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Abstract— In this paper, we consider stationary time- and
frequency-selective MIMO channels. No channel knowledge nei-
ther at the transmitter nor at the receiver is assumed to be
available. We investigate the capacity behavior of these doubly
selective channels as a function of one of the system parameters,
the number of transmit antennas and channel parameters as
delay spread, Doppler bandwidth and channel spread factor (the
product of the previous two parameters).

For critically spread channels (channel spread factor of 1), it is
widely believed that the dominant term of high-SNR expansion of
the capacity is log(log(SNR)) or in other words, the pre-log (the
coefficient of log(SNR)) is zero. We provide a very simple scheme
showing that for critically spread and mildly overspread channels
a non-zero pre-log exists under certain conditions. We specify
these conditions in terms of the Doppler bandwidth and the delay
spread. We reason that for nearly critically spread channels,
MIMO systems exhibit same degrees of freedom as that of a
SISO system. At higher channel spread factor (overspread case),
the log(SNR) term vanishes and log(log(SNR)) term becomes the
dominant capacity term. We specify the range of existence for
log(SNR) regime.

I. INTRODUCTION

Capacity analysis has been a very rich area of research
since Shannon’s introduction of the notion of capacity as the
unbeatable limit of the data rate possible over a communi-
cation channel with probability of error approaching zero.
Initially it was assumed that channel is perfectly known at the
receiver (channel state information at the receiver (CSIR)) or
sometimes even assuming that channel is known at the trans-
mitter (channel state information at the transmitter (CSIT)).
But inherently all channels are non-coherent in nature and they
need some kind of estimation to get CSIR and then some kind
of feedback and/or estimation to have knowledge of CSIT. The
area of capacity analysis for non-coherent (no CSIR and no
CSIT) fading channels has received considerable attention in
recent years.

Initially frequency flat channels with block fading were
treated in the no CSIR case. In the standard version of this
model [1], the fading remains constant over blocks consisting
of T symbol periods, and changes independently from block
to block. Capacity bounds are obtained by introducing training
segments in an ad hoc fashion. For the standard block fading
model, the capacity is shown [1], [2] to grow logarithmically
with SNR at high values of SNR, thus log(SNR) was shown to

be the dominant term of capacity. Later Liang and Veeravalli
[3] allowed the fading to vary inside the block with a certain
correlation matrix characterized by its rank Q and showed for
MIMO channels that the capacity pre-log is min(nt, nr)[1 −
min(nt, nr)Q/T ].

Non-coherent capacity has also been analyzed for flat fading
channels with channel fading process taken symbol-by-symbol
stationary. In this model, fading is not independent but time
selective without any block structure. Surprisingly, this model
leads to very different capacity results: contrary to log(SNR)
capacity growth in block fading channels, here the capacity
grows only double logarithmically with SNR at high values of
SNR [4], [5], [6] when the fading process is non-bandlimited
(the Doppler Bandwidth is over the full transmission band-
width), in this case the channel prediction error is non-zero
even if infinite past is known.

For symbol-by-symbol stationary Gaussian fading channels,
if the Doppler spectrum is of limited support, then the fading
process is called non-regular and the prediction error given
the infinite past goes to zero. Lapidoth [7] studied the SISO
case for this kind of fading processes showing that the capac-
ity grows logarithmically with SNR and capacity pre-log is
the Lebesgue measure of the frequencies where the spectral
density of the fading process (Doppler spectrum) has nulls.

Etkin and Tse [8] study the same channel model of ban-
dlimited fading for MIMO systems, they show that pre-log
exists even for MIMO systems with no CSIR but they only
give a lower bound of the capacity pre-log.

All of the above mentioned studies deal with flat fading
channels. We focus our attention on MIMO doubly selective
stationary channels. First we characterize the high SNR ca-
pacity when these channels are underspread. Then we analyze
their behavior in overspread regime where by using a special
sub-sampled (zero-padded) input, one can still achieve the
pre-log. This behavior finds its analogy with an underspread
behavior when one has to optimize (reduce) over the number
of active transmit antennas to achieve the optimal pre-log.

The paper organization is as follows. In section II, we give
the system model. Section III gives the basis expansion model
(BEM) for this channel. We characterize the underspread
pre-log and capacity behavior in section IV. In section V,
we treat the corresponding overspread channel and give our



simple transmission scheme showing the existence of pre-log
for overspread channels. In section VI, we relate our novel
scheme to a known MIMO behavior. The paper ends with
some concluding remarks in section VII.

II. SYSTEM MODEL

We consider a multiple-input multiple-output (MIMO) fad-
ing channel with nt transmit and nr receive antennas, each
channel entry has L taps so the time-k output y[k] ∈ C

nr is
given by

y[k] =
√

SNR
nt

L−1∑
l=0

H [k, l]x[k − l] + z[k] (1)

where x[k] ∈ Cnt denotes the nt dimensional time-k channel
input, H [k, l] ∈ Cnr×nt represents the l-th delay FIR (finite
impulse response) channel matrix at time k consisting of circu-
larly symmetric complex Gaussian components of zero mean
and unit variance, and z[k] ∈ Cnr denotes the additive white
Gaussian noise vector. Here C

n denotes the n dimensional
complex space.

We assume that the channel matrix is spatially independent
and identically distributed (i.i.d.). The channel fading process
corresponding to r-th receive antenna, t-th transmit antenna
and tap l {Hr,t[k, l]} is assumed to be stationary, ergodic
and bandlimited. They are also independent and identically
distributed (i.i.d.) across different taps l. The hypothesis of
the bandlimitedness of the fading process is motivated by the
physical limitations on the mobile speeds. For a mobile speed
v, the maximum Doppler frequency magnitude fmax for each
path is fmax = v/λc where λc is the carrier wavelength.
The bandwidth of each fading process will be upper bounded
by the two-sided Doppler bandwidth 2fmax. We define the
normalized Doppler bandwidth as Bd = 2fmaxTs where Ts

represents the symbol period, assuming the Doppler spectrum
has support between the two extreme Doppler shifts. In
general, Bd will denote the support of the Doppler spec-
trum. The hypothesis of bandlimited Doppler spectrum is
an approximation because the Doppler shifts do not remain
constant. Similarly, the hypothesis of limited delay spread is an
approximation. Limited values for Doppler and delay spreads
can be justified at a given working SNR. We define the spread
factor (μ) of the channel as μ = LBd.

The system is normalized so that the channel input has an
average power constraint of E[||x[k]||2] ≤ nt.

The capacity pre-log is normally defined as

PreLog = lim
SNR→∞

C(SNR)
log(SNR)

(2)

whenever C(SNR) is of order log(SNR), and the capacity
pre-loglog is given by

PreLogLog = lim
SNR→∞

C(SNR)
log(log(SNR))

(3)

whenever C(SNR) is of order log(log(SNR)).

III. REPRESENTATION USING BASIS EXPANSION MODEL

To get a proper model for the doubly selective channel,
we start by considering block transmission with block length
N . Continuous transmission results will then be obtained
by letting the block size N grow to infinity. Observing a
signal over a block can always be thought of as if the block
considered is one period of a periodic process, in which
case the signal has a Fourier series expansion. This leads
to a Basis Expansion Model (BEM) for the time-varying
channel coefficients in which the basis functions are complex
exponentials with frequencies at the multiples of 1/N [9].
As the Doppler spectrum is bandlimited, we shall take the
BEM to be correspondingly bandlimited. We should note here
that we do not necessarily demand of the BEM to provide
an exact description of the channel statistics over the block
of length N , as long as the description becomes exact as the
block length tends to infinity. The BEM leads to the following
representation for the channel coefficients over a block that
starts at time zero w.l.o.g.,

Hr,t[k, l] =
Nd−1∑
n=0

gr,t[n, l]ej2πkn/N , k = 0, 1, · · · , N − 1

(4)
where Nd = �N Bd�. In the above equation, gr,t[n, l] are
independent, uncorrelated, zero mean proper complex Gaus-
sian random variables whose variances are the values of the
spectrum of the corresponding fading process at respective fre-
quencies n/N . To avoid inter-block interference and facilitate
the description in the frequency-domain, we add a cyclic prefix
of length L−1 making the total block length to be N +L−1.
At the receiver the first L−1 received samples corresponding
to the prefix get neglected and the remaining N outputs, the
inputs and the noise get collected in vector form as yr =
[yr[0]yr[1] · · · yr[N −1]]T , xt = [xt[0]xt[1] · · · xt[N −1]]T ,
zr = [zr[0]zr[1] · · · zr[N−1]]T , leading to the system equation

yr =
√

SNR
nt

nt∑
t=1

Hr,txt + zr (5)

where Hr,t ∈ CN×N is the channel matrix corresponding
to t-th transmit and r-th receive antenna over this block and
has the circulant structure shown at the top of the next page.
If Hr = [Hr,0Hr,1 · · ·Hr,nt ] and x = [xT

1 xT
2 · · ·xT

nt
]T, the

signal received at r-th received antenna becomes

yr =
√

SNR
nt

Hrx + zr (6)

Now signal from all nr receive antennas can be combined in
a long vector y = [yT

1 yT
2 · · ·yT

nr
]T to get

y =
√

SNR
nt

Hx + z (7)

where H = [HT
1 HT

2 · · ·HT
nr

]T is of size Nnr × Nnt.
We also need a system representation in which the roles of

the channel and the input are reversed. Following the same
steps as before, input X over this block length N can be



Hr,t =

�
�����������������

hr,t[0, 0] hr,t[0, L−1] . . . hr,t[0, 1]
... hr,t[1, 0]

. . .
...

... hr,t[L−2, L−1]

hr,t[L−1, L−1]
...

hr,t[L, L−1]
. . .

. . .
hr,t[N−1, 0]

�
�����������������

written as a block diagonal matrix of size nrN × ntnrLN
and all the channel coefficients can be put in a long vector h
of length ntnrLN , giving us the system equation as

y =
√

SNR
nt

Xh + z (8)

Similarly by putting the uncorrelated coefficients of BEM
in a long vector g of length ntnrLNd, in the same order
that channel coefficients have been put in the long vector h,
we can write h = Fcg where Fc = IntnrL ⊗ F, ⊗ represents
the Kronecker product and F ∈ CN×Nd is the partial IDFT
matrix. With this (8) can be written as

y =
√

SNR
nt

XFcg + z . (9)

IV. UNDERSPREAD CHANNELS

Typically wireless channels are underspread in nature [10],
so first of all we study the capacity pre-log for doubly selective
MIMO channels when they are underspread (spread factor μ
is strictly less than one).

A. Lower Bound of Mutual Information

Using the BEM developed in section III, we derive a lower
bound for the mutual information. Due to space limitations,
we just give the proof outline. The system input is selected as
Gaussian i.i.d. satisfying the average power constraint imposed
and the resulting MI is

I(xG;y) = I(xG,H;y) − I(H;y|xG)
= I(xG;y|H) + I(H;y) − I(H;y|xG)
≥ I(xG;y|H) − I(H;y|xG) (10)

Equalities here follow from the introduction of the channel
matrix H and using the chain rule of mutual information
multiple times and the inequality follows from the non-
negativity of the mutual information.

First term in the above inequality is the mutual information
when the channel is known and so can be evaluated easily
using the coherent channel results to

lim
SNR→∞

I(xG;y|H) = N min(nt, nr) log(SNR) + O(1)
(11)

Now the second mutual information term I(H;y|xG) in
(10) is the MI due to transmission over a known fictitious

channel (xG) where actual channel (H) plays the role of the
input which is of reduced bandwidth. At high SNR, this term
can be shown to grow as

lim
SNR→∞

I(H;y|xG) ≤ Nntnrμ log(SNR) + O(1) (12)

Combining the above results, dividing by N the block length
and optimizing over the number of antennas by reducing them
to min(nt, nr), we get the proper pre-log result

PreLog ≥ min(nt, nr)[1 − min(nt, nr)μ] (13)

B. Upper Bound of Mutual Information

To derive the upper bound of the mutual information for
this doubly selective channel, the main point is the intelligent
splitting of the mutual information in two parts, in which one
term grows with log(SNR) as for a coherent channel and the
other term is shown to have no growth as log(SNR). Pre-
log depends upon what is the minimal number of parameters
required to fully estimate the channel, so this number of
degrees of freedom are lost and on the rest one can achieve
log(SNR) growth of capacity. We again leave the details of
the derivation

PreLog ≤ min(nt, nr)[1 − min(nt, nr)μ] (14)

C. The Pre-Log of Underspread Doubly Selective Channel

Based upon the above two bounds on the mutual information
of strictly underspread channels, one can conclude that the pre-
log is given by

PreLog = min(nt, nr)[1 − min(nt, nr)μ] (15)

It shows that the loss factor in pre-log for a non-coherent
MIMO channel is equal to one minus channel spread factor
(μ) multiplied by min(nt, nr). The factor of min(nt, nr) bears
the interpretation of number of active transmit antennas which
should be used to get the capacity pre-log.

D. Large Spread Factor Analysis

Here we treat the case when the channel is still underspread
but the inverse of the spread factor 1/μ is comparable to
min(nt, nr). Our expression of the pre-log equation (15)
shows that the high SNR DOF depend entirely on min(nt, nr)
and not on the individual values of nt and nr. As nt > nr is
strictly sub-optimal in the high SNR non-coherent regime so



let’s take nt < nr, 1 ≤ ńt ≤ nt and then optimize the pre-log
ńt(1− ńtμ) over ńt. We want to analyze what is the optimal
value of ńt for a fixed large nr and spread factor μ.

The pre-log ńt(1− ńtμ) is a simple parabola, initially pre-
log increases with increasing ńt reaching its maximum value at
1/(2μ) and starts decreasing onwards becoming zero at 1/μ.
The explanation is that ńt factor represents the number of
independent streams which one can multiplex over this system
but the coherent reception of this number of streams first
requires estimation of the corresponding channel coefficients
hence the loss factor also increases with the factor ńt. Now
with large spread factor when the coherence time is very
short, using more streams means a greater loss factor which
is proportional to the spread factor. But due to very short
coherence time, the coherent transmission does not last long
enough to compensate that loss factor and to reduce the
number of active streams becomes the optimal strategy. Hence
if nt > 1/(2μ), the active number of transmit antennas should
be reduced to 1/(2μ). This discussion indicates that the active
number of transmit antennas (streams) in non-coherent MIMO
should actually be min(nt, nr,

1
2μ) and the pre-log for a non-

coherent MIMO system becomes

PreLog = min(nt, nr,
1
2μ

)[1 − min(nt, nr,
1
2μ

)μ] (16)

One very important point to which this pre-log indicates is that
when spread factor is sufficiently large (spread factor larger
than 1/3 precisely), the above given pre-log will become (1−
μ), the pre-log of a SISO doubly selective channel. So from
the pre-log point of view at these higher spread factors, non-
coherent MIMO systems collapse to a SISO or SIMO system.

PreLog = 1 − μ for μ > 1/3 (17)

V. OVERSPREAD CHANNELS

We showed that MIMO doubly selective channels collapse
to a SISO channel when spread factor (μ) is greater than 1/3,
which renders the pre-log to 1 − μ. Now if channel spread
increases and reaches to 1 (the so-called critically spread
channels) or becomes greater than 1, the pre-log expression
dictates that pre-log is zero with μ ≥ 1. Below we give a very
simple scheme which shows that the log(SNR) term exists
for overspread channels under certain conditions. We describe
this scheme in terms of a SISO channels as optimal number
of transmit antennas is 1 at these higher spread factors and
receive antennas in surplus can only provide diversity gain
but add nothing to the pre-log.

A. Transmission Scheme

Our transmission scheme to realize log(SNR) growth for
overspread channels is based upon zero padding. The zero
padding is done in such a manner that at the receiver side, each
transmitted symbol appears without inter-symbol interference
(ISI) for at least one symbol time. So to achieve this one
output sample free of ISI, we transmit an input symbol and
then do zero padding of �L/2	 symbols. That means each
information symbol is followed by �L/2	 deterministic zeros.

Now one may focus attention on the input information symbols
transmitted at the transmitter and the ISI free received symbols
at the receiver delayed by (�L/2	 + 1) symbol intervals. For
this scheme �L/2	 input symbols are wasted (zero-padded)
corresponding to each single information symbol transmitted
but the good thing is that the effective channel is frequency
flat and each ISI free symbol at the receiver comes multiplied
with the same channel tap, the (�L/2	+1)-th tap. This scheme
is explained in Figure 1.

Fig. 1. Transmission Scheme Example (Equiv. Freq. Flat Channel)

Now we need to see what fraction of symbols we are able
to transmit in this zero-padded scheme where �L/2	 symbols
get wasted for each single information symbol. So the fraction
of the information symbols is

ntx =
1

�L/2	+ 1
(18)

Now keeping in mind that here we are interested in only a
single channel tap (which appears with ISI free output symbol)
requiring Nd BEM coefficients to be estimated to be fully
known over a block length N as we argued in section III.
And to estimate a single channel tap, per symbol coefficients
required Nd/N is equal to the normalized Doppler bandwidth
Bd. We denote this fraction by nnyq, the minimum number of
samples required to estimate the channel

nnyq = lim
N→∞

Nd

N
= Bd (19)

If we want to estimate the channel by sending pilot symbols,
we need to transmit Bd fraction of pilots among the non-
zero transmit symbols and then this particular channel tap can
be estimated by estimating its BEM coefficients. But in this
scheme, the information symbols transmitted is the fraction
1/(�L/2	 + 1) per symbol. Now there is the possibility that
some degrees of freedom (DOF) are left even after estimating
this particular channel tap but it will be depending upon
the relative values of the channel delay spread L and the
normalized Doppler bandwidth Bd.

nDOF = ntx − nnyq =
1

�L
2 	 + 1

− Bd (20)



So we can have coherent transmission albeit with imperfect
channel estimate over this fraction nDOF (if this number
is non-zero, of course) and so it corresponds to a coherent
channel where pre-log exists. Hence pre-log per symbol time
is given by

PreLog = nDOF =
1

�L
2 	 + 1

(
1 − Bd(�L

2
	 + 1)

)
(21)

Formal information theoretic proof for the achievability of the
above pre-log for overspread channels has been omitted due
to space limitations.

We can find the channel parameter values where the pre-
log given by the zero-padded transmission scheme surpasses
the pre-log (1 − LBd) derived in section IV-C. Similarly we
can find an upper bound on Doppler bandwidth till when this
scheme can give us non-zero pre-log in overspread regime.

�L
2 	

(�L
2 	 + 1)(L − 1)

≤ Bd ≤ 1
�L

2 	 + 1
(22)

The left inequality shows the condition for an underspread
channel where the pre-log of this zero-padding scheme takes
over the classical pre-log of (1−LBd) and the right inequality
shows the condition under which an overspread channel shows
positive pre-log with this scheme. The multiplication of the
above inequality with L gives us the corresponding bounds
on the channel spread factor.

B. Optimality of Zero Padded Transmission Scheme

In our transmission scheme with zero padding, we transmit
one information symbol in each block of (�L/2	+1) symbols.
One can argue if more than 1 symbol is transmitted and zero
padding of the same size is done, there might be the possibility
of having more DOF and resultantly a higher pre-log factor.
We omit the details but we are able to prove that among such
kind of ZP schemes with multiple symbols transmitted and ZP
of (�L/2	), they don’t beat our scheme where one information
symbol gets transmitted followed by ZP of (�L/2	) length.

For the channels with very high spread factors (nearly
critically spread channels to overspread channels where range
was specified in section IV-C), we showed some optimality
conditions of this zero padding scheme. Although we don’t
have a proof for the upper bound of the pre-log for this
transient regime but we conjecture that this is the pre-log.

PreLog =
1

�L
2 	 + 1

(
1 − Bd(�L

2
	 + 1)

)
(23)

VI. ACTIVE TX. ANTENNAS AND ZERO PADDED INPUT

We showed that the pre-log for MIMO doubly selective
channels is given by

PreLog = min(nt, nr,
1
2μ

)[1 − min(nt, nr,
1
2μ

)μ] (24)

which indicates that with the increase of channel spread factor,
one should turn off more and more transmit antennas to obtain
the pre-log. And the reason is that each transmit antenna
introduces some channel parameters which need to be known

(and hence estimated) for coherent detection of data. Now
after spread factor greater than 1/3, we get only one active
transmit antenna giving us the pre-log of (1 − LBd). The
same reasoning makes our zero-padding scheme successful.
At spread factors very close to 1, our ZP scheme converts
this doubly selective channel into a frequency flat channel of
increased Doppler bandwidth. Increase in Doppler bandwidth
is (�L

2 	 + 1) but channel parameters get reduced by a factor
L (almost double). This difference makes channel estimation
possible and guarantees the pre-log.

VII. CONCLUDING REMARKS

In this contribution we characterized the capacity pre-log for
doubly selective MIMO channels in underspread regime. Then
we gave a novel scheme which is able to extract log(SNR)
even from overspread channels under certain channel condi-
tions. We specified the range in terms of delay spread and
Doppler bandwidth where ZP scheme is able to achieve non-
zero pre-log. We showed that our scheme is analogous to
reducing the active transmit antennas in underspread MIMO.
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