds a candidate in the tolerance zone, a
content request should be sent. We call this approach Integrated Content Lookup (ICL).
In Sec. 11.3.4 we have shown how to obtain a similar objective with a simple hack of
the code: by decreasing the timeout t we let the content search process iterate though
the candidate list more frequently. The results we have obtained are pessimistic,
since they include the delay due to the periodic execution of the ProcedureContent
Search. In this section we propose a model that shows the qualitative performance
in terms of the overall lookup latency of ICL scheme.

We assume that the probability that all the initial α contacts are stale, pα
stale, is negligi-

ble. Among the initial α messages, only α(1− pstale) replies are received. The process
continues to the next hop using the contacts contained in the first reply. Thus, the
delay of the first hop is the minimum delay among the replies. It is simple to show
that the corresponding CDF for the first hop is equal to (see [19], Eq. 2.8)

F1, ICL(d) = 1− [1− FRTT(d)]α(1−pstale) . (11.5)

At this point we neglect the contacts contained in the route responses that come af-
ter the first, and concentrate only on the β contacts we received. This simplification
ignores possible better contacts contained in the responses of the first hop that are
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received later: in this sense the analysis is conservative. We assume that the contacts
contained in the first response are placed in the top of the candidate list (they are
closer to the target than the candidates already present). In the second hop the pro-
cess sends γ = min(α, β) new route requests. Among them, only γ(1 − pstale) replies
are received. The CDF of the delay for the second hop is

F2, ICL(d) = 1− [1− FRTT(d)]γ(1−pstale) . (11.6)

For the following hops, we have the same behavior as for the second one. When a
contact replies, the Integrated Content Lookup process checks if it falls in the toler-
ance zone and immediately send a route request. Thus, the overall lookup latency is
given by the sum of the delay of the single hops. Let fi, ICL(d) be the PDF of the delay
for a single hop i, i.e., the derivative of Fi, ICL(d) of Eqs.(11.5) and (11.6). The PDF of
the overall lookup latency, fICL(d), is then

fICL(d) = f1, ICL ∗ f2, ICL ∗ . . . ∗ fh, ICL(d) (11.7)

where the convolution is done for all the h hops. The CDF of the overall lookup
delay can be found by integrating Eq. (11.7). Figure 11.13 shows the CDFs of the
overall lookup latency for different values of the parameters α and β, with a number
of hops h = 3. We consider the input CDF of the round trip delay, FRTT(d), shown
in Sect. 11.3. The design parameters α and β now have a significant impact on the
overall lookup latency, at a cost of increased overhead. This qualitative analysis
yields the same results as shown in the experimental evaluation, where we studied
different settings for the parameters α, β and t (Fig. 11.12). It is interesting to note
that the CDF has a similar tail as we found with measurements: this means that the
tail of the input CDF FRTT(d) has a strong impact, even for large α and β.
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Figure 11.13: CDF of the Overall Lookup Latency, FICL(d): qualitative analysis.

11.5 Related Work

Stutzbach and Rejaie [122] did a detailed analysis of the routing tables and the
lookup process in KAD and provide latency measurements for varying α. However
the two remaining parameter β and t are not mentioned.
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Falkner at al. [40] analyzed the implementation of KAD in Azureus. They measured
a value of 127 seconds (more than 2 minutes!) for the median of the overall lookup
latency. The measurement we did on KAD using the default configuration showed a
median overall lookup time of 5.8 seconds.

Dabek at al. [27] briefly describe the iterative lookup used by Chord and Kadem-
lia, and perform a simulation using latency data obtained by the King method [48]
(where the average one hop latency is of 154 milliseconds), but only for Chord.

Li at al. [70] describe the lookup process in KAD identifying the parameters α and
β. However they state that the lookup process tries to keep always α requests open.
In contrast, we have found that the number of request can vary between 0 and αγ.
Moreover, they do not analyze the impact of the timeout t. Finally, they performed
a simulation with 1,024 nodes of the overall lookup latency using p2psim and one
hop latency data obtained of with the King method [48], finding an average overall
lookup latency of 250 milliseconds.

11.6 Discussion and Conclusions

We study the content management process implemented in KAD and we show that
the design approach has a strong impact on the overall lookup latency in case of
content retrieval. We perform measurements with two different objectives: (i) we
characterize the external factors that influences the performances – such as the prob-
ability that entries in the routing tables are stale, or the round trip delay of messages;
(ii) we evaluate the influence of the design parameters – such as the number of re-
quests sent initially or the timeout – on the performance.

We show that, by coupling the lookup procedure and the the content retrieval pro-
cess, it is possible to decrease the overall latency while keeping the same overhead.
The results we obtain suggest that the scheme can be further improved if we let the
design parameters to change, i.e., if we make them adaptive. For instance, in con-
texts with a low churn, the probability that entries are stale (pstale) reduces, and thus
it is not necessary to have a large degree of parallelism in the sent requests. In this
case we may choose α and β as functions of pstale, rather than simply taking fixed val-
ues. The same applies for timeout t, i.e., we may choose t as a function of d, i.e., the
(estimated) round trip delay.
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CHAPTER12
Applying the Developed Measurement

Techniques to Azureus

In this Chapter, we present the results we obtained by crawling the DHT of the Bit-
Torrent client AZUREUS for several months. We use the crawling technique pre-
sented in Section 8.3.

To crawl the DHT implemented by a BitTorrent client is a new approach to learn
about the behavior of BitTorrent peers, since to this day the classical approach was
to learn about torrents on portal web sites and to contact the corresponding trackers
then. Since in BitTorrent every torrent forms a swarm of peers, all existing torrents
need to be tracked in order to get a full view on all clients participating. Our ap-
proach is not based on torrents, but we make use of the DHT in which all peers
participate and in which information about all torrents is published. For the mo-
ment, this DHT is used as a fall back mechanism in case the tracker goes down.
Not all DHTs implemented by the different BitTorrent clients are compatible to each
other. Therefore, with our method of crawling a DHT, we do not learn about all
peers using BitTorrent, but only about those using a DHT compatible to the DHT
of AZUREUS. There are several incompatible implementations of DHT by different
BitTorrent clients. However, keeping track of a handful DHTs is more feasible than
keeping track of hundred of thousands of torrents, knowing that only those pub-
lished on websites can be tracked.

As in KAD, each AZUREUS node has a global identifier in the DHT. However, the ID
is not chosen randomly. First, a string is built up out of the IP address and the port
number mod 1999, which is a prime, separated by “:”. The SHA1 hash of this string
is the DHT ID of the node. Thus the number of AZUREUS nodes per IP address
is limited to 2000, since a client running on port 1999 has the same ID as a client
running on port 3998 on the same IP address. Moreover, since most peers do have
assigned a new IP address by their provider, every time they reconnect to AZUREUS
they will change their identifier in AZUREUS. The bucket size in AZUREUS is with
20 peers twice as large as in KAD. Another major difference to KAD is that no search
functionality is available to the end user. This is mainly due to the fact that AZUREUS
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does not have a two level publishing system like KAD (cf. Section 8.2). This makes
it impossible to search for a keyword. The search function does only allow to search
for a torrent once it is downloaded from a web site, and the tracker for this torrent is
not available anymore.

The AZUREUS peers use the network coordinate system Vivaldi [26] (cf. Section 8.6)
to compute their network coordinates. With the help of these coordinates, they try
to find other peers physically close to them in order to reduce download times and
to keep the traffic local, e.g. inside an ISP or a country.

By crawling AZUREUS, we collect round trip times at the application layer and at
the network layer of several hundred thousand of clients around the world. We also
collect their Vivaldi network coordinates and analyze their accuracy.

12.1 Measurement Methodology

The first step in order to do any latency measurements is to learn about the hosts you
want to measure up to. Therefore, we used our crawler Blizzard for KAD (Section 8.3)
and adapted it to work for AZUREUS as well. Our crawler logs for each peer P

• the time of the crawl

• the IP address of P

• the port number used for the control traffic

• the Vivaldi network coordinates (version 1 with 2 dimensions, the height vec-
tor, and the estimated error, and version 2 with 4 dimensions, the height vector,
the estimated error, and the age of the coordinate) [26, 65]

• the estimated number of peers in the network. The number of participants is
estimated by computing the peer density in a small fraction of the DHT and
interpolating this number.

12.1.1 Application Layer Round Trip Time

The crawler exploits the control messages of the DHT, it uses the messages intended
for routing, to learn about other peers. The application layer round trip time (ARTT) of
those messages is composed by two parts: the network layer round trip time (NRTT)
and the additional delay induced by the computation of the application that depends
on the load of the end-system and of the access link. Therefore, we always expect
the application layer round trip time to be larger than the network layer round trip
time. In the remaining of this chapter, the round trip time is always expressed in
milliseconds.
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12.1.2 Network Layer Round Trip Time

The REPLY_FIND_NODE message contains the IP address and the port of a peer.
After the discovery of a peer, a TCP packet with the ACK flag set is sent on this very
port. The peer is expected to reply with another TCP packet having the RST flag
set [93]. We call the delay between the emission of the TCP ACK and the reception
of the TCP RST the network layer round trip time (NRTT). The TCP ACK packet we
send is directly processed by the kernel of the operating system of the queried peer.
Therefore, we expect the network layer round trip time to be equal to the round trip
time of an ICMP ping. We send a TCP ACK instead of an ICMP ping since most
(Wlan-) routers and personal firewalls do not reply to ICMP pings. Moreover, by
default all ports a closed, which is why it is so important to learn about an open port
by first crawling the peer-to-peer network.

12.1.3 Network Coordinates

The reply messages received during a crawl also contain the Vivaldi [26] network
coordinates of the queried peer. Depending on the version of the AZUREUS client,
different versions of the Vivaldi network coordinates are communicated: none, ver-
sion 1 (made of 2 dimensions plus the height), or version 1 and version 2.4 (made of
4 dimensions plus the height). The difference between the two implementations of
the Vivaldi network coordinate system is not limited to the number of dimensions,
also the age of the coordinate is transmitted. Moreover, the ways new measurements
are used to update the coordinates are much more sophisticated. In total, 16 addi-
tional bytes are transmitted for version 2.4. See [65] for details about the different
versions of the network coordinates. 97.2% of the AZUREUS clients use the latest
version of the DHT protocol that transmits both, version 1 and version 2.4 of the
network coordinates. Therefore, we considered only these peers.

We run an AZUREUS client on the machine performing the crawl to learn about the
network coordinates of the crawler itself. Using those coordinates, we are able to
compute the Euclidean distance between the crawler and the queried peers in the
network coordinate system. It is expected to approximate the round trip time of the
packets sent to this peer. Since the AZUREUS application is not aware of the NRTT,
but only of the ARTT, we expect the Vivaldi distance to be more tightly correlated
with the ARTT than with the NRTT.

12.2 Dataset

For the analysis presented in this chapter, we collected the following datasets.

1. Mannheim: From the University of Mannheim, attached to the German re-
search network. One single crawl performed on March 31, 2008, at 08:00
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CET. 1,044,155 peers have been discovered, 291,850 responded to the crawler
(AZUREUS ARTT and network coordinates are available). 157,205 peers also
replied to the TCP AKC. For those peers, the full data is available. The crawl
duration was 12 minutes.

2. Eurécom: From Institut Eurécom, attached to the French research network.
Starting on 15th of February, 2008, we performed 3 full crawls of the AZUREUS
network a day (05:00, 13:00, and 21:00 CET). On each crawl, 1 – 1.4 million were
discovered. About 300,000 – 400,000 of them responded to the crawler, thus, of
those peers, AZUREUS ARTT and network coordinates are available. For about
50% of the responding peers, the NRTT is also available, the other peers did not
respond to the TCP ACK packet sent. Each crawl has a duration of about 20
minutes.

3. ADSL: From a France Télécom ADSL line. One single crawl was performed
on March 26, 2008. This crawl took 12 hours and, out of 1,267,822 discov-
ered peers, 118,548 peers responded. Whereas the NRTTs are only available
for 37,346 of those peers.

12.3 Crawl Results

In this Section, we present the remaining data collected while crawling the peers of
AZUREUS, such as their uptime, their version, their geographical origin, their service
providers, the ports used, the overhead due to the DHT maintenance, the estimated
number of peers in the network, and, finally, their number of contacts.

12.3.1 Uptimes

Every peer counts the time elapsed since it has been launched. The median uptime
amounts to 8 hours, 5% of the peers have been up longer than 6 days and one 1%
longer than 26 days (Figure 12.1). This is very long compared to a median of 2 1/2
hours for the session times in eMule and aMule (Section 9.2).

The distribution of the uptimes is heavy tailed since it decays slower than exponen-
tially. We refer to a distribution as heavy-tailed if its coefficient of variation is larger
than 1, the one of the exponential distribution. The coefficient of variation (σ

µ
) of the

uptimes is 14.5.

12.3.2 Versions

In total, we saw 191 different versions of clients during our crawls. In Figure 12.2,
the 10 most frequently used version on April 25, 2008, 13:00 CET are plotted. Note
that version 3.0.5.2 is the most up to date version. In fact, the latest version of the
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Figure 12.1: CDF of the uptimes of the AZUREUS clients.

AZUREUS client automatically updates itself, which is why more than 75% of the
peers use this version. The automatic update is able to reach most of the users run-
ning a version including the automatic update within only a few days. In Figure 12.3,
one example of a version change is plotted. On March 5, 2008, the new version 3.0.5.0
was introduced and replaced the version 3.0.4.2 within a few days. You may notice
that until April 25th another version, 3.0.5.2, was introduced, which almost com-
pletely replaced its predecessor.
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Figure 12.2: Most used versions on April 25, 2008.
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Figure 12.3: Quick Rollout of a new version.

The DHT protocol itself has different versions, too. 97.2% of the clients use the latest
version 16 (VIVALDI_FINDVALUE), 2.2% use the version 15 (GENERIC_NETPOS),



142
CHAPTER 12. APPLYING THE DEVELOPED MEASUREMENT TECHNIQUES

TO AZUREUS

and 0.6% use the version 14 (VENDOR_ID and BLOCK_KEYS). Version 14 does not
transmit any Vivaldi coordinates, version 15 transmits the old version V2.2 of the
Vivaldi 2 coordinates (the most recent version is V2.4), this version uses 5 dimensions
and not 4 dimensions plus a height vector.

12.3.3 Geographical Origin

Peers from the US dominate the AZUREUS network. They are followed by peers
from Canada and Western Europe. In total, peers from over 190 different countries
have been discovered. Figure 12.4(a) shows the distribution of the most important
countries on April 25, 2008, at different times of the day. Note that most users use
AZUREUS in the evening hours.

A histogram of the most used Internet providers can be found in figure 12.4(b). Ac-
cording to their countries of origin, the biggest providers are found in the US, France,
Germany, Spain, and Italy.

The user’s behavior seems to be similar to the one observed in KAD. However, in
KAD, Chinese and European peers dominate, peers from the US don only play a
negligible role (Section 9.1.1).
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Figure 12.4: Country and ISP of origin.

12.3.4 IP addresses and ports

To get an idea where the AZUREUS users come from in the Internet, we plot the IP
addresses on the Map of the Internet from the xkcd comic (Figure 12.5). The comic
orders IP addresses on a Hilbert curve and marks the /8 blocks of the IP addresses
by their original allocation. Any consecutive string of IP addresses will translate to
a single compact contiguous region on the map. Each of the 256 numbered blocks
represents one /8 subnet.
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Most of the users come from an IP space allocated to the US, Canada, Europe, and
various registrars. However, there are some users from class A networks belonging
to BBN, MERC, and others.

(a) Address space (b) IP origin of AZUREUS peers

Figure 12.5: Map of the Internet

Only about 5% of the peers make use of the default BitTorrent port 6881. The other
peers use randomly assigned port numbers above 50,000 (Figure 12.6).
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Figure 12.6: Histogram of the ports used by the AZUREUS peers.

12.3.5 Overhead

The statistics also include information about the overhead needed to maintain the
DHT. The median amount of data a peer receives is 286 bytes (2 packets) per sec-
ond and the median amount of data sends is 462 bytes (3 packets) per second (Fig-
ure 12.7). For comparison, the data of a KAD client that we obtained by dumping
all the communication needed for the maintenance of the DHT over 24 hours: It
summed up to 4 packets per second or 422 bytes per second, which is less compared
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to AZUREUS. One reason for this additional overhead may be the double bucket size
since all these peers need to be regularly checked for availability.

The difference between the amount of packet overhead sent and received is due to
the fact that some messages are sent to stale peers. These messages are accounted
on the sending side, but they are never received by anyone. From the collected data,
we can deduce that about one third of the contacted peers are stale. This is about the
same number we obtained for KAD (cf. Section 11).
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Figure 12.7: Maintenance overhead

Having a look at the different message types, one can notice a huge difference to
the values we found in KAD (Section 8.4). In AZUREUS, the median number of store
requests per second is 0.07, the median number of find value request is 0.31 (Fig-
ure 12.8). There are 4 times more find value requests than store requests. In KAD,
this is the opposite. There are 10 times more publish requests than search requests.
This is due to two main facts: First, in KAD, keyword and sources are published,
whereas AZUREUS has only one layer of metadata. Given that per source there are 5
keywords on average, the amount of messages needed for the publication of a source
is multiplied by 6. Second, the republishing interval of a content in AZUREUS is of 8
hours, whereas sources in KAD are republished every 5 hours.
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The median number of entries of the DHT a node stores in its local hash table is
402(Figure 12.9). Long living nodes store up to ten thousand values, the maximum
we found was 34,807.
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Figure 12.9: CDF of the number of entries stored per node.

12.3.6 Estimated number of peers

Every peer participating in the AZUREUS network estimates the number of peers in
the network. In this section, we first describe the algorithm for the estimation of the
number of peers, second we evaluate its accuracy by comparing the estimates with
our measurements.

The estimation of the size of the DHT implemented in AZUREUS is based on a density
function. N0 is the node itself, N1 the nearest peer, N2 the 2nd nearest peer . . . Np the
pth nearest peer in the routing table of N0. p is set to 20 since there are at most 20 peers
in one bucket of the routing tree. In this case, it is the deepest bucket containing the
closest contacts. Let Di be the XOR distance between N0 and Ni. The local estimation
of the DHT size n is done in the following way:

n =
2160Pp
i=1 i DiPp
i=1 i2

The numerator is the maximum possible number of nodes in the DHT, the denom-
inator is the filling level of the hash space. It is equal to 1 if every position is filled,
i.e., if every hash value is occupied. The term iDi in the numerator of the denomina-
tor is composed of i that stands for the ith closest peer and Di for its distance. Since
the ith closest node needs to have at least a distance of i to N0, in case every place in
the hash space is taken, the maximum value this term can take is i2, the term we find
in the denominator.

Consider the case of p = 2, the first node has a distance of 2 to N0, there is a space for
only one other node in between, the second node has a distance of 4, there is only one
possible space between the 2nd node and the 1st node. In other words, every second
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possible place is taken. In this example, the denominator would be 1∗2+2∗4
1+4

= 2; the
estimation for the number of nodes is going to be 280 since every second place in the
hash space is empty.

In a second step, this value is averaged with the estimation learned from the other
nodes except for the three smallest and the three biggest values.

For one crawl, we evaluated the accuracy of the estimation of the number of peers.
Our crawler found 1,040,943 peers, we queried each peer for its estimate of the net-
work size. The average estimation was 1,101,500, the median 1,097,223. The min-
imum was 2, which is most probably a peer still in the bootstrap phase, i.e., the
routing table is not yet filled, the maximum was 12,461,686. In most cases, however,
the estimation is very accurate, the deviation compared to the number of peers we
found by crawling is less than 5%.

12.3.7 Contacts

The contacts in AZUREUS are organized in a routing tree. The median of the number
of nodes in the tree is 123 (75% of the peers have values between 119 and 125), for the
number of leaves (buckets) attached to the tree it is 63 (75% of the peers have values
between 60 and 63). The median of the number of contacts in the routing tree is 1,107
(80% of the peers have values between 1,050 and 1,155) (Figure 12.10). This is about
the square root of the number of participants O(

√
n), much more than the proposed

DHT routing table size in literature, e.g. Chord, that grows logarithmically with the
number of participants O(log(n)).

Calot [126] ensures 2 hop routing to any destination with a routing table of O(
√

n)
contacts, which is slightly better than the number of hops needed by AZUREUS.

12.4 Evaluation of the Vivaldi Internet Coordinates
Used in Azureus

Table 12.1 gives an overview of the results obtained on AZUREUS in the Mannheim
dataset. The results of the two other vantage points are omitted for space constraints
since they are qualitatively very similar. We mapped the IP addresses of the peers to
their countries using Maxmind [76], a database containing geo-location information.
In the table, we list several countries from different parts of the world that are rep-
resentative for their continents: countries close to our crawl site, countries far away,
countries with good and with poor Internet connectivity. The second column shows
the number of unique AZUREUS clients measured, the third column shows the aver-
age ARTT followed by 5 columns for the NRTT. Columns 9 and 10 show the average
Euclidean distance from our crawl site to the AZUREUS peers.
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Figure 12.10: Data about the routing tree.

The mean NRTT value does not allow to distinguish between continents, compare
566 ms for Spain with 319 ms for the US or 377 ms for Korea. In fact, the mean NRTT
is strongly biased by outliers, as can be seen from the 95th percentile (Column 8 and
figure 12.11). A much better indicator for geographic proximity is the 5th percentile:
21 to 57 ms for European countries, 111 to 120 ms for North America, 169 to 233 ms
for South America, and 281 to 340 ms for Asia and Australia. Even if it is possible to
make a difference between the NRTT distributions for different continents, this does
not imply that, from the NRTT to a single peer, one can deduce its continent of origin.
We do explain the very low variance for peers in Korea with the widely deployed
fiber to the home in these countries. The high variance of the NRTTs, e.g. in Europe,
is introduced by the last mile to these users that are often connected with ADSL [32].
The ADSL access links have buffers that can add an additional delay ranging from
tens of milliseconds to more than a second.

Compared to the mean NRTTs (Column 4), the mean ARTTs (Column 3) are slightly
higher and they show a higher variance. This is the additional delay introduced
by the AZUREUS application. However, the overall shape of the corresponding cu-
mulative distribution function per country remains the same. In figure 12.11, the
measured CDF of the NRTTs are plotted.
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1 2 3 4 5 6 7 8 9 10
Country # Clients ARTT NRTT Coordinates

mean mean st. dev. 5th perc. median 95th perc. v2 v1
France 13,775 359 306 626 44 92 1,235 542 344
Germany 11,439 435 236 598 21 64 1,143 736 415
Spain 8,281 641 566 984 55 125 2,604 1,043 581
Italy 3,464 389 325 671 57 119 1,286 560 368
Canada 12,349 360 298 512 120 169 948 454 259
US 32,528 394 319 543 111 176 1,052 488 269
Venezuela 530 851 765 1,175 169 258 3,299 1,197 657
Brazil 2,364 776 718 1,067 233 312 2,828 1,053 598
China 315 563 513 302 324 413 1,101 656 381
Korea 362 413 377 134 308 346 563 372 231
Japan 1,283 443 370 358 281 300 586 466 246
Australia 3,733 934 872 1,326 340 392 3,729 1,162 634
All countries 157,205 454 375 739 37 151 1,541 647 376

Table 12.1: Overview of the AZUREUS results: ARTTs, NRTTs, and coordinate distances in
milliseconds. Measurement host is located in Mannheim.

12.4.1 Network Coordinates

We compared the calculated Euclidean distances for both implementations of the co-
ordinate system to the application round trip time measurements and to the network
layer round trip time measurements we performed.

1 2 3 4 5 6 7
ARTT v.1 v.2 v.2 v.1 v.1
NRTT v.2 ARTT NRTT ARTT NRTT

France 0.94 0.89 0.91 0.89 0.85 0.84
Germany 0.65 0.91 0.92 0.63 0.87 0.61
Spain 0.93 0.94 0.94 0.89 0.91 0.87
Italy 0.90 0.92 0.91 0.89 0.85 0.84
Canada 0.85 0.81 0.83 0.81 0.77 0.74
US 0.81 0.86 0.85 0.82 0.79 0.74
Venezuela 0.97 0.84 0.93 0.94 0.79 0.80
Brazil 0.94 0.90 0.92 0.93 0.87 0.88
China 0.75 0.80 0.93 0.54 0.77 0.63
Korea 0.94 0.74 0.83 0.80 0.60 0.59
Japan 0.48 0.90 0.93 0.47 0.93 0.47
Australia 0.98 0.87 0.91 0.91 0.85 0.84
All countries 0.88 0.89 0.90 0.84 0.84 0.80

Table 12.2: Correlations of the results for RTTs and Euclidean distances shown in table 12.1.

The ARTTs and the NRTTs do have a positive linear correlation of 0.88 (Table 12.2,
column 2). For some countries, such as Germany and Japan, the correlation between
the ARTTs and the NRTTs is much lower compared to other countries. Therefore, the
correlation between the ARTTs and the distances computed with the coordinates are
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Figure 12.11: NRTT for different countries. Origin of the measurements is in Mannheim /
Germany.

lower, too. The weak correlation for the German peers is not due to the measurement
origin being in Germany, the other two datasets also confirmed these results.

The correlation between the two versions of the network coordinates is of 0.89 (Col-
umn 3). The correlation between the coordinates version 1 and the ARTTs is 0.84
(Column 6), for version 2 this increases to 0.90 (Column 4). The correlation between
the network coordinates version 1 and the NRTT is 0.80 (Column 7), for version 2 this
value increases to 0.84 (Column 5). We can conclude that the two additional dimen-
sions, the introduced age of the coordinates and the resulting additional overhead in
version 2 do not result in a significant improvement of the accuracy of the network
coordinates.

Our direct measurements of the NRTT are all taken from hosts based in Europe, thus
the CDFs for the different countries do all have Europe as a point of origin (Fig-
ure 12.11). To get a different point of origin, we need to make use of the network
coordinates. We chose an AZUREUS client in the US and computed its Euclidean dis-
tance to all other peers. In Figure 12.12, the Vivaldi distances of this US peer to peers
in Japan, Canada, and Germany are plotted. Surprisingly, Japan seems to be closer
to the US than Canada. Thus, based on the distance computed using the network
coordinates, a peer located in the US would prefer Japanese over Canadian peers.
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The CDFs of the coordinate distances of a peer based in Germany have a shape sim-
ilar to the CDFs of the NRTTs shown in Figure 12.11.
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Figure 12.12: Vivaldi distances for different countries. Origin is in the US.

12.4.2 Height

The height value in the network coordinates should reflect the latency introduced
by buffers on the last mile toward the end-user. The usage of the height is necessary
in order to not distort the coordinate system by large latencies introduced on ADSL
lines. We extracted all peers from our dataset that are customers of the provider
France Télécom and that are in Nice / France. The propagation delay between any
pair of those clients is in the order of a few milliseconds.

Using the Vivaldi coordinates of those peers, they should all be very close to each
other if the height value is discarded given the small geographic distances between
those hosts. Considering the height, however, they can be far away from one to
another. In figure 12.13, the CDF of the pairwise distances is plotted. We see that the
latency introduced by the ADSL links is completely reflected in the height value and
not in the coordinates. For version 2, the results are even better than for version 1,
the distance ignoring the height is only of 38 milliseconds in median.
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Figure 12.13: CDF of the pair wise distances of the clients of France Télécom in Nice / France,
with and without considering the height value of the coordinates.

Figure 12.14 shows the pairwise Vivaldi distances of all peers in France. Again, the
distances without the height do reflect the geographic distances, whereas the dis-
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tances including the height are of one order of magnitude larger due to the queuing
delay on the last mile.
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Figure 12.14: CDF of the pair wise distances of the clients in France, with and without con-
sidering the height value of the coordinates.

12.4.3 Visual Check of the Network Coordinates

Since a network coordinate system assigns coordinates based on the measured la-
tency between the hosts, one should expect to see clusters of peers if one plots the
coordinates that correspond to peers on different continents. Theses clusters should
be separated by gaps, the oceans. In figure 12.15(a), we plotted the network coordi-
nates version 1 (without the height) of the German and the Australian peers. There
is a strong overlap between them, no clear separation and no gap. This is the same
for other pairs of countries plotted together. In figure 12.15(b), the coordinates of
peers of all countries are plotted. It is not possible to distinguish between countries
or even continents. Geographical distances are not at all represented.

These findings are in contradiction to Ledlie at al. [65] who claims that embedding
the Internet running on a globe (the Earth) into an Euclidean space works fine, due
to the fact that traffic between Europe and Asia is routed via the US. They state that
the peers of different continents (Asia, Europe, and North America) cluster together
in the network coordinate space, which is in clear disaccord to our findings. In their
technical report [66], they show (Figure 11) snapshots of the coordinates of the peers
they run on PlanetLab. Three clusters that represent the continents are distinguish-
able. We believe that such results can be obtained on PlanetLab but with peers that
are connected via ADSL.

12.4.4 Stability of the network coordinates

The stability of the coordinates is extremely important if they trigger events (e.g. a
download) that may take several hours. Assuming there is no change in the network,
a coordinate system is stable if the coordinates of the nodes in the system are stable.
In order to analyze the stability, we decided that a temporal resolution of 8 hours (3
crawls a day) is not enough and dumped the coordinates of 2 peers (running on 2
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(a) Germany and Australia: overlap, no sepa-
ration, no gap.

(b) All countries: no distinction of continents
possible.

Figure 12.15: AZUREUS network coordinates version 1

machines in the same LAN) at Eurécom, 2 peers (running on 2 machines in the same
LAN) at the University of Mannheim and one connected via a France Télécom ADSL
line every 5 minutes for 9 days, starting on February 25, 2008. From this data set, we
calculated the speed at which the coordinates change. xt is the coordinate of peer x
at time t, xt+δ, δ = 300 seconds is the position of the same peer x on the next crawl
5 minutes later. The speed of change is xt+δ−xt

δ
. The unity of the speed of coordinate

change is msecs/sec.

For version 1, we observed an average speed of 0.48 msecs/sec (0.52 standard devia-
tion, 6.9 max). Version 2 shows an improvement of factor 2 with an observed average
speed of only 0.19 msecs/sec on average (0.17 standard deviation, 1.1 max). Ledlie
at al. (see [65], Figure 7) however claim an improvement in stability of 4 orders of
magnitude.

12.4.5 Which peer to choose?

The classical use of an Internet coordinate system is to choose the peers from which
to download from. To check if the coordinate system implemented in AZUREUS
fulfills that request, we set up a very simple experiment. We dumped the coordinates
of 2 peers (running on 2 machines in the same LAN) at Eurécom, 2 peers (running
on 2 machines in the same LAN) at the University of Mannheim, and one connected
via a France Télécom ADSL line every 5 minutes for 9 days, starting on February 25,
2008. Using the coordinates, the peers located in Mannheim, respectively Eurécom
should be able to choose the other peer in the same LAN.

In the following, we computed the Vivaldi distances between those peers (Ta-
ble 12.3). When using network coordinates, the distance values for the different
pairs of peers make these pairs practically indistinguishable, or as in case of ver-
sion 2, make two peers in Eurécom / Mannheim look closer to each other than peers
that are adjacent.
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peers ICMP version 1 version 2
ping avg. st.dev. max avg. st.dev. max

ma 1 / ma 2 0 133 117 1,208 121 56 336
eur 1 / eur 2 0 182 204 2,606 140 72 414
ma 1 / eur 2 39 158 120 786 95 45 302
ma 2 / eur 1 39 144 171 2,563 167 71 390
eur 1 / adsl 70 177 126 1,066 108 37 241
ma 1 / adsl 70 179 121 981 106 37 269

Table 12.3: Vivaldi distances between two peers. The first column indicates the location of
the two peers, the second column indicates the ICMP ping times between them.

12.5 Conclusion

We have studied the network coordinate system currently implemented in AZUREUS
and evaluated its possibilities and limitations. We saw that the latencies estimated
using network coordinates exhibit a high correlation with the round trip times at
application layer and to a lesser degree with the round trip times at network layer.
The round trip time is composed of three elements: propagation delay, transmission
delay, and queuing delay. As many peers are connected to the Internet via ADSL, the
queuing delay of the ADSL access link can dominate the round trip time and hide
the contribution of the geographical distance completely, which is reflected in the
propagation delay. Extremely long round trip times of several seconds are a strong
indication for heavily loaded ADSL links and not for a huge distance between those
peers. Due to this fact, groups of peers in geographical proximity, e.g. countries
or ISPs, are not reflected in the coordinate space. As a result, network coordinates
cannot be used to reliably select “nearby” peers that are in the same ISP or country.
Instead, we suggest to select “nearby” peers one could use reverse DNS lookup on
the peers IP addresses, which AZUREUS already uses today to determine the country
of origin of the peers. However, network coordinates are still very useful for peer
selection whenever the round trip time has an impact on the performance. As it is,
for instance, the case in query routing and when downloading content using TCP.



154
CHAPTER 12. APPLYING THE DEVELOPED MEASUREMENT TECHNIQUES

TO AZUREUS



CHAPTER13
Conclusion of Part II

“One of the most feared expressions in modern
times is “The computer is down”.”

– Norman Augustine –

In this part of the thesis, we presented measurement techniques to learn about par-
ticipants and content in peer-to-peer networks.

First, we implemented our crawler Blizzard that allows for crawling millions of users
in a DHT in the order of minutes. In KAD, the first million users are detected after 10
seconds only. To our knowledge, today, there exists no other crawler that is able to
crawl an entire large-scale DHT.

We observed that the peers seen first during the very first crawl had much higher
mean session durations and smaller inter-session times than peers seen later for the
first time. As already suggested by Stutzbach [123], this fact can be exploited to find
“more stable” peers without knowing anything about the history of the peers: One
simply “crawls” KAD once and selects the peers that are online in that instant. We
also saw that the availability of peers in China is much lower than the one of peers
in Europe.

Crawling these different networks, KAD (Section 9) and AZUREUS (Section 12), we
can make some general remarks. Each network is predominant in one region of the
world, KAD in Europe, and China and Azureus in North America. The median
session times of the peer is in the order of hours and most users are on-line in the
evening of their local time zone. A big fraction of the users is connected to the Inter-
net with a classical ADSL line, the ten largest ISPs for the users of both peer-to-peer
networks are ADSL providers.

The major difference in the implementation is the two level publishing scheme in
KAD (cf. Section 8.2) that allows end-users for keyword searching against the one
level publishing scheme in AZUREUS that does not allow for keyword searching by
end-users. In AZUREUS it is only possible to search for torrents that have already
been downloaded from a website: the DHT is a fall-back mechanism.

155



156 CHAPTER 13. CONCLUSION OF PART II

Second, we developed the content spy Mistral that allows for getting insight on what
content is shared in a DHT. We did extensive measurement in the KAD network (Sec-
tion 10).

In today’s implementation of KAD, a source key that points to the peer holding the
content will expire 5 hours after it has been published. On the other hand, we ob-
served that the median session length of peers is 155 minutes. Also, less than 40%
of the peers have a session length of 5 hours or more (cf. figure 9.12). This means
that, in more than 60% of the cases, the peer that publishes a source key will leave
KAD before the reference to that file will expire. As a result, many references with
an expiration time of 5 hours to sources in KAD will be stale, resulting in unsuccess-
ful attempts to download that file. An improvement of the current implementation
could be to first publish a source key with an expiration time much smaller than 5
hours and to increase the expiration time progressively as the uptime of the peer that
owns the file increases, exploiting the fact that session times are Weibull distributed.

The results presented in this part can be used to improve the performance of the
implementation of KAD in various ways. We measured (Section 10) that, due to
publishing, the total traffic in KAD is about 100 times higher in volume (bytes) than
the total search traffic. Carra et al. [18] have shown how to exploit the fact that
session times are Weibull distributed in order to reduce the publish traffic by one
order of magnitude.

The content spy Mistral relies on the so-called Sybil attack. This leads us to study in
detail how vulnerable KAD is to different kind of attacks. We showed that an Eclipse
attack against some content in KAD is easily feasible even with scarce resources. We
also presented results of a content pollution attack we ran against the peer-to-peer
network of the Storm worm.

Furthermore, we studied in detail the content management process implemented in
aMule and we show that the design approach has a strong impact on the overall
lookup latency in case of content retrieval (Section 11). We made proposals on how
to speed up the overall look up latency without decreasing the efficiency.

The engineers who implemented Kademlia in aMule and eMule had to make some
important design choices: the number of times a publications is replicated, the size
of the zone in which a publication might be spread around its hash (tolerance zone),
the degree of parallelism for the look up, the time to wait for closer peers before
launching the content retrieval, etc. In general, one can say that most parameters
are well chosen. The resulting algorithm allows for fuzziness in the publication and
the look up process. However, due to the high number of replications, the content is
always found without the need that the peers on which some content is published
have to hand over the content to another peer before they leave. The tolerance zone
has been fixed to 8 bit, this might have been a good choice for the early days of the
network, when an 8-bit zone did contain only a few hundred peers. The developers
probably could not anticipate the future success of the network. An 8-bit zone of
today’s KAD network contains around 8,000 peers. All those peers are qualified to
receive a publication for a keyword that shares the first 8 bit with them. The con-
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sequence is that a keyword being published at the border of the tolerance zone will
most probably never be found and is therefore wasted.
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CHAPTER14
Summary

“Computer science only indicates the retrospec-
tive omnipotence of our technologies. In other
words, an infinite capacity to process data (but
only data – i.e. the already given) and in no
sense a new vision. With that science, we are
entering an era of exhaustivity, which is also an
era of exhaustion.”

– Jean Baudrillard –

Peer-to-peer systems represent a new way of offering services at the edges of the
Internet by users and for users. Since more and more users are connected to the
Internet, the scalability issued gains importance. Peer-to-peer systems are worth
considering for new Internet services to be developed since in a peer-to-peer net-
work a new peer does not only stand for more load but also for more resources.
However, the distributed nature of peer-to-peer networks and especially the non-
existence of a centralized management requires self-organizing algorithms that are
able to smoothly scale to millions of users and use the resources of a very large num-
ber of machines connected through the Internet efficiently. Today, peer-to-peer net-
works have been successfully deployed to millions of users and offer services such
as file sharing, audio and video streaming, telephony, backup, and games.

As detailed in the introduction of this thesis, peer-to-peer networks can be separated
in two main classes: unstructured and structured overlay networks.

In the first part of this thesis, we presented a set of algorithms for the dynamic main-
taining of a distributed overlay network matching with the Delaunay triangulation
of the entities. We showed how to augment this triangulation by additional short-
cuts which reflect the underlaying Internet to build a small world overlay that re-
duces both, average number of hops and delay. We moreover presented a dynamic
algorithm to cluster nodes in a totally distributed way.
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With the help of the developed algorithm, it is possible to create a virtual world,
a networked virtual environment, relying on an unstructured peer-to-peer overlay
network. A networked virtual environment is an application that fits nicely to the de-
sign of an unstructured overlay network. Since every participant in a virtual world
is basically interested in his direct neighbors, there is no need to efficiently find some
specific content on the other side of the virtual world. Such a system could solve the
scalability issue encountered by the huge success story of massive multiplayer online
games such as World of Warcraft that has attracted more than six million subscribers
within two years.

Structured peer-to-peer networks by means of Distributed Hash Tables present inter-
esting properties (scalability to a large population of users, fast look-up of resources)
for content distribution and content location. In a file-sharing network, the users
want to know on which machine a specific file is stored, a DHT does exactly provide
the answer to that question.

In the second part of the thesis, we present an extensive measurement study of such
a structured peer-to-peer file-sharing network, namely KAD , the largest currently
deployed DHT that is used by millions of users. We developed our peer crawler
Blizzard that allows to discover and contact all peers in the network in the order of
some minutes only. To our knowledge, no crawler with a similar performance has
been presented up to now. The crawler is not only fast but also flexible, it can be
used in any DHT, e.g. we used it to crawl the networks of AZUREUS and the Storm
Worm.

The results of the crawls of the KAD network we performed for over a year lead to
a number of interesting findings. For the first time, the total number of peers online
could be measured precisely. To our big surprise, some of the peers stayed con-
nected during the whole observation period. This high availability by home users
connected via ADSL is very amazing. The session times of the peers are heavy tailed
following a Weibull distribution. Most users seem to be very satisfied by the expe-
rience KAD offers, they use KAD every day for many hours and come back over and
over again. 50% of the users have been using KAD for six months and more. We dis-
covered that the identifiers of the peers in the DHT are not necessarily persistent as
was assumed up to now. Nevertheless, the most important metrics such as session
times and inter-session times are not affected by the non-persistent identifiers.

Beside the peer behavior, we also analyzed the content published and searched in
KAD. Therefore, we developed Mistral, a content spy, that allows us to gain an
overview of the content published and searched in KAD. Our observations show that
the publication process in KAD is responsible for more than 90% of the total network
traffic. Moreover, we note that the load is highly unbalanced between the peers.
We made proposals how to reduce the overhead and as a consequence, improve the
overall system performance.

While developing Mistral, we discovered how easily peer-to-peer systems like KAD
can be attacked. In fact, Mistral relies on a so-called Sybil attack. Moreover, we im-
plemented an Eclipse attack that allows to hide content from KAD users. Such attacks
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are feasible even with scarce resources. KAD can also be misemployed to launch a
distributed DDoS attack, even against machines that do not participate in KAD. We
described mechanisms to prevent such attacks in a peer-to-peer system.

In this thesis on peer-to-peer networks, we have been looking at network virtual
environments which are an application that profits of unstructured peer-to-peer net-
works. To build such virtual worlds in a peer-to-peer way, we have proposed a set of
distributed and dynamic algorithms. Furthermore, we presented measurement tech-
niques and extensive measurement results on a real-world, large-scale peer-to-peer
file sharing network, namely KAD, which relies on a DHT, a structured peer-to-peer
network.
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APPENDIXA
Experiences in Data Management

Problem Statement Crawling KAD every 5 minutes for 6 months was not only a
challenge from the crawling point of view but also for the data management. Re-
member that we run two crawlers in parallel at two different locations, every single
crawl discovers about 20,000 peers of which about 10,000 respond. Every of the
more than 100,000 crawls is saved to a file with an average size of 1.2 MB. In total
this accounts for 125 GB of data.

Extracting the behavior of a single client, e.g. its session times, the first join, or the
last leave, yields in 100,000 greps. Having several 100,000 KAD IDs this is not feasible.

For the full crawl that we run for more than one year once a day the dataset is not
smaller. Every crawl discovers about 4 million peers of which 1.5 million respond.
This accounts for a file of 230 MB per day. In total this accounts for about 100 GB of
data.

Database The solution we found was to use a standard open source mysql1

database, however specially configured for our needs. No need to execute a big
number of queries in parallel, therefore all the resources can be attributed to one
single query at a time. We optimized all the parameters in a way, such that the per-
formance is optimized for a single reading request returning a huge (containing all
the data of the data base) dataset.

In order to reduce the size of the data in the data base the data types have to be
chosen very carefully. Using the INET_ATON function of mysql we converted the IP
addressesto Integer values. With the unhex function we converted the first 64 out
of 128 bits of the KAD ID to a mysql bit field. The first 64 bits are enough since our
measurements confirmed that benign peers have never more than 32 bits in common.
For the full crawl we used the date data type and for the zone crawl the datetime
that has a time granularity of one second.

1www.mysql.com
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mysql> create table newnewpivot
(ip int unsigned, port smallint unsigned, hash bit(64));

+-------+----------------------+
| Field | Type |
+-------+----------------------+
| ip | int(10) unsigned |
| port | smallint(5) unsigned |
| hash | bit(64) |
| date | date |
+-------+----------------------+

Inserting the new crawl data every day line per line using a perl script took more
time than the new data arrived. To insert bulk data in a very efficient way mysql
provides the function load data infile that inserts the 1.5 million rows of a full
crawl into an already filled table in only some seconds.

mysql> load data infile ’datafile’ ignore
into table zonecrawl (@ipa, port, @dummy, @kid, @date)
set ip= INET_ATON(@ipa), hash = unhex(substring(@kid,1,16)) ;

Query OK, 1574618 rows affected (4.20 sec)
Records: 1574618 Deleted: 0 Skipped: 0 Warnings: 0

mysql> select INET_NTOA(ip) as ipa ,port, hex(hash+0)
as kid from zonecrawl limit 5;
+----------------+-------+------------------+
| ipa | port | kid |
+----------------+-------+------------------+
| 134.155.92.51 | 46725 | A4D05A132AC4CA99 |
| 83.44.89.63 | 4672 | 500F18E26E11F2B1 |
| 201.58.95.207 | 39162 | 5034FA2574DA07AE |
| 82.229.254.211 | 40440 | 510CE908EFF059FC |
| 82.253.80.148 | 34996 | 51FF9BA1A4A12320 |
+----------------+-------+------------------+
5 rows in set (0.06 sec)

The total size of the zone crawl table is of 360 million entries, which corresponds
to 19 GB of data plus 25 GB of index. We created an index on all fields since in
the beginning we did not know which queries we planed to execute, we wanted to
“play” with the data. The only figures we wanted to get out of the full crawl was the
KAD ID aliasing (Section 9.1.3). For this query a index would not have helped, the
data accounts for 11 GB in 620 millions entries.

A query that asks for the point in time when a specific peer has been seen for the first
and the last time runs in less than a second:

mysql> select min(time),max(time) from zonecrawl
where hash = unhex("5be81e38a288d9ce");
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+---------------------+---------------------+
| min(time) | max(time) |
+---------------------+---------------------+
| 2006-09-23 00:00:00 | 2007-03-21 00:55:00 |
+---------------------+---------------------+
1 row in set (0.59 sec)

To compute the session times of all peers, all the data of the database needs to be
returned in result. It is more efficient to build one query that returns a huge result
set compared to a big number of smaller queries. Most database drivers for mysql,
e.g. the ones for java or perl, are configured in a way that first mysql puts all the
results in a temporary result table on disk before it ships the result. If your result set
is bigger than the temp disk this does not work at all, and if the temp disk is huge it
consumes a lot of time. The drivers have to be configured in such a way that no temp
table is used and that every single line of the results set is delivered immediately. In
java this can be done with the following commands:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);
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APPENDIXB
Synthèse en Français

B.1 Tables de Hachage Distribuées

Les DHT (Tables de Hachage Distribuées) sont des systèmes répartis fournissant un
service de recherche aux utilisateurs. Sont stockés dans la table des pairs (clé,valeur)
et chaque utilisateur peut récupérer la valeur associée à une clé donnée. Ces couples
sont répertoriés par tous les noeuds du système, de telle façon que la déconnex-
ion d’un utilisateur n’entraîne pas de pertes importantes pour l’ensemble du réseau.
Ainsi la DHT permet de gérer un nombre important d’utilisateurs, ainsi que l’arrivée
de nouveaux noeuds, le départ d’anciens ou encore les erreurs de certains utilisa-
teurs. Les opérations de base réalisables sur les DHT sont les opérations lookup(clé)
et store(clé,valeur), permettant respectivement de récupérer la valeur associée à la
clé et de stocker une clé et sa valeur associée dans la table de hachage distribuée.

Cette technologie est apparue avec la nécessité pour les réseaux pair- à-pair de se
décentraliser. En effet, une telle structure ne nécessite pas de serveur central: un
utilisateur qui arrive dans le système n’a qu’à se connecter à n’importe quel noeud
du réseau pour en faire partie à son tour.

Le principe général des DHT peut en fait être expliqué de manière simple: aucun
noeud d’un réseau pair-à-pair basé sur une table de hachage distribuée n’a une
connaissance globale du réseau, mais il peut se rapprocher de la donnée cherchée
jusqu’à la trouver (si cela est possible, bien évidemment).

Il faut noter qu’il existe d’autres architectures décentralisées mais non-structurées
dans lesquelles ne sont pas prévus des mécanismes d’indexation de couple
(clé,valeur). Une requête de fichier dans un tel réseau est donc envoyée en gossip
à toutes les machines du réseau, d’où un nombre important de messages envoyés
entre les utilisateurs, et certains problèmes de réponses aux requêtes, que ce soit
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au niveau du temps de réponse, relativement long, mais également au niveau de la
quantité de réponses obtenues à une requête. L’utilisation de DHT permet de limiter
l’envoi de messages concernant les recherches de fichiers: puisqu’il n’est pas néces-
saire d’envoyer un message à tous, mais simplement de transmettre la requête de
pair en pair jusqu’à arriver à obtenir le pair possédant l’information cherchée, en se
rapprochant de lui à chaque “saut” dans le réseau.

Certains algorithmes de recherche dans les DHT, utilisés dans certaines implémen-
tations, peuvent atteindre une complexité au pire en O(log(n)) pour un réseau con-
stitué de n noeuds, d’où une complexité assez faible dans les meilleures implémen-
tations, ce qui assure théoriquement un temps de réponse à une requête plus rapide
que dans des réseaux non structurés.

La couche réseau fonctionne sur le principe que pour chaque noeud k, un autre
noeud connaît soit directement ce noeud, soit un noeud plus proche de k qu’il ne
l’est. Pour contacter le noeud k, il suffit à chaque fois d’envoyer le message au noeud
que l’on connaît qui est le plus proche de k, qui le transmettra aussi au noeud le plus
proche de k, et ainsi de suite.

Concernant les adresses des noeuds et les clés, ce qui correspond au terme
de “hachage”, on utilise une fonction de hachage que l’on peut appliquer aux
adresses IP des pairs et aux chaînes de caractères qui correspondent aux ressources
disponibles sur le réseau. Le résultat de la fonction de hachage est codé sur n bits (la
valeur de n variant selon les protocoles, les valeurs les plus fréquentes étant 128 ou
160 bits) ce qui donne au total 2n identifiants différents.

Le hachage de l’adresse IP donne l’identifiant d’un utilisateur, tandis que celui du
nom d’un fichier donne la clé. Il s’agit ensuite de stocker de manière distribuée les
couples (clé, identifiant) sur les noeuds du réseau, pour qu’à chaque ressource du
réseau soit associée l’adresse de l’utilisateur possédant la ressource. La redondance
dans le stockage est également introduite afin que le départ d’un noeud du système
n’engendre pas la perte des meta données qu’il stocke et ne pas rende impossible
l’accès à ces données.

Chaque noeud conserve des informations sur d’autres noeuds afin d’accélérer les
recherches. Les algorithmes de recherche implémentes permettent qu’à chaque
transmission de requêtes à un autre utilisateur, la distance séparant le demandeur
et la clé cherchée soit divisée par deux. Dans les meilleures implémentations, cela
permet d’atteindre une complexité logarithmique, ce qui est très inférieure aux com-
plexités des systèmes complètement décentralisés fonctionnant par inondation.
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B.1.1 Kademlia

Arrivé après les autres protocoles de DHT, le protocole Kademlia propose un
réseau dont il précise la structure, les communications entre les noeuds et l’échange
d’informations. La communication entre les noeuds du système se fait en utilisant le
protocole UDP. L’intérêt du protocole Kademlia par rapport aux autres DHT est qu’il
propose de calculer une distance entre les noeuds à l’aide de l’opérateur ou exclusif
(XOR).

Les informations sont stockées dans des valeurs qui sont associées à des clés.
L’ensemble des clés gérées par un noeud est en rapport avec son adresse, de telle
sorte que si on connait une clé, la distance approximative entre l’utilisateur et le
noeud possédant la clé recherchée peut être calculée par l’algorithme. Une recherche
va donc se propager de voisin en voisin jusqu’à obtenir la clé voulue ou jusqu’à no-
tification que la clé n’existe pas. Cette manière de propager les recherches permet au
système d’avoir des recherches dont la complexité varie peu avec l’augmentation
du réseau: par exemple, si la taille du réseau double, il suffira de demander
l’information à un noeud de plus. On doit également relever que l’algorithme
Kademlia est le plus utilisé par des applications pair-à-pair utilisées à grande échelle.
En effet ce protocole a d’abord été implémenté par eDonkey2000 sous la forme du
réseau Overnet et par eMule et son réseau KAD. On fait noter que ces réseaux sont
incompatibles les uns avec les autres. Kademlia a ensuite été implanté chez le client
BitTorrent Azureus, puis chez le client officiel BitTorrent. Kademlia est donc le pro-
tocole de DHT le plus utilisé avec notamment plus de 85 millions de personnes ayant
d’ores et déjà installé eMule.

En effet, ce protocole de DHT a retenu l’attention de nombreux informaticiens grâce
à sa mesure de distance basée sur des “ou exclusifs” qui en fait sur le papier l’une
des tables de hachage distribuées susceptibles d’avoir les meilleures performances.
De plus, on peut noter que Kademlia est la seule DHT utilisée actuellement dans des
systèmes pair-à-pair de grande envergure, le logiciel de téléchargement de fichier
eMule avec le réseau KAD, mais aussi comme système de recherche chez certains
clients BitTorrent, comme Azureus.

Si le client eMule travaillait avec le réseau eDonkey basé sur des serveurs, il s’est
démarqué de celui-ci en créant sa propre DHT, le réseau KAD, plutôt que de chercher
à implémenter le réseau Overnet du client officiel. Deux DHT existent donc et sont
incompatibles : KAD et Overnet. Cette dernière, a été condamnée par la justice à
cesser ses activités de pair-à-pair, mais comme elle était totalement décentralisée, il
fut impossible de l’arêter, et elle fonctionne actuellement encore avec les quelques
utilisateurs qui y sont encore connectés.

La DHT Kad du client eMule est, elle par contre, sous licence de logiciel libre, et
par conséquent, il est possible de regarder comment celle-ci est implémentée. Il faut



182 APPENDIX B. SYNTHÈSE EN FRANÇAIS

Peer 11111

Peer 00001

Peer 00110

Peer 11001

00010 keyword

the

source 00111
00111 source 

peer 11111

11000 keyword

matrix

source 00111

the matrix

00111

the 00010

matrix 11000

File

Source

Keyword

Keyword

Figure B.1: Concept de la publication à deux couches en KAD.

toutefois remarquer qu’en cas de possibilité de réutilisation de la librairie Kad, il
faudrait soit se connecter sur ce réseau et utiliser notre propre logiciel, soit modifier
le code de KAD pour créer une nouvelle DHT propre à notre application mais qui
fonctionnerait sur le même modèle que celle utilisée dans eMule.

Une clé dans un système pair-à-pair est un identifiant utilisé pour retrouver
l’information. KAD se différencie entre deux types de clés:

• Une clé source qui identifie le contenu d’un fichier et qui est calculé en prenant
le hash du contenu du fichier.

• Une clé mot-clé qui classifie le contenu d’un fichier et qui est obtenue en cal-
culant le hash d’un seul mot du nom d’un fichier.

En KAD chaque clé n’est pas juste publiée sur un seul pair qui est le plus proche dans
l’espace hash à la clé, mais sur 10 pairs différents. Les identifiants KAD de ces pairs
doivent au moins avoir 8 bit en commun avec le mot clé. La zone ainsi définie est
appelée la zone de tolérance.

Le processus de publication La figure B.1 montre un exemple du processus
de publication à deux couches. Un pair veut publier un fichier avec le nom
the_matrix. Il va être décomposé en deux mots clés, “the” et “matrix”. D’abord
les références aux fichiers originaux sont créées, ensuite les pointeurs des mots clés
“the” et “matrix” sont publiés, qui pointent sur le fichier. Finalement la source elle
même est publiée, et qui elle, pointe sur le pair qui l’a publié.

Les quatre types de messages les plus importants pour le routage, la publication et
la recherche sont:

• hello: pour vérifier si l’autre pair est toujours en vie et pour l’informer de son
existence, ainsi que de son adresse IP et l’identifiant KAD.
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Algorithm 13: processus envoyer (exécuté une fois par crawl)
Data: peer: struct{IP addresse, numero de port, kid}
Data: shared list Peers = liste de peer elements
/* la liste des pairs remplie par le processus recevoir et

utilisée par le processus envoyer */
Data: int position = 0
/* la position dans la liste jusqu’à laquelle les pairs ont

déjà été interrogés */
Data: list ids = liste de 16 éléments kid choisis de manière appropriée
Peers.add(seed); /* initialise la liste avec les pairs graines */1

while position < size(Peers) do2

for i=1 to 16 do3

destkid = Peers[position].kid ⊕ ids[i]; /* normalise le saut a la4

position du pair */
send route requests(destkid) to Peers[position];5

position++;6

Algorithm 14: processus recevoir (attend les messages route response )
Data: message mess = route response message
Data: peer: struct{IP address, port number, kid}
Data: shared list Peers = list of peer elements
/* la liste partagée avec le processus envoyer */
while true do1

wait for (mess = route response) message; foreach peer ∈ mess do2

if peer /∈ Peers then3

Peers.add(peer);4

• route request/response(kid): pour trouver des pairs qui sont plus
proches de l’adresse kid.

• publish request/response: pour publier une information.

• search request/response(key): pour rechercher l’information avec la
clé key.

B.1.2 Explorer les participants dans KAD

Une des contributions de cette thèse est le développement d’algorithmes qui per-
mettent de connaitre tous les pairs dans KAD. Ces processus font usage de types
de messages hello et route request/response(kid). Le processus 13 envoie
des requêtes de routages à tous les pairs découverts en demandant des adresses KAD
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bien reparties dans l’espace de hachage. Le processus 14 reçoit les messages route
response, en extrait les identifiants des pairs et les transmet à l’algorithme 13.

La vitesse de notre crawler nous a permis d’explorer tout l’espace des identifiants
KAD, ce qui n’a jamais été fait avant. Un tel crawl complet nécessite environ 8 minutes.
En 10 secondes, un million de pairs différent est découvert, après 50 secondes deux
millions sont atteints, ensuite la vitesse s’affaiblit car une grande partie des pairs
dans le système a déjà été découverte (Figure B.2). Un crawl complet de KAD produit
à peu près 3 gigaoctets de trafic réseau entrant et sortant.
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Figure B.2: Le nombre de pairs découverts s’approche de manière asymptotique du nombre
total de pairs dans le système.

Pendant chaque crawl complet nous avons découvert entre 3 et 4.5 millions de pairs.
Entre 1,5 et 2 millions de pairs ont pu être contactés directement et ont répondu.

Dans ce résumé, nous allons montrer seulement quelques uns des nombreux résul-
tats que nous avons obtenus à l’aide du crawler, un outil unique.

Comme on peut le constater sur la figure B.3 le nombre de pairs varie selon un motif
quotidien et hebdomadaire, atteignant le maximum pendant le weekend.
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Figure B.3: Le nombre de pair KAD en ligne dans tout l’espace de hachage, selon l’heure du
jour.

Dans la figure B.4 nous montrons la distribution des pays d’origine des pairs.
L’Europe est le continent qui abrite le plus grand nombre de pairs (l’Espagne, la
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France, l’Italie et l’Allemagne), pendant que la Chine est le pays avec le plus grand
nombre de pairs. Moins de 15% des pairs viennent de l’Amerique (US, Canada et
Amerique du Sud). Nous constatons également que la distribution du crawl complet
est très proche de la distribution du crawl partiel d’une 256ième partie du réseau, ce
qui confirme que les identifiants sont choisis de manière aléatoire.
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Figure B.4: Histogramme de la distribution géographique des pairs.

Sur la figure B.5, le nombre de pairs originaires de la Chine et de quelques pays Eu-
ropéens est dessiné. Il suit un motif quotidien, avec un pic autour de 21 heures, heure
locale. Le décalage horaire de huit heures entre la Chine et l’Europe est nettement
visible.
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Figure B.5: Pairs en ligne selon leurs pays d’origine.

Dans la figure B.6 les temps de session sont représentés. Ceux des pairs découverts
lors du premier crawl sont deux fois plus longs que ceux des pairs vus plus tard le
même jour pour la première fois. Quand nous exécutons un crawl de KAD pour
la toute première fois, nous avons une plus grande chance de tomber sur les pairs
qui sont en ligne “la plupart du temps” plutôt que sur des pairs qui sont en ligne
rarement. Ceci veut dire qu’un seul crawl ne peut fournir une image représentative
des caractéristiques des pairs: nous sommes obligés d’exécuter des crawl régulière-
ment.
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Figure B.6: La CCDF des longueur de sessions pour différents ensembles de pairs.

B.1.3 Explorer le contenu dans KAD

Afin d’analyser non seulement le comportement des pairs en KAD mais aussi le con-
tenu, nous avons développé un espion, qui s’insère des milliers de fois dans la DHT
et s’annonce à ses voisins. Ensuite il écoute les requêtes de recherche et de publica-
tion.

Nous avons lancé notre espion sur un 256ième de l’espace des identifiants KAD pen-
dant 24 heures. Ceci est la durée minimum nécessaire pour détecter la publication
de mots clés rares, car un mot clé n’est republié que toutes les 24 heures. Ainsi nous
avons obtenu des résultats originaux:

• plus de 1,5 millions d’utilisateurs différents,

• plus de 1,4 millions de références différentes à des fichiers publiés,

• plus de 42.000 mots clés différents publiés, mais seulement 1.100 recherchés,

• chaque minute à peu près 1.000 requêtes de recherche, 10.000 requêtes de pub-
lication et 25.000 requêtes d’acheminent ont été reçues.

• La publication génère dix fois plus de messages que la recherche. De plus,
les messages de publications sont dix fois plus grands que les messages de
recherche. Ce qui fait une différence de deux ordres de grandeur pour le nom-
bre d’octets transférés.

• La popularité des mots clés n’est pas distribuée uniformément, comme cela a
été aussi observé dans d’autres DHT.

Si nous extrapolons ces chiffres à la taille de tout l’espace de hachage, nous obtenons
le chiffre de 80 millions de fichiers partagés. Presque deux tiers de ces fichiers sont
des fichiers audio, suivis par des fichiers vidéo, des logiciels, des document et finale-
ment des images (Table B.0(a)). Le format de compression audio le plus utilisé est
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le mp3 avec 87% des fichiers (Table B.0(b)). La moitié des fichiers sont encodés avec
un taux de 128 kilo bits par seconde, un quart avec le taux plus élevé de 192kbps.
La bataille des formats vidéos n’est toujours pas achevée: 34% de fichiers avi, 24%
de fichiers wmv et 16% de fichiers mpg (Table B.0(d)). Pour les documents le format
pdf l’emporte sans suprise avec 43% des documents (Table B.0(e)).

(a) Les fractions des dif-
férents types de fichiers.

file fraction
type
Audio 0.61
Video 0.15
Logiciel 0.11
Document 0.05
Image 0.05

(b) Les formats audio
utilisés.

format fraction
audio
mp3 0.87
wma 0.02
mid 0.01

(c) Les taux de bits (kbps) util-
isés pour la compression au-
dio.

taux de bits fraction
(kbps)
128 0.50
192 0.26
160 0.06
320 0.05
256 0.02

(d) Les formats vidéo
utilisés.

video fraction
format
avi 0.34
wmv 0.24
mpg 0.16
mkv 0.09
rmvb 0.04
asf 0.04
mpeg 0.03
rm 0.02

(e) Les formats de docu-
ment utilisés.

document fraction
format
pdf 0.43
txt 0.17
doc 0.10
nfo 0.06
htm 0.02
html 0.01
ppt 0.01

Table B.1: Un aperçu des types et des formats de fichier retrouvés dans KAD. Certains types
ou formats négligeables ont été omis, ce qui explique les sommes différentes de 1,00.

Les tailles de fichiers dépendent fortement des types de fichier. Pour l’audio à peu
près 90% des fichiers ont une taille entre 2 et 10 megaoctets, alors que pour les fichiers
vidéo la distribution est plus variable: la taille d’un film divx typique (aux environ de
730 megaoctets) et d’un film encodé avec la moitié de la résolution télé (360 MO) sont
visibles dans la figure B.7. Plus de la moitié des documents ont une taille inférieure
à 10 KO, il s’agit probablement de fichiers “lisez-moi”.
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Figure B.7: La CDF des tailles de fichier selon le type de fichier.

B.2 Environnement Virtuel Partagé

Un environnement virtuel partagé est un espace généré par ordinateur(s) dans
lequel plusieurs participants peuvent se rencontrer et interagir de telle manière que
l’expérience vécue ressemble à celle qu’ils pourraient vivre dans le monde réel. On
appelle entité n’importe quel objet indépendant dans le monde virtuel. Il s’agit d’un
programme exécuté par une machine. Quand une entité est contrôlée par un hu-
main, on dit que la représentation de l’entité dans le monde virtuel est l’avatar de
l’humain qui la contrôle. On parle plutôt d’objet virtuel pour une entité contrôlée par
l’ordinateur. Chaque entité possède une position dans le monde virtuel. C’est à cet
endroit, virtuel, que sa représentation est observable par les autres entités. Tradition-
nellement, les mouvements sont autorisés: une entité peut bouger d’un point virtuel
du monde à un autre. Par ailleurs, une entité peut apparaître dans un monde virtuel
et en disparaître, aussi facilement que la machine qui l’héberge peut se mettre en
marche ou s’arrêter. Un monde virtuel est donc dynamique: il se modifie au gré des
événements qui l’affectent. Les environnements partagés impliquent plusieurs ma-
chines hébergeant une ou plusieurs entités susceptibles de modifier le monde virtuel
à chaque instant. Ces machines disposent de la capacité de communiquer entre elles
par des messages circulant sur un réseau, typiquement l’Internet.

La définition d’un système de communication pour une application telle qu’un
monde virtuel massivement partagé comprend la gestion des liens de communica-
tion entre les entités et la gestion des messages échangés. Le système mis en place
doit être conforme aux contraintes du réseau sur lequel repose l’application et re-
specter les spécifications de l’application.

Deux spécifications nous semblent fondamentales pour un monde virtuel massive-
ment partagé : l’aptitude à passer à l’échelle et la cohérence.

• Facteur d’échelle : On considère qu’une application passe à l’échelle
si son comportement n’est pas altéré lorsque le nombre de participants
varie de plusieurs ordres de grandeurs (d’une dizaine à plusieurs millions
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d’utilisateurs). On utilisera par la suite le néologisme scalable pour définir
une application qui passe à l’échelle. Une application scalable se caractérise,
entre autres, par une consommation des ressources physiques individuelles (le
débit d’arrivée des messages, l’occupation de mémoire ou la charge de l’unité
de calcul) indépendante du nombre total de participants.

• Cohérence : On dit qu’un environnement virtuel partagé est cohérent
lorsqu’une scène virtuelle est perçue de manière identique par tous les par-
ticipants qui l’observent. l’architecture d’un environnement virtuel partagé
cohérent doit permettre à une entité désirant relater un événement de trans-
mettre un message de telle manière que toutes les entités intéressées par cet
événement le traitent simultanément.

Les architectures les plus courantes reposent sur des serveurs centraux. En relation
avec toutes les entités, ils disposent d’une connaissance globale du monde. A la
réception d’un message relatant un événement, ils doivent déterminer les entités qui
sont intéressées par cet événement et leur transmettre le message. Ce mécanisme
garantit une cohérence forte. Malheureusement, le nombre de messages que ces
serveurs doivent traiter dépend du nombre de participants. De plus, ils peuvent être
victime de défaillances susceptibles d’interrompre l’environnement virtuel.

Les architectures décentralisées sont destinées à corriger ces défauts. Chaque entité
est directement connectée aux entités susceptibles de générer un événement dans la
scène virtuelle observée. Comme la taille de cette zone est limitée, il est admis qu’une
entité s’intéresse à un petit nombre d’entités, généralement indépendant du nombre
total de participants. En conséquence, le nombre de messages simultanés que chaque
entité doit traiter est à peu près constant, ce qui permet le passage à l’échelle. Mal-
heureusement, la gestion de la mise en relation des entités reste un problème. Le
plus fréquemment, une infrastructure de serveurs est chargée de détecter les entités
les plus proches virtuellement et de permettre l’établissement de connexions entre
elles. Même si le nombre de participants peut être élevé, le système ne passe plus à
l’échelle. En outre, le déploiement et la maintenance de cette infrastructure génèrent
un coût financier important tandis que le système est toujours soumis aux risques de
défaillances.

B.2.1 Diagramme de Voronoi et triangulation de Delaunay

Le diagramme de Voronoi d’un ensemble S de n points de Rm est une partition de
l’espace en n cellules représentant les zones d’influence des points de S : la cellule
de Voronoi d’un point x de S est constituée de l’ensemble des points plus proches
de x que de tout autre point de S. La triangulation de Delaunay de S est l’unique
triangulation de S dont tout simplexe admet une boule circonscrite qui ne contient
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aucun point de S (à part les sommets du simplexe). Ces deux objets, duaux l’un
de l’autre, peuvent être linéarisés en augmentant la dimension de l’espace : ainsi, le
diagramme de Voronoi et la triangulation de Delaunay de S sont des projections de
polytopes de Rm+1. Les diagrammes de Voronoi et les triangulations de Delaunay
dans Rm héritent donc des propriétés combinatoires des polytopes de Rm+1.

Figure B.8: Triangulation de Delaunay (lignes continue) et diagramme de Voronoi (ligne
pointillée) en deux dimensions.

Le diagramme de Voronoi de S est un complexe cellulaire de Rm. Chaque cellule de
dimension m correspond à un site x de S et est constitué de l’ensemble des points
de E plus proches de x que de tout autre site de S. Chaque cellule de codimension 1
est constituée de l’ensemble des points équidistants de deux sites x et y de S et plus
proches de ces deux sites que de tout autre site de S (cette cellule sépare les deux
cellules correspondant à x et y respectivement), et ainsi de suite.

La triangulation de Delaunay de S est un complexe cellulaire qui forme une partition
de l’enveloppe convexe de S. Lorsque les points sont en position générale, c’est-à-
dire lorsqu’au plus m + 1 d’entre eux appartiennent à une même sphère et au plus
k + 1 d’entre eux appartiennent à un même sous-espace affine de dimension k (pour
tout k < m), la triangulation de Delaunay est un complexe simplicial : toutes les
faces de Delaunay sont des simplexes.

Par ailleurs, le diagramme de Voronoi et la triangulation de Delaunay de S sont des
complexes cellulaires duaux l’un de l’autre : pour toute partie R de S, la cellule
de Voronoi V orS(R) est non vide si et seulement s’il existe une boule circonscrite
à R ne contenant aucun autre site de S (Figure B.8). L’application de V or(S) dans
Del(S) qui envoie V orS(R) sur DelS(R) est une dualité entre complexes cellulaires
(elle renverse l’ordre d’inclusion entre les faces).
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B.2.2 Entretien d’un réseau pair-à-pair basé sur la Triangulation de
Delaunay

Nous proposons des algorithmes légers, distribués, s’auto-organisant pour autoriser
à un pair à s’ajouter au réseau. Le protocole est détaillé pour la triangulation de
Delaunay en n dimensions.

Insertion de pairs

Nous considérons un nouveau pair z qui joint le système au temps t. Nous assumons
que z a une position dans l’espace et connait au moins un pair dans le système.

Figure B.9: Insertion d’un nouveau pair

Une technique connue en deux dimensions consiste à trouver le triangle englobant
le nouveau pair et de séparer le triangle en trois nouveaux triangles. Finalement
de manière récursive, tous les triangles adjacents sont testés pour déterminer si la
procédure de retournement d’arêtes doit être appliquée.

Dans la figure B.10, l’arête (b, c) est remplacée par (a, z) parce que C(a, b, c) contient
le nouveau pair z.

a

b

c

z

Figure B.10: Retournement d’arête
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Peu d’articles ont étudié le comportement du retournement d’arêtes dans des es-
paces de n dimensions.

L’algorithme que nous proposons est séparé en trois tours. D’abord il faut trouver
le d-simplex qui contient le nouveau pair. Ceci peut être fait avec une approche
d’acheminement gourmand. Les deux tours suivants de l’insertion sont détaillés
ci-dessous.

Diviser le simplex qui contient le nouveau pair Un pair inclus dans un d-simplex
divise celui ci en d+1 d-simplex. Dans la figure B.11, un nouveau pair z appartenant
au tétraèdre T = (a, b, c, d) divise celui-ci en quatre tétraèdres T0 = (a, b, c, z), T1 =

(a, b, d, z), T2 = (a, c, d, z) et T3 = (b, c, d, z).

a

b

z

c

d

Figure B.11: Devision du tétraèdres contenant le nouveau pair

Le tour précédent se termine si le pair z reçoit une description des simplexes autour
de sa position. Le prochain tour commence par la division de T en d + 1 d-simplex
non superposés. Ensuite z enregistre ces simplex dans une liste T (z) où petit à petit
tous les simplex impliqués sont ajoutés. Enfin z envoie un message hello à ses d+1

nouveau voisins. Ce message contient l’ancien d-simplex T et les d nouveaux sim-
plex dans lesquelles la destination est impliquée. Dans l’exemple de la figure B.11,
le pair z envoie à son voisin b un message hello qui contient T , T0, T1 et T3.

Mécanisme de retournement d’arêtes récursives Nous considérons un pair a qui
reçoit un message hello du nouveau pair z. Ce message contient un d-simplex T

qui est obsolète et d nouveaux simplexes T1, T2 . . . Td qui contiennent les deux a et z.

Dans un cas normal, la triangulation est mise à jour en exécutant de manière récur-
sive un mécanisme de retournement d’arêtes qui divise deux d-simplex en d d-
simplex. Cette opération est appelée un 2− d retournement. Dans la figure B.12, des
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deux tétraèdres (a, b, c, z) et (a, b, c, e) résultent trois tétraèdres (a, b, z, e), (a, c, z, e) et
(b, c, z, e).

a

b

e

c

z

a

b

e

c

z

Figure B.12: Un 2− d retournement

Le pair a doit d’abord déterminer le d-simplex T ′
1 ∈ T (a) de façon que T ′

1 et T1

partagent un (d − 1)-simplex en commun, par exemple T1 = (a, e0, . . . , ed−2, z) et
T ′

1 = (a, e0, . . . , ed−2, e). Le pair e peut être considéré comme l’opposé de z à travers
de ce (d− 1)-simplex. En deux dimensions e est l’opposé de z à travers l’arête (a, e0)

et en trois dimensions e est l’opposé de z à travers la face (a, e0, e1).

Si z appartient à l’hyper-boule autour de T ′
1, le pair a doit informer z que 1) le d-

simplex T1 doit être supprimé et que 2) e est un nouveau voisin. Ceci est atteint avec
le message detect qui contient à la fois une description de e et T1. Ensuite le pair a

exécute le 2 − d retournement, qui crée d d-simplexes nommés T11, T12, . . . , T1d. Un
de ces d-simplex ne contient pas a mais tous les autres oui. Entre temps T1 et T ′

1 sont
supprimés.

L’opération doit être réitérée avec les nouveaux simplex. Considérons T11, le pair a

doit trouver le d-simplex T ′
11 ∈ T (a) qui se partagent un (d − 1)-simplex avec T11.

Ensuite a doit vérifier que le nouveau pair appartient à C(T ′
11). Si c’est le cas, a divise

T11 et T ′
11 en d d-simplexes et envoie un autre message detect à z.

Le processus se termine lorsque a ne divise plus de d-simplex. Le pair a doit se
disconnecter des pairs avec lesquels il ne partage plus de d-simplex in T (a). Dans cet
algorithme tout les pairs impliqués doivent exécuter le mécanisme de retournement
d’arêtes et envoyer un message detect à z.

L’algorithme 15 montre le pseudo code pour le traitement d’un message hello. Le
premier test retourne le pair qui invalide T (lignes 2-3). Dans les autres cas, le pair
reçoit la notification de d nouveaux d-simplexes T1 . . . Td. Il les met dans une file
d’attente fifo Q (lignes 5-6). Ensuite, il reçoit le d-simplex Ta (ligne 8). La fonction
share prend en argument Ta et retourne un d-simplex qui partage un (d−1)-simplex
avec Ta et le pair qui est opposé à z à travers ce (d− 1)-simplex (ligne 9).

Si pour z le hypersphère-test est négatif le (d− 1)-simplex Ta est sauvegardé (ligne 17).
Le hypersphère-test vérifie si un pair est dans une hypersphère. En trois dimension un
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Algorithm 15: hello z T T1 . . . Td

if T /∈ T (a) then1

f ←detectInside (T )2

send “cancel T , f" to z3

else4

for i = 1 . . . d do5

Q.put (Ti)6

while Q 6= ∅ do7

Ta ← Q.pop ()8

Tb, e = share (Ta)9

if z ∈ C(Tb) then10

Ta1 . . . Tad ← split (Ta, Tb)11

for i = 1 . . . d do12

Q.put (Tai)13

remove Tb from T (a)14

send “detect e Ta” to z15

else16

insert Ta in T (a)17

pair p est dans C(a, b, c, d) si:∣∣∣∣∣∣∣∣∣∣∣

ax ay az (a2
x + a2

y + a2
z) 1

bx by bz (b2
x + b2

y + b2
z) 1

cx cy cz (c2
x + c2

y + c2
z) 1

dx dy dz (d2
x + d2

y + d2
z) 1

px py pz (p2
x + p2

y + p2
z) 1

∣∣∣∣∣∣∣∣∣∣∣
> 0

Dans le cas opposé, Ta est divisé et le processus récursif est mis en place en ajoutant
les d-simplexes résultants à la file d’attente Q (ligne 12-13). Dans ce cas, un message
detect est envoyé au nouveau pair z (ligne 15).

Dans ce résumé, nous ne détaillons pas la suppression de pairs.

Raccourci dans le réseau sous-jacent

Lorsque les réseaux structurés sur-jacents on été introduits, peu d’attention a été
portée à la possibilité d’exploiter des information de proximité dans le réseau sous-
jacent, le réseau physique, pour l’acheminement dans le réseau sur-jacent. En con-
séquence, un message envoyé à une destination utilisant l’acheminement dans le
réseau sur-jacent va connaître une pénalité de latence. Afin de réduire cette pénalité,
différentes propositions ont été faites.
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Nous distinguons deux approches afin d’améliorer l’acheminement dans le réseau
sur-jacent: i) faire mieux correspondre les deux réseaux et ii) construire un réseau
logique qui a les propriétés de petit-monde. Dans le passage suivant, nous allons en-
richir le réseau sur-jacent avec des liens additionnels de manière à ce qu’il ressemble
à un petit-monde. En plus, nous allons donner priorité aux voisins physiques dans
le réseau sous-jacent pour être élus comme raccourci.

Dans ce résumé, nous ne rentrons pas dans les détails ni du modèle ni de
l’implémentation. Nous nous contentons de décrire la configuration de simulation
et nous montrons quelques résultats.

Nous avons utilisé GT-ITM pour générer une topologie de réseau physique à deux
niveaux, qui consiste en domaines et en noeuds à l’intérieur de ces domaines (Fig-
ure B.13). Parmi les noeuds qui n’ont qu’un seul lien, nous choisissons de manière
aléatoire des noeuds qui vont participer au réseau sur-jacent.

Figure B.13: Topologie de réseau (avec 8000 noeuds) organisée en deux niveau, générée avec
GT-ITM.

La seconde étape de la simulation consiste au calcul de tous les chemins les plus
courts dans cette topologie. La latence d’un plus court chemin est calculée en addi-
tionnant les distances du entre les noeuds sur le chemin.

Soit pu
i , p

u
i+1, · · · , pu

i+h−1, p
u
i+h = pu

j le plus court chemin de pair pi à pair pj dans le
réseau physique. La longueur de ce chemin est la somme des longueurs des dis-
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tances Euclidienne des h sauts séparant les deux pairs:

h−1∑
k=0

du(pi+k, pi+k+1).

La distribution des noeuds dans un monde virtuel n’est pas uniforme parce que les
noeuds sont organisés dans des groupes. Afin d’obtenir ces groupes de noeuds,
nous avons utilisé le vol de Lévy qui produit un chemin aléatoire à travers l’espace,
en utilisant la distribution de Lévy pour déterminer la taille d’un pas. En regardant
seulement les tournants de ce chemin, on obtient une distribution de noeuds organ-
isés dans des groupes. (Figure B.14).

Figure B.14: Distribution de noeuds obtenue par un vol de Lévy.

Nous avons effectué des simulations avec des distributions de noeuds uniformes et
regroupés. L’exemple dans la figure B.15 contient 1296 noeuds et 3680 arêtes dans le
réseau physique et 397 noeuds participent au réseau logique superposé. Le chemin
affiché est le plus long, celui qui profite le plus des raccourcis.

Si nous comparons les deux chemins pris au niveau physique, nous constatons que
les raccourcis ajoutés peuvent être très efficaces: le nombre de sauts a été réduit de 6 à
3 et la latence de 11049 ms à 3418 ms. Le chemin le plus court dans le réseau physique
a une latence de 2471 ms. Seulement le premier des sauts faits est un raccourci, il
s’agit du plus long dans la figure B.15(a).

Dans cette synthèse, nous n’abordons pas le regroupement des participants.
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(a) Chemin pris dans le réseau logique, depuis
le point en haut au point en bas de la figure.
Les lignes fines indiquent les raccourcis des
noeuds non visités.

(b) Chemin pris dans le réseau physique,
depuis le point sur la droite au point sur la
gauche. En gris le chemin sans raccourcis, en
noir le chemin en prenant avantages des rac-
courcis.

Figure B.15: Chemin pris dans le réseau logique et le réseau sous-jacent.
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