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Abstract— In this paper, we address the problem of separate
encoding of correlated sources observed by sensor nodes that
send their encoded information through Gaussian multiple access
channel (GMAC) with phase shifts. We suppose that the phases
are perfectly known at the receiver and unknown to the trans-
mitters. For discrete sources with finite-cardinality alphabets,
we prove that the separation theorem holds for both random
ergodic and arbitrary non-random models for the phase shifts,
and consequently, the strategy of combining Slepian-Wolf coding
to capacity achieving channel encoders is optimal for both.

I. I NTRODUCTION

In many sensor network applications, the observations col-
lected by the sensor nodes are spatially correlated, for instance
in scenarios where distributed sensing of a random field is
performed (e.g. geological exploration, environmental sensing,
electromagnetic sensing, etc.). With low-cost radio-equipped
sensors, the observations are further encoded and sent through
a noisy channel to a collector node where the information is
extracted and processed. The main question that arises is how
to efficiently encode the data at each node and how to benefit
from the correlation between the observed sources. Shannon
proved in [1] that, in a point-to-point communication scenario,
an optimal way to send a random source through a noisy
channel is to compress the source at a rate slightly greater
than its entropy, in bits per source letter, and then to encode it
at a rate slightly less than the capacity of the channel, in bits
per channel use, prior to sending it across the channel. This
coding strategy, known as the source-channel coding theorem
or the separation theorem, is very useful because it permitsone
to split the encoder into two separate entities, the first being
the source coding block and the second the channel encoder.
Unfortunately, this strategy does not lead to optimal system
performances in general network scenarios. An example of the
latter is considered in [2], where the authors provide bounds
on the capacity region for the MAC with arbitrarily correlated
sources; they provide sufficient conditions for the correlated

sources to be sent over the channel with an arbitrarily small
probability of error. Although the resultant rate region con-
tains the one achieved by separation between the source and
the channel encoders, it is shown in [3] that it is not the
capacity region for reliable transmission. All these results with
others in [4] show the sub-optimality of the separation-based
coding strategy and open the door toward cooperative coding
strategies that try to map the correlation between the sources
into correlation between the transmitted signals. One recent
example of this is the scheme described in [5].

The coding problem that we consider here is a variation
on the same theme. We considerM sensor nodes deployed
in a certain area where each of them senses a single spatial
dimension of the source and sends a representation of its
measurement through a GMAC corrupted by phase shifts. In
contrast to the work of El Gamal[6], we assume that each
node does not have side information with respect to its own
channel phase shift, and as a result cannot align its phase at
the receiver in order to benefit from some generalized form
of coherent combining which exploits the source correlation
structure. As a side note, any wireless sensor network problem
using a real-valued GMAC implicitly assumes this form of
synchronization. In removing the assumption on phase syn-
chronization we focus on the most pertinent channel model
in a pragmatic sense. This is especially true in wireless
sensor network applications where we often deal with low-
cost components, at least when it comes to the link between
the sensors and the collector node. Even in relatively high-
cost cellular basestations, feedback-based combining schemes
are very difficult (and costly) to achieve even for a centralized
antenna array, let alone for distributed spatial processing across
several basestations. Furthermore, it is conceivable for future
low-end sensor networks that the sensors may not even be
equipped with radio receivers in order to limit power con-
sumption which is often dominated by the receiver electronics.
This, of course, would rule out the possibility of any form



of closed-loop synchronisation and necessarily result in phase
differences at the receiver.

In our problem formulation, we assume that the source is
discrete and of finite-cardinality per dimension and the goal is
to reconstruct the vector source as reliably as possible at the
collector node. What remains is to define a set of necessary and
sufficient conditions under which the source can be sent and
reconstructed with an arbitrarily small probability of decoding
error. We consider two cases for phases variation: ergodic
random phase sequences and deterministic but arbitrarily-
varying phase sequences. By deriving a converse in both cases,
we prove that the separation theorem holds for any numberM
of sensor nodes. Hence, the set of the achievable rates is the
intersection of two rate-regions, the first being the Slepian-
Wolf rate region [7] and the second, being the capacity region
of the GMAC [8]. Another closely-related work is that of
Barros and Servetto [9], [10]; in their model the uplink channel
is a set parrallel non-interfering channels instead of a MAC.
They proved that the separation is also optimal in that case and
conclude that in the absence of interference, there is nothing
to lose by compressing the source dimensions to their most
efficient representation (Slepian-Wolf coding) and separately
adding capacity-attaining channel codes.

The paper is organised as follows: in section II, we describe
our system model. In section III, we state the two theorems that
constitute the main contribution of the paper, provide proofs
of the converse for both models for phase-variation and show
the optimality of a separation-based coding scheme. In Section
IV, we discuss several points concerning the two theorems and
section V is dedicated for the conclusion and ongoing works,
specifically for the case of continuous-valued sources.

II. M ODEL

The system model is depicted in Fig.1. We considerM
discrete correlated sourcesU1, . . . , UM of respectively fi-
nite alphabetsU1, . . . ,UM following the joint probability
distribution p(u1, . . . , uM ). Source vectorsU1, . . . ,UM of
dimensionK are generated by collectingK i.i.d samples of
the sourcesU1, . . . , UM respectively. Before being transmitted,
these source vectors are encoded separately byM encoders
f1, . . . , fM . The encoderfm is a function that mapsUm

onto a sequence ofN channel symbolsXm , {Xm,n;n =
1, . . . , N}, each of which taken from a finite alphabetXm.
Thus

fm : UK
m −→ XN

m

um ∈ UK
m −→ xm = fm(um) ∈ XN

m

Let Z = {Zi; i = 1, . . . , N} denote an i.i.d. sequence drawn
according to a Gaussian distribution representing the channel
noise whereZi ∼ NC(0, N0) , and Φm = {Φm,i; i =
1, . . . , N} denote the set of random phases induced by the
channel and associated to the encoderfm. LetΦ , {Φm;m =
1, . . . ,M} be perfectly known to the decoder. The received
signal isY , {Yi; i = 1, . . . , N} which belongs to the infinite

alphabetYN , andYi can be written as

Yi =
M∑

m=1

Xm,ie
jΦm,i + Zi. (1)

We consider the following power constraint

1

N

N∑

i=1

E
[
|Xm,i|2

]
≤ Em (2)

for m = 1, . . . ,M , where Em represents the mean energy
allowed per transmission for sensorm. For the channel phase
sequencesΦm, we shall consider the following different cases:

1) Φm are random, perfectly known to the receiver and
unknown to the transmitters, extracted from a jointly
stationary and ergodic process{Φ1,i, · · · ,ΦM,i}. Fur-
thermore, we assume thatΦm,i (the i-th marginals of
the process) are individually uniformly distributed over
[−π, π] and that thei-th marginal distribution of the
phase difference∆Φm,m′,i , Φm,i − Φm′,i is also
uniformly distributed over[−π, π].

2) Φm arearbitrary sequences, denoted byφm since they
are non-random. The transmitters have no knowledge of
the phase sequences.

3) Φm are arbitrary and constant sequences, that is,
Φm,i = φm for all i = 1, . . . , N , where φm is an
arbitrary value in[−π, π]. In this case, the phases are
constant for the whole duration of transmission but the
transmitters have no knowledge about their values.

In section III, one coding theorem will be dedicated to the first
phase sequences case, and another one for the last two cases,
their corresponding proof being quite similar. After receiving
Y, the decoder generates an estimateÛm on each sourceUm

given the full knowledge onΦ. Thus, we have

g : YN × [−π;π]NM −→ UK
1
× · · · × UK

M (3)

(y,φ) −→ g(y,φ) = (Û1, · · · ,UM ).(4)

Given a code, i.e., mapping functionsf1, . . . , fM andg, we
define the error probability as

PK(e) = Pr
(
(U1, · · · ,UM ) 6= (Û1, · · · , ÛM )

)
.

(ejΦ1,1 , · · · , ejΦ1,N )

(ejΦM,1 , · · · , ejΦM,N )

X1

XM

U1

UM Encoder
fM

Encoder
f1

Decoder
g

Z

Y Û1, · · · , ÛM

Φ

Fig. 1. Correlated sources over GMAC with phase shifts perfectly known at
the receiver



III. C ODING THEOREMS FORCORRELATED SOURCES

OVER GMAC WITH PHASE SHIFTS

A. Ergodic Phase Sequences

For the ergodic phase sequences, we have the following
coding theorem:

Theorem 1: M discrete correlated sourcesU1, . . . , UM of
finite alphabets drawn according top(u1, . . . , uM ) can be
transmitted with an arbitrarily small probability of errorover
a GMAC with ergordic phases perfectly known at the receiver
and with source-channel rater , K/N if, and only if

H(US |USc) ≤ N

K
log

(
1 +

∑

m∈S

Em

N0

)
,∀S ⊆ {1, 2, · · · ,M},

(5)
where the shorthand notationAS represents the set of random
variables{Ai, i ∈ S}.

Proof: The proof of this theorem can be divided in two
parts: direct part and converse.

For the direct part, we have to prove that if the conditions
in (5) are satisfied, the sources can be transmitted with
an arbitrarily small probability of error. In fact, it is clear
that, when the bounds on the joint entropy of the sources
are satisfied, a simple separated approach that makes use
of Slepian-Wolf coding and standard Gaussian superposition
coding allows the transmission and the reconstruction of the
sources at the receiver point with a vanishing probability of
error.

The converse proof of the theorem is put in Appendix
A. It is shown that if the sources are transmitted with an
arbitrarily small probability of error, then they must verify
the joint entropy conditions in (5). This theorem shows that
in the case of ergodic phases, a separation-based scheme is
optimal. In other words, compressing the sources to their most
efficient representations by performing Slepian-Wolf coding,
and separately adding capacity-achieving channel encoders is
an optimal coding scheme. Moreover, it shows that coding
cooperation between the transmitters does not buy anything.

B. Arbitrary Phase Sequences

Assuming that the phase sequences are not random, unknow
at the transmitters, and perfectly known at the receiver, we
have the following theorem:

Theorem 2: For the arbitrary phase sequences (or
arbitrary and constant phases),M discrete correlated sources
U1, . . . , UM of finite alphabets can be transmitted reliably
over a GMAC with a given source-channel rater if, and only
if their joint entropies satisfy the inequalities in (5).

Proof: [Proof for arbitrary phase sequences] The direct
part proof is the same as for Theorem 1. The converse proof
of the theorem is put in Appendix B.

Proof: [Proof for arbitrary and constant phase sequences]
It is important to point out that this case cannot be considered
as a special case of the arbitrary phase sequences. Although
the necessary and sufficient transmissibility conditions for
the case of arbitrary phase sequences are also necessary and
sufficient for the case of arbitrary constant phases, this fact
is not immediately evident. Notice also that constant phases
reduces the possibility with respect to arbitrary sequences,
therefore, the capacity region may be larger (certainly, not
smaller). Hence, we have only to show the converse. In fact,
by repeating the derivations in Appendix B while taking into
account that the phase sequences are arbitrary and constant,
we obtain the following necessary conditions

H(US |USc) ≤ N

K
log

(
1 +

∑

m∈S

Em

N0

+

1

NN0

inf
φ1,...,φM

{
N∑

i=1

Ti

})
(6)

where
N∑

i=1

Ti =
∑

m,m′
∈S

m′>m

N∑

i=1

|ρm,m′,i| cos(∆φm,m′ + θm,m′,i)

=
∑

m,m′
∈S

m′>m

Re

[
N∑

i=1

|ρm,m′,i|ej(∆φm,m′+θm,m′,i)

]
.(7)

By defining the complex numberρm,m′ as

ρm,m′ ,

N∑

i=1

|ρm,m′,i|ejθm,m′,i , (8)

(7) becomes

N∑

i=1

Ti =
∑

m,m′
∈S

m′>m

Re
[
|ρm,m′ |ej(∆φm,m′+θm,m′ )

]
. (9)

Using Eq. (9), it can be shown, as in Appendix B, that

inf
φ1,...,φM

N∑

i=1

Ti ≤ 0. (10)

Therefore, we deduce that the following conditions must be
verified for reliable transmission of the sources

H(US |USc) ≤ N

K
log

(
1 +

∑

m∈S

Em

N0

)
∀S ⊆ {1, · · · ,M}.

(11)

IV. DISCUSSIONS

In this section, we discuss several important points that
concern the two theorems stated above. For the converse of
Theorem 2, we mention here two notes: first, other than this
converse provides us with necessary conditions for reliable
communication, it gives in addition some constraints or some



properties about the family of codes that achieves optimality.
In fact, for the case of arbitrary phase sequences, channel
symbols at timei corresponding to an optimal code must
be uncorrelated, otherwise the code is suboptimal. To see it
clearer, let’s take two blocks of channel symbols of lengthN
corresponding to sensorsm andm′. Without loss of generality,
we’ll assumem = 1 and m′ = 2. From (28) and (37),
we conclude that any code allowing the reconstruction of the
sources with vanishing probability of errors must verify

H(U1, U2|USc) ≤ N

K
log

(
1 +

E1 + E2

N0

− 2

NN0

N∑

i=1

|ρ1,2,i|
)

(12)
Knowing that the inequality

H(U1, U2|USc) ≤ N

K
log

(
1 +

E1 + E2

N0

)
(13)

can be achieved by a separate-based coding scheme, we
deduce that ifρ1,2,i 6= 0 for at least onei, the optimal system
performance cannot be reached. Therefore, any optimal code,
including the one based on the source-channel separation, must
verify ρm,m′,i = 0 ∀m,m′ ∈ {1, . . . ,M},m 6= m′, i =
1, . . . , N . Similarly, in the case of arbitrary and constant
phases, it can be shown that optimal codes should verify
ρm,m′ = 0 ∀m,m′ ∈ {1, . . . ,M},m 6= m′.

The second note on this converse is the one related to
the interval of values that can take the phase shifts. Until
now, we have considered that phase shifts can take values
in [−π;π]. In fact, Theorem 2 can be extended to the case
where the phase shifts belong to the interval[−π/2;π/2].
Therefore, restraining the interval of phase values does not
break imperatively the separation optimality. To prove this, it
suffices to show that the following inequality

inf
φ

MS

QMS
(φ

MS
) ≤ 0 (14)

still holds. To this end, by choosing

∆φ1,2,i =

{
π/2 − θ1,2,i if θ1,2,i ∈ [0;π]
−π/2 − θ1,2,i if θ1,2,i ∈ [−π; 0[

(15)

it becomes obvious to see that the infimum over the phase
sequences in (37) is less or equal to zero. Then, by making
similar modifications to the phases in (39), it can be easily
shown that (14) still holds. Notice that, although the separation
remains optimal when the phases belong to[−π/2;π/2], there
exist other possibilitites of phase intervals for which this
optimality still holds (as an example, when the phases take
just two different valuesα andα + π).

Another important point concerns the fact that in many
wireless sensor networks, the sensors may not be at the same
distance from the collector node. In that case, we should
consider an attenuation factor

√
αm associated to each encoder

that reflects the quality of the channel between each sender
and the receiver. If we assume that these attenuation factors
are known at the receiver point, Theorems 1 and 2 can be
easily generalised to include this type of model.

The last point we would like to discuss is the utility of
information exchange between the sensor nodes under a sum-
energy constraint. The question here is to see if we can gain
more if the sensors have the possibility of communicating
between each others. The sum-energy constraint is described
by the following inequality

1

N

N∑

i=1

M∑

m=1

E[||Xm,i||2] ≤
M∑

m=1

Em (16)

In fact, under (16), any kind of communication or information
exchange between the sensors is useless and a separate-based
coding scheme is optimal. To see it clearer, assume that the
sensors can commmunicate in a free manner between them-
selves; therefore, each sensor knows perfectly the realisations
of all the sources. The converse for this resultant model
contains obviously all the achievable performances resulting
from any kind of collaboration between the nodes. In that case,
one can simply verify that the necessary condition

H(U1, · · · , UM ) ≤ N

K
log

(
1 +

M∑

m=1

Em

N0

)
(17)

must hold, and this for any kind of phase sequences considered
in this paper. Knowing that the above inequality can be
achieved by a separate-based coding scheme without involving
any type of collaboration between the sensor nodes, shows that
there is no gain in exchanging information using inter-sensor
connections.

V. CONCLUSION AND ONGOING WORK

In this paper, we extended the separation theorem to the case
of separately encoded correlated discrete sources sent over a
GMAC with phase shifts perfectly known at the receiver and
unknown to the transmitters. Hence, for different assumptions
on the phase shifts, we proved that a set of two-stage encoders
performing distributed source coding in the Slepian-Wolf sense
and capacity-achieving channel coding leads to an optimal
system performance. The presented model constitutes one
of the rare scenarios in network information theory where
the separation theorem holds. While previous works in the
litterature concerned by sending correlated sources over MAC
channels were more focused on cooperative coding strategies
and on trying unsuccessfully to find necessary and sufficient
conditions for optimality, we showed, by introducing a small
and practical variation to the model (which is that of phase
shifts unknown at the transmitters and Gaussian channel
noise), that the optimal performance can be simply reached
with a separate source-channel coding scheme. As for our
ongoing work, the utility of information exchange between
the separate encoders in the presence of different attenuation
factors is under investigation while some new results extending
the source-channel separation to the case of Gaussian sources
has been obtained.

APPENDIX



A. PROOF OF THECONVERSE OFTHEOREM 1

Given a code with a fixed source-channel rater, Fano’s
inequality yields 1

K
H(U1, · · · ,UM |Y,Φ) ≤ λK , where, for

a family of codes of increasing block length and achieving
vanishing error probability, we haveλK → 0 as K →
∞. To simplify notations, letV , (USc ,XSc ,Φ), Φ∗i ,

(Φ1,i, . . . ,ΦM,i) and

Ai(φ∗i) , (Yi −
∑

m∈Sc

ejΦm,iXm,i|φ∗i) (18)

for any subsetS ⊆ {1, 2, · · · ,M}. Now, we can write∀S ⊆
{1, 2, · · · ,M},

H(US |USc) =
1

K
H(US |USc)

=
1

K
H(US |USc ,Φ)

=
1

K
H(US |V)

=
1

K
I(US ;Y|V) +

1

K
H(US |V,Y)

(a)

≤ 1

K
I(US ;Y|V) + λK

≤ 1

K

N∑

i=1

H(Yi|V) − 1

K
H(Y|US ,V) + λK

=
1

K

N∑

i=1

H(Yi −
∑

m∈Sc

ejΦm,iXm,i|V) −

1

K
H(Z) + λK

(b)

≤ 1

K

N∑

i=1

EΦ∗i
[log Var(Ai(Φ∗i))] −

N

K
log N0 + λK

≤ N

K
log

(
1

N

N∑

i=1

EΦ∗i
[Var(Ai(Φ∗i))]

)
−

N

K
log N0 + λK (19)

where (a) follows from

H(US |USc ,XSc ,Y,Φ) ≤ H(US ,USc |XSc ,Y,Φ) (20)

≤ H(US ,USc |Y,Φ)

≤ λK ,

and EΦ∗i
[.] in (b) denotes the expectation with respect to

the probability distributionp(φ1,i, · · · , φM,i). Without loss of
generality, we can restrict the code to have mean zero on all
components. Therefore,

Var (Ai(φ∗i)) = Var

(
∑

m∈S

ejφm,iXm,i + Zi

)

= N0 +
∑

m,m′∈S

E

[
Xm,iX

∗

m′,ie
j(φm,i−φm′,i)

]

= N0 +
∑

m∈S

E
[
Xm,iX

∗

m,i

]
+

2
∑

m,m′
∈S

m′>m

Re
{
E
[
Xm,iX

∗

m′,i

]
ej∆φm,m′,i

}
.

(21)

E
[
Xm,iX

∗

m′,i

]
is a complex number depending onm,m′ and

i; we shall call this numberρm,m′,i = |ρm,m′,i|ejθm,m′,i .
Letting the average energy of thei-th symbol be denoted by
Em,i , we can rewrite (21) as

Var (Ai(φ∗i)) = N0 +
∑

m∈S

Em,i + Ti (22)

where

Ti = 2
∑

m,m′
∈S

m′>m

|ρm,m′,i| cos(∆φm,m′,i + θm,m′,i). (23)

Notice that EΦ∗i
[Ti] = 0, which is due to the fact that

∆Φm,m′,i is uniformly distributed on[−π;π]. Therefore, we
can proceed with (19) and write

H(US |USc) ≤N

K
log

[
N0 +

∑

m∈S

1

N

N∑

i=1

Em,i + EΦ∗i
[Ti]

]
−

N

K
log N0 + λK (24)

≤N

K
log

(
1 +

∑

m∈S

Em

N0

)
+ λK (25)

Letting K → ∞, we find the necessary conditions for
reliable transmission:∀S ⊆ {1, 2, · · · ,M},

H(US |USc) ≤ N

K
log

(
1 +

∑

m∈S

Em

N0

)
. (26)

B. PROOF OF THECONVERSE OFTHEOREM 2: ARBITRARY

PHASE SEQUENCES

Given a code with a fixed source-channel rater and a
fixed φ, Fano’s inequality yields1

K
Hφ(U1, · · · ,UM |Y) ≤

λK(φ). We require that a family of codes of increasing block
length achieves vanishing error probability for all possible φ

since they are unknown at the transmitters, i.e., thatλK(φ) →



0 asK → ∞. Now, we can write,

H(US |USc) =
1

K
H(US |USc)

=
1

K
H(US |USc ,XSc)

=
1

K
Iφ(US ;Y|USc ,XSc) +

1

K
Hφ(US |USc ,XSc ,Y)

≤ 1

K
Iφ(US ;Y|USc ,XSc) + λK(φ)

≤ 1

K

N∑

i=1

Hφ(Yi|USc ,XSc) −

1

K
Hφ(Y|X1, · · · ,XM ) + λK(φ)

≤ 1

K

N∑

i=1

log Var (Ai(φ∗i)) −

N

K
log N0 + λK(φ) (27)

where Hφ(.) and Iφ(.) denote respectively the entropy and
the mutual information corresponding to a given arbitraryφ.
Since these inequalities must hold for everyφ, we obtain the
tightest conditions by taking the infimum of the RSH term in
(27) with respect toφ. Therefore, lettingK goes to∞, we
can write

H(US |USc) ≤ inf
φ

{
1

K

N∑

i=1

log

[
1 +

∑

m∈S

Em,i

N0

+
Ti

N0

]}

≤ N

K
inf
φ

{
log

[
1 +

∑

m∈S

Em

N0

+
1

NN0

N∑

i=1

Ti

]}

=
N

K
log

[
1 +

∑

m∈S

Em

N0

+
1

NN0

inf
φ

{
N∑

i=1

Ti

}]

(28)

where we have used again Jensen’s inequality and the mono-
tonicity of the logarithm in order to take the infimum inside
the log. Now, we will prove that the infimum term in (28)
cannot be positive, i.e.,

inf
φ

{
N∑

i=1

Ti

}
≤ 0. (29)

Notice that if the chosen code satisfiesρm,m′,i = 0 ∀m,m′, i,
then the equality is achieved in (29) for all phase sequences;
this point will be discussed in more details in section IV.

Returning back to the proof of (29), let’s takeS =
{1, . . . , l} with 2 ≤ l ≤ M ; note that specifying the subset
S is just to simplify notations and the following proof holds
∀S ⊆ {1, . . . ,M}. Define the matrix

φ
l
, [φm,i] m = 1, · · · , l i = 1, · · · , N (30)

and

Ql(φl
) ,

N∑

i=1

Ti (31)

=

N∑

i=1

l−1∑

m=1

l∑

m′>m

Re
[
|ρm,m′,i|ej(∆φm,m′,i+θm,m′,i)

]
.

(32)

Consequently, proving (29) reduces to prove that
infφ

L
Ql(φl

) ≤ 0. To this end, we can first derive a
relation betweenQl−1(φl−1

) andQl(φl
) like the following

Ql(φl
)− Ql−1 (φ

l−1
) (33)

=

N∑

i=1

l−1∑

m=1

Re
[
|ρm,l,i|ej(φm,i−φl,i+θm,l,i)

]

=

N∑

i=1

Re

[
e−jφl,i

l−1∑

m=1

|ρm,l,i|ej(φm,i+θm,l,i)

]

=

N∑

i=1

Re
[
e−jφl,i |ρl,i|ejθl,i

]
(34)

where

ρl,i = |ρl,i|ejθl,i ,

l−1∑

m=1

|ρm,l,i|ej(φm,i+θm,l,i). (35)

Note that for a given code and a fixedφ
l−1

, the complex
number ρl,i is fixed and is independant fromφl. Now, it
becomes easy to prove thatinfφ

l
Ql(φl

) ≤ 0. In fact, for
l = 2 we have

Q2(φ1
,φ

2
) =

N∑

i=1

Re
[
|ρ1,2,i|ej(∆φ1,2,i+θ1,2,i)

]
. (36)

By taking ∆φ1,2,i = π − θ1,2,i, we obtain that

inf
φ

2

Q2(φ1
,φ

2
) = −

N∑

i=1

|ρ1,2,i| ≤ 0. (37)

Suppose now that

inf
φ

l−1

Ql−1(φl−1
) ≤ 0

and that this infimum is attained for a certain valueφ
l−1

=

φ∗

l−1
; using the recurrence relation in (34), we can write

inf
φ

l

Ql(φl
) ≤ Ql(φ

∗

l−1
,φ∗

l )

= Ql−1(φ
∗

l−1
) −

N∑

i=1

|ρl,i|

≤ 0. (38)

where the entries ofφ∗

l = (φ∗

l,1, . . . , φ
∗

l,N ) are chosing like
the following

φ∗

l,i = θl,i − π for i = 1, . . . , N. (39)

Using this result in (28) completes the proof of Theorem 2 for
arbitrary phase sequences.
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