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ABSTRACT

In this paper we provide a general framework for the perfor-
mance analysis of pilot-aided linear channel estimators class
including the general interpolation, Least Squares (LS),regu-
larizedLS, Minimum-Mean-Squared-Error (MMSE) and ap-
proximated MMSE estimators. The analysis is performed
from the perspective of Long Term Evolution Orthogonal Fre-
quency Division Multiple Access (LTE OFDMA) down-link
systems. We also propose two novel modified MMSE schemes,
an Exponential Mismatched MMSE and a Simplified MMSE,
to overcome the high implementation complexity of the MMSE
and offering improvements to other known approximated meth-
ods. At the end, we verify the analytical results by means
of Monte-Carlo simulations in terms of Normalized Mean
Square Error (NMSE) and coded Bit Error Rate (BER).

Index Terms— OFDMA, channel estimation, interpola-
tion, Least-Squares, Minimum-Mean-Squared-Error

1. INTRODUCTION AND SYSTEM DEFINITION

In December 2004, the Third Generation Partnership Program
(3GPP) members started a feasibility study on the enhance-
ment of the Universal Terrestrial Radio Access (UTRA) in
the aim of continuing the long time frame competitiveness of
the 3G UMTS technology beyond HSPA (High Speed Packet
Access). This project was called Evolved-UTRAN or Long
Term Evolution (LTE).

Orthogonal Frequency Division Multiple Access (OFDMA)
was chosen as a multiple-access scheme for the Frequency
Domain Duplexing Down-Link (FDD DL) transmission [1].
The discrete-time OFDMA transceiver model is schematically
depicted in figure 2. The users’ complex constellation sym-
bols are mapped onK − 1 occupied sub-carriers spaced by
∆fsc = 15 kHz and padded with zeros on the DC and band-
edges sub-carriers (where these last ones can be consideredas
a guard-band) to fit the Inverse Fast Fourier Transform (IFFT)

of orderN. The resulting sequence of lengthN is cyclic-
prefixed byLCP samples. The Cyclic-Prefix (CP) lengthLCP

is variable and configured by the system to be longer than the
channel delay spreadL. In LTE, two cyclic-prefixes are con-
sidered allowing flexible system deployment (small and large
cell radius): a short one of duration4.7 µs and a long one
of 16.7 µs. The sequence ofN + LCP sampless(k) is con-
volved with a discrete time Finite Impulse Response (FIR)
channel (eventually time varying but assumed constant over
one OFDMA symbol) modeling the wireless channel at a sam-
pling rateTs = 1/ (N∆fsc). At the User Equipment (UE)
side, the received sequencer(k) results from the channel out-
put signal added with complex circular white Gaussian noise
w(k). Assuming perfect synchronization, the CP samples are
discarded and the remainingN samples are FFT processed to
retrieve the complex constellation symbols transmitted over
the orthogonal sub-channels. The system bandwidth is scal-
able by controlling the IFFT/FFT sizeN of the OFDMA sym-
bol and keeping the sub-carrier spacing constant: table 1 re-
sumes the main system transmission parameters considered
for LTE. With a FFT size varying from 128 to 2048, the sup-
ported DL band-width ranges from 1.25 MHz to 20 MHz. Fig-
ure 2 represents, without loss of generality, one possible FDD
LTE slot structure, namely the short-prefixed case composed
of 7 OFDMA symbols. The slot structure embeds pilot sym-
bols, also referred to as Reference Signal (RS), used to esti-
mate the channel at the receiver side. The channel estimation
is needed for channel equalization and general link quality
measurements. These pilot symbols are interleaved with the
data symbols in the frequency domain and are disposed on a
uniform grid occupying the first and the fifth OFDMA sym-
bols of each slot and placed everyM = 6 sub-carriers.

2. PILOT-AIDED LINEAR CHANNEL ESTIMATION

Although the general channel estimation problem in case of
single antenna transmissions is two-dimensional [2], i.e.is to



be carried jointly in the frequency and time domains, it is nor-
mally separated into two one-dimensional estimation steps[3]
for ease of implementation. In this context, we deal in partic-
ular with the channel estimation problem over one OFDMA
symbol (specifically the symbol containing the RS) to exploit
the frequency domain characteristics and instead we do not
consider its time-varying characteristics due to Doppler effect
in the aim of exploiting correlation in time.

Fig. 1. LTE OFDMA slot structure.

Fig. 2. LTE OFDMA transceiver.

In the OFDMA LTE context, as for any comb-distributed
pilot OFDM system [4], the Channel Transfer Function (CTF)
is ML estimated in the frequency domain at the pilot positions
by de-correlating the constant modulus Reference Signal pilot
sequence. Using matrix notation, it can be modeled as:

Ĥp = Hp + H̃p = Fph + H̃p (1)

where

• P = ⌈K/M⌉ is the number of available pilots where K
is the number of occupied sub-carriers (including DC).

• h is theL × 1 Channel Impulse Response (CIR) vector.
The effective channel lengthL ≤ LCP is assumed to be
known.

• Fp is theP × L matrix obtained by selecting the rows
corresponding to the pilot positions and the firstL columns
of theN × N Discrete Fourier Transform (DFT) matrix
whose elements are(F)n,k = e−

j2π

N
(nk) with 0 ≤ n ≤

N − 1 and0 ≤ k ≤ N − 1;

• H̃p is theP × 1 zero-mean complex circular white noise
vector whoseL × L covariance matrix isCeHp

= σ2
eHp

IL;

2.1. Channel Estimation by interpolation

2.1.1. Linear interpolation estimator

The natural approach to estimate the whole CTF is to inter-
polate the CTF estimate on pilot positionsĤp. In the general
case, letA be a generic interpolation filter and the interpo-
lated CTF estimate can be written as:

Ĥi = AĤp (2)

Substituting (1) in (2), the error of the interpolated CTF esti-
mate is:

H̃i = H− Ĥi = (FL − AFp)h− AH̃p (3)

whereH = FLh andFL is theN × L matrix obtained taking
the firstL columns of the Fourier transform matrix.

The error covariance matrix is:

CeHi
= (FL − AFp)Ch (FL − AFp)H + σ2

eHp
AA

H (4)

beingCh = Ehh
H the channel covariance matrix,{·}H

andE{·} denoting, respectively, the Hermitian and the expec-
tation operators.

Although pulse-shaping is not mandated in LTE, receiver
front-end consists of an anti-aliasing low-pass filtering.

Therefore the channel and its covariance matrix can effec-
tively be modeled as:

h = Pu and Ch = PCuP
H (5)

whereP is the matrix of the equivalent pulse-shaping filter,
u is the discrete-time uncorrelated multipath fading channel
vector and

Cu = Euu
H = diag

(
σ2

u0
, σ2

u1
, . . . , σ2

uLMP−1

)

is its diagonal covariance matrix normally assimilated to the
channel Power Delay Profile (PDP).

Recalling equation (2), the first intuitive move is to use
linear interpolation. Although the straightforward filterstruc-
tureA is not described, a little bit investigation of (2)reveals
that the linear interpolation estimator is biased from the de-
terministic viewpoint while it is unbiased from the Bayesian
viewpoint regardless of the structure ofA.

2.1.2. IFFT estimator

The second natural approach to retrieve the whole CTF esti-
mate is by IFFT interpolation. TheIFFT CTF estimate in-
terpolated over all sub-carriers can be obtained by using in
(2):

A =
1

P
FLF

H
p (6)



Slot duration [ms] 0.5
Sub-carrier spacing∆fsc [kHz] 15

Transmission BW [MHz] 1.25 2.5 5 10 15 20
Sampling frequency [MHz] 1.92 3.84 7.68 15.36 23.04 30.72

FFT sizeN 128 256 512 1024 1536 2048
Occupied sub-carriers (including DC)K 76 151 301 601 901 1201

Table 1. LTE OFDMA parameters.

Hence, theIFFT estimator is given by:

ĤIFFT =
1

P
FLF

H
p Ĥp (7)

The IFFT interpolated CTF estimate error and its covari-
ance matrix, applying (1) and (6) into (2), becomes:

H̃IFFT = FL

(
IL −

1

P
F

H
p Fp

)
h−

1

P
FLF

H
p H̃p (8)

CeHIFFT
=

(
FL −

1

P
FLF

H
p Fp

)
Ch

(
FL −

1

P
FLF

H
p Fp

)H

+
1

P 2
σ2

eHp
FLF

H
p FpF

H
L

(9)

In the approximation ofIL ≈ 1
PF

H
p Fp, the estimator

would be unbiased and its error covariance matrix would re-
duce to:

CeHIFFT
≈

1

P
σ2

eHp
FLF

H
L (10)

Given the LTE system parameters and the pilot structure,
in practice,1PF

H
p Fp is far from being a multiple of an iden-

tity matrix: the approximation would be an equality when
K = N ,N/M > L and N/M being an integer, i.e. the
system should be dimensioned without guard-bands and the
pilot should be disposed with a spacing which is dividing ex-
actly the FFT orderN, namely a power of two. Therefore, ac-
cording to (8), the estimator̂HIFFT is biased as for the linear
interpolation case if the channel is deterministic and unbiased
from the Bayesian point of view.

We remand to the simulation results section of this paper
for a comparison of their respective performances.

2.2. General approach to linear channel estimation

Compared to the simple approaches presented in the previ-
ous section, more elaborated linear estimators derived from
both deterministic and statistical viewpoint proposed in [5],
[6] and [7], namely LS, Regularized LS, MMSE and Mis-
matched MMSE in addition to the novel estimators presented
in the following sections, can all be expressed under the gen-
eral formulation:

Ĥgen = B
(
G

H
G + R

)
−1

G
H
Ĥp (11)

WhereB, G and R are matrices that vary according to
each estimator as detailed in the following. With (1) and (11),

we obtain the error expression:

H̃gen =
(
FL − B

(
G

H
G + R

)
−1

G
H
Fp

)
h+

− B
(
G

H
G + R

)
−1

G
H
H̃p

(12)

and its covariance matrix:

CeHgen
=
(
FL − B

(
G

H
G + R

)
−1

G
H
Fp

)
Ch

(
FL − B

(
G

H
G + R

)
−1

G
H
Fp

)H

+

+ σ2
eHp

B
(
G

H
G + R

)
−1

G
H
G
(
G

H
G + R

H
)
−1

B
H

(13)

2.2.1. LS estimator

The LS estimator discussed in [5] can be inferred by choos-
ing:

B = FL , G = Fp andR = 0L (14)

with 0L being theL × L matrix containing zeros. And the
estimator appears as:

ĤLS = FL

(
F

H
p Fp

)
−1

F
H
p Ĥp (15)

Substituting (1) and (14) in (12) and (13), the error re-
duces to:

H̃LS = −FL

(
F

H
p Fp

)
−1

F
H
p H̃p (16)

showing that the LS estimator, at least theoretically, is un-
biased. Thus, compared to the linear interpolation estimator
given by (2), the LS estimator is considered as the perfect in-
terpolator as it sets to zero the bias term of expression (3) with
A = FL

(
F

H
p Fp

)
−1

F
H
p . Consequently, the error covariance

matrix can be shown to be:

CeHLS
= σ2

eHp
FL

(
F

H
p Fp

)
−1

F
H
L (17)

2.2.2. Regularized LS estimator

As evidenced in [7], the LTE system parameters make the
LS estimator inapplicable: the expression

(
FpF

H
p

)
−1

is ill-
conditioned due to the large unused portion of the spectrum
corresponding to the unmodulated sub-carriers.

To counter this problem, the robustregularizedLS esti-
mator was used to yield a better conditioning of the matrix



to be inverted by using the sameB andG as for the LS es-
timator but introducing the regularization matrixR = αIL

with α being a constant (off-line) chosen to optimize the per-
formance of the estimator in a given Signal-to-Noise Ratio
(SNR) working range.

Hence, we can write the estimator as follows:

Ĥreg,LS = FL

(
F

H
p Fp + αIL

)
−1

F
H
p Ĥp (18)

The expressions for the error and the error covariance matrix
of this estimator can be deduced directly from (12) and (13)
by substitutingB, G andR with their corresponding expres-
sions.

2.2.3. MMSE estimator

Using equations (11), (12) and (13), we can formulate the
MMSE estimator [5] by denoting:

B = FL , G = Fp andR = σ2
eHp

Ch
−1 (19)

thus giving

ĤMMSE = FL

(
Fp

H
Fp + σ2

eHp
Ch

−1

)
−1

Fp
H
Ĥp (20)

Again, applying (1) and (19) in (12) and (13), the error of
the MMSE estimator is:

H̃MMSE =FL

(
IL −

(
F

H
p Fp + σ2

eHp
Ch

−1
)
−1

F
H
p Fp

)
h+

− FL

(
F

H
p Fp + σ2

eHp
Ch

−1
)
−1

F
H
p H̃p

(21)
and the error covariance matrix:

CeHMMSE
= FL

(
IL −

(
F

H
p Fp + σ2

eHp
Ch

−1
)
−1

F
H
p Fp

)

Ch

(
IL −

(
F

H
p Fp + σ2

eHp
Ch

−1
)
−1

F
H
p Fp

)H

F
H
L +

+ σ2
eHp

FL

(
F

H
p Fp + σ2

eHp
Ch

−1
)
−1

F
H
p Fp

(
F

H
p Fp + σ2

eHp
Ch

−1
)
−1

F
H
L

(22)

2.2.4. Mismatched MMSE estimator

To avoid the estimation of the second order channel statistics
Ch and of the consequent on-line inversion of aL × L matrix
required in the straightforward application of the MMSE of
(20), the channel PDP can be assumed uniform [6]. Hence, in
this Mismatched-MMSE formulation,Ch is imposed to have
the structure of an identity matrix.

With reference to the general formulation in (11), this
scheme consists in taking the sameB andG of (19) but defin-
ing R = σ2

eHp
/σ2

h
· IL to give the expression

ĤM−MMSE = FL

(
F

H
p Fp + σ2

eHp
/σ2

h · IL

)
−1

F
H
p Ĥp

(23)
Interestingly, we notice that this estimator is in practice

equivalent toregularizedLS estimator in 2.2.2. where the
only difference lies in the fact that the ratioσ2

eHp
/σ2

h
can be

estimated and therefore adapted.
For a given channel lengthL, to avoid the on-line in-

version of the matrix
(
F

H
p Fp + σ2

eHp
/σ2

h
· IL

)
, the practical

approach would consist in dividing the SNR working range
into sub-ranges and storing different versions of the matrix
inverted off-line for each sub-range.

2.2.5. Exponential mismatched MMSE estimator

Realistic channel PDP are likely exponentially decaying rather
than uniform as assumed by themismatched-MMSE discussed
above. We therefore propose anexponential mismatched-
MMSE estimator that approximatesCh by a diagonal matrix
whose entries are decaying exponentially. This is done by
using(19) and taking:

R =
σ2

eHp

σ2
h

C
−1

L,exp andCL,exp = γ · diag
(

e−n
ln(2L)

L

)
(24)

with 0 ≤ n ≤ L − 1 andγ = 1/
∑L−1

n=0 e−n
ln(2L)

L Hence, it is
represented by:

Ĥexp−MMSE = FL

(
F

H
p Fp +

σ2
eHp

σ2
h

C
−1

L,exp

)−1

F
H
p Ĥp

(25)
Again, the error and the error covariance matrix can be de-
ducted from (12) and (13) by substitutingB, G andR with
their corresponding expressions.

Compared to the uniform channel distribution assumption
of Mismatched-MMSE, the estimator reveals to be less sensi-
tive to the channel length mis-estimation due to the exponen-
tial decaying nature and thus less versions of the inverse of

the matrix

(
F

H
p Fp +

σ2
fHp

σ2
h

C
−1

L,exp

)
can be precomputed and

stored.

2.2.6. Simplified MMSE estimator

As already mentioned, the direct implementation of the MMSE
estimator in (20) requires the solution of two problems:

1. The estimation of the variance of the noise and channel
second order statistics;

2. The on-line inversion of the largeL × L matrix

SMMSE = F
H
p Fp + σ2

eHp
Ch

−1 (26)

whenever the channel and noise statistics change.



Assuming the required estimations available, we propose
here an original solution to overcome in particular the second
problem. The idea behind our simplified MMSE estimator
lies in separating the problem of the approximation of (26)
into, first, considering a fixed initialization matrixSinit , as
detailed below, and then in enhancing the first approximation
by inserting the contribution of a portion of the PDP corre-
sponding to the strongest taps, denotedcaptured tapsin the
following, on the diagonal of the initialization matrixSinit.

As for previous approximated methods, the dependency
from the noise variance can be maintained by quantization
of the SNR into sub-ranges and storing a limited set ofSinit

values.
Let us define:

Sinit = F
H
p Fp + σ2

eHp
Cinit

−1 (27)

whereCinit = βIL andβ is a constant carefully chosen to
provide sufficiently good performance of the estimator.

The matrixSMMSE can be approximated by:

SSMMSE = Sinit + D∆SD
H (28)

where

1. D is a L × M selector matrix called after the role it
plays in the selection of the positions where the ele-
ments of the PDP profile (that correspond to the M cap-
tured taps) are going to be located on the diagonal of
Sinit. The first column of the matrixD contains one
only in the position that corresponds to the index of
the first captured tap and zeros everywhere else and the
second column contains one only in the position that
corresponds to the index of the second captured tap and
zeros everywhere else and so on.

2. ∆S is a diagonal matrix containing the inverse of the
power of the captured taps after removing the effect of
initialization, i.e.∆Sm,m = σ2

eHp

(
C
−1
hm

− β−1
)

where

hm is a vector contains theM captured taps.

Applying theMatrix Inversion Lemma(MIL), we can write:

SSMMSE
−1 =

S
−1
init − S

−1
initD

(
D

H
S
−1
initD + ∆S

−1
)
−1

D
H
S
−1
init
(29)

It is worth mentioning that the number of significant taps in
terms of power is usually much less than the overall length
of the CIR. Thus, the importance of the proposed estimator
stems from the fact that we take advantage of this property to
reduce the size of the matrix to be inverted on-line fromL × L
to M × M with M ≪ L. Another important aspect of the pro-
posed estimator is that the accuracy of the approximation is
traded-off with the complexity by controlling the number of
captured taps. Therefore, the more the number of the captured

taps the larger the size of the matrix to be inverted on-line and
vice versa.

Finally the estimated CTF is given by:

ĤSMMSE = FLSSMMSE
−1

Ĥp (30)

Comparing (30) with (11), theSimplifiedMMSE consists
in choosing:

B = FL , G = Fp andR = σ2
eHp

Cinit
−1 +D∆SD

H (31)

The estimation error and the error covariance matrix expres-
sion of the proposed estimator can then be obtained by sub-
stituting (31) in (12) and (13).

3. SIMULATION RESULTS

We compare the performances of the estimators by mean of
Truncated-Normalized-Mean-Squared-Error (TNMSE).
For each estimator̂H, the TNMSE is computed from its co-
variance matrixCeH

and the true channelH = FLh using the
following:

TNMSEbH
=

Ttr
(
CeH

)

Ttr
(
FLChF

H
L

) (32)

where with Ttr{·} we denote the truncated trace operator con-
sisting of thetruncatedcovariance matrix considering only
the K used sub-carriers. For the comparison in figure 3,we
usedraised-cosinepulse-shaping filter with a roll-off factor of
β = 0.2, the SCMA channel and an LTE setup withN = 1024
corresponding to the 10 MHz transmission bandwidth case
[1]. As for the regularized LS estimator, we use theregular-
ization termα = 0.1. Connected lines represent the theoret-
ical TNMSE while the dotted points represent the results of
simulations. We can first conclude that theIFFT and linear
interpolation methods yield the lowest performances. More-
over theregularizedLS and themismatchedMMSE prove
to perform exactly equally and the TNMSE curve of the latter
are therefore omitted in figure 3.Theexponential mismatched-
MMSE and thesimplifiedMMSE offer a performance gain
over all other sub-optimal estimators but the latter provesto
be the one approaching the most the MMSE estimator per-
formance particularly in the low SNR region. To highlight
the robustness of oursimplifiedMMSE, figure 4 compares
its performance to that of themismatched-MMSE where the
MMSE is used as a reference. It should be noted that the
simulatedmismatched-MMSE is further approximated by ex-
ploiting a limited number of pilots around the sub-carriersto
be estimated in order to reduce complexity. It is evident that
the performance ofsimplifiedMMSE exceeds for any SNR
that of mismatched-MMSE even though only 11 out of 50
taps are captured. Figure 5 compares the performances of
themismatched-MMSE and of thesimplifiedMMSE in terms
of Bit Error Rate with 1/3 Turbo Coding with Block Length



= 4992 bits with Maximum Ratio Combining receiver for
QPSK modulation. The decoding performance withsimpli-
fied MMSE channel estimation outperforms that of themis-
matched-MMSE by 2 dB for BER lower than10−2.

4. CONCLUSIONS

We have presented a framework allowing the performance
analysis of the class of the pilot-aided linear channel esti-
mators in the context of LTE OFDMA systems. Together
with the analysis of the impact of LTE system parameters,
we proved that the well knownmismatchedMMSE estima-
tor is nothing but the deterministicregularizedLS estimator.
The analysis also showed that there is a large performance gap
between themismatchedMMSE and the MMSE since the sta-
tistical properties of the channel, namely the frequency corre-
lation, are not exploited. To fill this gap, we have proposed
two modified versions of the MMSE, namely the exponential
mismatched MMSE and the simplified MMSE, aiming at re-
ducing the complexity of the MMSE without sacrificing the
performance. This is especially achieved by the latter which
shows a great flexibility in trading off the complexity and the
performance yielding the closest results to the MMSE.

−10 0 10 20 30 40 50
−60

−50

−40

−30

−20

−10

0

10

SNR (dB)

T
N

M
S

E
  (

dB
)

L = 50, K = 600,  N = 1024
  alpha = 0.1, DS ratio  = 0.68, Taps captured  = 11 /50, SCM

A

 

 

Linear Interpolator
IFFT
Regularized LS
MMSE
Exp−MMSE
Simplified MMSE
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