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Abstract— 1 In this paper, we study the optimum expected end-
to-end distortion on a reproduced white thermal noise source
conveyed over a flat Rayleigh fading multi-input multi-output
(MIMO) channel with time-interleaving. Assuming no outage
event happens, perfect channel information at the receiver and
ideal interleaving, we derive the analytical expression of the tight
lower bound on the expected quadratic end-to-end distortion for
general signal-to-noise ratios (SNR) and analyze its asymptotic
form at high SNR. Straightforwardly, the tight lower bound for
no-outage cases is also a lower bound for outage cases although
loose. Our results expose the mechanism of how time diversity
branches benefit the end-to-end distortion for a MIMO system.

I. INTRODUCTION

For a time-variant fading channel, it is very well-known
that interleaving techniques can be used to exploit the time
diversity and thereby benefits error probability [1]. For single-
input single-output (SISO) channels, the symbol-by-symbol
(see [2], [3], etc.) and bit-by-bit (see [4] etc.) interleavers
for separate source-channel coding have been being developed
for many years. In [5], The performance of the symbol-by-
symbol interleavers is analyzed with respect to cut-off rate,
channel capacity and the bounds of bit-error probability. In
[6], Caire et al. not only analyze the performance of bit-
interleaved coded modulation (BICM) for separate coding over
SISO channels with respect to cut-off rate, channel capacity
and the bounds of bit-error probability, but also propose the
design criteria for BICM. Subsequently, an analysis of accurate
error probability of BICM is provided in [7]. If readers would
like to know more publications about interleaving for SISO
channels, in [8], Biglieri et al. give a complete overview of
interleaving techniques among all remarkable contributions
for SISO fading channels by 1998. Of course, interleaving
techniques can also be employed for joint source-channel
coding (e.g., [9]) and MIMO channels (e.g., [10]).

To the best of our knowledge, most interest of analyzing
system performance with time-interleaving has been mainly
focused on the improvement of error probability and cutoff
rate by exploiting multiple time diversity branches. Baltersee
et al. analyze the achievable rates of MIMO channels with
data-aided channel estimation and ideal interleaving in [11],
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where they suppose perfect interleaving to construct effective
memoryless channels for source data part while training data
for channel information at the receiver suffers from Doppler
spread. So far, the effect of time diversity on reproduced
analog (amplitude-continuous) source have not been studied.
In practice, an analog source, such as voice, is to be separate
or joint source-channel coded, interleaved and then transmitted
in frames to whose lengths coding and decoding are subject.
The frame length can be designed to be multiple of channel
coherence time to exploit the time diversity. Obviously, to be
in time and tractable, the frame length cannot be infinite, and
thereby the number of time diversity branches to be exploited
is limited. The mechanism of how the time interleaving
benefits on reproducing an analog source in length-limited
frames is of our interest in this paper.

For studying the reconstruction of an analog source, ex-
pected end-to-end distortion is the primary criterion. The
relation between the quadratic end-to-end distortion (mean
square error) and the channel capacity has been pointed out
by Shannon in [12]. The distortion exponent of expected
distortion [13] implied by Shannon’s inequality,

∆ = − lim
SNR→∞

logE[D]
log SNR

, (1)

is studied in [13]–[16] and so on. An upper bound on ∆ with
respect to the ratio of source bandwidth to channel bandwidth
(SCBR) , has been derived in [15] and [16], respectively, by
similar means to [17]. The settings in [15] and [16] are block-
fading MIMO systems, time diversity being not exploited.
They also provide schemes for achieving the upper bound of
distortion exponent for a certain range of SCBR and antenna
numbers.

More than what have been exposed by others, if we take a
look at the asymptotic complete form of the lower bound of
E[D] at high SNR,

EDLB ∼ µ∗SNR−∆UB
(2)

where the distortion factor µ∗ satisfies

lim
SNR→∞

log µ∗

log SNR
= 0, (3)

we would have interest in the behavior of µ∗ with antenna
numbers and SCBR. This is what we have studied in [18],
where we give the analytical expression of the lower bound of
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Fig. 1. Block diagram of the transmission model with perfect interleaving

expected distortion, thereby provide the same upper bound of
the distortion exponent ∆UB as in [15] [16] and the meaning-
ful analytical expression of the corresponding distortion factor
µ∗.

In this paper, considering ideal interleaving inside a length-
limited frame over a noncoherent channel is just like separating
sources to transmit via several parallel independent coherent
channels, we develop our results in [18] to interleaving cases
and illustrate how the time diversity works on the expected
end-to-end distortion.

Note that just before the publication of this paper, we
notice Gündüz and Erkip have obtained the same result in
[19] as Theorem 2 in this paper, which is a coincidence
to us. Nevertheless, the main targets of [19] and this paper
are different. We focus more on the effect of interleaving.
The most interesting part is the cooperation of the distortion
exponent and the factor.

The remainder of this paper is organized as follows. The
system model for ideal interleaving frame transmission is
described in Section II. The analytical expression of expected
end-to-end distortion for general SNR can be seen in Sec-
tion III. Section IV gives the upper bound of the distortion
exponent and the analytical expression of the corresponding
distortion coefficient for the asymptotic expected distortion
at high SNR. The effect of utilizing time diversity branches
is illustrated in Section V. Finally, Section VI concludes the
contributions of this paper.

II. SYSTEM MODEL

Consider a frequency-flat Rayleigh fading MIMO channel
of bandwidth Wc with M inputs and N outputs. Assuming
there are L time diversity branches in one frame, with ideal
interleaving, we can regard the noncoherent channel as L
parallel statistically-independent memory-less coherent chan-
nels. Fig.1 is the block diagram of the transmission model.
Suppose a white thermal noise source st of bandwidth Ws

and average power Ps is to be conveyed. First, it is sampled
(over Nyquist sampling rate) into a time-discrete source. After
separate or joint source-channel coding with ideal interleaving,
the transmission can be regarded as L source symbols to be
transmitted over L parallel channels at time p simultaneously.
For each equivalent coherent channel, the channel model is
represented as

yi
p = Hixi

p + ni
p, 1 ≤ i ≤ L. (4)

where all elements of Hi are i.i.d. CN (0, 1) random variables
and all elements of ni

p are zero-mean i.i.d. complex random

variables with variance σ2
n. Suppose ||xi

p||22 = Pt, the average
SNR at each receive antenna ρ = Pt/σ2

n. At the receiver,
after deinterleaving and decoding, the estimate of the time-
discrete source, ŝn, is obtained. Finally, the analog source is
reconstructed as ŝt via interpolation.

III. EXPECTED END-TO-END DISTORTION

After transmission and processing, the end-to-end distortion
is measured by the mean square error D,

D = lim
T→∞

1
T

∫ T

0

(ŝ(t)− s(t))2dt (5)

where s(t) is the real source at time t and ŝ(t) is the
reproduced real source at time t. The source rate with the
distortion fidelity D [12]

Rs = Ws log
Ps

D
. (6)

Since the channel can be regarded as parallel channels as
Fig.1 shows, for per channel use, the mutual information of
the channel,

I =
1
L

L∑

i=1

Ii

=
1
L

L∑

i=1

log det(IN +
ρ

M
HiH

†
i )

(7)

where IN is the N × N identity matrix and Ii is the
mutual information per channel use for the i-th channel in
the equivalent parallel channel bank.

We suppose no outage happen in the MIMO system, e.g.,
instantaneous channel rates are fed back as scalars and used to
do joint source-channel coding. Assuming the channel is used
at 2Wc channel uses per second as a time-discrete channel [20,
pp. 248], according to Shannon’s inequality [12], we obtain

Ws log
Ps

D
≤ 2Wc

L

L∑

i=1

log det(IN +
ρ

M
HiH

†
i ). (8)

Consequently,

D ≥ Ps

L∏

i=1

det(IN +
ρ

M
HiH

†
i )
− 2

Lη , (9)

and thereby (10)

E(D) ≥ PsEL
H

[
det(IN +

ρ

M
HH†)−

2
Lη

]
, (11)



where η is the ratio of source bandwidth to channel bandwidth
(SCBR), Ws/Wc, and EH[·] is the expectation with respect to
the random channel matrix H.

In [18], by using the mathematical results on moment
generating function of the capacity of uncorrelated Rayleigh
MIMO channels in [21], we derive the analytical expression of
ELB(D) for the case L = 1. Straightforwardly, we can derive
the expression for arbitrary positive integer L as follows. The
proof is omitted due to lack of space.

Theorem 1 (Expected quadratic distortion lower bound):
The expected quadratic distortion is lower bounded by

EDLB = Ps

(
detG∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)

)L

(14)

where m = min{M,N}, n = max{M,N}, and G is a m×m
Hankel matrix whose (i, j)-th entry is

gij =
( ρ

M

)−dij

Γ(dij)Ψ
(

dij , dij + 1− 2
ηL

;
M

ρ

)
, (15)

where dij = i + j + n−m− 1, 1 ≤ i, j ≤ m, and Ψ(a, b; x)
is the Ψ function in [22].

¤

IV. DISTORTION EXPONENT AND FACTOR

Observing the expression in Theorem 1, we can see that
EDLB is in the form of

∑
i µiρ

−∆i . Therefore, at asymptot-
ically high SNR, the approximate form of EDLB is

EDLB ∼ µ∗ρ−∆UB
(16)

where µ∗ρ−∆UB
is the term of the highest-order in (14), the

upper bound of the distortion exponent ∆UB = min{∆i},
and µ∗ is the corresponding distortion factor. Following the
derivation in [18], we can get analytical expressions of ∆UB

and µ∗ as follows. The proofs are omitted due to lack of space.
Theorem 2 (Distortion exponent upper bound): At the

asymptotically high SNR, the distortion exponent is upper
bounded by

∆UB = L

m∑

i=1

min
{ 2

Lη
, 2i− 1 + |M −N |

}
(17)

¤

Theorem 3 (Corresponding distortion factor): Define two
functions κl(β, t) and κh(β, t) as (12) and (13) at the top
of this page, for β ∈ R+ and t ∈ {0,Z+}.

µ∗ is given as follows,
1. For 2

ηL ∈ (0, n − m + 1), i.e., η ∈ ( 2
L(n−m+1) , +∞)

(termed high SCBR in this paper), the corresponding
distortion factor is

µ∗ = PsM
∆UB

(
κh( 2

ηL ,m)∏m
k=1 Γ(n− k + 1)Γ(m− k + 1)

)L

,

(18)

and monotonically decreasing with n.

And,

∆UB =
2m

η
. (19)

2. For 2
ηL ∈ (n + m − 1, +∞), i.e., η ∈ (0, 2

L(n+m−1) )
(termed low SCBR), the corresponding distortion factor
is

µ∗ = PsM
∆UB

(
κl( 2

ηL ,m)∏m
k=1 Γ(n− k + 1)Γ(m− k + 1)

)L

.

(20)

And,
∆UB = LMN. (21)

3. For 2
ηL ∈ [n − m + 1, n + m − 1], i.e., η ∈

[ 2
L(n+m−1) ,

2
L(n−m+1) ] (termed moderate SCBR), there

are two cases: in the case that 2
ηL − (n−m− 1) is not

an even number, the corresponding distortion factor is

µ∗ = PsM
∆UB

(
κl( 2

ηL , l)κh( 2
ηL − 2l, m− l)∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)

)L

;

(22)

in case that 2
ηL − (n − m − 1) is an even number, the

corresponding distortion factor is

µ∗ = PsM
∆UB

log(
ρ

M
)

·
(

κl( 2
ηL , l − 1)κh( 2

ηL − 2l,m− l)∏m
k=1 Γ(n− k + 1)Γ(m− k + 1)

)L

,
(23)

where l = d
2

ηL−(n−m−1)

2 e. And,

∆UB = Ll(l + n−m) +
2(m− l)

η
. (24)

Note that dxe rounds x to the nearest integer towards
minus infinity.
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V. INTERLEAVING IMPACT ANALYSIS

In this section, we analyze the interleaving impact on end-
to-end distortion. Our discussion is focused on the approxi-
mated optimal end-to-end distortion at high SNR.

The approximate EDLB is denoted by EDLB∗,

EDLB∗ = µ∗ρ−∆UB
. (25)

When the time diversity branches L ≤ d 2
η(n−m+1)e, i.e.,

η ≤ 2
L(n−m+1) , the system is at either the low SCBR or the

moderate SCBR as Theorem 3 indicates. We can see that in
both cases, ∆UB increases with L, which leads EDLB∗ to
decrease with L in the high SNR regime.

Fig.2 shows the relevance between EDLB and L at low
SCBR. EDLB’s in a logarithmic scale to SNR in decibel are
figured out by generating 1 000 000 realizations of H and
evaluating the right hand side of (11). Lines are not very
smooth due to the precision limit of MATLAB. From Fig.



κl(β, t) =





Γ(n−m + 1)Γ(β−n+m−1)
Γ(β)

∏t
k=2 Γ(k)Γ(n−m + k)Γ(β−n+m−2k+2)Γ(β−n+m−2k+1)

Γ(β−k+1)Γ(β−n+m−k+1) t > 1,

Γ(n−m + 1)Γ(β−n+m−1)
Γ(β) t = 1,

1 t = 0.
(12)

κh(β, t) =

{∏t
k=1 Γ(k)Γ(n−m− β + k) t > 0,

1 t = 0.
(13)
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Fig. 2. Expected distortion lower bound at low SCBR. M = 2, N = 1,
η = 0.25, and Ps = 1.

2, we can see, increasing L decreases EDLB and increases
the slope which corresponds to the increase of ∆UB.

When L > d 2
η(n−m+1)e, i.e., η > 2

L(n−m+1) , the system is
at high SCBR. In this case, ∆UB is fixed to 2m/η and thereby
has nothing to do with time diversity branches. Then, let us
study the behavior of µ∗ with L.

The expression (18) can be written as

µ∗ = PsM
2m
η

(
m∏

k=1

Γ(n−m− 2
ηL + k)

Γ(n−m + k)

)L

. (26)

Let

ϕ(L) =
m∏

k=1

Γ(n−m− 2
ηL + k)

Γ(n−m + k)
. (27)

It is easy to see ϕ(L) < 1 and d
dLϕ(L) > 0. Thus, the

derivative of the µ∗ with respect to L

d
dL

µ∗ = PsM
2m
η ϕ(L)L ln ϕ(L) · d

dL
ϕ(L) < 0. (28)

Consequently, the corresponding distortion factor µ∗ decreases
with L at high SCBR and thereby EDLB∗ also decreases.

Fig.3 shows the relevance between EDLB and L at high
SCBR. EDLB’s are figured out by generating 100 000 real-
izations of H. We can see that increasing L decreases EDLB

but does not change the slope. It corresponds to our analysis
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Fig. 3. Expected distortion lower bound at high SCBR. M = 2, N = 4,
η = 1, and Ps = 1.

that at high SCBR, increasing L only decreases µ∗ and has
nothing to do with ∆UB.

For a system at low SCBR, if we increase L continuously, as
indicated by Theorem 3, the SCBR state would transit from
low to moderate and then to high. We term the point of L
where the systems transits from the moderate SCBR state to
the high SCBR state as transit point, which is

L∗ = d 2
η(n−m + 1)

e. (29)

Fig.4 illustrates the transition process. We use Fig.4(b) and
Fig. 4(c) to give a theoretical analysis on Fig. 4(a). In Fig.4(b)
and Fig. 4(c), the ranges of low, moderate and high SCBRs
are denoted by LSCBR, MSCBR and HSCBR, respectively.
The transit point L∗ in this case is 4. We can see that EDLB

decreases with L, but after L∗, because increasing L only
affects µ∗, the benefit of increasing L becomes insignificant.

VI. CONCLUSION

Considering transmitting a white thermal noise source over
a time-variant Rayleigh fading MIMO channel, we derived the
analytical lower bound of the expected end-to-end distortion,
EDLB. It is tight for a no-outage system and loose for an
outage-possible system. On the basis of it, we derived the
distortion exponent upper bound ∆UB and the corresponding
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Fig. 4. SCBR state transition with time diversity branches. M = 2, N = 3,
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distortion factor µ∗ of the asymptotic EDLB∗ at high SNR. By
studying their behaviors with time diversity branches L, we
illustrate that EDLB at high SNR decrease with L. However,
when L is larger than the transit point L∗, the system does
not benefit much on distortion via increasing L. Therefore,
considering the cost of complexity to cope with long frames,
when L > L∗, we do no suggest lengthen frames to increase
L in one frame for the little extra time diversity gain on
reproduced source.
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