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Abstract—We address diversity order of linear equalization mission over fading channels. For time-selective channels
for block transmission in fading channels. It is known that \we show that LE can achieve full Doppler diversity when
zero-padded (ZP) block transmission allows LE to achieve fii appropriate guard-bands are inserted into the transmibeym
multipath diversity present in frequency selective channks. We . .
show here that, in a dual fashion, LE can achieve full Doppler in much the_ sz?\me way as zero-symbolg are padded ,'n ZP-
diversity in time-selective channels when guard bands areni Only transmission to enable LE to achieve full multipath
serted in the transmit signal. For these transmission schees we diversity. We then study the performance of LE for precoded
derive an upper bound for the orthogonal deficiency [1] of the transmission in doubly selective channel and show that LE
effective channel matrix at the receiver to prove that LE can also achieve maximal diversity offered by doubly selective

exploit full diversity present in the channel. We also analye the . .
performance of LE with linear precoded transmission in douly channels with the same precoder that enables MLE to achieve

selective channels and extend this proof to show that LE can Multiplicative multipath-Doppler diversity.
also achieve maximal joint multipath-Doppler diversity offered
by doubly selective channels. I. SIGNAL MODEL

|. INTRODUCTION In Fig. 1 we show the block diagram of the transmission

Fading channels pose a major challenge to reliable cof@del for block transmission over fading channels.
munications particularly over wireless channels. Eqaaiim
at _receiver that pptimally e>_<p|oits the inherent divers_iity sli] | Parser El 6 IX[]| his | y[k]] Equalizef 3[4]
fading channels is a convenient counter-measure agaidgst fa
ing channels. Frequency selective fading provides muhipa
diversity due to the presence of multiple independentlynigd Fig. 1. Block diagram of transmission model.
components. In block transmission systems, when the channe
coherence time is shorter than the transmit block length,Atthe transmitter, complex data symbelg| are first parsed
temporal variations of the channel give rise to time-salégt into N-length blocks.Then-th symbol in thek-th block is
However, this same time-selectivity of the channel also prgiven by [gk]],, = s[kN + n] with n € [0,1,..., N — 1].
vides Doppler diversity [2] which can be exploited by thé&ach blocks[k| is precoded by a// x N matrix ® where
receiver. Linear Equalization (LE) is a low-complexity @ib M > N and the resultant block[%] is transmitted over
sub-optimal alternative to optimal ML equalization. Recerthe block fading channel. In the signal model, we consider
research has concentrated on quantifying the performahcettee general case of doubly-selective channels of orbler
diversity order of LE in fading channels. While the diveysit Frequency-selective-only and time-selective-only cledgsnan
order of LE for transmission over frequency selective cledgin be represented as 1-D cases of doubly selective channels.
has been studied in [3] [4], diversity order of LE in timedt is well known that the temporal variation of the channel
selective and doubly selective channels is less understotaps in doubly selective channels with a finite Doppler sprea
In [5], the authors used Complex-Exponential Basis Exmansican be captured by finite Fourier bases. We therefore use
Model (CE-BEM) [6] with @ + 1 bases to model the doublyCE-BEM [6] with @ + 1 basis functions to model the time
selective channel of memork, the authors showed that byvariation of each tap in a block duration. The basis coefiisie
employing linear precoded block transmission, the maximuramain constant for the block duration but are allowed tg var
diversity in the channel is upper bounded (@ + 1)(L 4+ 1) with every block. The time-varying channel for each block
and can be achieved when maximum-likelihood decoding timnsmission is thus completely described by@he 1 Fourier
used at the receiver. However, ML incurs a huge computdtiofeses andQ + 1)(L + 1) coefficients. In genera) is chosen
complexity therefore it is of interest to investigate dsigr such thatQ > 2[f,...MTs] where1/T; is the sampling
order achieved by linear equalization for block transmoissi frequency andf,,... is the Doppler spread of the channel.
over doubly selective channels. In this paper, we study tide coefficients themselves are assumed to be zero-mean
performance of MMSE-ZF linear equalizers for block transsomplex i.i.d Gaussian random variables. This is a readenab




assumption for a rich scattering environment with non-lifie linear estimate for the symbols of thieth received block is
sight reception. Using as the discrete time (sample) indexthen given by the MMSE-ZF equalizer
we can represent thieth tap of the channel in the-th block

0 MMSE-ZF = (K7 [k|H[k]) ' H [K], (6)
hig =Y hy(k,1)e?> (1) whereH[k] = H[k; 0] is the effective channel matrix seen at
a=0 the receiver due to zero-padding (in general, precodintjeat

1€10,L], f, = (¢—Q/2)/M. The corresponding receive sig-iransmitter.

nal is formed by collectingl/ samples at the receiver to form 1) Diversity order of LE: In [1] the authors introduce a
y[k] = [y(kM +0),y(EM +1),...,y(kM+M —1)]T. When metric namely the orthogonality deficiency of the equivalen
M > L, this block transmission system can be representeddhannel matrixod(H([k]) at the receiver and prove that LE
matrix-vector notation as [5] can achieve the same diversity as ML equalization (MLE)
when od(‘H[k]) < 1. For the case of ZP transmission in

ylk] = Hik; 0]@slk] + H[k; 1]@slk — 1] + V(K] (2) frequency selective channel[k] = H[k;0] is a M x N

where v[k] is a AWGN vector whose entries have zeroJoeplitz channel matrix. In this section we provide an upper
mean and variancer?> and is defined in the same Waybound tood(H[k]) in terms of the infinite order prediction

as y[k]. H[k;0] and H[k 1] are M x M matrices whose error variance of the spectrufn(f)[*> whereh(f) = h(e7*7/)
entries are glven byHk: tlrs = Agenrsriarsr—s) with @nd o= [ho(k,0), ho(k, 1), ..., ho(K, L)]" and prove that
t e [0,1],r e [0,..,M — 1]. Defining D[f,] as od('H) is bounded strictly below 1. We start by noting that

a diagonal matrlx whose diagonal entries are given Hget(H[k]H[k]))"/Y is a decreasing function of and
D[fllmm = e*fam m € [0,1,..,M — 1], and further , o N 2
defining[Hg[k; t])r.s = hq(k, tM +1r—s) as Toeplitz matrices ngnoo(det(H [RTHIED) T = o5, (7)

formed of BEM coefficients, it is straightforward to reprase 5 o - .
where o2 is the infinite order prediction error variance of

Eqg. (2 . . )
a- (2) as Ih(f)|?. Due to the fact that the minimum phase filter coeffi-
cients are bounded, it was shown in [7] that
ZZqu [k;t|@slk —t] +V[k],  (3)
e 2 > —|h|3 ~ (Y 8
I1l. DIVERSITY ORDER OF LINEAR EQUALIZERS o0 = E” 2 ez = Z (L) ' ®

=0

A. Frequency selective channel

Consider the case of zero-padded block transmission 0
time-domain symbol vectoslk] in a frequency selective det(H Y [K]HK]) 1\N
channel of ordef. Such a scheme involves paddisig] with ~ od(H[k]) = ~ det(diag T R HIH) 1— » (9)
M — N > L zero symbols before transmission over the fre-
guency selective channel. In other words, the precodingixnatwhich concludes our proof.
© = [In Onw(ni— N)] The frequency selective channel can
be represented as a special case of doubly selective chafhelime selective channel

when @ = 0. In order to simplify notation, we therefore \we now consider the case of block transmission in time-
drop the superscnpq in the received signal representatiog|ective- -only channels. The symbol vecs] is now de-
and rewrite Eq (3) as fined in the frequency domain. The time-selective channel is

y[k] = H[k; 0]@s[k] + H[k; 1]@sk — 1] + V[k],  (4) modeled_ using BEM by settin@ = 0. The time-variation

of the single channel-tap is then captured @y+ 1 BEM

Due to the delay spread of the channel, the received blogéefficientsh, (k, 0). Since there is only a single channel tap
experiences inter-block-interference. This is represerty in time- domam in the following, we drop the tap-index in
the second term on the RHS of Eq (4). Note thit; 1] is  order to simplify the notation. Furthermore, the channel ha
a strictly upper-triangular matrix with non-zero elements no delay-spread and therefore does not produce inter-block

only the lastM — L columns of the matrix. Zero-padding hasnterference. Consequently, we represent the receivek s
the effect of setting inter-block-interference to zero dhd

received signal can be expressed as

y[k] = HI[k; 0]s[k] + v[k], (5)

Since diagH " [k]H[k]) = |h||3 | v we have

CL

Zh D[/,]©s[k] + V[K], (10)

where ﬁ[k;o] is a M x N Toeplitz matrix with In a dual fashion to the case of frequency selective channel
[ho(k,0), ho(k,1),...,ho(k, L),01xn—1—1]T as its first col- we propose to inserl/ — N > @ guard-symbols in the
umn. When the received block is represented by an inp@itequency-domain symbol vector This is accomplished by
output relationship as in Eq (5), it was shown in [4] thasetting [©],,, = ¢/>™™"/™ with m € [0,1...,M — 1] and
MMSE-ZF receiver achieves has diversity order 1. The n €[0,1,..., N — 1]. By subjectingy[k] to a M-point DFT at



the receiver, the corresponding frequency-domain chazarel Fig. 2 provides a more insight into subtleties of the precgdi
be represented as operation. TheP K-length symbol vector is defined in the
_ frequency domain. These symbols are first re-ordered, and
YIk] = Hy[klsik] + vk, (11) then @ guard symbols are inserted in each block. The IFFT
Where F represents the standard DFT matrix arg[k] is operation transforms these zero-padded blocks into the-tim
the equivalent frequency domain channel which i87ax N domain where a furthef zero-pads are inserted to the symbol
Toeplitz matrix with [ho(k), hi1(k), ..., ho(k),01xm—q—1]T  vector in the transformed (time) domain.
as its first column. Note that similar to the case of ZP trassmi
sion in frequency selective channel where the effectiveobh
matrix is a Toeplitz matrix formed by the time-domain channe
coefficients, in this case, the frequency domain channelixnat
is a Toeplitz matrix formed by the frequency domain channel
coefficients that contribute to the time-variation of thachel
tap. Thus, this scheme can be viewed as a dual of ZP-
only transmission for time-selective channels. The MMSE-Z
equalizer is given by Eq (6) where

HK] = H K], (12)

Eq (11) has a similar input-output relationship as in Eq (5)
and it is easily shown that

od(H[k]) < 1— <i>N, co = 2(: <g>2 (13)

P blocks

P blocks

@ zero blocks

€Q
C. Doubly selective channels Fig. 2. Precoding operation.

We now look at the case of block transmission in doubly
selective channels. The channel is assumed to be of drder Due to the presence of the zero-padding mafrix it can
and the time-variation of each channel tap within a block Be easily shown that the inter-block-interference compoire
captured byQ + 1 complex-exponential basis functions. Théhe received signal is zero, i.eH,[k; 1]©sk — 1] = 0. As a
k-th receive block is then represented as in Eq (3) which wesult, the received block can now be represented as
reproduce here for clarity.

Q
L) Y[kl = > DlfqlHq[k; 0]©S[K] + V[E], (17)
ylk] =) > DIfyHq[k; )OSl — 1] + V[k], qz:;

t=0¢=0 Using standard Kronecker product identities, one can show

The precoding matriX® that we consider here is given by that
) _pH O 1.
@ZFg_’_QTl@TQ, (14) Hq[/{,O]@—FP+QT1®Hq[/€,O]T2, (18)

where Fpiq is a (P + Q)-point DFT matrix, Ty = whereH,[k;0] is a K + L x K + L Toeplitz matrix formed
lp 0pxglT, T2 = [lk Okxz]T. P and K are chosen such by the firstK + L rows and columns ofl,[k; 0]. Eq.(17) can
that M = (P+Q)(K + L) and N = PK. This precoder was then be re-written as

proposed in [5] and was shown to enable diversity order of Q

(Q+1)(L+1) for ML receivers in doubly selective channels. y[x] = Z DI[f,] (Fg+QT1 ® ﬁq[k; O]Tg) sik] + v[k], (19)
The operation of® on s[k] is explained as follows. First, q=0

the N-length block is parsed int@ blocks of K symbols.
Next, L. zero-pads are appended to each of th&sblocks
in an intermediate step to ford® blocks of K + L symbols.
Next. a set of@ .zero-blocks of lengthK' + L are appeNnded D[f,] = Dp1q[fy(K + L)) ® Dr+r[fy], (20)

to this intermediate block vector to forf-length vectoix|k] _
consisting of P + @ blocks of lengthK + L. A block IFFT Ed (20) represent®[f,] as Kronecker product of time-
operation is now performed oR[k] to form the precoded Variation over two scalesDp[f,(K + L)] is a diagonal
transmit symbol vectox[k] which is transmitted over the Matrix of sizeP+ () that represents time-variation at a coarse
doubly selective channel. The above series of operatioms &fale (complex-exponentials sampled at sub-samplingvaite

Further insight into the effect of the precoder on the channe
is possible by observing that

compactly represented in the following equations of (K + L)T,s and Dy r[f] is a diagonal matrix of size
~ K + L that represents the time-variation over a finer grid
X[k] = (T1®Ta)slk], (15)  corresponding to the sampling peri@j. Using Eq (20) and

X[k] = (F§+Q®IK+L)%U§] = Og[k], (16) standard matrix identities, we can decompose the received



Q

yik] = > ((DrsolfalK + DIFE T ® DrcrslfolFglk: O]T2)) slk] + vik, (2)
q=0
Q
Vbl = (FEq@licen) Y (GrrolaT) @ DucsslfiJAqlk; 0T2)) sik] + VIk) (22)
q=0

signal as in Eq (21) wher#{g] = J(¢~?/2) and.J is a circulant which leads to

matrix with [0, 1, 01Xp+Q,2]T as the first column. Since the det(’HH[k]’H[k]) 1 PK
matrix (Ff, , ® | x+2) has no effect on the diversity of theod(H[k]) =1— Totdiag 7 MR - <c . ) ,
doubly selective channel, for the analysis of the diversitjer et (diag( [KIFL[K])) L@ (26)
of MMSE-ZF receiver, the effective channel matrix can b?hus, with linear precoding of the form Eq (14), diversity
represented as order of LE is(Q + 1)(L + 1).
Q ~ IV. NUMERICAL RESULTS
Has[k] = > (Ip+0la]T1) @ (Dreyr[folHylk; 0]T2),  (23)

In this section we provide simulation results to corroberat
our analysis. The diversity order of MMSE-ZF receiver for
The channel matrix for this case is therefore giver#ji] = block transmission is estimated based on the slope of the out
Has[k] and is a highly structured matrix. Fig. 3 illustrates thege probability curve. Monte-Carlo simulations were eatri
structure of the equivalent channel matrix due to precadingut for a fixed transmission rate for different SNR pointseTh
HereH, represents the product matiXx , 1.[f,|H4[k; 0] for  decision-point SINR for a fixed arbitrary symbol indexin
ease of illustration. In particular, it is a block-Toeplitmtrix the k-th symbol blocks/k] was computed as
with constituent blocks which are in turn formed by the P
product of a diagonal matri® 1. f,] and a Toeplitz matrix SINR,, = W (27)
formed by the corresponding BEM coefficients of theh o
basis function.

q=0

where ‘H[k] represents the equivalent frequency-selective,

time-selective or doubly selective channel gnis the SNR.
— When the decision point SINR was below the SNR required to
|0 support the fixed transmission rate, the channel was dekclare
% to be in outage. The slope of the outage probability curve can
™

E1E

then be used as an estimate of the diversity order. In additio

A ‘ this, we compare the slope of the MMSE-ZF receiver to that of
h the matched filter bound (MFB) which is known to collect all
the available diversity in the channel. Fig. 4 shows therdite
order of LE in frequency selective channel whén= 2. As
0 || A2 expected, ZP enables LE to achieve full multipath diversity
frequency selective channel. Fig. 5 shows the diversityeiord
of LE in time selective channel for the case f = 2.
Observe that, wher) guard frequencies are introduced in
) ) ) ) the transmit symbol block, LE achieves full Doppler diversi
1) Diversity order of LE in doubly selective channels: For - aeorded by the time selective channel. This can be seen as
the case of doubly selective channel the equivalent changely 5| of ZP transmission in time selective channels. This is
matrix H[k] = Has[k] is a block Toeplitz matrix. The blocks fther evidenced by comparison of the slope of the outage
themselves (cfH, in Fig. 3) are Toeplitz to within a multi- 5 opapility with that of MFB. Fig. 6 shows the duality of LE

plication of the diagohr)al matri . 1[fq]. As both P — oo i, frequency and time selective channel. Note that the stdpe
and K — oo, det(H ™ [k]H[k]) becomes insensitive to thisihe gutage probability for LE in frequency selective chdnne

_diagonal mult_iplication factor. Thg 2-din_1ensi0na| (_cgpend- whenQ = 0, L = 2 is the same as that of LE in time selective
|ng_to the_Q(Ume) gndL(deIay) dlmen5|_ons) prediction errorchannel for the case of) = 2, = 0. Furthermore both
variance is the 2-dimensional geometric spectrum average5ve the same slope as that of MFB in high-SNR regime. In
2 _ ST mH G ) P, (24) Fig. 7 we .plot_ the performanc_e of in LE for I_inearly precoded
o0 ' transmission in doubly selective channel with= 2, L = 1.
which can be lower bounded by 2-D Matched Filter Bound adhe outage probability curve exhibits a slope(@f+1)(L+1)
12 12 which leads us to conclude that LE achieves full diversity
1 _ _ , . . . .
02 > / / H(f1, f2)2dfs dfs, (25) in do_ubly selec'uveT channel when an gpproprlate diversity
creQ Jo1y2 Jo1)2 enabling precoder is used at the transmitter.

T

Has[k] =|| A

I
<
I

Ho = Dx1[fo]Ho[k; 0]

Fig. 3. Equivalent channel matrix for doubly selective afeln

g
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Fig. 4. Diversity order of LE in frequency selective channel.
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Fig. 5. Diversity order of LE in time selective channel.
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Fig. 6. Duality of LE in time and frequency selective channels.
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Fig. 7. Diversity order of LE in doubly selective channel.

V. CONCLUSIONS

In this contribution we analyzed the diversity order of
MMSE-ZF receivers in fading channels. In time-selective
channels, we showed that by inserting guard symbols in the
transmit block LE can achieve full Doppler diversity of time
selective channels. Such a scheme can be viewed as a dual
of ZP-only block transmission that enables LE to exploit ful
multipath diversity of frequency selective channel. For ZP
transmission in frequency selective channel we proved that
the orthogonal deficiency of the effective channel matrix is
bounded strictly below 1 thus allowing LE to achieve full
diversity offered by the channel. Further, we analyzed the
performance of LE in precoded block transmission in doubly
selective channels and showed that it is possible to achieve
maximal diversity offered by doubly selective channels by
using LE at the receiver.
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