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Abstract—We consider SINR maximizing receivers based on
the concept of chip-level filtering and symbol level equalization
for WCDMA downlink. In this contribution we propose a
new class of receivers based on channel sparsifying linear pre-
processing at chip-rate followed by time-varying symbol level
equalizers. Due to a sparse structure imposed on the channel
(i.e. sparsification) by a chip level pre-equalizer filter which we
call channel sparsifier, the effective channel after despreading
presents itself as a symbol-level ISI channel. Time-varying equal-
ization at symbol level is necessitated by the presence of aperiodic
scrambler which is treated as deterministic. The optimal channel
sparsifier maximizes SINR at the output of symbol level equalizer.
We focus here on downlink channels that have significant dis-
persion in the temporal domain. Expressions for post processing
SINRs (after channel sparsification, despreading and subsequent
symbol level equalization) are derived for all receivers and used
for performance evaluation. We show that improved receivers
for WCDMA downlink can be designed benefiting from a
combination of generalized channel sparsification, deterministic
treatment of scrambler and non-linear equalization.

I. INTRODUCTION

Optimal linear receivers for WCDMA are symbol level
(deterministic) time-varying multiuser receivers that are known
to be prohibitively complex. One class of such receivers
is based on symbol-level multiuser detection (MUD) where
linear or non-linear transformations can be applied to the
output of a channel matched filter (RAKE). Linear methods
in this category are decorrelating and MMSE MUD both
known to deal with inverses of large time-varying code cross-
correlation matrices across symbols and thus are impractical.
Non-linear MUD methods focus on estimating, reconstructing
and subtracting signals of interfering codes. They are in
general called interference canceling (IC) methods and known
sub-categories among them are serial and parallel interference
cancelers (SIC/PIC) (see [1] for MUD).

A less complex alternative is dimensionality reducing linear
chip equalization followed by further nonlinear interference
canceling or joint detection stages to improve symbol esti-
mates [2] (and references therein). The basis for these receivers
is that interference arises from loss of orthogonality due to the
multipath channel and this problem is effectively solved by
attempting to bring back the orthogonality through a SINR-
maximizing LMMSE equalizer (or a MMSE-ZF solution).
Gains obtained by this two-step design over classical chip-
equalization are limited by the efficacy of the dimensionality

reduction achieved at the output of linear chip equalizer and
also by the type of processing at symbol level.

A solution of the second category can intuitively be treated
as a dimensionality-reduction stage in MUD. It may take the
form of a general chip-level filter carrying out functions of
channel equalization or indeed a spatio-temporal → spatial
channel-shortener (e.g., 2N×2 to 2×2 in MIMO HSDPA) [3].
This stage precedes either per-code joint detection of data
streams at symbol level [4] [3] or can be followed-up by
one of the several possible decision-feedback approaches [5].
In the general MIMO case, the resulting symbol-rate spatial
channel can now be seen as only a per-code spatial mixture
to which simplified (per-code) processing can be applied.
Assuming L to be the processing gain, Nt the number of
TX streams, Nr the number of RX antennas, and p to be
the oversampling factor w.r.t. the chip rate, this can be seen
as a dimensionality-reduction from p · L · Nr to Nt. Given
this drastic reduction, it is not surprising to see performance
falling well short of optimal time-varying symbol-level pro-
cessing (linear and non-linear MUD solutions). Despite their
performance shortcomings, one may nevertheless point out
that complexity/performance tradeoff between MUD and chip-
level type receivers favors the latter, which for this reason
are well-accepted in practical receiver designs [3]. In general,
dimensionality reduction can range from p · L · Nr to Nt, to
K ·Nt or to K ·Nf ·Nt, where K is the number of codes per
stream, and Nf is an arbitrary number of symbols of the any
code stream. Subsequent non-linear processing again depends
upon the achievable performance/complexity tradeoff desired.

In this paper we take the approach of optimally combin-
ing chip-level and symbol-level processing and investigate
receivers based on channel sparsification as opposed to channel
shortening. The chip-level channel is conditioned using a pre-
equalizer in order to tradeoff achievable gains at the symbol
level equalizer with the associated complexity. The idea itself
is not new and dates as far back as early 70’s [6] [7] [8]
where combined equalization and maximum-likelihood se-
quence estimation (MLSE) was considered in order to achieve
higher data-rates. More recently, Al-Dhahir et.al [9] proposed a
unified approach for design of finite length channel shortening
MMSE equalizers as pre-filters for reduced-order MLSE. In
all these contributions, the design goal was to find optimal pre-
equalizers that shorten the channel impulse response (CIR) to



a desired target impulse response (TIR) of specified length.
The pre-filters are based on different optimization and design
constraints. For instance [6] minimizes the error variance at
the output of the pre-filter subject to energy constraints on
the TIR, [7] attempts the same while imposing a monocity
constraint on the TIR and [8] proposes to render the error
white so as to obtain optimal performance for the ML stage.
On the other hand, in this paper, we do not interest ourselves
in shortening the CIR, instead we impose a structured spar-
sity criterion on the resultant sparse impulse response (SIR).
This paper focuses on a class of HSDPA receivers based
on channel sparsifying linear pre-processing, and introduces
a time-varying model of the resulting reduced-dimensional
(symbol-rate) temporal channel. The sparsification is con-
trolled by an appropriate design criterion for the chip-level
channel sparsifier and time-variant model is a consequence
of treating the scrambler as deterministic [10]. The cascade,
as for the case of classical chip-equalizer front-end, results
in a reduced-parameter problem the dimensionality of which
can be controlled through sparsifier design. While the classical
MMSE chip-equalizer is highly effective in mitigating the
effects of temporal dispersion of the channel and restoring
orthogonality of codes, it works on the principle of optimally
combining the channel power in a single tap corresponding
to the target equalizer delay thereby excluding the possibility
of any ”Viterbi-like” post processing at later stages. In this
contribution we show that improved receivers for WCDMA
downlink can be designed benefiting from a combination of
generalized (and controlled) channel sparsification, determin-
istic treatment of scrambler and reduced-parameter non-linear
detection.

II. DOWNLINK SIGNAL MODEL

Fig. 1 illustrates the equivalent baseband chip-level down-
link signal model. The received signal vector (chip-rate) at the
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Fig. 1. Downlink signal model.

UE can be modeled as

y[j] = H(z)x[j] + v[j], (1)

In this model, j is the chip index, H(z ) is the frequency
selective channel, the output of which, is sampled p times per
chip and v[j] represents the vector of noise samples that are
zero-mean circular Gaussian random variables. The sequence
x[j] introduced into the channel is expressed as

x[j] =

K∑

k=1

s[j]ck[j mod L]ak[n] (2)

where k is the code index, n is the index of the symbol on
code k given by n =

⌊
j

L

⌋
, L is the spreading factor (we

consider L = 16 as in HSDPA), ck is a unit-norm spreading
code, and s[j] the scrambling sequence element at chip time
j, which is zero-mean i.i.d. with elements from 1√

2
{±1± j}.

Consider estimation of the symbol sequence, ak[n], of the
kth code among K codes in a SISO/SIMO channel. Fig. 2,
represents a simple vectorized TX signal model where x[n] is
the chip vector defined as x[n] = [x0[n] · · · xL−1[n]]T , where
xi[n] is the ith multi-code (K codes) chip corresponding to
the nth symbol, a[n]. If the delay spread is N chips, and
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Fig. 2. Simplified TX signal model.

the sparsifier length in chips is E, assuming an oversam-
pling factor of p, the block-Toeplitz (FIR) channel T (H)
is a pE × N + E − 1 block Toeplitz channel convolution
matrix. The channel-sparsifier cascade results in a equivalent
sparse impulse response that we denote by g. By design,
g has dominant tap gains at chip offsets d + νL where
ν ∈ {0, 1, . . .Nf − 1}. and arbitrary non-zero values in all
other taps. We can now define Gν the L×L Toeplitz matrix
with [g[d + νL], g[d+ νL +1], . . . , g[d+ (ν +1)L− 1] as the
first row and [g[d+νL], g[d+νL−1], . . . , g[d+(ν−1)L+1]T

as the first column and matrices Gν,s and Gν given by

Gν,s = Gν − Gν (3)

where Gν,s is a diagonal matrix with g[d + νL] on the
diagonal and Gν is Gν with the diagonal set to zero. As
shown in Fig. 3, the channel sparsifier output serves as input
to the descrambler-correlator bank (after an appropriate delay
not depicted in the figure in the interest of simplicity). The
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dependence of the output ẑm,k[n], m ∈ {0, 1, . . .Nf − 1} of
each descrambler-correlator pair in the bank on the scrambler
vector at n results in a time-varying symbol level channel.
The expression for ẑm,k[n] can be derived as in (4) where we
denote by g[ν] the tap-values of g at d + νL.

III. GENERALIZED CHANNEL SPARSIFICATION

As discussed earlier, the chip-level sparsifier conditions the
channel to have an approximately sparse structure. We say it
is approximately sparse because the resultant channel has Nf



dominant taps and all other taps have arbitrary small non-
zero tap gains. While we do not constrain the position of
first dominant tap, we do constrain the remaining taps to be
regularly spaced L chips apart where L denotes the downlink
spread factor. Furthermore, the channel sparsifier should be
a solution to an appropriately chosen optimization criterion
which in our case is the post-processing SINR. The channel
sparsifying filter is thus chosen so as to maximize the SINR at
the output of symbol-level equalizer. The optimum chip-level
channel sparsifying filter is therefore a function of symbol
level equalizer.

Before we go further, we define by H̃ , the matrix whose
columns are formed by the L-spaced Nf columns of T (H)
and are the columns of the channel convolution matrix at
precisely the chip-position offsets at which the resultant sparse
impulse response will have dominant taps. We define the
matrix T (H) as the matrix formed by setting these columns
to zero in T (H). For the specific case of Nf = 2, T (H)
has 2 columns at equalizer/sparsifier delay d and d + L that
we shall denote henceforth by h0 and h1. We also define the
positive definite matrix B as

B = σ2
totT (H)T (H)H + Rvv . (5)

These two matrices are of special significance to us. We shall
see later that these matrices are the common link to all the
different channel-sparsifier/symbol-equalizer pairs. In fact, the
channel sparsifier for all three receivers lives in the column
span of the product matrix B−1H̃ . A fact that we shall exploit
in computing the optimum channel sparsifier.

The philosophy behind the proposed receiver structures can
be summed up as follows. The channel is rendered sparse by
chip-level processing so that this chip-level sparse channel can
be exploited by reduced complexity non-linear equalization
that operates at symbol level. It is the presence of the aperiodic
scrambler that adds to the complexity of the receiver. This
type of combined chip and symbol level equalization can
provide gains only if the scrambler is treated as deterministic,
otherwise, the random scrambler assumption will compel us
to treat the time varying signal contribution as noise. For
a specific symbol-level equalizer, the post-processing SINR
is derived. In the sequel, we will see that this leads to
an optimization problem with a quadratic constraint and a
quadratic cost function and takes the general form

max
f

fHAf

fHRf
subject to fHAf = constant, (6)

The solution to this maximization problem is well known to
be the maximum generalized eigenvector of the matrix pair
(A, R).

IV. SISO HSDPA RECEIVER STRUCTURES

A. Receiver 1: MMSE Chip Equalizer-Correlator

As is well known, LMMSE equalizer is the optimal linear
equalizer that attempts to suppress all Inter-Chip Interference
(ICI). The linear FIR MMSE chip-level equalizer tries to
obtain chip estimates and is given by the standard expression
f = RxyR−1

yy (see fig. IV-A). We can write the equalizer
output as the sum of an arbitrarily scaled desired term and an
error term

x̂[j] = x[j] − x̃[j], (7)

The error x̃[j] is a zero-mean complex normal random vari-
able.
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Fig. 4. LMMSE equalizer and correlator.

As shown in Fig. IV-A, at the output of the equalizer, the
estimate of the chip sequence in (7), is obtained after a delay
d equal to the equalization delay in chips. After despreading
(for the kth code) the signal at the symbol level is written as

zk[n] = ak[n] − z̃k[n] = g[0]ak[n] − z̃k[n], (8)

g[0] in this expression is defined as in section II
The SINR at output of the LMMSE chip equalizer/correlator

is thus given by

SINR =
σ2

k|g[0]|2

σ2
tot‖g‖

2 + σ2
vfHf

, (9)

where g is computed by setting g[0] in g to 0 and σ2
tot =

1

L

K∑

k=1

σ2
k.

B. Receiver 2: PIC + ML equalization post sparsification

For the rest of the receiver structures we consider deter-
ministic treatment of the scrambler. In section III we intro-
duced channel sparsification that will remain the common
pre-processing stage for all the following receiver structures
though the criteria for channel sparsifier design might differ.

At each of the descrambler-correlator pairs, Nf−1 dominant
taps are not aligned to the de-scrambler in question and hence
experience inter-code interference. For ML equalization of the
Nf -tap sparsified channel for the code of interest k, the inter-
code interference (MUI) present on Nf − 1 mis-aligned taps
can be canceled by an iterative MUI cancellation algorithm

ẑm,k[n] = g[m]ak[n − m] +
∑

ν 6=m

g[ν]cH
k SH

n Sn−νckak[n − ν] +
∑

j 6=k

∑

ν 6=m

g[ν]cH
k SH

n Sn−νcjaj [n − ν]+

∑

j∈K

cH
k SH

n GmSncjak[n − m] +
∑

j∈K

∑

ν 6=m

cH
k SH

n GνSn−νcjaj [n − ν] + fHv[n], (4)



say, PIC. With such a processing stage preceding ML equal-
ization, the ML processing will now be strictly on a per-
code basis. Furthermore, we make the following assumptions
at the output of the deterministic de-scrambler; the signal
and interference terms are uncorrelated, the interference plus
noise components are uncorrelated across ẑ0,k[n] and ẑ1,k[n],
g[1]cH

k SH
n Sn−1ckak[n − 1] and g[0]cH

k SH
n−1Snckak[n] are

independent for all pairs of n and n − 1 and the interference
plus noise components are themselves uncorrelated across
symbol durations. If we then define a matrix A as

A = σ2
k

(
1 +

1

L

)
H̃H̃

H
, (10)

and B as in (5) the per-code SINR is given by

SINRk =
fHAf

fHBf
, (11)

Clearly, the filter f that maximizes (11) is the eigenvec-
tor corresponding to the maximum generalized eigenvalue
λmax(A, B).

1) Discussion: Indeed, if the inverse of B exists, f is also
an eigenvector of B−1A. In general, due to the particular
structure of A, the filter f is of the form

f = αB−1h0 + βB−1h1, (12)

That f should completely live in the space spanned by h0 and
h1 is not surprising, since it is obvious from the expression
for per-code SINR that, any other f will increase then value
of the denominator in (11) thus reducing the SINR.

C. Receiver 3: ML equalization post sparsification

Considering the computational complexity involved in an
additional PIC stage in the receiver above, one is tempted to
investigate the performance of ML equalization of the sparse
channel without inter-code interference cancellation. Without
the PIC pre-processing, however, the channel sparsifier design
has to account for inter-code interference on the Nf − 1 mis-
aligned taps in the descrambler-correlator bank. With same
assumptions on correlation and independence of interference
and noise terms as before, the SINRk for code of interest k
for the case of Nf = 2 is given by (13)

SINRk = σ2
k

∑

i=0,1

fHH̃

[
ī + i/L 0

0 i + ī/L

]
H̃Hf

fH
{

B +
(
σ2

tot −
σ2

k

L

)
hīh

H
ī

}
f

(13)

We choose Nf = 2 here with the sole intention of simplifying
the SINR expression. The extension to Nf > 2 is trivial and
straightforward. The optimum filter f that maximizes (13) in
this case can be computed based on a 2-D search. Recall
that the optimum filter lives in span {h0, h1} and can be
decomposed as (12). We also note that SINR is insensitive
to any scale factor of f , this allows us to set α (or for that
matter β) to 1. The problem of finding the optimum filter thus
reduces to finding the optimum β which can be a complex
co-efficient and whose phase also influences the SINR. We

therefore carry out a 2-D search for the optimum beta over an
appropriate search grid and compute the optimum sparsifying
filter using (12).

D. Receiver 4: Post sparsification MRC

We now draw attention to equation (4). Here too, w.l.o.g,
we assume Nf = 2. Maintaining that code-k is our code of
interest, we see that as a consequence of controlled ISI present
in the sparse channel, scaled versions of the nth symbol on
code-k is present at ẑ0,k at time n and at ẑ1,k at time n + 1.
If we assume, as before, that inter-code interference has been
canceled, and all other components of ẑm,k except the symbol
of interest ak[n] as noise, the matrix A in the optimization
problem is now given by

A = σ2
kH̃H̃

H
, (14)

and B can be shown to be as in (15) and we arrive at the
simplified SINR expression at the output of the maximum ratio
combiner that is given by (16) below

B = σ2
tot

1∑

i=0

|fHhi|
2

|fHh0|2 + |fHh1|2
T i(H)T

H

i (H) + Rvv

(15)

SINRk =
σ2

k

(
fHH̃H̃

H
f

)2

1∑

i=0

|fH
hi|

2f
H

(
σ2

totT i(H)T
H

i (H) + Rvv

)
f

(16)
Where T i(H) is defined as the channel convolution matrix
T (H) with the d + iL column set to zero. Since the SINR is
itself a function of channel sparsifier, the optimum channel
sparsifying filter is computed in an iterative fashion. The
iteration is initialized by using f that maximizes (11) to
compute B. The optimum filter f opt is then computed by
alternatively plugging in the maximum generalized eigenvector
of the matrix pair (A, B) and recomputing the matrix B until
convergence.

V. SIMULATION RESULTS

We show here simulation results and compare the perfor-
mance of the different receiver structures. In the first instance,
for a fixed SNR and over several realizations of a frequency
selective FIR channel H(z ), we compute the SINRs at the
output of the receivers and compare the distribution of SINRs
for various receivers. The channel coefficients are complex
valued zero-mean Gaussian of length 16 chips. The length
of the channel sparsifying filter is the same as that of chip-
equalizer. The per-user SINR is used as a performance measure
for all receivers. In Fig. 5 we plot the SINR for receivers 1,
2 and 3. The SINR at the output of chip-equalizer correlator
receiver is computed by treating the scrambler as random and
compared with the distribution of SINR at the output of the
other two receivers where the scrambler is treated as deter-
ministic. In reality, deterministic treatment will imply that the
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channel is time-varying at the symbol level, nevertheless, we
use the averaged value of the time-varying channel gain to plot
the SINR. We see here that receiver-2 performs significantly
better than the classical chip-equalizer correlator receiver. The
complexity of the receiver-3 is significantly reduced due to
the absence of inter-code interference canceling stage that is
assumed present in receiver-2 but receiver-3 still outperforms
receiver-1.

In Fig. 6 we compare the performance of the MRC receiver
with our reference receiver. Here too we find that a receiver
that first renders the channel sparse and treats the scrambler
as deterministic outperforms the reference receiver. Finally in
Fig. 7 we compare the performance of all receivers in terms
of their average SINRs for various SNR values.
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VI. CONCLUSIONS

In this contribution, we introduced a class of receivers
for WCDMA downlink based on the novel concept of chip-
level sparsification and symbol level equalization. Due to
channel sparsification the resultant channel presents itself as
a symbol-level ISI channel at the output of the correlator. By
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Fig. 7. SNR vs. average SINR comparison of all receivers.

treating the scrambler as deterministic, the receiver can benefit
from reduced parameter time-varying non-linear equalization
at symbol-level. We presented solutions for obtaining the op-
timum channel-sparsifying filter depending on the non-linear
processing stages that exploit the resultant sparse channel. We
derived SINR expressions for these receivers and compared
their performance against the classical MMSE chip-equalizer
correlator receiver. We showed that receivers based on channel
sparsification when paired with deterministic treatment of the
scrambler and followed by non-linear processing stages can
outperform the best chip-level linear equalization solution.
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