
RFID­Based Supply Chain Partner Authentication and Key
Agreement

Florian Kerschbaum
SAP Research

Karlsruhe, Germany

florian.kerschbaum@sap.com

Alessandro Sorniotti
SAP Research and Institut Eurécom

Sophia Antipolis, France

alessandro.sorniotti@sap.com

ABSTRACT

The growing use of RFID in supply chains brings along an
indisputable added value from the business perspective, but
raises a number of new interesting security challenges. One
of them is the authentication of two participants of the sup-
ply chain that have possessed the same tagged item, but
that have otherwise never communicated before. The situa-
tion is even more complex if we imagine that participants to
the supply chain may be business competitors. We present
a novel cryptographic scheme that solves this problem. In
our solution, users exchange tags over the cycle of a supply
chain and, if two entities have possessed the same tag, they
agree on a secret common key they can use to protect their
exchange of business sensitive information. No rogue user
can be successful in a malicious authentication, because it
would either be traceable or it would imply the loss of a
secret key, which provides a strong incentive to keep the tag
authentication information secret and protects the integrity
of the supply chain. We provide game-based security proofs
of our claims, without relying on the random oracle model.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—
Cryptographic controls; C.2.2 [Computer-Communication

Networks]: Network Protocols—Applications

General Terms

Algorithms, Security

Keywords

RFID, Supply Chain, Proof of Possession, Authentication,
Key Agreement

1. INTRODUCTION
Radio Frequency Identification (RFID) is a modern tech-

nology that supports tracking and tracing of tagged items

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’09, March 16–18, 2009, Zurich, Switzerland.
Copyright 2009 ACM 978­1­60558­460­7/09/03 ...$5.00.

in supply chains. Each item is equipped with an RFID tag
that carries a unique identifier. This tag can be read via ra-
dio frequency communication and multiple tags can be read
at once.

There are active and passive RFID tags. Active RFID
tags have their own power supply while passive tags solely
operate on the power of the signal emitted by the reader.
The reader is a special device that can interoperate with
the tags and read the identifiers stored in their memory.
More complex and powerful tags can store information in
memory and even perform simple cryptographic operations
such as hashing.

A major application of RFID is supply chain manage-
ment [26, 7, 1]. In the supply chain each item can now be
tracked using its unique identifier. The benefit of this track-
ing and tracing technology unleashes its true potential, when
the supply chain partner share their event data. An event
happens when a tag is read. At its most basic level this
generates a tuple

〈organization, identifier, timestamp〉

This tuple is usually augmented with additional informa-
tion, such as reader identifier, type of event (e.g. receiving,
shipping, unpacking, etc.), and additional fields depending
on the type of event.

Companies are interested in sharing information linked to
events for many reasons: firstly, a consumer may be inter-
ested in knowing the steps that the product she purchased
has gone through. A company may need to recall particu-
lar flawed products and is interested in knowing the list of
retailers that have actually sold them.

In order to share the data linked with events, companies
connect to a global network, currently being standardized
by the EPCglobal consortium. This network contains a dis-
covery service, which stores all companies that have event
data for a specific tag. In order to retrieve all information
about a tag, one contacts the discovery service with its re-
quest which then returns the list of all companies to contact.
Then one can contact each company individually and ask to
retrieve its event data.

The main challenge with this system, is that on the one
hand companies have an incentive to share this informa-
tion so as to facilitate their business, on the other, this in-
formation is highly confidential and (possibly competing)
companies are reluctant to trust one another. Therefore, a
big concern is the possibility of espionage of a competitor’s
supply chain [24], carried out for instance by retrieving the
event data about items in a competitor’s supply chain.

Imagine two companies – which might have never com-
municated before – that contact each other with the help
of the discovery service and need to mutually authenticate:
the only thing they have ever had in common is that they
have both been in possession of the same tag at some point.
These companies need to prove to each other that they have
possessed the same tag.

There are a number of attacks that might happen in this
scenario:

1. An impostor might request information about tags he
has never possessed, for example in order to track the
supply chain of his competitor.

2. A malicious company might supply rogue information
about tags he had never possessed, for instance so as
to hide the origin of counterfeited products.

1.1 A Simple Solution
A simple solution to this problem is to store a shared se-

cret on the tag, so that everyone who possessed that tag
knows it and can use it to secure subsequent communica-
tions.

Unfortunately, this solution has many disadvantages. First,
there is no incentive for someone who possessed the item
not to divulge the shared secret, since this action cannot be
traced back to him. Second, the tag could be maliciously
read by an outsider who does not legitimately belong to the
supply chain.

Therefore, in order to have a secure solution to the prob-
lem at hand, we need to develop a more complex scheme
than a simple shared secret.

1.2 Our contribution
In this paper we present a novel scheme implemented in

two protocols that solve the aforementioned problem. The
intuition is that the information stored on the tag is tied
to a secret key or identity (since one of our two solutions
is ID-based). Only the holder of the trapdoor information
(that identity’s private key or a secret value) can actually
prove possession of the tag. The information stored on the
tag is updated as the tag changes possession; the update is
performed with a special re-encryption key or through the
help of a trusted third party (TTP). The involvement of
the TTP makes it possible to trace the item throughout the
supply chain.

Our solution overcomes the disadvantages of the simple
solution. If someone illegitimately requests information for
a tag, he can be exposed by the TTP. On the other hand,
impersonation is possible only if a party’s private trapdoor
is exposed. A supply chain partner that wants to let another
party authenticate, must then decide to either be traceable
or to reveal his secret key and relinquish all the business
sensitive information to him.

A good property of our solution, is that RFID can be
effectively used together with complex cryptographic prim-
itives: indeed, tags just act as carrier of cryptographic en-
velopes, that are then used off-the-tag to perform complex
security protocols. Our technology already works with the
simplest tags specified by the EPCglobal standard (class 1
tags). The sole requirement is that tags must be able to
store the minimum amount of information required to per-
form the cryptographic operations. Tags do not necessarily
need to be rewritable: one could simply throw away the old

tag and put a new one: the ever decreasing price of hard-
ware can totally support this approach. Obviously rewriting
the information on the tag is the more elegant solution, and
we will use it throughout the remaining description in the
paper.

The remainder of the paper is structured as follows. The
next section describes the related work. Section 3 intro-
duces some cryptographic background; in Section 4 we give
a rapid overview of the different algorithms that compose
our scheme, which we thoroughly present in Section 5. Se-
curity proofs of both schemes are given in Section 6, before
we compare our two schemes in Section 7. The last section
presents the conclusions.

2. RELATED WORK
The security of RFID-based systems has been object of

intense research over the past few years, given the many
threats related to the adoption of this technology [18]. Many
papers have focused on privacy-related issues [15, 22, 20].
RFID authentication protocols have received a lot of at-
tention as well [28]. However, to the best of our knowledge,
ours is among the first works that address secure interaction
among participants of an RFID-enhanced supply chain. An
interesting key distribution application for RFID using ad-
vanced cryptography has been presented in [19]. Its main
advantage is the use of aggregate packaging along the supply
chain while maintaining user’s privacy.

In the first scheme that we propose, the re-encryption part
was inspired by proxy re-encryption and proxy re-signatures.
They were introduced in [8] and later improved in many
papers, e.g. by [3, 4, 12, 16]. Note that we are using a
different setup than proxy re-encryption. In our case the
server (TTP) holds all (private) keys, but the clients (users)
perform the re-encryption. We require to be able to apply re-
signatures multiple times and not just once (as in e.g. in [3]).
We inherit some disadvantages, such as bidirectionality.

The signature or authentication part of our first scheme
borrows from [11]. In that work, short signatures are formed
using bilinear maps and one secret key. Our first scheme is
very similar in that it ties the public key to the secret key
chosen for re-encryption. Therefore the authenticator has
to present both a signature of the challenge and the tag
authentication information.

The key agreement part of our first scheme is inspired by
traditional secured Diffie-Hellman key exchange [14]. It is
not to be mistaken with the tripartite version of [17]. It
enhances two-party Diffie-Hellman to work in groups with
bilinear maps.

The second scheme that we propose borrows interesting
ideas from Secret Handshakes. Secret Handshakes are first
introduced in 2003 by Balfanz et al. [5] as mechanisms de-
signed to prove group membership, and share a secret key,
between two fellow group members. Additional properties
are that non-members must not be able to either imperson-
ate group members or to recognize legitimate group mem-
bers. In [2], Ateniese et al. present the first Secret Hand-
shake protocol that allows for matching of properties differ-
ent from the user’s own. Our construction of tag information
is similar to Ateniese et al.’s credentials. However, in secret
handshakes, the loss of credentials has tragic consequences
on the security of the scheme, whereas in our dynamic sce-
nario, we have to account for the possibility that tag in-
formation is read by somebody different from the intended

recipient. Despite this, the scheme must still be secure: this
is probably the most remarkable distinction of our scheme
from secret handshakes.

3. PRELIMINARIES

3.1 Cryptographic Pairings
Given a security parameter k, let (G1, ∗) and (G2, ∗) be

two groups of order p for some large prime p, where the bit-
size of p is determined by the security parameter k. Our
scheme uses a computable, non-degenerate bilinear map ê :
G1 ×G1 → G2 for which the Computational Diffie-Hellman
Problem (CDH) problem is assumed to be hard. In what
follows, we denote Z

∗

p = {1, . . . , p− 1}.
Modified Weil or Tate pairings on supersingular elliptic

curves are examples of such maps. We recall that a bilinear
pairing satisfies the following three properties:

• Bilinear: for g, h ∈ G1 and for a, b ∈ Z
∗

p, ê(ga, hb) =

ê(g, h)ab

• Non-degenerate: ê(g, g) 6= 1 is a generator of G2

• Computable: there exists an efficient algorithm to com-
pute ê(g, h) for all g, h ∈ G1

3.2 Identity­Based Encryption
Identity-based encryption (IBE) was introduced in [25] as

an alternative to public-key encryption. In IBE any string
can be used as an encryption key, e.g. one can encrypt an e-
mail using the recipient’s e-mail address. The recipient then
obtains the decryption key (for his identity) from a trusted
third party after successful authentication.

The procedures of an IBE scheme are

• Setup: The TTP publishes public parameters.

• Encrypt: One transforms a plaintext using an arbi-
trary string as key into a ciphertext.

• Get Decryption Key: One obtains a decryption key
for an identity from the TTP.

• Decrypt: One transforms the ciphertext using the
decryption key into its plaintext again.

The first practical IBE scheme was presented in [10]. It is
based on cryptographic pairings described in Section 3.1 and
is proved IND-ID-CCA secure under the bilinear decisional
Diffie-Hellman assumption in the random oracle model.

In our scheme every party has an identity; following the
Alice and Bob convention, we refer to a message encrypted
for Alice as IBEA(m). We will treat identity based encryp-
tion as a building block and will build our scheme indepen-
dently on top of it.

3.3 Hash functions
In this section we describe the hash functions that are

used in one of the two presented protocols. Our construction
leverages on the work proposed by Boneh and Boyen in [9]
and later improved by Waters in [27].

Let g
R
← G1; let us also choose n + 1 random values

u0, u1, . . . , un
R
← Z

∗

p; we assign U0 = gu0 , U1 = gu1 , . . . , Un =
gun . If v ∈ {0, 1}n is an n-bit string, let us define h(v) =

u0 +
P

i∈V
ui ∈ Z

∗

p, where V ⊆ {1, . . . , n} is the set of in-
dexes i for which the ith bit of v is equal to 1. We also define
H(v) = U0

Q
i∈V

Ui = gh(v) ∈ G1.
With such an approach, we can represent in G1 strings

of size n, or alternatively, strings of arbitrary length, pre-
processed with a hash function whose block size is n.

We will use this approach in the second protocol that we
present, whereas in the first, we will use standard hash func-
tions.

4. SUPPLY CHAIN PARTNER AUTHENTI­

CATION
Assume Trent is a trusted third party that supports users

in updating the information stored on the tag as the tag
changes of possession. Then our supply chain partner au-
thentication consists of the following algorithms or proto-
cols.

Setup: Trent publishes some public parameters about the
system known to every participant.

Register: A new company Alice wants to join the supply
chain and is contacting Trent to register. They setup pub-
lic/private/secret information tied to Alice’s identity. Trent
returns to Alice her public and private information, keeping
the secret one for himself.

Initialize: Alice just created a new item and attached a
tag to it. She creates the secret information on the tag. She
does so without Trent’s intervention.

Ship: Alice intends to ship the item to Bob and con-
tacts Trent seeking for his support. Trent either delivers
the re-encryption key that can be used to update the tag
information for its next owner, or updates the information
himself.

Receive: Bob receives the item and stores its informa-
tion, so that he can later authenticate request for event data.

Authenticate: Alice and Bob want to mutually authen-
ticate as having owned the same tag. They exchange random
challenges to salt the instance of the protocol, and mutually
verify whether the other has owned the same tag. After-
ward, they share a key which they use to protect subsequent
communications.

Using the proposed approach, we could envisage the fol-
lowing scenario. The production of a complex good needs
the cooperation of different agents. This process often in-
volves different companies that take part to the supply chain.
For instance three different companies A, B and C may co-
operate as follows: company A has an item and - according
to its usual business - needs to ship it along to another com-
pany for further processing. The ”next” company is not
known in advance and company A chooses company B (but
could easily have chosen company B’). A then performs the
shipping operation invoking the ship algorithm. Similarly,
B ships the item down to company C. Eventually the chain
stops.

At a later point in time, company A and company C may
need to interact on the basis of the ownership of the tagged
item described above. Notice that A and C have never inter-
acted before, and may not have any pre-established business
relationship whatsoever. Company A and company C have
kept in a database the association of the tag ID with the
cryptographic information stored within the tag at the mo-
ment of its receipt. They use this information to perform a
handshake that, if successful, allows them to safely rely on

one another as business partners with respect to that tag,
and to share a key used to secure further communication.

5. SOLUTIONS
In this section we present two solutions to the aforemen-

tioned problem. We describe the implementation of the al-
gorithms and protocols that we introduced in the last sec-
tion.

5.1 RFIDAuth1

In this section we introduce RFIDAuth1, a first protocol
based on bilinear pairings. RFIDAuth1 consists of the fol-
lowing algorithms:

• Setup

According to the security parameter k, Trent chooses
(p, G1, G2, g, g̃, ê), where g and g̃ are random genera-

tors of G1. He picks α
R
← Z

∗

p and sets S = gα. The sys-
tem’s public parameters are params = {p, G1, G2, g, g̃,
S, ê}. The value α is instead kept in Trent’s secret
storage.

• Register

Alice wants to register with Trent to enter the supply
chain partner network. She chooses two random ele-

ments yA, zA
R
← Zp. She sends g̃yA and gzA to Trent.

Trent chooses a random element xA from Z
∗

p and re-

turns to Alice (gxA g̃yA)α−1

and gxA . These and all
subsequent message exchanges with Trent need to be
conducted over secure and authenticated channels.

Notice that there are three different types of informa-
tion related to Alice: Alice’s public information, repre-

sented by the pair (gzA , (gxA g̃yA)α−1

); Trent gives this
pair to anybody interested in dealing with Alice (sim-
ilarly to public key certificates). Alice’s private infor-
mation is represented by the tuple gxA , yA, zA. Alice’s
secret information, known only to Trent is the value
xA.

A −→ T g̃yA , gzA

T −→ A gxA , (gxA g̃yA)α−1

Figure 1: Registration Protocol

• Initialize

Alice wants to initialize a new tag. She chooses a ran-

dom element ttag
R
← Z

∗

p and computes X1 = gttag and

X2 = (gxA)t
−1
tag . Recall that Trent sent gxA to Alice

as her hidden part of the re-encryption key during the
register protocol. Alice stores the pair (X1, X2) on the
tag and should destroy ttag immediately.

• Ship

Alice intends to ship the item with the tag to Bob. Al-
ice contacts Trent and indicates her intention by send-
ing A and B. Trent retrieves xA for Alice and xB for
Bob and returns kA,B = x−1

A xB mod p − 1 to Alice.
Alice computes

X ′

2 = X
kA,B

2 = ((gxA)t
−1
tag)x

−1
A

xB = (gxB)t
−1
tag

She stores the pair (X1, X
′

2) on the tag (and erases the
old one).

A −→ T A, B
T −→ A x−1

A xB mod p− 1

Figure 2: Ship Protocol

• Receive

Bob receives a tag and stores the pair (X1, X2) in his
database. If he ships the item further, he applies the
ship protocol.

• Authenticate

Let us assume that Alice and Charlie want to authen-
ticate as having possessed a common tag, and in case
of mutual successful check, want to share a key. One of
the two indicates so by sending the tag identifier to the
other. Let us assume that Charlie starts. Mind that
Alice has (X1A = gttag , X2A = gxAt

−1
tag) and Char-

lie has (X1C = gttag , X2C = gxCt
−1
tag). Alice contacts

Trent and retrieves Charlie’s public information gzC ,

and (gxC g̃yC)α−1

. She then chooses a random element

r
R
← Z

∗

p and sends gr as a random challenge to Charlie.

Charlie uses his secret key yC to compute (gr)yC and
retrieves X2C from his database. He sends both values
to Alice.

Alice retrieves X1A from her database and checks whether

ê(X1A, X2C)r ê(gyCr, g̃)

ê(S, (gxC g̃yC)α−1)r
=

ê(gttag , gt
−1
tagxC)r ê(gyCr, g̃)

ê(gα, (gxC g̃yC)α−1)r
= 1

holds. The same check is performed by Charlie, who
queries Trent for Alice’s public information, sends a
random challenge gs to Alice and receives in response
gyAs, X2A. Then he checks if

ê(X1C , X2A)sê(gyAs, g̃)

ê(S, (gxA g̃yA)α−1)s
=

ê(gttag , gt
−1
tagxA)sê(gyAs, g̃)

ê(gα, (gxA g̃yA)α−1)s
= 1

holds. If the check is successful at both sides, both
users are certain that they have possessed the tag and
continue with the key agreement.

In order to establish a shared secret, upon a successful
mutual proof of possession, they set the secret key K
to

K = ê(gzC , gs)zAr

= ê(g, g)rzAszC

= ê(gzA , gr)zCs

Subsequent communications between A and C are se-
curely protected through the use of the secretly shared
key K1.

1Notice that no eavesdropper can reconstruct the key from

C −→ A id
A ←→ T public information protocol
C ←→ T public information protocol
A −→ C gr

C −→ A gs, gyCr, X2C

A −→ C gyAs, X2A

A ←→ C data exchange protected by K

Figure 3: Authentication Protocol

A −→ T C

T −→ A gzC , (gxC g̃yC)α−1

Figure 4: Public Information Protocol

Note that the public information protocol can be re-
placed by a certificate signed by Trent. Then there is
no need for any communication with Trent during the
authentication protocol.

5.1.1 Stronger Tracing

There are some limitations on tracing when Trent hands
out re-encryption keys. Alice does not have to obtain a re-
encryption key for every tag, but only once per partner she
is sending items to. This reduces the burden on Trent, but
also reduces traceability.

In this situation Trent can build a graph of who can send
to whom, but not a graph per item of who has sent to whom.
The resulting overlay graph of all items might be to close to
complete in order to reveal any useful tracing information.

Furthermore, there are some cryptographic limits on the
re-encryption key. Given the re-encryption key kA,B = x−1

A

xB mod p−1 one can compute the re-encryption key kB,A =
k−1

A,B = x−1
B xA mod p−1. Given the re-encryption keys kA,B

and kB,C one can compute the re-encryption key kA,C =
kA,BkB,C . To counter these attacks, Trent would have to
include the reverse of each edge and compute the transitive
closure of the graph.

An alternative is to involve Trent in every Ship operation.
The Get Re-encryption Key operation therefore ceases to
exist and the Ship operation is modified as shown in Fig-
ure 5. Assume Alice wants to send a tagged item to Bob.

Alice has read X2 = (gxA)t
−1
tag from the item in a previous

receive operation or produced it in an initialize operation.
Alice sends TA and Bob’s identity to Trent which responds

with X ′

2 = ((gxA)t
−1
tag)x

−1
A

xB = (gxB)t
−1
tag .

A −→ T B, X2 = (gxA)t
−1
tag

T −→ A X ′

2 = (gxB)t
−1
tag

Figure 5: Strong Tracing Ship Protocol

Trent can compute gt
−1
tag = X

x
−1
A

2 and store the triple

〈gt
−1
tag , A, B〉 in his database. The identifier gt

−1
tag is unique

per tag and is never changed, such that Trent can build a
complete forwarding pedigree of the tag. Trent can then

the information on the wire, because no probabilistic poly-
nomial time algorithm can reconstruct ê(g, g)rzAszC from
gr, gs, gzA and gzC .

clearly identify any party divulging authentication informa-
tion if an impostor for a tag is identified.

5.2 RFIDAuth2

In this section, we enrich the previous scheme, enabling
the use of identities. A user’s public information is simply
the hash of his identity. This way we effectively remove the
need for certificates issued by Trent. The Public Information
Protocol is therefore no longer needed. We put ourselves in
the stronger tracing scenario, introduced in Section 5.1.1,
and we thus require Trent’s support upon each execution of
the Ship algorithm.

Another advancement with respect to the previous scheme
is that we develop a neater authentication and key deriva-
tion scheme, borrowing from the field of Secret Handshakes.
In this scheme we adopt the hashing approach outlined in
Section 3.3.

RFIDAuth2 consists of the following algorithms:

• Setup

According to the security parameter k, Trent chooses
(p, G1, G2, g, ê), where g is a random generator of G1.

He also picks u0, u1, . . . , un
R
← Z

∗

p and assigns U0 =

gu0 , U1 = gu1 , . . . , Un = gun . Finally, he picks α
R
← Z

∗

p

and sets S = gα and S′ = gα−1

. The system’s public
parameters are params = {p, G1, G2, g, S, S′, ê, U0, . . . ,
Un}. The values u0, u1, . . . , un and α are instead kept
in Trent’s secret storage.

Trent finally initializes an IBE scheme (see Section 3.2
for further details), and distributes its public parame-
ters to every user in the system.

• Register

Alice wants to register with Trent to enter the supply
chain partner network. She just needs to prove her
identity to Trent, and then she receives from Trent
the secret key associated to her identity. In addition,
she receives the value IA = H(A)α which she stores
secretly.

• Initialize

Alice wants to initialize a new tag. She chooses a

random value ttag
R
← Z

∗

p and she computes X1 =
Sttag IA

r, X2 = gr and X3 = H(A)r. Alice stores
the tuple (X1, X2, X3) on the tag and should destroy
ttag immediately. Notice that the Initialize phase does
not require the intervention of Trent.

• Ship

Alice intends to ship the item with the tag to Bob. Al-
ice contacts Trent and indicates her intention by send-
ing the tag’s ID, A, B and the pair (X1, X2, X3), read
from the tag upon reception. We remind the reader
that X1 = Sttag IA

r, X2 = gr and X3 = H(A)r.
Trent checks whether ê(X3, g) = ê(H(A),X2), thus
checking if the tuple really corresponds to the identity

of Alice. Trent in turn picks s
R
← Z

∗

p and computes8>><>>:X ′

1 =
X1

Xα
3

IB
s = Sttag IB

s

X ′

2 = gs

X ′

3 = H(B)s

Then, Trent sends X ′

1, X
′

2, X
′

3 to Alice. Upon receipt,
Alice stores the tuple on the tag (and erases the old
one).

For tracking purposes, Trent can compute Sttag =
X1

Xα
3

and store the triple 〈Sttag , A, B〉 in his database. The
identifier Sttag is unique per tag and is never changed,
such that the TTP can build a complete forwarding
pedigree of the tag. Trent can then clearly identify
any party divulging authentication information if an
impostor for a tag is identified.

A −→ T tag ID, A, B, Sttag IA
r and H(A)r

T −→ A Sttag IB
s, gs and H(B)s

Figure 6: Ship Protocol

• Receive

Bob receives a tag and stores the tuple (X1, X2, X3) in
his database, associating it to the ID of the tag. Bob
checks whether ê(X3, g) = ê(H(B),X2), to verify if the
received tuple was indeed destined to his identity. If
he ships the item further, he applies the ship protocol.

• Authenticate

Let us assume Bob and Alice want to authenticate,
proving to one another that they have possessed a
given tag. Let us assume that Bob initiates the hand-
shake by sending the tag identifier to Alice. Notice
that both Alice and Bob possess the values (X1, X2,
X3) read from the tag upon Receive; let us add the
subscript A (resp B) to identify Alice’s (resp. Bob’s)
tuple.

Alice picks a random nonce nA ∈ Z
∗

p, and then com-
putes IBEB(H(B)nA , (S′)nA) and sends it to Bob.
Similarly Bob picks a random nB ∈ Z

∗

p, computes
IBEA(H(A)nB , (S′)nB) and sends it back to Alice.

If both Alice and Bob have taken part to the supply
chain for the product identified by the tag, they can
derive a common shared key,

K =

�
ê(X1A, (S′)nB)

ê(H(A)nB , X2A)

�nA

=

�
ê(Sttag IA

r , (S′)nB)

ê(H(A)nB , gr)

�nA

= ê(g, g̃)ttagnAnB

=

�
ê(Sttag IB

s , (S′)nA)

ê(H(B)nA , gs)

�nB

=

�
ê(X1B , (S′)nA)

ê(H(B)nA , X2B)

�nB

thus proving to each other that they have legitimately
handled the tag. In order to seal the handshake, they
can use any challenge-response protocol known in the
literature in order to prove to one another knowledge
of the shared key without leaking it.

Subsequent communications are protected using K to
setup a secure channel.

B −→ A ID
A −→ B IBEB(H(B)nA , (S′)nA)
B −→ A IBEA(H(A)nB , (S′)nB)
A ←→ B challenge-response based on K
A ←→ B data exchange protected with K

Figure 7: Handshake

6. SECURITY ANALYSIS
In this section we analyze the security of both presented

schemes. Being an authentication and key agreement scheme,
we intuitively need to prove that no attacker can fool a le-
gitimate user into thinking that he is somebody and that he
has owned a given tag. We approach our investigation about
the security of the scheme using game-based proofs, which
allow us to study in a single proof many different attacks.
In the security proofs we do not rely on the random oracle
model [6].

We consider active attacks, but do not consider framing
attacks where two parties collude to provide false informa-
tion to an intermediate party, such that the intermediary
cannot authenticate. First we believe that this collusion is
difficult, since the intermediary is free to choose the next
party and second the tracing information would reveal a
backward flow even in the weak tracing scheme.

We therefore present two games for the first scheme, prov-
ing that an attacker cannot ship items at his will and that an
attacker cannot authenticate as another user. For the second
scheme we design a single, slightly broader game where we
prove that an attacker is not able to impersonate any other
user: this includes protection from forgery, illegitimate ship-
ping and attacks to the authentication and key agreement
scheme.

In our scheme every ship event needs the involvement of
the TTP and the security proofs confirm that this is un-
avoidable. Our scheme allows therefore complete tracing of
the shipping events in the strong tracing version of the first
protocol and in the second protocol. Trent can thus built an
entire shipping graph for each item. No participant outside
of that graph can perform a successful handshake.

This fact has an interesting consequence: if an unautho-
rized party is successful in an illegitimate handshake, he
could be blamed, and the TTP could also trace which par-
ticipant leaked the information. Therefore there is a strong
incentive not to disclose the information on the tag on pur-
pose and the entire supply chain is tightly controlled.

6.1 Assumptions
In this Section we state well-known hard problems upon

which the security of our scheme is based.

Definition 1. The Computational Diffie-Hellman Prob-
lem (CDH) is hard if, for all probabilistic, polynomial-time
algorithms B,

AdvCDHB := Pr[B(g, ga, gb) = gab]

is negligible in the security parameter.

This probability is taken over random choice of g ∈ G1,
a, b ∈ Z

∗

q . This assumption is one of the most renowned in
the cryptographic community, and was introduced in [14].

Definition 2. The modified Computational Diffie-Hellman
Problem (mCDH) is hard if, for all probabilistic, polynomial-
time algorithms B,

AdvmCDHB := Pr[B(g, ga, gb, gb−1

) = gab]

is negligible in the security parameter.

This probability is taken over random choice of g ∈ G1,
a, b ∈ Z

∗

q . This assumption, although not standard, has been
used in a number of publications [23, 21].

Definition 3. The Bilinear Decisional Diffie-Hellman Prob-
lem (BDDH) is hard if, for all probabilistic, polynomial-time
algorithms B,

AdvBDDHB := Pr[B(g, ga, gb, gc, gx) = ⊤ if x = abc]− 1
2

is negligible in the security parameter.

This probability is taken over random choice of g ∈ G1,
a, b, c, x ∈ Z

∗

q . This complexity assumptions is well known
in the cryptographic community, and has been used in the
proofs of many cryptographic schemes, for instance [13].

6.2 Security of RFIDAuth1

Let us consider the security of the RFIDAuth1 protocol.
There are two types of attacks: First, an attacker could
try to create a tuple (X1, X2) for another user without ever
having obtained a re-encryption key for that user, or with-
out Trent’s support in the case of strong traceability. This
corresponds to actively leaking the secret information on
the tag eluding TTP’s traceability. We introduce the game
Reencrypt to capture this attack. We show that is hard to
win this game without knowledge of Trent’s secret informa-
tion x.

Second, an attacker could steal or otherwise obtain a tuple
(X1, X2) for another user and then try to authenticate as
that user. This corresponds to getting hold of a tag and then
trying to authenticate as its legitimate owner. We introduce
the game Authenticate to capture this attack. We show that
is hard to win this game without knowledge of that user’s
secret information y.

The combination of these two games shows that the at-
tacker has no option to successfully authenticate without
the sender being traceable or someone revealing its secret
keys. On the one hand the sender must involve Trent in
shipping the item and is therefore traceable. On the other
hand if he reveals his secret keys, he gives away completely
his authentication capabilities to an attacker.

There is a third game for an observer of the key agreement
to infer the secret key. It can be trivially shown that this
hard without knowledge of any user’s secret information z.
Since the challenge of the key agreement is tied to the proof
of possession, an active party cannot intercept.

6.2.1 Re­Encryption Resistance

Consider an adversary A that has as its goal to perform
the ship protocol without the support of Trent. A is allowed
to freely perform all the algorithms of the protocol. Then
A picks two users I◦ and I∗ of his choice; the simulator B
Initializes a challenge tag as I◦ and supplies all the relevant
information about I◦ and I∗ to A, except the values KI∗,·

and K·,I∗ and the secret information related to I∗. Even-
tually, B submits to the attacker the pair (X1I◦ , X2I◦) and
A outputs his guess for the information X2I∗ . We call this
game Reencrypt.

Theorem 1. If an adversary A has a non-null advantage

ReencryptA := Pr[A wins the game Reencrypt]

then a probabilistic, polynomial time algorithm B can cre-
ate an environment where it uses A’s advantage to solve a
given instance of the modified Computational Diffie-Hellman
Problem (mCDH).

Proof. We define B as follows. B is given a random

instance (g, ga, gb, gb−1

) of the mCDH problem and wishes
to use A to compute gab. The algorithm B simulates an
environment in which A operates.

Setup The simulator B picks and publishes the public pa-
rameters according to the rules of the protocol.

Queries The attacker can Register at his will as any iden-
tity I he chooses. A can Initialize any tag as any user of
his choice. We remind the reader that he can perform
this operation autonomously without the involvement
of the simulator. The Ship protocol is executed as
mandated in the protocol specification, therefore A is
free to ask B to perform the ship protocol on any tag he
has received or on any tag he has initialized. Then, the
attacker can engage in authentication protocols with
every user of his choice: in this case, B creates all the
simulated parties I (except I∗) by selecting xI , yI , and
zI thus knowing all the secret information. Finally, A
can perform the receive protocol, declaring a target

user I and thus receiving (X1 = gttag , X2 = gxIt
−1
tag)

from B, where ttag
R
← Z

∗

p.

Challenge The attacker A then chooses an identity I◦, for
which B has already answered all his queries in the
previous phase, and I∗ such that he does not know
KI∗,· and K·,I∗ and the secret information yI∗ and zI∗ .
A asks for the public information about I∗; B answers

with gzI∗ , (gag̃yI∗)α−1

. Finally, a can receive tags des-

tined to I∗; to do so, B picks ttag
R
← Z

∗

p and sends to

A the pair X1 = gttag and X2 = gt
−1
taga. Eventually

B sends A the information linked to the tag object

of the challenge, crafted as follows: X1I◦ = gb−1

and
X2I◦ = (gb)xI◦ and A outputs its guess for X2I∗ .

Analysis of A’s response If A has won the game, X2I∗ =
gab and B can give the same answer to the received
instance of mCDH.

6.2.2 Authentication Resistance

Consider an adversary A that has as its goal to perform
the authentication protocol as a user without owning the se-
cret material for the latter, in particular the secret values y
and z ∈ Z

∗

p, only known by the user. This game shows that
a user is protected in case of theft of on-tag credentials (the
pair (X1, X2)) which is always possible using rogue readers.
A is allowed to freely perform all the algorithms of the pro-
tocol (as user A, of course). Then A picks a user I∗ of his
choice; A receives as well all tags destined for I∗. Eventually,
A engages in the authentication protocol, producing the val-
ues that should convince the simulator that he is I∗ and has
possessed the item. We call this game Authenticate. Note
that this game also rules out a user intentionally leaking the
on-tag credentials to a third party.

Theorem 2. If an adversary A has a non-null advantage

AuthenticateA := Pr[A wins the game Authenticate]

then a probabilistic, polynomial time algorithm B can cre-
ate an environment where it uses A’s advantage to solve a
given instance of the Computational Diffie-Hellman Problem
(CDH).

Proof. We define B as follows. B is given a random
instance (g, ga, gb) of the CDH problem and wishes to use A
to compute gab. The algorithm B simulates an environment
in which A operates.

Setup The simulator B picks g
R
← G1, β

R
← Z

∗

p and sets

g̃ ← gβ and publishes the public parameters according
to the rules of the protocol.

Queries The attacker can Register at his will as any iden-
tity I he chooses. A can Initialize any tag as any user of
his choice. We remind the reader that he can perform
this operation autonomously without the involvement
of the simulator. The Ship protocol is executed as
mandated in the protocol specification, therefore A is
free to ask B to perform the ship protocol on any tag he
has received or on any tag he has initialized. Then, the
attacker can engage in authentication protocols with
every user of his choice: in this case, B creates all the
simulated parties I (except I∗) by selecting xI , yI , and
zI thus knowing all the secret information. Finally, A
can perform the receive protocol, declaring a target

user I and thus receiving (X1 = gttag , X2 = gxit
−1
tag)

from B, where ttag
R
← Z

∗

p.

Challenge The attacker A then chooses the identity I∗
he wishes to authenticate as, amongst the ones not
queried before. A receives I∗’s public information gzI∗

and (gxI∗ gaβ)α−1

. A can receive tag information des-

tined to I∗: B picks ttag R
← Z

∗

p and sends A (X1 =

gttag , X2 = gxI∗ t
−1
tag). To trigger the challenge, A sends

B the tag ID of one of the tags received as I∗. Now,
B answers with a random challenge gb. A must then
answer – according to the protocol – with (gb)yI∗ and
X2I∗ .

Analysis of A’s response If A has won the game, (gb)yI∗

= gab and B can give the same answer to the received
instance of CDH.

6.3 Security of RFIDAuth2

In this section we investigate the security of the RFIDAuth2

protocol. Let us first of all analyze a simple attack and show
how the scheme prevents it. A user could eavesdrop the
communications that occur upon the Ship protocol, or just
simply get hold of a tag and extract the tuple (X1, X2, X3),
and try to use that tuple to engage in a successful hand-
shake with a legitimate participant. This is in short what is
described in Section 6.2.2 for the protocol RFIDAuth1.

The latter – as we have seen – has a built-in protection
against this type of attack, namely the secrecy of values
x and y ∈ Z

∗

p. RFIDAuth2 instead leverages on Identity
Based Encryption to prevent this type of attack: it is clear
that – since handshake challenges are destined to a user
and encrypted under the public key of his identity – mere

eavesdropping of tag information will not help to break the
secrecy of the challenge sent, and therefore every attack of
this kind is vain. We do not need to prove this, as we assume
the existence of a perfect IBE scheme that does not leak any
information.

Nonetheless, in order to show that the scheme is sound, we
present in the next Section the security proof of resistance
to impersonation, wherein we “switch off” IBE (or similarly,
we give all the private keys to the attacker). What we prove,
in short, is that with all the information in the hands of the
adversary but the one associated to a challenge tag and a
challenge user, the adversary is not able to impersonate the
latter. This game is broad enough as to include privacy of
the key exchange from an eavesdropper, collusion of several
participants, forgery of rogue tag information and so forth.

6.3.1 Impersonation Resistance

Consider an adversary A that has as its goal to run a suc-
cessful handshake – thus convincing another user that he
has actually owned a tag – without disposing of the legiti-
mate information. In particular, A does not have the tuple
(X1v∗

, X2v∗
, X3v∗

) for a given user v∗ and a given tag, both
object of the challenge.

A is allowed to freely perform all the algorithms of the
protocol. Then the simulator B Initializes a challenge tag,
and yet the adversary is able to get the information to per-
form a successful handshake for that tag as any user of his
choice (except the one object of the challenge).

Finally, the attacker picks a challenge user v∗ and is re-
quired to run a successful handshake, convincing the simu-
lator that he is user v∗ having owned the challenge tag. In
particular, at the end of the game, the attacker is required
to output the key K. We call this game Impersonate.

Theorem 3. If an adversary A has a non-null advantage

ImpersonateA := Pr[A wins the game Impersonate]

then a probabilistic, polynomial time algorithm B can create
an environment where it uses A’s advantage to solve a given
instance of the Bilinear Decisional Diffie-Hellman Problem
(BDDH).

Proof. We define B as follows. B is given a random in-
stance (g, ga, gb, gc, gx) of the BDDH problem and wishes to
use A to check whether x = abc. The algorithm B simulates
an environment in which A operates.

Setup The simulator B sets an integer m = 4q where q is an
upper bound on the number of identities that the ad-
versary will consider throughout his queries to the var-

ious protocols. B then chooses k
R
← {0, n} and chooses

two random vectors X = {xi}
n
i=1

R
← {0, m − 1}n and

Y = {yi}
n
i=1

R
← Z

∗n
p . Following Boneh and Boyen [9]

and Waters [27], we define the functions F (v) = (p −
mk) + x0 +

P
i∈V

xi, J(v) = y0 +
P

i∈V
yi and K(v)

as

K(v) =

(
0, if x0 +

P
i∈V

xi = 0 mod m;

1, otherwise;

The simulator sets g as the one received from the BDH
challenge, U0 = (gb)p−km+x0gy0 and Ui = (gb)xigyi ;

he then picks α
R
← Z

∗

p, sets S = gα and S′ = gα−1

and
publishes the public parameters according to the rules
of the protocol. Notice that now, H(v) = U0

Q
i∈V

Ui

= gbF (v)+J(v), where V is the set of indexes i for which
the ith bit of the string at hand equals to 1.

Queries First of all, the attacker receives all IBE private
keys: this way, the protection of IBE is disabled. In
the rest of this proof therefore, we omit the notation
IBE·(·).

The attacker can Register at his will as any identity vi

he chooses, different from v∗, receiving from Trent the
value Ivi .

A can Initialize any tag as any user of his choice. We
remind the reader that he can perform this operation
autonomously without the involvement of the simula-
tor.

Upon execution of the Ship protocol, the attacker A
sends to B the ID of a tag, two identities vi and vj and
the tuple (X1 = Sttag Ivi

r, X2 = gr, X3 = H(vi)
r).

B computes8>><>>:X ′

1 =
X1

Xα
3

Ivj

s = Sttag Ivj

s

X ′

2 = gs

X ′

3 = H(vj)
s

as mandated by the Ship protocol, and sends the tuple
(X ′

1, X
′

2, X
′

3) back to A.

Finally, A can perform the receive protocol by simply
storing the received tuple and associating it to the tag
id.

B then Initializes a new tag, which will be the object
of the challenge. A is then entitled to receive – for any
user vi of his choice – the information necessary to run
a successful handshake as that user. A therefore sends
vi to B. If K(vi) = 0, B aborts and outputs a random

guess. If not, B picks a r
R
← Z

∗

p and computes8>>>>>><>>>>>>:X1 =

�
(ga)

−J(vi)
F (vi)

�
(gb)F (vi)gJ(v)

�r
�α

= gαab
�
gbF (vi)+j(vi)

�αr̃

= Sab Ivi

r̃

X2 = (ga)
−1

F (vi) gr = gr̃

where r̃ = r−a/F (vi). With the pair (X1, X2), the at-
tacker can perform any handshake he wants, but can-
not perform the ship protocol.

In addition, given the pair (X1, X2) for two identities
vi and vj , the attacker can check – through the execu-
tion of a handshake protocol – whether the credentials
received where indeed linked to the queried identities.
Therefore, the simulation offered by B to A is perfect.

Challenge The attacker A then chooses an identity v∗ he
has not queried before; if x0 +

P
i∈V

xi 6= km the sim-
ulator aborts and submits a random guess. Otherwise
we have F (v∗) = 0 mod p, which means that H(V∗) =

gJ(v∗). B then sends as challenge the pair (H(v∗)
c =

(gc)J(v∗), S′c) according to the description of the hand-
shake protocol. A answers with (H(vi)

r, S′r), and then
outputs the key K.

Analysis of A’s response If A has won the game, K =
ê(g, g)abcr. Therefore, B can solve the BDDH prob-

lem by checking whether ê
�
gx, (S′r)α−1

�
= K holds.

A detailed analysis of the probability that B does not
need to abort has been presented in [27] and we there-
fore omit it here.

7. COMPARSION
We have given two schemes implementing our RFID-basd

supply chain partner authentication. In this section we want
to give some guidelines on when to choose which. The
first set of algorithms RFIDAuth1 allows for weak tracing
of RFID items. In weak tracing no interaction (when using
certificates) with the trusted third party is required besides
initially obtaining the re-encryption keys. The parties can
therefore act autonomously and RFIDAuth1 should be used
when weak authentication is sufficient.

The protocols RFIDAuth2 offers a security that relies on
weaker assumptions, but only offers strong tracing. In strong
tracing the shipper needs to contact the trusted third party
for every shipment, but the trusted third can now track
every item. Furthermore RFIDAuth2 uses identities rather
than certificates, enabling easier key management. There-
fore RFIDAuth2 should be used, if strong authentication is
required.

8. CONCLUSION
In this paper, we have presented a novel scheme to replace

shared secrets when forwarding items tagged with RFID.
Our scheme discourages disclosure of authentication infor-
mation by tying it to a secret key or identity. Either one
discloses the secret key or forwards the information accord-
ing to the protocol specification, but if one does so, he is
traceable by a trusted third party.

We have presented two protocols implementing this scheme:
a key-based and an identity-based one. The key-based pro-
tocol allows the trusted third party to hand out re-encryption
keys, while the identity-based protocol reduces the number
of interactions.

We proved both protocols secure in a game-based secu-
rity definition based on common security assumptions. Our
scheme can be applied even to the simplest tags if the infor-
mation is sent along over the network.

Our scheme presents a novel approach to the problem that
reaches beyond current security applications in securing the
integrity of supply chains. We anticipate that, due to its
simplicity in application and strong security guarantees, our
scheme has wide applications in securing RFID-supported
supply chains. Future work is to incorporate its security
into the query answer of the discovery service.

9. ACKNOWLEDGEMENTS
This work has partially been financed by the European

Commission through the ICT programme under Framework
7 grant FP7-213531 to the SecureSCM project, under the
Seventh Framework Programme IST Project “Trusted Ar-
chitecture for Securely Shared Services” (TAS3), grant agree-
ment number 216287, and under the Sixth Framework Pro-

gramme IST Project “Wirelessly Accessible Sensor Popula-
tions” (WASP), contract number IST-034963.

10. REFERENCES
[1] A. Asif and M. Mandviwalla. Integrating the supply

chain with rfid: A technical and business analysis. In
Communications of the Association for Information
Systems, vol. 15, pages 393–427, 2005.

[2] G. Ateniese, M. Blanton, and J. Kirsch. Secret
handshakes with dynamic and fuzzy matching. In
Network and Distributed System Security Symposuim,
pages 159–177. The Internet Society, 02 2007.
CERIAS TR 2007-24.

[3] G. Ateniese, K. Fu, M. Green, and S. Hohenberger.
Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM
Transactions on Information and System Security,
9(1), 2006.

[4] G. Ateniese and S. Hohenberger. Proxy re-signatures:
new definitions, algorithms, and applications. In ACM
Conference on Computer and Communications
Security, 2005.

[5] D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters,
J. Staddon, and H.-C. Wong. Secret handshakes from
pairing-based key agreements. In IEEE Symposium on
Security and Privacy, pages 180–196, 2003.

[6] M. Bellare and P. Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[7] Y. Bendavid, S. F. Wamba, and L. A. Lefebvre. Proof
of concept of an rfid-enabled supply chain in a b2b
e-commerce environment. In ICEC ’06: Proceedings of
the 8th international conference on Electronic
commerce, pages 564–568, New York, NY, USA, 2006.
ACM.

[8] M. Blaze, G. Bleumer, and M. Strauss. Divertible
protocols and atomic proxy cryptography. In
EUROCRYPT, 1998.

[9] D. Boneh and X. Boyen. Efficient selective-id secure
identity-based encryption without random oracles. In
EUROCRYPT, pages 223–238, 2004.

[10] D. Boneh and M. K. Franklin. Identity-based
encryption from the weil pairing. SIAM J. Comput.,
32(3):586–615, 2003.

[11] D. Boneh, B. Lynn, and H. Shacham. Short signatures
from the weil pairing. Journal of Cryptology, 17(4),
2004.

[12] R. Canetti and S. Hohenberger. Chosen-ciphertext
secure proxy re-encryption. In ACM Conference on
Computer and Communications Security, 2007.

[13] H. Chabanne, D. H. Phan, and D. Pointcheval. Public
traceability in traitor tracing schemes. In
EUROCRYPT, pages 542–558, 2005.

[14] W. Diffie and M. Hellman. New directions in
cryptography. Information Theory, IEEE
Transactions on, 22(6):644–654, Nov 1976.

[15] S. Garfinkel, A. Juels, and R. Pappu. Rfid privacy: an
overview of problems and proposed solutions. Security
& Privacy, IEEE, 3(3):34–43, May-June 2005.

[16] M. Green and G. Ateniese. Identity-based proxy
re-encryption. In Conference on Applied Cryptography
and Network Security, 2007.

[17] A. Joux. A one round protocol for tripartite
diffie-hellman. Journal of Cryptology, 17(4), 2004.

[18] A. Juels. RFID Security and Privacy: A Research
Survey. IEEE Journal on Selected Areas in
Communications, 24(2):381–394, February 2006.

[19] A. Juels, R. Pappu, and B. Parno. Unidirectional key
distribution across time and space with applications to
rfid security. In USENIX Security Symposium, 2008.

[20] A. Juels and S. A. Weis. Defining strong privacy for
rfid. Pervasive Computing and Communications
Workshops, 2007. PerCom Workshops ’07. Fifth
Annual IEEE International Conference on, pages
342–347, March 2007.

[21] S. Lal and P. Kushwah. Multi-pkg id based
signcryption. Cryptology ePrint Archive, Report
2008/050, 2008.

[22] H. Lee and J. Kim. Privacy threats and issues in
mobile rfid. Availability, Reliability and Security,
2006. ARES 2006. The First International Conference
on, pages 5 pp.–, April 2006.

[23] B. Libert and D. Vergnaud. Multi-use unidirectional
proxy re-signatures. CoRR, abs/0802.1113, 2008.

[24] B. D. Santos and L. Smith. Rfid in the supply chain:
panacea or pandora’s box? Communications of the
ACM, 51(10), 2008.

[25] A. Shamir. Identity-based cryptosystems and
signature schemes. In CRYPTO, pages 47–53, 1984.

[26] S. F. Wamba and H. Boeck. Enhancing information
flow in a retail supply chain using rfid and the epc
network. J. Theor. Appl. Electron. Commer. Res.,
3(1):92–105, 2008.

[27] B. Waters. Efficient identity-based encryption without
random oracles. In EUROCRYPT, pages 114–127,
2005.

[28] Y. Yousuf and V. Potdar. A survey of rfid
authentication protocols. Advanced Information
Networking and Applications - Workshops, 2008.
AINAW 2008. 22nd International Conference on,
pages 1346–1350, March 2008.

