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Abstract—A key building block in music transcription and
indexing operations is the decomposition of music signals into
notes. We model a note signal as a periodic signal with
(slow) frequency-selective amplitude modulation and global time
warping. Time-varying frequency-selective amplitude modula-
tion allows the various harmonics of the periodic signal to
decay at different speeds. Time-warping allows for some limited
global frequency modulation. The bandlimited variation of the
frequency-selective amplitude modulation and of the global time
warping gets expressed through a subsampled representation
and parametrization of the corresponding signals. Assuming
additive white Gaussian noise, a Maximum Likelihood approach
is proposed for the estimation of the model parameters and the
optimization is performed in an iterative (cyclic) fashion that
leads to a sequence of simple least-squares problems.

I. INTRODUCTION

Sinusoidal model-based music analysis/synthesis has re-
ceived considerable interest in the computer music community.
The sinusoidal transform, originally developed by Quatieri and
McAulay [4], represents a signal as a sum of discrete time-
varying sinusoids or partials:

s(n) =
P∑

k=0

ak(n) cos (θk(n)) . (1)

The estimation of the model parameters is typically carried
out using a short-time Fourier transform (STFT) with a £xed
analysis frame size and a £xed stride between frames. The si-
nusoids are extracted by peak-picking in the STFT magnitude
spectrum. Intermediate values are obtained by interpolation.
A fundamental drawback faced by the traditional sinusoidal-
model based techniques, and which arises due to the STFT, is
smearing of the frequency response [6], [5]. In fact, over the
period of a single analysis frame, the algorithm estimates the
amplitude, frequency and phase of any sinusoids it believes
to be present. Because of the near logarithmic scale of pitch
perception, we need very long windows in order to accurately
estimate the pitch of low frequency partials. On the other hand,
the time resolution of these parameters is only as £ne as the
window length itself. And, since the music signal is highly

non-stationary, it is not always possible to £nd a good tradeoff
between time and frequency resolution. Also, determining
the sinusoid parameters from the STFT peak amplitude and
phase only works well for high frequency resolution, high
SNR and in the absence of modulation. To overcome the
resolution limit of the Fourier transform (due to windowing),
non-linear interpolation [7], [9], [8] and dichotomy based
approaches [10], [11] were suggested to better localize the
peak in the STFT domain. High-Resolution (HR) methods are
also proposed to overcome the STFT resolution limit and to
provide more accurate estimates of the signal parameters [12].

The major limitation of these techniques is that they ignore
the harmonic structure of the music signal. They consider the
signal as a mixture of a £nite number of arbitrary sinusoids,
and not as a periodic signal. For treating periodic signals, the
state of the art is limited to the estimation of pure periodic
signals with periodicity equal to an integer number of samples
[1], [2]. In these references, the authors propose a Maximum
Likelihood approach to analyze pure periodic signals. They
show that the resulting procedure can be interpreted as a
signal projection onto suitable subspaces. The decomposition
of audio signals into periodic features was reconsidered by De
Cheveign and Slama [3], and was applied for periodic source
separation.

In summary, the drawback of the sinusoidal modeling based
techniques is that it considers the signal as a mixture of a £nite
number of arbitrary sinusoids (ignoring the harmonic structure
of the audio signal); whereas periodic modeling seems to
be too rigid to model real audio signals. Motivated by this
observation, we have proposed in [13] merging the periodic
signal analysis and sinusoidal modeling in order to give more
¤exibility to the periodic signal analysis and impose more
structure on sinusoidal modeling. We have considered periodic
signals with non-integer period and global amplitude variation
and time warping. The use of this model gives a compromise
between reality and a parsimonious parametrization. Indeed,
global amplitude variation re¤ects mostly attack, sustain, and
decay of the whole note signal, whereas global time-warping
allows the capture of vibrato and sliding notes. Experimental
results reveal that the proposed approach allows extracting
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several musical notes accurately from an underdetermined
mixture, and produces good auditive synthetic results [14].
Simulations also show that the proposed scheme outperforms
the classic separation schemes (based on sparse representation)
in terms of accuracy and robustness [15].

A major limitation of the proposed model is that it allows
for no spectral variation throughout the note duration, but only
amplitude and (synchronized) frequency modulation. Such a
model assumes that at any time instant the instantaneous
amplitudes and frequencies of the various harmonics of the
periodic waveform are proportional. The problem with such a
model though is that, in reality, periodic signals produced by
musical instruments (e.g. string instruments) have harmonic
components that decay at different speeds. Typically higher
harmonics decay faster than lower harmonics. In this paper,
we introduce a frequency-selective attenuation to alleviate this
side effect, and this in a time-varying fashion to re¤ect the
time-varying amplitude.

This paper is organized as follows. In sections II and III, the
global modulation models (with ¤at and frequency-selective
amplitude modulation) and the associated audio signal extrac-
tion procedures are presented. Experimental model validation
is performed in section IV. Finally, a discussion and conclud-
ing remarks are provided in section V.

Notations: upper- and lower-case boldface letters denote
matrices and vectors, respectively. As the quantities considered
herein are real, (.)H represents either the transpose, and
the complex-conjugate (Hermitian) transpose operators. The
symbol T is reserved to denote the assumed period of the
audio signal.

II. AUDIO MODELING WITH GLOBAL AMPLITUDE

MODULATION AND GLOBAL TIME-WARPING

In the sinusoidal modeling, the signal is modeled as a sum
of evolving sinusoids as in (1), where ψk(n) represents the
instantaneous phase of the kth partial. Since the audio signal
is almost harmonic, ψk(n) can be decomposed into

ψk(n) = 2πknf0 + 2πϕk(n) (2)

where ϕk(n) characterizes the evolution of the instantaneous
phases around the kth harmonic, and can be assumed to
be slowly time varying. The global modulation assumption
implies that all harmonic amplitudes evolve proportionately in
time, and that the instantaneous frequency of each harmonic
is proportional to the harmonic index, i.e.,{

ak(n) = ak a(n)
2πϕk(n) = 2πk ϕ(n) + Φk

. (3)

In summary, we model an audio signal as the superposition
of harmonic components with a global amplitude modulation
and global time-warping:

y(n) = s(n) + v(n)
= a(n)

∑
k ak cos

(
2πkf0

(
n + ϕ(n)

f0

)
+ Φk

)
+ v(n)

= a(n) θ
(
n + ϕ(n)

f0

)
+ v(n)

(4)

where : - v(n) is additive white Gaussian noise.
- a(n) represents a ¤at amplitude modulating signal.
- ϕ(n) denotes a phase modulating signal (that can be

interpreted in terms of time-warping).
- θ(n) =

∑
k ak cos (2πkf0n + Φk) is a periodic

signal with a period T = 1
f0

(normalized waveshape).
Thus, the audio signal is modeled as a periodic signal with
global amplitude and phase modulation. The periodic signal
θ(n) (the normalized waveshape) characterizes the spectral
envelope of the audio source. It can be considered as a signa-
ture for instrument classi£cation and recognition applications,
whereas the amplitude and phase modulating signals (a(n)
and ϕ(n)) represent respectively the time evolution of the
note power and pitch. Remark also that the global phase
modulation can be interpreted in terms of dynamic time-
warping: it “warps” (stretches or compresses in time) the basic
periodic signal θ(n) to £t the received signal s(n).
In [13], we have expressed the time-warping in terms of an
interpolation operation over a basic periodic signal. In sum,
the audio signal can be written as:

y = A Fθ + v = s + v (5)

where :
- y = [y(1) · · · y(N)]H , represents the observation vector.
- s = [s(1) · · · s(N)]H , represents the signal of interest.
- v = [v(1) · · · v(N)]H , denotes the noise vector.
- θ = [θ(1) · · · θ(�T �)]H , characterizes the normalized
waveshape over essentially one period
- A = diag[a(1) · · · a(N)], is a diagonal matrix representing
the global amplitude modulating signal. The global amplitude
modulating signal is assumed to be lowpass. Then, a(n)
can be down-sampled. The remaining samples can be
reconstructed using linear interpolation [14].
- F is an N × �T � interpolation matrix characterizing the
time-warping. See [13] for a detailed description.

Audio enhancement is performed by adjusting the degrees
of freedom (in A, F, and θ) such that the received signal
matches the best with the assumed model (in the least-squares
sense). The degrees of freedom are estimated in a cyclic
fashion. The proposed technique was shown to be effective for
musical signal enhancement and separation [15]. Furthermore,
the different parameters are related to the three basic features
in music sounds: pitch (ϕ(n)), intensity (a(n)), and timbre
(θ(n)). The proposed enhancement technique can also be
interpreted as a sum of a scaled, translated and modulated
harmonic atom (θ(n)). However, contrary to the classic
atomic decomposition approaches, the dictionary is not £xed:
the atoms are adapted taking into consideration the structure
of the received signal [15].

III. AUDIO MODELING WITH GLOBAL

FREQUENCY-SELECTIVE MODULATION AND GLOBAL

TIME-WARPING

In the previous section, we have presented the quasi-periodic
signal models with global (¤at) amplitude and frequency mod-
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ulation. Such a model allows for no spectral variation through-
out the note duration, only for amplitude and (synchronized)
frequency modulation. The global amplitude modulation im-
plies that all harmonic amplitudes evolve proportionally in
time; whereas the global time-warping emphasizes the signal
harmonicity. However, the ratio of the different harmonics
(modeled through the basic waveshape θ) is assumed to be
constant throughout the whole note duration.
The problem with such a model though is that in reality,
periodic signals produced by musical instruments, e.g. string
instruments, have harmonic components that decay at different
speeds. Typically higher harmonics decay faster than lower
harmonics. This means that the global amplitude modulation
assumption is not satis£ed.
The assumptions of global amplitude and frequency modula-
tion were introduced to have a parsimonious signal representa-
tion. Indeed, the higher the number of parameters per second
describing the signal, the noisier the parameter estimates, and
consequently the reconstructed signal estimate. Introducing
an amplitude modulating signal per harmonic would allow
signi£cant degrees of freedom in describing the signal, but
would lead to a high parameter rate (the average number of
parameters that appear in the description of one second of the
signal). An intermediate parameter rate can be obtained by
£ltering the periodic signal with a short FIR £lter that can
introduce frequency-selective attenuation, and this in a time-
varying fashion to re¤ect the time-varying amplitude.
In summary, we model the audio signal as a superposition of
harmonic components with global frequency-selective ampli-
tude modulation and global time-warping, i.e.,

y(n) = an(q) θ

(
n +

ϕ(n)
f0

)
+ v(n) (6)

where an(q) = an,LqL + · · · + an,0 + · · · + an,Lq−L is
a symmetric zero-phase FIR £lter, 2L + 1 is the amplitude
modulating £lter length, and q−1 is the time delay operator.
Using matrix notations, the audio signal gets expressed as in
(5), where the diagonal matrix A (characterizing the global
amplitude modulation) is replaced by an L + 1 symmetric
band matrix.
The rows of A contain the coef£cients of the FIR modulating
amplitude (an(q)). This time-varying £lter models the evo-
lution of the note power as well as the relative decay of the
different harmonics. Typically, as high frequencies decay faster
than low frequencies, the modulating £lter becomes more and
more low-pass.

A. Periodic signal extraction procedure

The previous model is linear in θ, A, or F (separately), F
being parameterized nonlinearly. Trying to estimate all factors
jointly is a dif£cult nonlinear problem. Indeed, as the noise
is assumed to be a white Gaussian signal, the ML approach
leads to the following least-squares problem:

min
A,F,θ

‖y − AFθ‖2 (7)

where A and F are parameterized in terms of subsamples.
However, the estimation can easily be performed iteratively,
iterating over the following three steps.

1) Periodic signature estimation:

If we assume that the matrices Â, F̂ are given, the periodic
signature θ can be isolated as

y = Â F̂ θ + v = Gθ θ + v. (8)

Then minimizing (7) w.r.t. θ leads to

θ̂ =
(
GH

θ Gθ

)−1
GH

θ y . (9)

Hence the periodic signature gets estimated using data over
the whole note duration.

2) Instantaneous frequency estimation:

The instantaneous frequency and amplitude modulating sig-
nals are estimated on a frame-by-frame basis. The length of
these time frames Tf and Ta can differ (Tf is typically longer
since the frequency varies more slowly than the amplitude).
In each frame, the instantaneous frequency is optimized using
(10): ⎧⎨

⎩ min
f

∥∥∥y − ÂF̂(f)θ̂
∥∥∥2

Δf
f0

≤ αmax

(10)

where Δf denotes the maximum relative frequency varia-
tion in the current frame compared to the previous frame,
re¤ecting an assumed limited frequency variation rate. The
optimal instantaneous frequency value for the current frame
is determined from a £nite set of discrete values within this
limited range. Simulations show that the minimization problem
is locally convex. Thus, the optimization can be performed
using the golden section algorithm.
More accurate techniques can be proposed for the instan-
taneous frequency estimation (High Resolution (HR) meth-
ods [12]) or tracking (such as frequency-locked loop signal
tracking [16]). However, for enhancement purposes, the gain
resulting from this extra processing is very limited as the fre-
quency selective amplitude modulation can compensate for the
inaccuracy in the estimation of the instantaneous frequency.

3) Instantaneous frequency-selective amplitude modulation
estimation:

If we assume that the normalized waveshape θ(n) and the
time-warping function ϕ(n) (via F(f)) are given, the received
signal y(n) is linear with respect to the amplitude modulating
£lter coef£cients, i.e.,

y(n) = an,0θ̆(n) +
L∑

i=1

an,i

(
θ̆(n − i) + θ̆(n + i)

)
+ v(n)

=
[
θ̆(n) · · · θ̆(n−L)+θ̆(n+L)

] ⎡
⎢⎣

an,0

...
an,L

⎤
⎥⎦ + v(n)

= θ̆(n) a(n) + v(n)
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where θ̆(n) = θ
(
n + ϕ(n)

f0

)
is the warped normalized wave-

shape. Thus, using the current estimates of (F̂, θ̂), the obser-
vation vector y can be written as

y = Ga a + v

where Ga is a N×(N(L+1)) block diagonal matrix, and a =
[a(1)H · · · a(N)H ]H is a (N(L+1))×1 vector characterizing
the amplitude modulation.
On the other hand, the coef£cients of the frequency-selective
modulating £lter signals are assumed to be lowpass. Therefore,
{an,i}i=0:L can be down-sampled. The remaining samples can
be estimated using linear interpolation, i.e.,

ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,i

a2,i

...

...
aN,i

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
P21P22 · · · 0
P31P32 · · · 0
0 1 · · · 0

...
0 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1,i

aTa+1,i

...
aN,i

⎤
⎥⎥⎥⎦ = Pa a↓i

where a↓i contains the ith coef£cients of the frequency
selective modulating £lter an(q), downsampled by the factor
Ta. Pa represents the interpolation matrix used to reconstruct
ai from its downsampled version a↓i (see [14] for further
discussion on the design of Pa). In summary, the estimation
problem can be formalized as:

y = Ga (Pa ⊗ IL+1)︸ ︷︷ ︸
G↓a

a↓ + v (11)

where ⊗ denotes the Kronecker product, and a↓ =[
aH(1) aH(Ta + 1) · · · aH(N)

]H
represents the actual de-

grees of freedom of our model. Thus, the elements of Â are
estimated using the least-squares technique (via the estimation
of a↓).

IV. IMPLEMENTATION ISSUES AND EXPERIMENTAL

RESULTS

We £rst comment on the implementation of the proposed
algorithm based on global frequency-selective amplitude and
phase modulation (that we refer to as Quasi-Periodic Signal
Extraction (QPSE)). Numerical examples are shown next.
The proposed scheme can be implemented in an ef£cient
way. In fact by exploiting the sparsity and the structure of the
interpolation matrices F and Pa, we can reduce considerably
the required memory and the computation complexity. As
we use linear interpolation, each row of the matrices F and
Pa contains at most two non-zero elements. In addition, for
two non-adjacent columns, the sets of the non-zero elements
do not overlap. So that, for a N × M interpolation matrix
P (F or Pa), the matrix PHP is a tri-diagonal matrix; and
the computation complexity of such operation is 4N (instead
of MN2). For a given N × 1 vector y, PHy can computed
using 2N multiplications (instead of MN ).
Moreover, one can show that for a given K-band matrix G,
G = PH G P is a (K + 2)-band matrix. Thus, to solve

the linear system Gx = b, we should consider the LDU
decomposition. In such a case, the lower diagonal matrix L
in the LDU decomposition is also a banded matrix (£gure 1).

Fig. 1. LDU decomposition of band matix

Once the LDU decomposition is performed, the linear system
boils down to sequence of simple forward, instantaneous,
and backward triangular systems. Thus, the computational
complexity of the solution is O

(
K2M

)
(instead of O

(
M3

)
).

Next, we validate the proposed extraction approach using
real music signals (10 single notes originated from a variety
of string and wind instruments). The audio signals were
recorded at 44.100 kHz, then downsampled to 16 kHz.
In order to solve the identi£ability problem in (6), we
impose that the frequency-selective amplitude modulation is
frequency-¤at over a limited portion of the signal, somewhere
in the middle. The identi£ability problem arises from the fact
that multiplying the amplitude modulating signal by a given
£lter α(q) and £ltering θ(n) by 1/α(q) leads to an equivalent
decomposition of y(n).
Figure 2 plots the extraction Signal-to-Noise Ratio ( SNR =∑

n s(n)2∑
n(s(n) − ŝ(n))2

) using the periodic time-warped model

with respectively global frequency-selective amplitude
modulation and global ¤at amplitude modulation. The
smoothing amplitude modulation factor is set to Ta = 3T
(T = ceil(1/f0) is the period of the harmonic component).
No phase modulation was allowed (αmax in (10) is set to
0). As expected, the global frequency-selective modulation
model £ts better real audio signals and its extraction accuracy
increases with £lter length L. In fact, the more coef£cients
the FIR £lter (modeling the frequency-selective amplitude
modulation) contains, the more it allows for diverse mode
variations, and the better the model £ts the real signal.
However, we remarked that for L ≥ 10 no considerable gain
was noticed (10-tap £lter is enough to model the different
modes for the tested instruments).
We remark also that the performance of the quasi-periodic
signal modeling (with ¤at or frequency-selective amplitude
modulation) depends strongly on the harmonicity of the
musical instrument. For instance, the model seems not
adequate for piano signals. Indeed in stringed instruments
such as the piano, the less elastic the strings are (that is, the
shorter, thicker, and stiffer they are), the more inharmonicity
they exhibit. When a string gets thick enough, compared
to its length, it stops behaving as a string and starts acting
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more like a cylinder (a tube of mass), which has different
harmonics than strings. Moreover, a single piano note attack
excites simultaneously 1, 2 or 3 strings (which are in addition
not perfectly tuned 1 [20] ).
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Fig. 2. −10 log10 (SNR) vs L, using a periodic time-warped model
with global ¤at (dotted line) or frequency-selective (solid line) amplitude
modulation .

Next, we investigate the estimation vs. modeling tradeoff. We
consider the enhancement accuracy of the proposed scheme
in the presence of additive white noise for guitar (£g. 3), ¤ute
(£g. 4) and organ (£g. 5) signals.

0 5 10 15 20 25
2

4

6

8

10

12

14

input SNR (in dB)

ou
tp

ut
 S

N
R

 (i
n 

dB
)

 

 
L=1
L=5
L=10

Fig. 3. Guitar signal enhacement SNR using a periodic time-warped model
with frequency-selective amplitude modulation (L = 1, 5 and 10).

Frequency-selective modulation induces additional degrees

1Tuning the three strings exactly together gives a tone that not only sounds
dead but dies away too rapidly. It also increases the perceived beating in the
sound [20].
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Fig. 4. Flute signal enhacement SNR using a periodic time-warped model
with frequency-selective amplitude modulation (L = 1, 5 and 10).
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Fig. 5. Organ signal enhacement SNR using a periodic time-warped model
with frequency-selective amplitude modulation (L = 1, 5 and 10).

of freedom. Such a model leads to a parsimonious signal
representation (decreasing modeling error). However, the
higher the number of the parameters describing the signal,
the noisier the parameter estimates and consequently the
reconstructed signal estimate. That is why at high SNR, the
performances of the frequency-selective modulation increases
with L (the estimation error may be neglected). However,
at low SNR, L = 5 and L = 10 produce comparable
enhancement accuracy.

In sum, simulations show that (for a variety of string and
wind instruments) the quasi-periodic signal modeling (with
frequency-selective modulation) enables the extraction of the
audio signal harmonic component. An interesting application
of such approach is music transcription.
Pitch information is an essential part of almost all western
music. However, the automatic extraction of the pitch con-
tent is a non-trivial problem; and systems trying to perform
this task tend to be very complex [17]. Music transcription
aims to detect the ’position’ and to recognize the ’content’
of the musical event (musical notes and effects such as
vibrato, glissando, etc...); which needs both good temporal
and frequency resolutions. Comparing to the (frame-by-frame)
STFT based approaches [17], [18], the quasi-periodic signal
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modeling performs better resolution tradeoff (by exploiting the
temporal structure of the musical signal). Indeed, the global
amplitude modulation model enables the joint extraction of the
different partials, while allowing for slow L decay modes. This
fact enhances both note detection and recognition accuracy.
In addition, valuable information could be carried out by
analyzing the evolution of the amplitude and phase modulating
signals (allowing for high temporal resolution transcription,
detection of several music effects (vibrato, glissando, etc...).

A key building block in pitch estimation is the evaluation
of the salience, or strength, function at the different candi-
date periods. Classically, the salience is inferred from the
spectrum as a weighted sum of the harmonic partials of a
given pitch candidate T . Several approaches are proposed to
set the weighting coef£cients [17], [18]. In this respect, the
extraction SNR (assuming a basic period T ) represents an
insightful salience measure. Indeed, the QPSE enables the joint
extraction of the different partials while imposing a kind of
spectral smoothness (over time frames) that has been showed
to be valuable (increases the transcription accuracy) [17], [18].

We have tested the monophonic music transcription per-
formance using various instruments (guitar, sitar, ¤ute, and
piano). The data (graciously provided by Antony Schutz from
Eurecom) was recorded at 44.100 kHz, then downsampled
to 22.050 kHz. The maximum number of iterations (in the
QPSE cyclic parameters estimation) was £xed to 3. The order
of the amplitude modulating £lter was set to L = 5. No
prior information (about the timbre and/or the instrument) was
considered. A standard error metric was used for evaluation
[19]: a recall measure (percentage of original notes that
were transcribed), and a precision measure (percentage of
transcribed notes that were present on the original stream). The
average (over all recordings) for each criterion is: recall 98%
and precision 100%. Furthermore, 100% of the transcription
errors are due to octave mistakes. We remarked also that the
transcription accuracy is still quite good even for instruments
that present severe inharmonicity (e.g. piano).

V. CONCLUDING REMARKS

In this paper, we have investigated signal enhancement
techniques exploiting the harmonic structure of the audio
signal. We have modeled an audio signal as a periodic signal
with (slow) global variation of amplitude (characterizing the
evolution of the signal power) and phase (emphasizing the
harmonic structure). Time-varying frequency-selective ampli-
tude modulation allows the various harmonics of the periodic
signal to decay at different speeds. The bandlimited variation
of the frequency-selective amplitude modulation and of the
global time warping gets expressed through a subsampled rep-
resentation and parametrization of the corresponding signals.
Simulations show that the extraction technique is suitable for
the analysis of several string and wind instruments, and shows
good potential for music transcription application.
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