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Abstract— The asymptotic capacity for the non-coherent
MIMO stationary channels having nt transmit and nr receive an-
tennas with flat fading is the focus of this paper. Fading processes
of concern are bandlimited. These non-coherent MIMO channels
were studied by Etkin and Tse and lower bound of capacity was
shown to grow with min(nt,nr)[1 − min(nt,nr)µ] log(SNR)
where µ is the normalized Doppler bandwidth. The contribu-
tion of this paper is to specify the pre-log for MIMO chan-
nels and this is done by giving matching upper and lower
bounds of the pre-log. Moreover min(nt,nr) factor in the pre-
log term bears a small modification. The actual pre-log is
min(nt,nr,

1
2µ

)[1 − min(nt, nr,
1
2µ

)µ] and takes into account the
optimal number of streams that should be activated as a function
of the Doppler bandwidth.

I. INTRODUCTION

Information theoretic bounds for various types of channels
have got utmost importance since the explosion of research
in MIMO promised new dimensions for data communication.
Such capacity bounds are very important in the sense that
they give the theoretical limits and motivate the researchers
to approach these limits in practical systems. The area of
capacity analysis for non-coherent (no CSIR and no CSIT)
fading channels has received considerable attention in recent
years since the usual assumption of perfect CSIR is not true in
practical systems and channel realizations need to be estimated
for correct decoding of data.

Usually block fading models are assumed for obtaining
capacity bounds in the no CSIR case. In the standard version
of this model [1], the fading remains constant over blocks
consisting of T symbol periods, and changes independently
from block to block. Capacity bounds are obtained by in-
troducing training segments in an ad hoc fashion. For the
standard block fading model, the capacity was shown [1], [2]
to grow logarithmically with SNR. Later Liang and Veeravalli
[3] allowed the fading to vary inside the block with a certain
correlation matrix characterized by the rank Q and showed for
SISO channels that the capacity pre-log is (1 − Q/T ).

Non-coherent capacity has also been analyzed with the
channel fading process being symbol-by-symbol stationary. In
this model, the fading is not independent but time selective
without any block structure. Surprisingly, this model leads to
very different capacity results: contrary to log(SNR) capacity
growth in block fading channels, here the capacity grows only

double logarithmically with SNR at high SNR [4], [5], [6]
when the fading process is non-bandlimited, i.e. the channel
prediction error is non-zero even if infinite past is known.

For symbol-by-symbol stationary Gaussian fading channels,
if the Doppler spectrum is bandlimited, then the fading pro-
cess is called non-regular and the prediction error given the
infinite past goes to zero. Lapidoth [7] studied the SISO case
for this kind of fading processes showing that the capacity
grows logarithmically with SNR and the capacity pre-log is
the Lebesgue measure of the frequencies where the spectral
density of the fading process (Doppler spectrum) has nulls.

Etkin and Tse [8] study the same channel model of ban-
dlimited fading for MIMO systems, they show that the pre-log
exists even for MIMO systems with no CSIR but they only
give a lower bound of the capacity pre-log.

In this paper, we specify the exact pre-log for such non-
coherent MIMO channel giving matching upper and lower
bounds. We should emphasize that the fading processes of
interest to us in this paper are stationary and strictly bandlim-
ited, the ones for which Lapidoth [7] established the capacity
pre-log in the SISO case. The rest of the paper is organized
as follows. In section II, we give the system model. Section
III gives the main contribution of this paper. In section IV,
we prove the upper bound of the MIMO capacity pre-log.
In section V, we characterize the optimal number of active
streams in terms of the Doppler bandwidth and complete the
proof of the pre-log. Section VI gives the concluding remarks
and also points to some future research directions.

II. SYSTEM MODEL

We consider a MIMO fading channel whose time-k output
Y [k] ∈ Cnr is given by

Y [k] =
√

SNR
nt

H [k]X [k] + Z[k] (1)

where X [k] ∈ Cnt denotes the time-k channel input vector,
the matrix H [k] ∈ Cnr×nt represents the time-k fading matrix
consisting of i.i.d. circularly symmetric complex Gaussian
components of zero mean and unit variance and Z[k] ∈ Cnr

denotes the additive Gaussian noise vector. Here C denotes
the complex field, nt and nr represent the number of transmit



and receive antennas respectively. We assume that the zero-
mean circularly symmetric complex Gaussian noise is spa-
tiotemporally white with spatial covariance matrix Inr , which
represents the nr × nr identity matrix. The channel fading
process {H [k]} is assumed to be stationary, ergodic and with
finite second order moment, i.e. E[||H [k]||2] < ∞. We take the
fading process to be strictly bandlimited, so it is a non-regular
stochastic process with limited Doppler spectrum support. The
Lebesgue measure of the Doppler bandwidth is μ for each
channel entry.

An average power constraint is imposed on the input hence

E[||X [k]||2] ≤ nt (2)

Throughout this paper, (.)T and (.)† will denote transpose and
Hermitian transpose operators respectively.

The capacity pre-log is normally defined as

PreLog = lim
SNR→∞

C(SNR)
log(SNR)

(3)

III. THE MAIN RESULT OF THE PAPER

The main result of this paper is the following theorem
which characterizes the capacity pre-log for MIMO channels
having Gaussian fading with bandlimited Doppler spectrum.

Theorem 1

PreLog = min(nt, nr,
1
2μ

)[1 − min(nt, nr,
1
2μ

)μ] (4)

A. Outline of the Proof

For our MIMO system (1), the capacity C can be calculated
from the following expression [9]

C = lim
n→∞

1
n

sup
p(Xn)

I(X1:n; Y 1:n) (5)

where the maximization is done over all the input distributions
which satisfy the imposed average power constraint (2). I
represents the mutual information and we use X1:n as a
shorthand for (X [1], X [2], · · · , X [n]).

To prove the given pre-log as the exact pre-log, we bound
the mutual information (MI) from above and below and show
that in both cases we achieve the same pre-log, hence proving
theorem 1.

B. Capacity Upper Bound

The derivation of the upper bound is somewhat involved.
First we represent the mutual information between the input
and the output of our MIMO channel as the sum of two terms,
the first of which is the mutual information when the channel
information is known at the receiver and the second is the term
which represents the loss due to not knowing the channel.
Now the mutual information with CSIR known is a well
studied case in the literature of information theory so results
are readily available for this term and our task boils down to
lower bounding the mutual information loss for not knowing
the channel. We lower bound this loss and get our pre-log by
combining with the pre-log of the mutual information with
CSIR known.

C. Capacity Lower Bound

The derivation of the capacity lower bound is similar to
as given by Etkin and Tse in [8] except that the num-
ber of the active transmit antennas depends also upon the
Doppler bandwidth and the factor min(nt, nr) gets replaced
by min(nt, nr,

1
2µ). But in principle the derivation follows the

same steps, hence we use their result because of space limita-
tion and specialize it to the correct pre-log where minimization
involves three factors nt,nr and μ. The main idea for this lower
bound was to split the MI and then bound its corresponding
components.

MI = I(X1:n; Y 1:n) = h(Y 1:n) − h(Y 1:n|X1:n) (6)

The above equation follows from the definition of the MI
[9] where h(.) represents the differential entropy. For lower
bounding the capacity, any input can be selected and the
resultant MI is a capacity lower bound hence in [8] they select
i.i.d. Gaussian distribution as the input distribution. Using this
input, they lower bound the entropy of the output and upper
bound the conditional entropy of the output given the input
achieving the lower bound of the pre-log as given by

PreLog ≥ min(nt, nr)[1 − min(nt, nr)μ] (7)

IV. PROOF OF THE UPPER BOUND OF CAPACITY

Mutual information between the input and the output of (1)
combined over n symbol times can be written as

MI = I(X1:n; Y 1:n)
= I(X1:n; Y 1:n, H1:n) − I(X1:n; H1:n|Y 1:n)

Above we used the chain rule of MI [9] to bring in the channel
matrix. Both of the terms in the above equation can be split
further by multiple application of the chain rule

I(X1:n; Y 1:n, H1:n) = I(X1:n; H1:n) + I(X1:n; Y 1:n|H1:n)
(8)

I(X1:n; H1:n|Y 1:n)
= I(X1:n, Y 1:n; H1:n) − I(H1:n; Y 1:n)
= I(X1:n; H1:n) + I(Y 1:n; H1:n|X1:n) − I(H1:n; Y 1:n)

combining the MI of the above two terms we get,

MI =
I(X1:n; Y 1:n|H1:n) − I(Y 1:n; H1:n|X1:n) + I(H1:n; Y 1:n)

(9)
where the first term is the MI with CSIR known and the
next two terms will give some overall negative contribution
representing the loss due to not knowing the channel. In the
sub-sections below, we upper bound the MI (9) by bounding
each term individually.

A. The First Term in Equation (9)

From Telatar’s result [10], we know that the MI between the
input and the output of a MIMO channel with CSIR known
is given by the following expression

I(X1:n; Y 1:n|H1:n) = min(nt, nr)n log(SNR) + o(1) (10)

where the o(1) term becomes negligible when SNR goes to
infinity.



B. The Second Term in Equation (9)

So now we need to lower bound the loss in MI due to
not knowing the channel information at the receiver. This loss
consists of the difference of two terms as shown in equation
(9), and we bound each of these terms separately. Treating the
first term of this loss, we get

I(Y 1:n; H1:n|X1:n)
a= EX1:n [h(Y 1:n|X1:n = x1:n) − h(Y 1:n|H1:n, X1:n = x1:n)]
b= EX1:n [h(Y 1:n|X1:n = x1:n) − h(Z1:n)]
c= EX1:nh(Y 1:n|X1:n = x1:n) − nnr log(πe)

where (a) is by the definition of the MI as the difference of
two entropy terms, (b) follows because the differential entropy
is invariant to deterministic translations and in (c) we use the
expression for the entropy of a multi-dimensional Gaussian
distributed random variable [9].

Given the input, the output at each receive antenna is i.i.d.
This fact was already shown in [8], moreover the output given
the input (Y |X) is Gaussian distributed hence

EX1:n [h(Y 1:n|X1:n = x1:n)]
a= nrEX1:n [h(Y 1:n

nr=1|X1:n = x1:n)]
b= nrEX1:n log[det πeRY 1:n

nr=1Y 1:n
nr=1

]
(11)

In (a), we used the fact that the output given the input is i.i.d. at
each receive antenna and Y 1:n

nr=1 represents the signal received
at first receive antenna (nr = 1) for n symbol times and (b)
follows by using the expression for the entropy of a multi-
dimensional Gaussian distributed random variable [9] where
RY 1:n

nr=1Y 1:n
nr=1

is given by

RY 1:n
nr=1Y 1:n

nr=1
= E[Y 1:n

nr=1Y
†1:n
nr=1|X1:n] (12)

For further processing, we change the system representation
so as to focus on the signal received only at the first receiving
antenna nr = 1. Moreover this construction is such that we
combine the input, the output and the corresponding channel
coefficients (for first receive antenna only) over the duration of
n symbol times. So the input signal is represented as a matrix
of the following structure

X̃ =

⎡
⎢⎢⎢⎢⎢⎣

X [1]T 0T · · · 0T

0T X [2]T
. . . 0T

... ...

0T 0T · · · X [n]T

⎤
⎥⎥⎥⎥⎥⎦

(13)

hence the input matrix for n symbol times, X̃ is a block
diagonal matrix of size n × nnt. Moreover we take

Ỹ = [y1[1] y1[2] . . . y1[n]]T (14)

Z̃ = [z1[1] z1[2] . . . z1[n]]T (15)

h̃ = [h1[1]T h1[2]T . . . h1[n]T ]T (16)

where Ỹ and Z̃ are the column vectors of length n representing
the vectors of the output and the noise samples at first receive

antenna for n symbol times and h̃ is a vector of length nnt

where h1[k]T represents the first row of the channel matrix
H [k], corresponding to nt coefficients related to nr = 1.
Hence the equation for the system model becomes

Ỹ =
√

SNR
nt

X̃h̃ + Z̃ (17)

Using the new system representation, the covariance matrix
of equation (12) can be written as

Ry = RY 1:n
nr=1Y 1:n

nr=1
= E[Ỹ Ỹ †|X̃ ] (18)

Using the value of Ỹ from equation (17), the above covariance
matrix becomes

Ry =
SNR
nt

X̃E[h̃h̃†]X̃† + E[Z̃Z̃†]

=
SNR
nt

X̃KhX̃† + In (19)

In the above equations we used the fact that the noise
samples are independent of the channel coefficients and the
input, further they are i.i.d. spatiotemporally and Kh is the
covariance matrix of h̃, hence of size nnt × nnt.

For the product matrix X̃KhX̃†, the rank will be mainly
depending upon the rank of Kh as X̃ with size n × nnt

will be of full rank n almost surely due to its block diagonal
structure. X̃ can be of reduced rank if and only if at a particular
symbol time, symbols transmitted from all nt antennas are
deterministically zero. This can be avoided easily by putting
some constraint on the code book of the source. This statement
is also supported by Theorem 6 in [8]. So we can state that

rank(X̃) = n almost surely (20)

The covariance matrix Kh is surely a reduced rank matrix
because the channel coefficients, although i.i.d. in space, have
temporal correlation and the Lebesgue measure corresponding
to the Doppler bandwidth is μ for each channel entry, hence
the limiting rank of Kh when its size is made to go to infinity
is given by

lim
n→∞ rank(Kh) = nntμ (21)

At this point we make another assumption that ntμ ≤ 1,
i.e. the product of the number of transmit antennas and the
measure of the Doppler bandwidth per channel entry is less
than or equal to 1, this point becomes clearer in section V
which will indicate that if the Doppler spread is large, i.e. if
the channel is varying quite rapidly, one might need to turn
off some of the transmitting antennas to achieve optimal rates.
With this, the rank of X̃KhX̃† becomes

rank(X̃KhX̃†) = nntμ (22)

Now the differential entropy of the output given the input
of equation (11) can be written as

EX1:n [h(Y 1:n|X1:n = x1:n)] = nrEX1:n log[detπeRy]
= nrEX1:n log[detπe(SNR

nt
X̃KhX̃† + In)]

(23)



In the above expression, the matrix X̃KhX̃† is a hermitian
matrix, hence it can be diagonalized using eigen value de-
composition (EVD) X̃KhX̃† = UΛU †, where U is a unitary
matrix and Λ is a diagonal matrix of eigen values, where the
number of non-zero eigen values is governed solely by the
rank of Kh as previously explained. So the above equation
can be written as

EX1:nh(Y 1:n|X1:n = x1:n)
= nrEX1:n log det

(
SNR
nt

Λ + In

)
+ nnr log(πe)

= nrEX1:n log
nntµ∏
i=1

(
SNR
nt

λi + 1
)

+ nnr log(πe)

= nrEX1:n

nntµ∑
i=1

log
(

SNR
nt

λi + 1
)

+ nnr log(πe)

= nnrntμ log(SNR) + nrEX1:n

nntµ∑
i=1

log
(

λi

nt
+

1
SNR

)

+nnr log(πe)

In the set of equations above, first we replace X̃KhX̃† by its
EVD, then the determinant of the resultant diagonal matrix
is written as the product of the diagonal elements, it becomes
sum of the logarithm of these values and in the end we separate
out the log(SNR) factor from other terms.

Putting this value of the differential entropy in the MI term
of equation (11), we get

I(Y 1:n; H1:n|X1:n)
= EX1:nh(Y 1:n|X1:n = x1:n) − nnr log(πe)

= nnrntμ log(SNR) + nrEX1:n

nntµ∑
i=1

log
(

λi

nt
+

1
SNR

)

(24)

C. The Third Term in Equation (9)

The term I(H1:n; Y 1:n) represents the mutual information
over a fictitious channel with input H , output Y and X plays
the role of unknown channel fading (1). We should keep
in mind that X is in fact the input and hence will be an
unpredictable (regular) process with finite entropy rate. We
do the analysis of I(H1:n; Y 1:n) for two cases of nr < nt

and nr ≥ nt separately.
i) MI For nr < nt

For this case, the MI between the fictitious input (H) and the
output Y has no growth with log(SNR). Becuase fictitious
channel process (X) introduces nt parameters each symbol
interval and with less number of receive antennas even this
fictitious channel can not be resolved. Hence this MI falls un-
der the category of non-coherent communication over regular
fading channel process and gives no growth with log(SNR)
(see [4] for details).

It can also be shown by combining the MI of the first and
the third terms

I(X1:n; Y 1:n|H1:n) + I(H1:n; Y 1:n)
= [h(Y 1:n|H1:n) − h(Y 1:n|H1:n, X1:n)]
+[h(Y 1:n) − h(Y 1:n|H1:n)]
= −h(Y 1:n|H1:n, X1:n) + h(Y 1:n)

and this combined term has growth with nr log(SNR) per
symbol time as shown below.

h(Y 1:n) ≤ nnr log(SNR) = n min(nt, nr) log(SNR)
h(Y 1:n|H1:n, X1:n) = h(Z1:n) = nnr log(πe)

(25)
where the first inequality uses the independent bound and the
Gaussian bound for the entropy of the output, combined with
some high SNR approximation of neglecting the lower order
terms. In the second equation we use the invariability of the
differential entropy under deterministic translations and the
expression for the entropy of the multi-dimensional Gaussian
distributed random variable. This shows that per symbol time
growth rate of the first term combined with the third term
of the MI in equation (9) is min(nt, nr) log(SNR), but the
same growth rate is obtained if we analyze the first term
alone, as proved in section IV-A, or in other words the term
I(H1:n; Y 1:n) itself has no growth with log(SNR) when nr

is less than nt.
ii) MI For nr ≥ nt

For the case when nr exceeds nt, although the fictitious chan-
nel (X) is still unpredictable over different time instants from
the past observations but in each symbol interval the number of
observations nr is more than the number of fictitious channel
parameters nt. Hence nt out of nr observations get used to
determine the fictitious channel parameters and still (nr −nt)
are left where the fictitious input H can be coherently detected.
Now each of the receive antennas receives one row vector
(nt variables) of H (1) but each entry of H is of reduced
bandwidth μ. So each of the excess receive antennas (nr−nt)
is able to resolve μnt dimensions of the fictitious input H
coherently which gives rise to growth with log(SNR). This
gives us the high SNR approximation as

I(H1:n; Y 1:n) ≤ nμnt(nr − nt) log(SNR) for nr ≥ nt

(26)

D. Result

We bounded each term of the mutual information expression
(9) separately in the previous sub-sections. So the upper
bound of this MI can be obtained by combining expressions
from (10), (24), (25) and (26). Our point of concern in this
contribution is the capacity pre-log, hence we divide the MI
by log(SNR) with limiting value of SNR going to infinity.
Thus all the finite terms and lower order terms in the sum
disappear. We divide this further by n to get the pre-log per
symbol time and the resulting value is

PreLog = lim
SNR→∞

I(X1:n; Y 1:n)
n log(SNR)

PreLog ≤
{

min(nr, nt) − μnrnt nr < nt

min(nr, nt) − μntnt nr ≥ nt

For the case when nt ≤ nr and min(nt, nr) = nt, the pre-log
is min(nt, nr)[1 − μ min(nt, nr)]. But when nr < nt giving
min(nt, nr) = nr, the pre-log is min(nt, nr)[1 − μnt]. Now
there is this loss factor of ntμ which clearly indicates that at
very high SNR, the number of active transmitting antennas



should be selected no more than the receive antennas nr as
transmit antennas more than receive antennas do not add to
the multiplexing gain min(nt, nr) of the system but they do
increase the number of the channel coefficients to be estimated
at each receive antenna and hence the loss factor. So by
selecting nt = min(nt, nr), the pre-log is upper bounded for
both cases by

PreLog ≤ min(nt, nr)[1 − min(nt, nr)μ] (27)

Combining the upper and the lower bounds from equations
(7) and (27), the pre-log of the system is given by

PreLog = min(nt, nr)[1 − min(nt, nr)μ] (28)

V. LARGE DOPPLER BANDWIDTH ANALYSIS

Here we treat the case when the channel is still underspread
but the inverse of the normalized Doppler bandwidth 1/μ
is comparable to min(nt, nr). Our expression of the pre-log
equation (28) shows that the high SNR degrees of freedom
depend entirely on min(nt, nr) and not on the individual
values of nt and nr. As nt > nr is strictly sub-optimal in
high SNR non-coherent regime so let’s take nt < nr and the
pre-log becomes nt(1 − ntμ). We want to analyze what is
the optimal value of nt for a fixed nr and Doppler bandwidth
μ. Figure (1) shows that for large enough nr, initially pre-

Fig. 1. Pre-Log versus Active Number of Streams

log increases with increasing nt reaching its maximum value
at 1/(2μ) and starts decreasing onwards. The explanation is
that nt factor represents the number of independent streams
which one can multiplex over this system but the coherent
reception of this number of streams first requires estimation
of the corresponding channel coefficients hence the loss factor
also increases with the factor nt. Now with large Doppler
bandwidth when the coherence time is very short, using more
streams means a greater loss factor which is proportional to the
Doppler bandwidth. But due to very short coherence time, the
coherent transmission does not last long enough to compensate
that loss factor and to reduce the number of active streams
becomes the optimal strategy. Hence if nt > 1/(2μ), the active
number of transmit antennas should be reduced to 1/(2μ).
This discussion indicates that the active number of transmit
antennas (streams) in non-coherent MIMO should actually be

min(nt, nr,
1
2µ) and the pre-log for a non-coherent MIMO

system becomes

PreLog = min(nt, nr,
1
2μ

)[1 − min(nt, nr,
1
2μ

)μ] (29)

VI. CONCLUDING REMARKS

We have shown the exact capacity pre-log for Gaussian
MIMO channels with bandlimited fading. We also character-
ized the optimal number of active transmit antennas (streams)
in terms of the Doppler bandwidth of the channel fading
process to achieve the optimal pre-log at high values of SNR.

The analysis of the upper bound of the mutual information
shows that to characterize the capacity more precisely, the
knowledge of the capacity achieving distribution may play
vital role. So investigation for the optimal or close to optimal
input distributions could be a fertile area of research as it will
make possible the evaluation of the lower order terms and the
constants which appear besides log(SNR).
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