Transmission of Correlated Sources Over Gaussia
Multiple Access Channel with Phase Shifts

Fadi Abi Abdallah, Raymond Knopp
Mobile Communications Department
Eurecom
Sophia-Antipolis Cedex - France
Fadi.Abi-Abdallah,Raymond.Knopp@eurecom.fr

Giuseppe Caire
Department of Electrical Engineering
University of Sourthern California
Los Angeles CA, 90089 USA
caire@usc.edu

Abstract—In this paper, we address the problem of separate sources to be sent over the channel with an arbitrarily small
encoding of correlated sources observed by sensor nodes thatprobability of error. Although the resultant rate regiomeo

send their encoded information through Gaussian multiple access ;; ; ;

channel (GMAC) with phase shifts. We suppose that the phases :Ems [t_]he Onle aChISVEd t_)ty_sepr?ratlor_l begwfﬁnt t_f:e_ sourtc$hand
are perfectly known at the receiver and unknown to the trans- ec _anne_ enco er;, iwis s ovyn _|n [3] that it is n_o €
mitters. For discrete sources with finite-cardinality alphabets, Capacity region for reliable transmission. All these resulith

we prove that the separation theorem holds for both random others in [4] show the sub-optimality of the separationdolas
ergodic and arbitrary non-random models for the phase shifts, coding strategy and open the door toward cooperative coding
z”g:;:;fyq:‘zﬂit'e)(’/iH:;Csﬁ;‘;tﬁg?’é’r‘:c?d'g’s'”i'g% st'i?np;??(;\r’vggtﬁo‘jmg strategies that try to map the correlation between the ssurc

' into correlation between the transmitted signals. Onentece
example of this is the scheme described in [5].

The coding problem that we consider here is a variation
In many sensor network applications, the observations coln the same theme. We consideéf sensor nodes deployed
lected by the sensor nodes are spatially correlated, ftarine in a certain area where each of them senses a single spatial
in scenarios where distributed sensing of a random field damension of the source and sends a representation of its
performed (e.g. geological exploration, environmentakggg, measurement through a GMAC corrupted by phase shifts. In
electromagnetic sensing, etc.). With low-cost radio-pged contrast to the work of EI Gamal[6], we assume that each
sensors, the observations are further encoded and seagthranode does not have side information with respect to its own
a noisy channel to a collector node where the information ¢hannel phase shift, and as a result cannot align its phase at
extracted and processed. The main question that arisesvis lioe receiver in order to benefit from some generalized form

to efficiently encode the data at each node and how to benefitcoherent combining which exploits the source corretatio
from the correlation between the observed sources. Shanstmicture. As a side note, any wireless sensor network @nobl
proved in [1] that, in a point-to-point communication sceoa using a real-valued GMAC implicitly assumes this form of
an optimal way to send a random source through a noisynchronization. In removing the assumption on phase syn-
channel is to compress the source at a rate slightly greatlronization we focus on the most pertinent channel model
than its entropy, in bits per source letter, and then to emdébd in a pragmatic sense. This is especially true in wireless
at a rate slightly less than the capacity of the channel, i bsensor network applications where we often deal with low-
per channel use, prior to sending it across the channel. Thst components, at least when it comes to the link between
coding strategy, known as the source-channel coding theorthe sensors and the collector node. Even in relatively high-
or the separation theorem, is very useful because it peonés cost cellular basestations, feedback-based combiningnses

to split the encoder into two separate entities, the firshdpeiare very difficult (and costly) to achieve even for a centedi

the source coding block and the second the channel encodetenna array, let alone for distributed spatial procesaamoss
Unfortunately, this strategy does not lead to optimal systeseveral basestations. Furthermore, it is conceivableuturd
performances in general network scenarios. An exampleeof flow-end sensor networks that the sensors may not even be
latter is considered in [2], where the authors provide bgundquipped with radio receivers in order to limit power con-
on the capacity region for the MAC with arbitrarily correddt sumption which is often dominated by the receiver elect®ni
sources; they provide sufficient conditions for the coteela This, of course, would rule out the possibility of any form

I. INTRODUCTION



of closed-loop synchronisation and necessarily resulhimsp alphabety”y, andY; can be written as

differences at the receiver.

In our problem formulation, we assume that the source is

discrete and of finite-cardinality per dimension and thel goa

M
Yi= Y Xppae! i+ 2, (1)

m=1

to reconstruct the vector source as reliably as possiblaeat t We consider the following power constraint

collector node. What remains is to define a set of necessary and

sufficient conditions under which the source can be sent and 1 <
. o . . fZ]E“X -|2]<E 2)
reconstructed with an arbitrarily small probability of deling N < motl | = =m
error. We consider two cases for phases variation: ergodic =1
random phase sequences and deterministic but arbitrarf§t m = 1,...,M, where E,,, represents the mean energy

varying phase sequences. By deriving a converse in botls cagdowed per transmission for sensar. For the channel phase
we prove that the separation theorem holds for any number sequence®,,, we shall consider the following different cases:
of sensor nodes. Hence, the set of the achievable rates is thg) ®,,, are random, perfectly known to the receiver and

intersection of two rate-regions, the first being the Slepia

Wolf rate region [7] and the second, being the capacity regio

of the GMAC [8]. Another closely-related work is that of
Barros and Servetto [9], [10]; in their model the uplink chah

unknown to the transmitters, extracted from a jointly
stationary and ergodic proce$®; ;,---,Pa;}. Fur-
thermore, we assume thdt,, ; (the i-th marginals of
the process) are individually uniformly distributed over

is a set parrallel non-interfering channels instead of a MAC
They proved that the separation is also optimal in that cade a phase differenceA®,,, ., ; £ Qi — Py IS also
conclude that in the absence of interference, there is mgthi uniformly distributed ovef—m, 7].
to lose by compressing the source dimensions to their mosk) ®,,, arearbitrary sequences, denoted gy, since they
efficient representation (Slepian-Wolf coding) and seigdya are non-random. The transmitters have no knowledge of
adding capacity-attaining channel codes. the phase sequences.

The paper is organised as follows: in section I, we describe3) ®,, are arbitrary and constant sequences, that is,
our system model. In section IlI, we state the two theoreras th Q. = ¢ forall i = 1,...,N, where ¢,, is an
constitute the main contribution of the paper, provide fsoo arbitrary value in[—m, . In this case, the phases are
of the converse for both models for phase-variation and show constant for the whole duration of transmission but the
the optimality of a separation-based coding scheme. In@ect transmitters have no knowledge about their values.
IV, we discuss several points concerning the two theorerds an section Ill, one coding theorem will be dedicated to thstfir
section V is dedicated for the conclusion and ongoing workshase sequences case, and another one for the last two cases
specifically for the case of continuous-valued sources. their corresponding proof being quite similar. After receg
Y, the decoder generates an estimidtg on each sourc#J,,
given the full knowledge orP. Thus, we have

g: YV x [-m;a)NM UK x.oxuk (©)]
I g(y7¢):<ﬂ17 7U]\4)'(4)

Given a code, i.e., mapping functiofs, . . .
define the error probability as

PK(e) :PI‘ ((Ul, 7U]\4) 75 (617“' ,ﬁM)) .

[-7, 7] and that thei-th marginal distribution of the

I[I. MODEL

The system model is depicted in Fig.1. We considér
discrete correlated sourcd$,,...,Uy of respectively fi- (y, o)
nite alphabetsU,,..., Uy, following the joint probability
distribution p(uy,...,up ). Source vectordUy,..., Uy, of
dimensionK are generated by collectinf i.i.d samples of
the sourceé/y, . .., U, respectively. Before being transmitted,
these source vectors are encoded separately/bgncoders
fi,--., fu. The encoderf,, is a function that mapdJ,,
onto a sequence aV channel symbolsX,, = {Xmn;n = (P11, PN
1,...,N}, each of which taken from a finite alphalt,.
Thus

, far andg, we

U, Encoder
fm: uﬁ — x,ﬁi h
u,, € uﬁ — Xm = fm(um) S ern : (e7®aa ... eI Decoder ﬁl,"wﬁl\f
1 9 g
LetZ = {Z;;i =1,...,N} denote an i.i.d. sequence drawn !
according to a Gaussian distribution representing the r@lan Uux | gncoder @
noise whereZ; ~ Ng(0,No) , and ®,, = {®,, 51 = Im
1,..., N} denote the set of random phases induced by the
channel and associated to the encoﬁ,erLetrb L {‘I’ -m = Fig. 1. Correlated sources over GMAC with phase shifts jptif&known at
" m . the receiver

1,..., M} be perfectly known to the decoder. The receive

signal isY £ {Y;;i = 1,..., N} which belongs to the infinite



I11. CODING THEOREMS FORCORRELATED SOURCES Proof: [Proof for arbitrary and constant phase sequences]
OVER GMAC WITH PHASE SHIFTS It is important to point out that this case cannot be consider
as a special case of the arbitrary phase sequences. Although

) the necessary and sufficient transmissibility conditions f
For the ergodic phase sequences, we have the followifg case of arbitrary phase sequences are also necessary anc

A. Ergodic Phase Sequences

coding theorem: sufficient for the case of arbitrary constant phases, this fa
is not immediately evident. Notice also that constant phase

Theorem 1: M discrete correlated sourcés, ..., Uy Of yreduces the possibility with respect to arbitrary sequence
finite alphabets drawn according te(u1,...,un) can be therefore, the capacity region may be larger (certainly, no

a GMAC with ergordic phases perfectly known at the receivgy; repeating the derivations in Appendix B while taking into
and with source-channel rate= K/N if, and only if account that the phase sequences are arbitrary and constant
we obtain the following necessary conditions

N FE
H )< =1 1 — c{1,2,---,M
(US|US)_KOg<+ZNO>aVS_{>7 M},

meS
(5)
where the shorthand notatioty represents the set of random

N
variables{4;,i € S}. Niv ) inf¢ {Z Tl}> ©6)
0 ¢yt | =

N E
H(Ug|Uge) < —log (1 +Y 2y
K meS NO

Proof: The proof of this theorem can be divided in two

e where

parts: direct part and converse.

For the direct part, we have to prove that if the condition N N
in (5) are satisfied, the sources can be transmitted witd_1¢ = > Z|pmv"’”7i|COS(A@"’W+9mvm'vi)
an arbitrarily small probability of error. In fact, it is e =" ma e =
that, when the bounds on the joint entropy of the sources N
are satisfied, a simple separated approach that makes use — Z Re Z|pm’m,’iej(Ad)m,m/Jrem,mx,i)]g)
of Slepian-Wolf coding and standard Gaussian superpasitio S |
coding allows the transmission and the reconstruction ef th m'>m

sources at the receiver point with a vanishing probability By defining the complex numbet,, ..., as
error.

The converse proof of the theorem is put in Appendix A o .
A. It is shown that if the sources are transmitted with an Pm,m! = Z|pm,m/,i|e mmi 8)
arbitrarily small probability of error, then they must \gri =1
the joint entropy conditions in (5). This theorem shows th&f) becomes
in the case of ergodic phases, a separation-based scheme is ~

N

optimal. In other words, compressing the sources to thestmo Y Ti= > Re [\pmvm/\ej(A¢m’m’+9mvm/) .9
efficient representations by performing Slepian-Wolf ooy i=1 m,m’'eS
and separately adding capacity-achieving channel ensasler m’'>m

an optimal coding scheme. Moreover, it shows that codingsing Eq. (9), it can be shown, as in Appendix B, that
cooperation between the transmitters does not buy anything

| .
f T; <0. 10
. in Z < (10)

B. Arbitrary Phase Sequences =l

A ina that the oh t rand kTherefore, we deduce that the following conditions must be
ssuming that tne phase sequences are not random, Unk@ge y for reliable transmission of the sources
at the transmitters, and perfectly known at the receiver, we

: _ N Em
have the following theorem: H(Us|Use) < —log [ 1+ Z —m) vS C{l,---, M}
K meS NO

Theorem 2: For the arbitrary phase sequences (or (11)
arbitrary and constant phasegy, discrete correlated sources ™
Uiy,...,Up of finite alphabets can be transmitted reliably
over a GMAC with a given source-channel raté, and only IV. DISCUSSIONS
if their joint entropies satisfy the inequalities in (5). In this section, we discuss several important points that

concern the two theorems stated above. For the converse of
Proof: [Proof for arbitrary phase sequences] The diredtheorem 2, we mention here two notes: first, other than this
part proof is the same as for Theorem 1. The converse praoiverse provides us with necessary conditions for raliabl
of the theorem is put in Appendix B. E communication, it gives in addition some constraints or som



properties about the family of codes that achieves opttgnali The last point we would like to discuss is the utility of

In fact, for the case of arbitrary phase sequences, chanimébrmation exchange between the sensor nodes under a sum-
symbols at timei corresponding to an optimal code musénergy constraint. The question here is to see if we can gain
be uncorrelated, otherwise the code is suboptimal. To seamibre if the sensors have the possibility of communicating
clearer, let's take two blocks of channel symbols of lenith between each others. The sum-energy constraint is dedcribe
corresponding to sensoms andm’. Without loss of generality, by the following inequality

we'll assumem = 1 and m’ = 2. From (28) and (37),

N M M
we conclude that any code allowing the reconstruction of the 1 ENIX.. 2] < E 16
sources with vanishing probability of errors must verify N ;mz::l Xl 7] < mZ::l " (16)

N Ei+ Es 9 X In fact, under (16), any kind of communication or informatio
H(Uy,Uz|Use) < Ve log {1+ No NN, Z 11,2, exchange between the sensors is useless and a separate-base
=1 (12) coding scheme is optimal. To see it clearer, assume that the
sensors can commmunicate in a free manner between them-
selves; therefore, each sensor knows perfectly the réalisa
N Ei+E i
H(Uy, Us|Use) < = log (1 i + 2> (13) of aII. the sources. The converse for this resultantl model
K No contains obviously all the achievable performances riesult

can be achieved by a separate-based coding scheme,fr\ﬁ@ any kjnd of col!aboration between the nodgg. In thagcas

deduce that ifp; »; # 0 for at least one, the optimal system ©N€ ¢an simply verify that the necessary condition

performance cannot be reached. Therefore, any optimal, code N M 5

including the one based on the source-channel separatigst, m H(Uy, - ,Um) < =log (1 + Z m) a7

verify pmom i = 0 Vmom' € {1,...,M},m # m/,i = K 1 No

1,...,N. Similarly, in the case of arbitrary and constant, st hold, and this for any kind of phase sequences considere

phases, it can be shown that optimal codes should Verjfy this paper. Knowing that the above inequality can be

pmm =0 Vm,m" € {1,.. > M}, m # m/_' achieved by a separate-based coding scheme without ingolvi
The second note on this converse is the one relatedéﬁytype of collaboration between the sensor nodes, shats th

the interval of values that can take the phase shifts. Unfijere is no gain in exchanging information using inter-sens
now, we have considered that phase shifts can take valyg$nections.

in [—m;x]. In fact, Theorem 2 can be extended to the case

where the phase shifts belong to the interfralr/2; 7/2]. V. CONCLUSION AND ONGOING WORK
Therefore, restraining the interval of phase values dods no
break imperatively the separation optimality. To proves tlit
suffices to show that the following inequality

Knowing that the inequality

In this paper, we extended the separation theorem to the case

of separately encoded correlated discrete sources sentiove

GMAC with phase shifts perfectly known at the receiver and

inf Qs @M ) <0 (14) unknown to the _transmitters. Hence, for different assuomgti

Phrg s on the phase shifts, we proved that a set of two-stage ersoder

performing distributed source coding in the Slepian-Welise

and capacity-achieving channel coding leads to an optimal

Adyoi = { T/2— 012, @f 012, € [0;7) system performance. The presented model constitutes one
i —7/2 —b12,; if 012, €[—m;0] of the rare scenarios in network information theory where

it becomes obvious to see that the infimum over the ph the separation theorem hold.s. While previous works in the

aIlst?erature concerned by sending correlated sources oV M

sequences in (37) is less or equal o zero. Then, by mak'?f?annels were more focused on cooperative coding strategie

z;:g:/l\?r: tri?z:td(TZ? ESIT i;lc:jsthﬁlogit::aestiz;nal(ti?d IL f:gsz%aiasgnd on trying unsuccessfully to find necessary and sufficient
| ' 9 conditions for optimality, we showed, by introducing a simal

remains optimal when the phases belongta/2; /2], there and practical variation to the model (which is that of phase

exist other possibilitites of phase intervals for whichsthi_, . . :

. . hifts unknown at the transmitters and Gaussian channel
optimality still holds (as an example, when the phases take. . )
) : noise), that the optimal performance can be simply reached
just two different valuesy and o + 7).

with a separate source-channel coding scheme. As for our

Another important point concerns the fact that in many . . .
. ngoing work, the utility of information exchange between
wireless sensor networks, the sensors may not be at the sam

distance from the collector node. In that case, we sho de separate encoders in the presence of different attenuat

consider an attenuation factgfo,,, associated to each encode actors is under mvesugauon while some new results eﬂmy
- e source-channel separation to the case of Gaussiaresourc
that reflects the quality of the channel between each senger )
. . as been obtained.
and the receiver. If we assume that these attenuation factor

are known at the receiver point, Theorems 1 and 2 can be
easily generalised to include this type of model. APPENDIX

still holds. To this end, by choosing



A. PROOF OF THECONVERSE OFTHEOREM 1

Given a code with a fixed source-channel rateFano’s var(A4;(¢,;)) = Var (Z eIPmiX, 4 Zi)

inequality yields-H(Uy, -+, Un|Y, ®) < Ak, Where, for
a family of codes of increasing block length and achieving

vanishing error probability, we havex — 0 as K —

meS
- NO + Z ]E [Xm’iX;l’,iej((bm’i_¢1n’,7’,)j|

co. To simplify notations, letV 2 (Uge,Xge, ®), ®,; 2 mmes
(q)l,iv"~7(1)1\/[,i) and = No + Z]E XmZX:nz
meS
. XK ] pJ A
4D (Vi Y M Xle,)  (8) 2 3 Re{B XXy ] e/},
meSe mn.,;/n>7€ns'
(21)
for any subsetS C {1,2,---, M}. Now, we can writev.S C
{1,2,---, M}, E [X.m,: X}, ;] is a complex number depending enm’ and
i; we shall call this NUMbEP,, /i = |pm.mr i|€?mm i,
1 Letting the average energy of theh symbol be denoted by
H(Us|Use) = EH(USWSC) Em; , we can rewrite (21) as
1
= —H(Us|Uge, @)
K Var (Ai(¢,;)) = No+ > Emi+T; (22)
= —H(U<|V meS
H(Us|V)
1 1
= ZI(Us;Y|V)+ —H(Ug|V,Y where
ZI(Us YIV) + - H(Ug|V.Y)
(@) 1
S ?I(US, Y|V) —+ )\K ,-TZ =2 Z ‘pm,m’,i| COS(A¢m,m’,i + 0m,m’,i)~ (23)
N m,m’€S
1 1 m'>m
< =N"H{Y|V Y|Ug, V) + A
= K Z (Yi|V) — K H(Y|Us, V) + Ak . o
‘;1 Notice thatEs,,[T;] = 0, which is due to the fact that
1 P A, .,y is uniformly distributed on—m; 7). Therefore, we
_ - - J‘Pm,z . o m,m’,1 9
K ;H(Yl ;Ce XmilV) can proceed with (19) and write
1
e —1 N E —
W 1 X H(Us|Us-) < 7 108 0+Z€:S z; mi + B, [Ti]
< ?ZEQH[logVar(Ai({)*i))] - N " ‘
i=1 —log No + Ak (24)
N log No + A K
K °TOTOK N Em
N L <K10g<1+z:SNO + Ak (25)
< v L ‘ ) v B me
< log (N > Ea. [Vor(di(@ >>J>
N = Letting K — oo, we find the necessary conditions for
I log No + Ak (19) reliable transmissionv.S C {1,2,---, M},
where (a) follows from N
@) H(Us|Us:) < 72 1o <1+ > ) . (26)
mGS
H(Ug|Uge,Xge,Y,®) < H(Ug, Uge|Xg:, Y, ®) (20)
< H(Us, Us.|Y, ®) B. PROOF OF THECONVERSE OFTHEOREM 2: ARBITRARY
- 558 PHASE SEQUENCES
< g
Given a code with a fixed source-channel rateand a
and Eg_,[.] in (b) denotes the expectation with respect tfixed ¢, Fano's inequality yields:Hg(Uy, -, Uy |Y) <

the probability distributiorp(¢y 4, - - -, éar,i). Without loss of Ax (¢). We require that a family of codes of increasing block
generality, we can restrict the code to have mean zero on lalhgth achieves vanishing error probability for all posi

components. Therefore,

since they are unknown at the transmitters, i.e., }ato) —



0 as K — oo. Now, we can write, and

N
1
H(Us|Use) = 2-H(Us|Us) Qi) 2 T; (31)
1 i=1
= — e c -1 l
KH(UslUs ; Xge)

i Z Re ['pmm % €J(A¢m"1 i 00 ms 7.):|

I
Mz

1
= f]¢(U5;Y|USc,XSc)—|— i=1 m=1m'>m
K (32)
1
}H¢(US|US%XS“’Y) Consequently, proving (29) reduces to prove that
1 . infg Qi(¢,) < 0. To this end, we can first derive a
s EI¢(US’Y|US“’XS°) +Ax(9) relation betweerQl 1(¢,_,) andQi(¢,) like the following
N
1 —
< =Y Hy(¥ilUse, Xse) - Q)= Qi (&) (33)
i=1 N -1
1 — Re ||pm iej(¢m,z‘*¢1,i+9m,z,i)
eI Xa) (0 Zle o }
< —Zlog\far (D)) — = ZRe eIt Z |om,1.i ejw’"fi*emv’»i)]
m=1
N N . 4
?log No + Ak (9) (27) = ZRG [e= 790t gy ;]e3%] (34)

i=1
where Hy(.) and I4(.) denote respectively the entropy amé/vhere

the mutual information corresponding to a given arbitraxy .

Since these inequalities must hold for everywe obtain the Lt A i (i AOmai)
tightest conditions by taking the infimum of the RSH term in lprale’® 2> lpm.iile o
(27) with respect tap. Therefore, lettingK goes tooco, we

(35)

m=1

Note that for a given code and a fixeﬂ,fl, the complex

can write e o~ > -
number p; ; is fixed and is independant fromp,. Now, it
becomes easy to prove thatf¢, Ql(qbl) < 0. In fact, for
I =2 we have
H(Ug|Usge) < 1nf{ Zlog 1+ Z N N } N
0 0 : ) )
mesS Q2(¢17 ¢2) — ZRe UPLQJ|63(A¢1,2,1+91,2,1)] . (36)
N i=1
< —inf<1 1 T; . .
- m { g |+t g;s NNO Z } By taking A¢q 2, = m — 61,2, we obtain that
- —log 1+ Z + ¥ 1nf{iz:T} 1an2 (1, ) = Z|pm| <0. (37)
(28) Suppose now that
where we have used again Jensen’s inequality and the mono- inf Qi-1(¢, ,) <0
tonicity of the logarithm in order to take the infimum inside Py B
the log. Now, we will prove that the infimum term in (28)and that this infimum is attained for a certain vake |
cannot be positive, i.e., ¢ using the recurrence relation in (34), we can write
N . * *
infQi(¢p) < Qi(o] ., o))
inf T; » <O0. 29 ¢ -l ==
GO0 S
Notice that if the chosen code satisfigs ,,,» ; = 0 Vm, m/, 4, = Q-1 Z |p1,i
then the equality is achieved in (29) for all phase sequences < 0 (38)
this point will be discussed in more details in section IV. _ - o
Returning back to the proof of (29), let's také = Where the entries of; = (¢j,,...,¢] y) are chosing like
{1,...,1} with 2 < [ < M; note that specifying the subsetthe following
S is just to simplify notations and the following proof holds ¢f =0, —m for i=1 N (39)

VS C{1,...,M}. Define the matrix
Using this result in (28) completes the proof of Theorem 2 for

?, £ (pmi m=1,---,0 i=1--- N (30) arbitrary phase sequences.



(1]
(2]

(3]

[4]
(3]

(6]

(71

(8]

[9]

REFERENCES

C.E. Shannon, "A mathematical theory of communicatioBé|l System
Technical Journal, 27:379-423, 623-656, 1948.

T.M. Cover, A. El Gamal and M. Salehi "Multiple access chafs with
arbitrarily correlated sourcesl'EEE Transactions on Information Theory,
vol.26, issue 6, Nov 1980, pp. 648-657.

G. Dueck, "A note on the multiple access channel with dates
sources” |EEE Transactions on Information Theory, vol.27, issue 2, Mar
1981, pp. 232-235.

T.M. Cover and J.A. Thomaglements of Information Theory, 1991.
A.D. Murugan, P.K. Gopala and H. El Gamal "Correlated s®@srover
wireless channels: cooperative source-channel codiifFE Journal on
Sdlected Areas in Communications, vol.22, Issue 6, Nov 2004, pp. 988-
998.

H. El Gamal, "On the scaling laws of dense wireless sensawaorks:
the data gathering channefEEE Transactions on Information Theory,
vol.51, issue 3, Mar 2005, pp. 1229-1234.

D. Slepian and J.K. Wolf, "Noiseless coding of corretateformation
sources” |EEE Transactions on Information Theory, vol.19, issue 4, Jul
1973, pp. 471-480.

R. Ahlswede, "Multi-way communication channels”, #roc. 2nd In.
Symp. on Information Theory, Tsahkadsor, Armenian S.S.R., 1971, pp.
23-52, Publishing House of the Hungarian Academy of Scient@s3.
J. Barros and S.D. Servetto, "Reachback capacity with-interfering
nodes”, IEEE Symposium on Information Theory (IST), Yokohama,
Japan, 2003.

[10] J. Barros and S.D. Servetto, "Network information flowttweorrelated

sources” |EEE Transactions on Information Theory, vol.52, issue 1, Jan
2006, pp. 155-170.



