
A Key Management Solution for
Overlay-Live-Streaming

Anonymous
Some Research Group

Some Institution
Some Email Addresses

Abstract—Confidential communication of live-generated multi-
media data distributed via application level multicast (ALM) still
remains a mostly unaddressed subject even though some impor-
tant usage scenarios, e.g. paid subscription services or personal
video-streaming, are anticipated to gain more widespread use
as the Internet continues to evolve into the common transport
platform for all kinds of services. In this article, we examine
the specific requirements for key management schemes to be
used in ALM-based distribution systems and analyze existing
key management approaches with respect to these requirements
[1], [2], [3]. Based on the results of this analysis, we design a new
key management scheme that combines ideas of the Logical Key
Hierarchy (LKH) protocol [4], [5] and the Iolus approach [6]. We
compare the resulting scheme to a simple approach that is based
on pairwise keys between neighboring nodes without further key-
hierarchy based optimization and that serves as a benchmark.
Our results of a comparative simulation study clearly indicate
the suitability of our scheme for ALM-based live-streaming.

I. INTRODUCTION

Application Layer Multicast (ALM) [7], [8] harnesses the
resources of participating end-hosts to create robust and
scalable content dissemination systems. The main focus of
research so far has been on creating efficient [8] and robust [9],
[10], [11] distribution topologies. Security aspects, however,
have been largely unattended in ALM research. Especially the
establishment of confidentiality among a closed group of nodes
is a very important issue, as it is a prerequisite for com-
mercial as well as personal deployment. Content providers,
which charge their customers for the service of delivering
a multimedia stream, have a strong interest in keeping the
transmitted data confidential in order to protect their revenues.
Unless the dissemination scheme can offer the same level of
protection as traditional unicast channels, content providers
are more likely to accept the higher cost of distribution
through unicast rather than deploying an overlay dissemination
scheme. Confidentiality may also be a key requirement in
non-commercial scenarios, too. As participants are sharing
potentially sensitive data, they may have a high interest in
securing it, restricting access to a closed group of recipients.

To establish a confidential setup in ALM, some key man-
agement (KM) scheme has to be introduced in order to agree
on common keys to encrypt the content. Key management is
an especially difficult task in ALM systems, as they usually
do not contain a central or dedicated entity that may take
care of key management duties (e.g. serving as a trusted third
party, etc.). Considering the distribution of live content yields

additional challenges, as groups in this scenario are typically
very short lived and the mean time of participation of nodes is
very low [12]. An immediate and central requirement to a key
management scheme for an ALM is scalability in the amount
of participants. Adding overhead has to be avoided and the
resource consumption for necessary overhead should be evenly
distributed over all participants. As a direct consequence the
introduction of an additional infrastructure component has to
be refrained off.

Systems implementing ALM are commonly classified into
the categories mesh-first or tree-first [13]. While mesh-first
approaches create a management overlay first and set up
the content dissemination topology using this mesh, tree-
first approaches create the content dissemination topologies
directly and use them for the distribution of management
traffic, as well. However, using the ALM for live streaming, the
content is actually distributed along a set of spanning trees,
each rooted at the source of the stream, that consists of all
participating nodes as either inner- or leaf-nodes. Hence, all
ALM for live streaming are composed of one or a set of
spanning trees, which in consequence can be leveraged for
key management purposes.

In this article, we evaluate different types of key manage-
ment schemes with respect to their adoption in ALM systems
for multimedia live-streaming. Based on a qualitative study of
the different types of schemes with respect to their suitability
in ALM scenarios, we select promising approaches for a closer
performance analysis.

Subsequently, we design a decentralized key management
approach that is based on the Logical Key Hierarchy (LKH)
and the Iolus protocol adapted to a tree-based key distribution
topology. In order to reduce overhead, the approach lever-
ages on the spanning tree of the ALM streaming topology.
Furthermore, as models of user behaviour [12], [14] have
shown the necessity of this prerequisite, our approach is
designed to perform under high churn and can handle frequent
arrivals or departures of participants of the ALM. A simulation
study shows, that this approach performs better than a simple
benchmark approach, performing hop-by-hop re-keying based
on pairwise secrets between neighbor nodes. However, another
lesson learned from both analysis and simulation study is,
that in an environment of small groups, which are subject to
high churn, the simple and straight forward approach to use
pair-wise keys between each pair of neighbors is much more

efficient than the more sophisticated approaches found in the
literature.

The rest of the paper is organized as follows. The require-
ments for a key management scheme to be used in ALM-
based live-multimedia distribution are formulated in section
II. In section III, we discuss the state-of-the-art in group key
management followed by an explanation of our own approach
in section IV that is analyzed and evaluated in section V.
In section VI finally, we summarize our findings and give a
conclusion to our work.

II. REQUIREMENTS FOR A KEY MANAGEMENT SCHEME

In the following, we describe requirements that can be
derived from the described scenario and that either relate to
performance- or security-related aspects of the key manage-
ment scheme.

Three major requirements regard the performance of the
scheme:

1) Scalability: The design of the introduced security
scheme has to be able to cope with growing, potentially
very large numbers (> 106) of participating nodes.

2) Moderate resource usage: The key management must
not pose high load to the processing, storage or commu-
nication resources of any participant. The capabilities of
the device of a participant in the goup may differ to those
of e.g. a central key server. While the latter will usually
be a dedicated high-end machine, the former may be
a mobile phone or other hand-held device, which is
severely limited in its processing and storage resources.
For this reason, a participant must not be faced with the
task to store a huge amount of keys, or to perform a
large amount of expensive computations, e.g. for packet
encryption and decryption. In addition, the bandwidth
overhead of the KM should be low, so that a re-keying
does not lead to a disproportional number of messages.
A resource demand independent of the group size is
preferable.

3) Ability to cope with churn: A KM for overlay live
streaming needs to be able to cope with a highly
dynamic behavior of nodes, especially with high rates of
correlated node arrivals and departures, and additionally
with nodes that might take part in the service for a very
short time only.

The security-related requirements are as follows:
1) Availability: The key management has to be available

without intteruption. In consequence, the failure of
nodes, especially of a single node, must not lead to a
failure of the key management.

2) Minimal trust infrastructure: The key management
scheme should rely on a minimal number of trusted enti-
ties only, if possible by leveraging existing infrastructure
instead of adding new components.

3) Backward and forward secrecy: A key requirement,
especially for commercial content providers, is to keep
both backward- and forward secrecy: A new peer must

not be able to decrypt packets that were sent before it
joined the group [15], And a leaving peer must not be
able to decrypt any future traffic. These requirements are
sometimes also termed “user revocation” or “blacklist-
ing” [16] and the only possibility to keep forward- and
backward secrecy is to perform re-keying for the whole
group and distributing new keys.

4) Key independence: New keys should not be encrypted
by an old key for distribution, in order to keep forward
secrecy, and because an attacker that has managed to
gather one key would be able to decrypt the rest of the
communication.

5) No 1-affects-n: Changes in the group should not lead
to group-wide re-keying (1-affects-n). Hence, different
keys have to be used for different peers: If only a
single group key is shared by all participants, the whole
group has to be re-keyed, in order to maintain backward
and forward secrecy, even if only a single membership
change occurs.

6) Controlled access: An access control mechanisms has
to be provided to ensure that only authorized peers are
able to join the group. However, access control is out of
the scope for this paper.

III. ANALYZED SCHEMES

In large scale content distribution the key management
scheme will typically be deployed to distribute one symmetric
Traffic Encryption Key (TEK), which is used to encrypt the
content at the source and decrypting it at the participants,
respectively. In order to securely distribute the TEK, a secure
context among all participants is created, based on one or
several Key Encryption Keys (KEK), which again have to be
agreed upon using a key management scheme.

Three different strategies to establish a common secure
context, and thus to agree on KEK, exist:

1) One common KEK for the whole group
2) Group-shared KEKs
3) KEKs shared between pairs of peers
There are various protocols for KM [1], [2], [3], [17]. Char-

acterizing them with regards to their level of distribution, they
can be classified into central, decentralized or contributory
schemes [18].

A. Centralized

Centralized approaches are based on a central entity, called
group controller (GC), which maintains secure channels to all
group members.

1) GKMP: The simplest form of centralized group key
management is provided by the Group Key Management
Protocol (GKMP) [19], [20]. A TEK is distributed via a central
GC. In doing so, O (n) messages and encryptions per change
in the group compound are required. In case of a member
join, the new TEK is distributed to the former members by
using the old key, a characteristic that is in conflict with the
requirement of key independence.

30−k

70−k

74−k

10−k 32−k 54−k 76−k

0k 1k 2k 3k 4k 5k 6k 7k

0
m

1
m 2

m
3

m 4
m 5

m 6
m

7
m

Fig. 1. Logical Key Tree with eight members

2) LKH: The Logical Key Hierarchy (LKH) [4], [5] is
based on a binary tree of keys (compare figure 1), that is
administrated by a central GC. Intermediate keys are created
directly by the GC and are encrypted and distributed via
pairwise keys that reside in the leaf nodes of the tree (k0−k7).
The key in the root node of the binary tree k0−7 is used
as the TEK of the group and all keys in intermediary nodes
represent KEKs. The GC is responsible for the key distribution
to its members. It transmits to all nodes all keys on the path
between itself and their corresponding leaf node. Hence, for
every node departure it is inevitable to change all keys known
to the leaving member, in order to maintain forward secrecy.

For a secure key distribution, the GC encrypts each key in
the tree with the keys of its child nodes and broadcasts them to
the group. After a successful authentication of a new member,
the GC decides about the joining member’s position in the tree
and changes all keys on the path between the parent of the
new member and the root. Arrivals and departures of members
are processed in the same way.

In consequence, a re-keying due to any change in the group
causes all children to encrypt the new key, too. For this reason,
all keys on the path from its leaf node to the root have to
be changed. Regarding the example in figure 1, the case of
member m7 leaving the group lead to the need to change the
keys k6−7, k4−7, and k0−7 and to replace them with k′6−7,
k′4−7 and k′0−7. Consequently, the following messages are sent
by the GC:
• {k′6−7}k6 → m6

• {k′4−7}k6 → m6

• {k′0−7}k6 → m6

• {k′4−7}k4−5 → m4,m5,
• {k′0−7}k4−5 → m4,m5,
• {k′0−7}k0−3 → m0,m1,m2,m3

LKH considerably reduces the number of encryptions com-
pared to a distribution of the TEK via individual channels. Per
single join or leave, LKH requires O (2 log n) encryptions
and the same number of broadcast messages for re-keying in
order to change O (log n) keys at a group size of n members.
If multiple keys are put in one message, the message effort
can be reduced to O (log n) at the cost of bigger messages.

3) OFC: The One-way Function Chain (OFC) [21] relies
on pairwise keys between the GC and members and uses a
binary key tree, too, which is built up similar to LKH. Upon a
member leave all keys on the path from the leaving member to
the root node have to be changed. Therefore, the GC transmits
a value r to the sibling of the leaving member and applies a
hash function f to r to create a hash chain along the path
of the leaving member from its leaf node to the root. The
GC assigns values from the hash chain according the point
the affected path touches the path of other nodes towards the
root. In case of m7 in Figure 1 leaves the group, the following
messages are sent by the GC:
• {k′6−7 = r}k6 → m6

• {k′4−7 = f(r)}k4−5 → m4,m5

• {k′0−7 = f(f(r))}k0−3 → m0,m1,m2,m3

After that, every member has the TEK, represented by
f(f(r)), or is able to compute it by hashing the received
value one or several times depending on its position in the key
tree. A join is handled in the same way. OFC offers a trade-
off of computation for communication and requires O (log n)
broadcast messages per join/leave by applying marginal addi-
tional computation requirements. The number of encryptions
is O (log n).

4) ELK: The Efficient Large-Group Key Distribution Pro-
tocol (ELK) [22] is similar to OFC and requires O (log n)
encryptions and O (log n) messages per join/leave as well.
It is based on a binary key tree and pairwise keys between
the GC and all members. In addition, ELK decreases the
required message length at the cost of more computation. In
case of a member join, intermediate keys are built based on
a part of the left and right successor key, respectively. During
a member leave, the re-keying message for a certain node
contains the missing part for the key calculation. Re-keying
messages caused by member joins contain only a checksum of
the new key and the members compute the missing bits for the
key in brute-force. This leads to a lower communication cost
but a considerably higher additional computation effort at the
same time, which offends the requirement of only moderate
computation effort.

GKMP needs n unicast messages per re-keying and the
same number of encryptions. The tree-based approaches like
LKH trade-off computation for communication effort. LKH
needs only O(2 log n) encryptions at the cost of O(2 log n)
broadcast messages. OFC and ELK perform better in terms
of communication and effort for encryptions. Nevertheless,
they cause additional costs. In OFC, group controller and
group members are burdened with additional computation for
hashing. ELK requires significant computation upon a member
leave.

Referring to the requirements for group key management
schemes in Section II, all centralized approaches suffer from
relying on a central entity, which represents a single-point-
of-failure and a bottleneck. Scalability and availability can be
achieved by additional measures, but is not given by the cen-
tralized KM itself. A higher scalability can be accomplished
by introducing a virtual server concept and availability can be

achieved by deploying additional redundant group controllers.
Centralized KM approaches usually apply symmetric cryptog-
raphy and for this reason they have only moderate resource
requirements. Only ELK needs a considerable computation ef-
fort by offering only low communication overhead. Backward
and forward secrecy is given in all presented centralized KM
approaches. Centralized KM schemes distribute one TEK to
the group, posing the need for an immediate re-keying after
a member join or member leave, a characteristic commonly
known as 1-affects-n. In addition, churn poses a problem to all
centralized schemes. Except for GKMP all presented schemes
keep the key independence requirement.

B. Decentralized

In decentralized approaches the large group is split up into
smaller subgroups and each of them is managed by a subgroup
controller.

1) Iolus: [6] partitions the overall group into subgroups
with one subgroup controller, called Group Security Agents
(GSA), respectively. In addition, a Group Security Controller
(GSC) represents a central authority and is placed in a top-level
subgroup. GSAs are arranged in a tree-based hierarchy with
the GSC residing in the top-level group. Neighboring GSA in
the tree share pairwise keys. There is not a single global, but
one TEK per subgroup. Sending messages from one subgroup
to another requires one or several re-encryptions depending on
their target destination in the subgroup hierarchy. If a message
traverses only one hop, the GSA at the side of the sender takes
the message, which is encrypted with the subgroup-TEK, and
decrypts it, encrypts it again with the pairwise key of the GSA
at the side of the receiver and sends it. The receiving subgroup
controller decrypts it and encrypts it again with the subgroup-
TEK. Afterwards, it forwards the message to its destination.

2) Intra-Region Group Key Management Protocol
(IGKMP): [23] consists of one central Domain Key
Distributor (DKD) and several Area Key Distributors (AKD).
Each AKD maintains a subgroup. The DKD is responsible for
global TEK generation and TEK distribution to the AKDs,
which in turn update their subgroups. For a re-keying, the
AKDs public key infrastructure can be used as well as secure
multicast and logical tree-based algorithms. With the DKD
again a central entity is introduced, even though it has not
the same tasks as a GC in centralized approaches. As a result
of the usage of a global TEK, 1-affects-n and bursty behavior
can still be a problem to the KM.

A decentralization of the KM makes it more scalable and the
failure of a subgroup controller affects only its corresponding
members and not the whole group. Decentralized approaches
usually apply symmetric cryptography and therefore they
require only moderate computation effort. The communication
effort is depending on the specific scheme. The presented de-
centralized approaches enable backward and forward secrecy
and keep the key independence. In Iolus the decentralization
mitigates 1-affects-n and improves the ability to cope with
churn, because one TEK per subgroup is used and only the
affected subgroups have to be re-keyed during a join or leave.

Both approaches still rely on a central entity, namely a GSC
in Iolus and the DKD in IGKMP. The second one introduces
a globally used TEK, which leads to 1-affects-n and problems
with churn.

C. Contributory

In the following, we outline representatives of contributory
schemes. Here, each peer has to contribute, via computation
and communication, to create a common TEK. The basic idea
is not to transmit the final key over the channel according to
the underlying Diffie-Hellmann key exchange principle. The
following schemes are based on that.

1) TGDH: The aim of Tree-based Group Diffie-Hellman
(TGDH) [24] is to create a common TEK in contributory
manner. The basic idea behind is the extension of the two-party
Diffie-Hellman key exchange to all members in the group.
Therefore, an identical key tree for all members is built. As in
centralized tree-based schemes the member nodes reside in the
leaf nodes. Sibling members perform a DH key-exchange to
create the key which resides in their parent node in the tree. In
the initial phase, the members choose a secret s that is located
in their leaf node of the tree, respectively, and compute a so-
called blinded key based on this value and broadcast it. Thus,
a blinded key is the same than a message in the DH key-
exchange. A node can distinguish the secret key of a parent
node, by its own secret key and the blinded key of its sibling.
Therefore, it performs the DH key-exchange all over.

Subsequently, so-called sponsors compute the rest of the
blinded keys for the intermediate nodes and broadcast them
to the group. Sponsors in consequence are burdened with
a higher computational cost than other members. They are
chosen depending on the strategy of the implementation. The
original publication suggests to use the shallowest rightmost
node in the tree. After the exchange of all blinded keys, which
are intermediate nodes in the key tree, each member is able
to compute the final common key. TGDH needs O (log n)
exponentiations and O (n) messages for a join or leave.

2) STR: The Skinny Tree protocol (STR) [25] builds up
a key tree based on the same mechanisms as TGDH. The
main difference is the key tree itself, which is unbalanced.
New members are inserted at the leftmost leaf node of the
tree. Every intermediate node has two children, one leaf node
and another intermediate node. Only the left-most intermediate
node has two successive leaf nodes. STR has a constant
overhead in exponentiations for inserting a new member, the
exclusion requires O (n). The message overhead per join/leave
is O (n).

3) FDLKH: The Fully Decentralized Key Management
Scheme on Logical Key Hierarchy (FDLKH) [17] is a deriva-
tive of LKH without a central Group Controller. Instead,
keys are computed contributory by Diffie-Hellman (DH) key-
exchanges. The role of the GC is taken over by so-called
captains, which are all affected nodes in the key tree during
a join/leave of a member node. During a join, the first
intermediate key is computed by a DH between the new
member and its sibling. The key one level above is computed

between joining member and the left-most member in the
neighbor subtree and so on. In case of a member join, the
new group key is encrypted by the old one, which offends the
requirement of key independence. For each member join or
leave O(log n) DH key-exchanges have to be performed.

Contributory approaches are scalable and keep the avail-
ability requirement, because no central entities are required.
However, the computation and communication effort is very
high compared to centralized and decentralized approaches,
since for every change in the group compound expensive
exponentiations are caused. Due to the use of a global TEK,
1-affects-n and churn poses a problem, because every insertion
and every exclusion of a member leads to a re-keying of the
whole group. All observed approaches keep backward and
forward secrecy and except FDLKH all of them maintain key
independence.

D. Discussion
Even though centralized approaches lack of the known

problems, like containing a single-point of failure and lacking
scalability, they could be judged to be suitable for ALM.
However, some further problems occur:
• There is no central point in a peer-to-peer live streaming

scenario, except the source of the stream. This one should
not take over the burden of a GC for all streaming
members.

• The knowledge of the source should be restricted to
its direct successors for security reasons: it should not
be known by all streaming members, as it is a highly
valuable target for attacks and could be easily identified
otherwise.

At the first glance, contributory approaches appear to be
suitable, too, since they follow the idea of peer-to-peer by
distributing the effort for key computation and communication
to all members. However, there are two major concerns for
contributory approaches in the streaming scenario:
• The knowledge of peers is rather limited. The idea of one-

to-many streaming data dissemination is in contrast to key
management data dissemination. Neither ring-structures
nor tree-structures for contributory key-management ap-
ply well and they would have to be set up explicitly.

• Cryptographic operations (Diffie-Hellman or Elliptic-
Curve) applied in contributory approaches are quite ex-
pensive. Even if the total number of operations is low,
their effort is not negligible. This situation even deteri-
orates as the approaches described above leverage the
speed of symmetric ciphers for secure communication
channels. In other words, contributory approaches need
expensive operations while other approaches communi-
cate via already established secure channels and hence
leverage from relatively fast symmetric cryptography.

In an environment without a central authority or GC,
a centralized KM is not possible. Contributory approaches
require knowledge about the group, leading to significant
communication and computation effort for single group mem-
bers. For this reason, a contributory KM is not applicable to

the ALM scenario, neither. In consequence, only the decen-
tralized KM approaches remain as possible solutions to the
key management problem in overlay live streaming systems.
They provide a scalable KM and without the demanding
requirements of a contributory approach. So for example, Iolus
or IGKMP can be applied to the presented scenario. Iolus
has the disadvantage of the need for a re-encryption of the
packets from one subgroup to the other. Both introduce central
authorities, however, they are not burdened by the same load
as a GC in centralized approaches. In the following section
the mapping of a decentralized KM on the ALM system is
given.

IV. DESIGN OF A DECENTRALIZED KEY MANAGEMENT
FOR PEER-TO-PEER STREAMING

The only central entity in peer-to-peer live-streaming is
the source node, which distributes the stream via multiple
spanning trees. In order to limit the overhead created by the
KM, this existing infrastructure is leveraged by using one of
the spanning trees for the distribution of a globally known
TEK. To enable backward and forward secrecy the use of
a periodic re-keying is proposed. A new TEK is distributed
shortly before the old one gets invalidated, so that there is no
additional communication delay in streaming.

To establish a global secure context, the source node gen-
erates a TEK and distributes it to the group via a spanning
tree by sending it to its direct successors. The knowledge
of these ordinary members about the group is restricted to
their direct successors and predecessors in all stripes. For
this reason, subgroups are generated to establish KEKs for
secure TEK forwarding, based on local knowledge only. All
forwarding nodes, including the source, become subgroup
controllers and all nodes, except the source, become members
in one of the subgroups. Thus, an intermediate node is member
in a subgroup managed by its predecessor and is a subgroup
controller itself for all of its successors. Participants residing
in the leaf nodes of a spanning tree are subgroup members
only.

Basically, this is a combination of Iolus and IGKMP. The
source as a central point in streaming represents an IGKMP
DKD. It distributes keys via its direct successors. All forward-
ing nodes in the streaming are Iolus subgroup controllers and
they maintain subgroups with their direct successors. Figure
2 shows a streaming topology consisting of 13 nodes and
the resulting subgroups. The TEK created by the DKD is
transmitted from the top of the streaming tree to the leaf nodes.
The TEK received from an upper subgroup or from the source
is decrypted by the subgroup controller, encrypted with the
local subgroup KEK and sent further.

For an efficient key distribution one of the centralized ap-
proaches described in Section III-A can be applied to generate
a subgroup-wide KEK. Based on pairwise keys generated by
the DH key-exchange the deployment of LKH in subgroups is
proposed. During a change in the group compound it requires
little more messages and encryptions than OFC or ELK. The
signalling effort can be neglected in this setting, since it is

Subgroup 2 Subgroup 3 Subgroup 4

Subgroup 1

Fig. 2. Decentralized KM, leveraging the streaming topology

only marginal compared to the transmitted streaming data. The
number of encryptions for LKH is higher compared to OFC
or ELK. However, OFC causes additional computation effort
by hashing keys and in ELK significant extra computation is
caused by the processing of member leaves. For this reason
and because it is the state-of-the-art in tree-based centralized
KM, LKH is the approach of choice for a deployment in the
subgroups of our KM for ALM.

Our new approach has the following properties:
• Scalability: The novel approach is scalable, because of

its decentralized manner and the use of local knowledge
only.

• Moderate resource usage: The decentralized KM for
peer-to-peer streaming builds up on symmetric cryptog-
raphy, except the establishment of pairwise keys, which
is done by the DH key exchange. This poses no problem
in computation nor storage or communication.

• Ability to cope with churn: Joins and leaves of members
are processed simultaneously. Furthermore, a re-keying is
done only once per interval, allowing multiple insertions
and deletions of members at the same time. So, the re-
keying of the LKH groups is processed shortly before a
new TEK is sent out from the source and not immediately
upon a join or leave of a node. In addition, churn is
mitigated by the decentralization of the KM leading to
small subgroups. In worst-case, at a high churn the whole
LKH tree in the subgroup is affected and all keys have
to be changed.

• Availability: The failure of a subgroup controller leads
to a re-organisation of the corresponding spanning tree
in the used peer-to-peer streaming approach. Disrupted
members reconnect to other nodes and are inserted into
other subgroups.

• Minimal trust infrastructure: No additional entities for
the KM are required, because existing structures are
leveraged.

• Backward and forward secrecy: A periodic re-keying,
instead of a re-keying per join or leave, enables included
members to decrypt the group traffic sent via the received
TEK before their join and excluded members are able to
monitor the group traffic until their TEK gets invalidated.
If the re-keying interval is sufficiently small, this poses
no problem at all.

• Key independence: The key independence is kept, be-

cause a new TEK is distributed via the existing KEK
infrastructure in the streaming overlay, instead of the
distribution via a former TEK.

• No 1-affects-n: Here, the same as for the ability to cope
with churn applies. A re-keying is done once per interval
and not immediately upon member leave or member join.

For a deeper analysis of the approach a simulation study is
presented in the following section.

V. EVALUATION

In order to have a benchmark for our novel approach, it
is compared to a simple approach based on pairwise keys
between neighbors, which are used for the secure distribution
of a TEK. This simple approach allows the exclusion of a
member by deleting the corresponding pairwise key before
the subsequent re-keying of the TEK.

In contrast, our decentralized LKH-based KM requires an
explicit re-keying in every subgroup whenever the group
changes, before a new, global TEK distribution can take place.
In consequence, a subgroup controller is burdened with addi-
tional computation and communication effort. However, this
leads to the benefit of saving TEK encryptions during a global
re-keying, since only one encryption for all successors at the
subgroup controller is required, rather than one encryption per
child. The procedure for a member arrival is similar in both
approaches: A new member receives a first TEK encrypted
with a pair-wise key, to allow an immediate inclusion.

We evaluate and compare our novel KM with respect to
computation and communication cost to the simple benchmark
approach by integrating both into an ALM simulation frame-
work [26]. In this approach, the forwarding content is split
into several stripes and a spanning tree is created for each of
the stripes. The framework is based on OMNeT++1 and the
Internet Protocol framework INET2.

A. Simulation setup

For simulation, the transient build-up phase of a stream was
investigated, with an assumed simulation time of 100 seconds
and only users joining the stream without leaving ones. In this
phase the KM is burdened with the highest load in the course
of streaming, since most of the members join at the beginning.

For each set of parameters, R = 32 simulation runs are con-
ducted. All results are presented together with their confidence
interval, representing a confidence level of 95 percent.

The capacity of the source is set to Cs = 3 and a client’s
capacity to Cc = 4. In other words, the server is able to
provide the whole stream three times and each client up to
four times. Since the stream is divided into stripes, that denotes
equal slices of the stream, this capacity can also be used to
deliver one stripe C times, i.e. the total capacity in stripes is
T = C · k, where k denotes the number of stripes. In case of
eight stripes, each node may have up to 4 · 8 = 32 successors
in one stripe.

1http://www.omnetpp.org/
2http://www.omnetpp.org/doc/INET/neddoc/index.html

 0

 2

 4

 6

 8

 10

 12

 50 55 60 65

U
se

r
A

rr
iv

al
 p

er
 s

ec
on

d

Time in seconds

Fig. 3. Resulting join rate in the simulation.

For comparable results for the delay of cryptographic op-
erations we conducted measurements according [27] to gain
realistic values under the conditions of current hardware.
Based on them, for simulation a period of 5 · 10−3 seconds
for a DH-operation with a key length of 1024 bit is assumed
and 2 · 10−6 seconds for a symmetric crypto-operation using
AES-256.

The user model is derived from literature [12] and the inter-
arrival time follows a Poisson-distribution with a mean of
λ = 50 sec according realistic observations presented in [14].
Figure 3 shows the resulting arrival rate per second in a group
of N = 50 obtained by 16 simulation runs.

It is assumed that the stream operator requires leaving
members to be excluded from the stream as soon as possible.
For this reason, the length of the re-keying interval is set to
10 seconds for the TEK, assuming that this is sufficient for a
strict exclusion strategy. Consequently, one second before TEK
re-keying a KEK re-keying in the subgroups is performed.

Small groups with N = 50, 100, 150, 200, 250 clients and
large groups with N = 500, 750 clients were simulated. The
number of stripes is k = 1, 2, 4, 8.

B. Simulation Results

The simulation study is intended to answer the question
of the suitability of the LKH-based KM approach to the
ALM live-streaming scenario. Therefore in the following, the
computational requirements and the communication overhead
is analyzed in comparison to a TEK distribution solely based
on pairwise keys shared by neighbor nodes in the streaming
overlay.

1) Computational results for build-up-phase: Computa-
tional overhead is caused in both approaches by DH key-
exchanges and by the overall AES encryptions for TEK and
KEK establishment. Both approaches, our novel LKH-based as
well as the simple pairwise key-based approach, have the same
effort in establishing secure channels. In addition, both ap-
proaches require AES encryptions for secure TEK distribution
and the LKH-based approach requires additional encryptions
for the build up and maintenance of LKH subgroups.

Figure 4 shows the confidence levels of the DH operations
performed at maximum nodes, which are the nodes with the
highest load per simulation run, respectively. The course of the
graph depends on the behaviour and the characteristics of the
streaming topology. Thus, a great impact on the DH operations
lies in the amount of stripes k. The maximum number of
possible successors for all stripes is k · Cs = 3 · k for the
source and k · Cc = 4 · k for a client. Beyond, the allocation
of free places in the different levels of the tree has a great
influence. Table I shows the maximum depth of the streaming
tree and the maximum number of forwarding nodes for all
simulated group sizes depending on the number of stripes.

At eight stripes 50 nodes are placed in lmax = 2 levels
and from 150 to 750 nodes, the tree contains lmax = 3
levels. So, at 150 nodes, not all free places on the three levels
of the streaming tree are allocated. Consequently, the most
intermediate nodes do not reach their maximum successor
number and for this reason they have less DH operations than
a node with the full amount of children. This justifies the
heavy increasing at the beginning of the graph, containing
the results of four and eight stripes, and the stabilization of
four and eight stripes at around 150 and 500, respectively. At
this points, most of the intermediate nodes have reached their
maximum number of successors.

The effort for both source and clients rises linearly with
increasing number of stripes. It is further independent on the
group size unless the group size is smaller than the maximum
number of successors a forwarding client is able to have. The
number of forwarders at the same N decreases with more
stripes, since the remaining forwarders have more successors.

After an initial connection attempt of a node, a DH key-
exchange is performed and the generated key is used as KEK
to send the first TEK. This is common for both approaches.
In the simple approach a forwarding node distributes a newly
received TEK by encrypting it individually per successor. So,
one AES encryption per successor is required.

In our LKH-based approach only one AES encryption is
needed for forwarding the TEK, since all successors share
a common subgroup KEK. Therefore, additional computation
effort, in terms of AES encryptions, for the buildup and the

Number of stripes k
Group size N 1 2 4 8

50 3 3 2 2
16 28 4 4

100 4 3 3 2
52 28 52 4

150 4 3 3 3
52 28 52 100

200 4 3 3 3
52 28 52 100

250 4 4 3 3
52 196 52 100

500 5 4 3 3
196 196 52 100

750 5 4 3 3
196 196 52 100

TABLE I
DEPTH OF STREAMING TREE DEPENDING ON N , k AND C = 4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800

D
H

-O
pe

ra
tio

ns

Group size

1 stripe
2 stripe
4 stripe
8 stripe

Fig. 4. DH operations observed at forwarding nodes

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800

A
E

S
 e

nc
ry

pt
io

ns

Group size

PK 2 stripes
PK, 8 stripes

LKH, 2 stripes
LKH, 8 stripes

Fig. 5. Total amount of AES encryptions at forwarding nodes for subgroups
solely based on pairwise keys (PK) and LKH-based subgroups.

maintenance of the key tree is caused. A KEK re-keying in
a LKH-based subgroup of n members due to a single change
in the group compound requires O(log n) keys to be changed
and O(2 log n) encryptions. In worst case, at a high churn
the whole local LKH tree has to be rebuilt.

The maximum AES-Encryptions are shown in Figure 5. The
maximum effort again is found again at the forwarders with
the most successors. The simple approach requires around 50
AES encryptions at two stripes and up to 240 encryptions at
eight stripes at all group sizes. Our LKH-based scheme needs,
beginning from N = 250, around 30 encryptions at two stripes
and around 110 for eight stripes. The figure makes obvious
that our LKH-based approach clearly outperforms the simple
one. The deployment of LKH in the subgroups saves up half
the AES encryptions compared to the simple approach based
on pairwise keys. In both approaches the graphs rise with an
increasing number of stripes, as shown in Figure 5, which is
founded in the allocation of the positions in the different levels
of the streaming tree.

In the simulation six TEKs, one per interval, are generated
by the streaming source. In the simple approach, each TEK
has to be encrypted three times at the source, sometimes more
depending on the streaming topology. This leads to at least
18 encryptions. The simulation showed that this can be even
much higher for a stream setup with more stripes, resulting
in more fluctuation in the streaming topology. Another reason
for that are the initial TEK encryptions for members that stay
connected to the source only for a short time. Our LKH-based
scheme should reduce this to one encryption per TEK for the
source. The results showed that this is not sufficient since there
are still the initial encryptions via pairwise keys.

2) Communication results: For analyzing the communica-
tion effort the transmission of the TEK was not considered, be-
cause it is the same for both approaches. Again, we studied the
forwarding nodes more deeply and compare both approaches
according the sum of communication overhead caused by the
creation of KEKs.

The effort for the simple approach poses no problems to
the clients nor the source in terms of additional bandwidth
requirements. The traffic is caused by the DH key exchange
procedure upon every connection attempt of a node to another
one on stripe 0. So, the forwarding nodes do not need much
more than 10 KByte for the whole re-keying of the simulated
build-up scenario.

Our LKH-based KM is based on the same costs for the
establishment of secure pairwise channels and causes addi-
tional costs for local tree buildup and maintenance. For a single
membership change the periodic KEK re-keying in a subgroup
of n members requires O(log n) keys to be changed and the
distribution of the new keys to the group. In worst-case, if
multiple membership occurred since the last re-keying period,
all keys have to be changed and the whole tree has to be re-
built. For k ≤ 4 the maximum effort is less than 5 KByte.
Peaks at around 15 KByte at the forwarders for k ≤ 8 are still
tolerable, too.

VI. CONCLUSION

In this work, we studied different key management schemes
that have been proposed to establish a secure context among
group members in live multimedia streaming overlays. After
analyzing different schemes we proposed a new approach
which is based on Iolus in combination with the Logical Key
Hierarchy (LKH) and the Diffie-Hellman (DH) key agreement.

We compared our new approach to a simple benchmark ap-
proach that distributes a global TEK via pairwise keys, which
are established between neighbors in the streaming topology,
by integratig both in an existing overlay live streaming system
[26] and conducting a simulation study.

The results showed that it is feasible to create a secure
context based on a pairwise DH key agreement, by establishing
locally secure contexts between all forwarding nodes in the
topology and their respective children. Analyzing and compar-
ing the computation and communication cost we had to realize
that the simple approach, based on pairwise keys, performs
best with respect to its communication overhead. Additionally,

it is the only approach does not cause an additional overhead
for leaving members, as the affected predecessor simply
deletes the corresponding pairwise key. The main drawback
of the simple approach lies in the large amount of TEK
encryptions at forwarding nodes, which are burdened with one
encryption per direct successor.

In contrast, LKH decreases this number to one TEK encryp-
tion per subgroup. Nevertheless, changes in the group during
a TEK re-keying interval require a re-keying of the subgroup
KEK and in consequence a high churn and a high re-keying
interval will cause high computation and communication cost.
In the worst case, all keys of the local LKH trees have to
be changed and our LKH-based KM is outperformed by the
simple approach.

However, our simulation results are based on a user behavior
according to [14], [12], which is characterized by a heavy
load in the transient build up phase of streaming. In addition,
a strict exclusion strategy is assumed with short re-keying
intervals, so that the cost at the subgroup controllers for re-
keying is decreased. With regards to the computational effort,
the LKH-based KM performs better compared to the simple
approach in this context, as it demands only a slightly higher
communication effort.

Summarizing, the LKH-based KM seems to be suitable for
even highly dynamic scenarios and performs better than a
TEK distribution via pairwise keys, as shown by simulation.
However, when the load increases to a certain point, LKH
will be outperformed by the simple approach. Thus, as both
approaches are based on pairwise keys, a dynamic adaption
of the KM according the current load situation in streaming
is suggested.

REFERENCES

[1] S. Rafaeli and D. Hutchison, “A survey of key management for secure
group communication,” ACM Comput. Surv., vol. 35, no. 3, pp. 309–329,
2003.

[2] Y. Challal and H. Seba, “Group key manage-
ment protocols: A novel taxonomy.” [Online]. Available:
http://citeseer.ist.psu.edu/challal05group.html

[3] X. Zou, B. Ramamurthy, and S. S. Magliveras, Secure Group Communi-
cations Over Data Networks. Santa Clara, CA, USA: Springer-Verlag
TELOS, 2004.

[4] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” IEEE/ACM Transactions on Networking, vol. 8(1):16-
30, 2000.

[5] D. Wallner, E. Harder, and R. Agee, “Key management for multicast:
Issues and architecture,” 1999, rFC 2627.

[6] S. Mittra, “Iolus: a framework for scalable secure multicasting,” SIG-
COMM Comput. Commun. Rev., vol. 27, no. 4, pp. 277–288, 1997.

[7] P. Rodriguez, E. W. Biersack, and K. W. Ross, “Improving the Latency
in the Web: Caching or Multicast?” in 3rd International WWW Caching
Workshop, 1998.

[8] Y. H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A Case for End System
Multicast,” IEEE Journal on Selected Areas in Communications, vol. 20,
no. 8, pp. 1456–1471, Oct 2002.

[9] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-bandwidth multicast in cooperative envi-
ronments,” in 19th ACM Symposium on Operating Systems Principles,
2003, pp. 298–313.

[10] T. Strufe, “A peer-to-peer-based approach for the transmission of live
multimedia streams (German: Ein Peer-to-Peer-basierter Ansatz für
die Live-Übertragung multimedialer Daten),” Ph.D. dissertation, TU
Ilmenau, 2007.

[11] S. Birrer and F. Bustamante, “Magellan: Performance-based, Coopera-
tive Multicast,” in International Workshop on Web Content Caching and
Distribution, 2005, pp. 133 – 143.

[12] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin, “A Hierar-
chical Characterization of a Live Streaming Media Workload,” in ACM
Internet Measurement Workshop, 2002, pp. 117 – 130.

[13] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable ap-
plication layer multicast,” in ACM Computer Communication Review
(SIGCOMM), 2002, pp. 205–217.

[14] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the internet,” Carnegie Mellon University, Oct.
2004.

[15] Y. Challal and H. Seba, “Group key management protocols: A novel
taxonomy,” International Journal of Information Technology, vol. 2,
no. 1, Dec. 2005.

[16] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and efficient constructions,” IETF,
1999.

[17] D. Inoue and M. Kuroda, “FDLKH: fully decentralized key management
scheme on logical key hierarchy,” Lecture Notes in Computer Science,
vol. 3089/2004, pp. 339–354, 2004.

[18] C. Abad, W. Yurcik, and R. Campbell, “A survey and comparison of end-
system overlay multicast solutions suitable for network-centric warfare,”
International Society for Optical Engineering proceedings series, vol.
5441, pp. 215–226, 2004.

[19] H. Harney and C. Muckenhirn, “Group key management protocol
(gkmp) specification,” RFC 2093 (Experimental), July 1997. [Online].
Available: http://www.ietf.org/rfc/rfc2093.txt

[20] H. Harney and C. Muckenhirn, “Group key management protocol
(gkmp) architecture,” RFC 2094 (Experimental), July 1997. [Online].
Available: http://www.ietf.org/rfc/rfc2094.txt

[21] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas, “Multicast security: A taxonomy and some efficient
constructions,” in INFOCOMM’99, 1999. [Online]. Available:
citeseer.ist.psu.edu/canetti99multicast.html

[22] A. Perrig, D. Song, and D. Tygar, “Elk, a new protocol for
efficient large-group key distribution,” 2001. [Online]. Available:
citeseer.ist.psu.edu/perrig01elk.html

[23] B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono, D. Kiwior, J. Kurose,
D. Towsley, S. Vasudevan, and C. Zhang, “Secure group communications
for wireless networks,” Military Communications Conference, 2001.
MILCOM 2001. Communications for Network-Centric Operations: Cre-
ating the Information Force. IEEE, vol. 1, pp. 113–117 vol.1, 2001.

[24] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,”
University of California, Irvine, 2002.

[25] Y. Kim, A. Perrig, and Gene Tsudik, “Communication-
efficient group key agreement.” [Online]. Available: cite-
seer.ist.psu.edu/kim01communicationefficient.html

[26] T. Strufe, J. Wildhagen, and G. Schäfer, “Towards the construction of
Attack Resistant and Efficient Overlay Streaming Topologies,” in 2nd
International Workshop on Security and Trust Management, 2006, pp.
108–118.

[27] W. Dai, Crypto++ v5.2.1, Aug. 2006.

