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ABSTRACT

In this paper, we propose a framework to model video sequences us-
ing spatiotemporal description of video shots. Spatiotemporal vol-
umes are extracted thanks to an efficient segmentation algorithm.
Video shots are described by building an adjacency graph which
models the visual properties of the volumes and the spatiotemporal
relationships between them. The cost of extracting visual descriptors
for the whole shot is reduced by efficiently propagating and merging
region descriptors on spatiotemporal volumes. For the comparison
of video shots, we propose a similarity measure which tolerates vari-
ability in the spatiotemporal representation. Promising experimental
results are observed on different visual video shot categories.

Index Terms— Spatiotemporal representation, video shot
matching, region-based video indexing and retrieval.

1. INTRODUCTION

The increasing access to video databases has impelled the develop-
ment of video content analysis area. In order to browse or search
particular scenes in large databases, one important aspect is to ex-
tract important information for shots in an efficient and reliable way.
Hence good representation of video shots and indexing techniques
appear both as crucial. Common CBVR systems have mostly relied
on either entirely image-based or region-based representation. Spa-
tial segmentation is performed on key-frames to bring out the differ-
ent shot visual elements, so that the shots are compared by region
matching techniques [11, 3]. However, the segmentation is prone to
important variations within a video sequence, as the scene changes
due to occlusion, shadowing and camera motion.

To make these systems more robust, temporal aspects have also
been investigated. One group of techniques extract directly motion
descriptors for the indexation of video shots [12]. Motion feature
has also been also widely used to segment video shots by tracking
regions in consecutive frames, such as in the VideoQ system [1].
The efficiency of these methods is closely linked to the quality of
the motion estimation process, which can be degraded in case of
complex motion or poorly textured regions. In addition complex
moving objects cannot be extracted easily by the low-level features.
To overcome the problem, Lee et al. [8] have proposed a graph-based
region matching technique using spatial relationships between object
regions.

The latest approach to depict video shots is to consider spatial
and temporal video data simultaneously. In [2], video shots are mod-
elled by a set of elementary moving color patches extracted from the
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3D pixel data. In [6], probabilistic video blobs are considered in-
stead. However, the computational cost of these methods remains
high for long sequences.

The proposed method is both related to the spatiotemporal and
region-based approaches. We consider that spatiotemporal volumes
describe meaningful visual elements and that spatiotemporal rela-
tionships between these volumes can underline the visual shot struc-
ture. This paradigm can be instantiated by depicting video shots with
an Attributed Relation Graph (ARG). The ARG structure is com-
posed of a volume adjacency graph (VAG) representing the relation-
ships among the extracted volumes and of spatiotemporal features
as vertex attributes. We further propose an efficient technique to ex-
tract volume descriptors that benefits from segmentation properties
and a method to build similarity measure between shots adapted to
the spatiotemporal representation.

The article is organized as follows. In section 2, we give an
overview of the proposed framework. Then in section 3, we explain
how we construct the spatiotemporal representation from the video
data and introduce how we create the visual volume descriptors. A
matching and similarity measure between video shots is presented in
section 4. Finally, we illustrate the potential of the framework with
a retrieval experiment on different visual shot categories.

2. FRAMEWORK

A global view of the framework is depicted fig.1. The workflow
is defined as follows. Video data is assumed to be temporally seg-
mented into video shots from camera changes. The spatiotemporal
segmentation module extracts coherent volumes from a given video
shot. Then, the corresponding VAG and the segmentation maps are
used to produce the ARG attributes by the technique described in
section 3.2. Graph and volume descriptors are stored in a database.
After this stage, search and retrieval of video shots can be performed
by matching of ARGs.

3. SPATIOTEMPORAL MODELING

In this section, we explain the different steps needed to reduce video
shot content by the proposed spatiotemporal modeling. Whereas
regions extracted from sampled key-frames take into account only
local spatial information of the shot, spatiotemporal volumes em-
phasize shot subparts that remain temporally consistent. Thus more
confidence on the relevance of the extracted regions can be obtained
from considering shot volumes instead of frame regions.

3.1. Spatiotemporal segmentation

Generally speaking, spatiotemporal segmentation extracts continu-
ous volumes from a video sequence with respect to a certain set of vi-
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Fig. 1. The spatiotemporal framework for ARG matching.

sual features. Several methods have been proposed, where the most
impressive ones are based on graph-cuts [13], but at the expense of
an important computational cost.

We consider here the method proposed by [5] which has good
trade-off between efficiency and accuracy of the extracted volumes.
It is based on the use of graph merging algorithms for grouping pixel
and regions into homogeneous volumes.

Before applying the segmentation algorithm, camera motion is
compensated by the robust method suggested in [9] using an affine
motion model (6 parameters). As a post-processing stage, the vol-
umes can be locally re-segmented when the projected frame regions
do not have relevant size.

Figure 2 shows an example of ARG representation for video
shots. Each circle represents a volume. The radius is function of
the volume size and its color is the mean color of the volume. In
the examples, main volumes are related to the head, the jacket of
the character and the background which is splitted in several parts.
Similar node structure can be found inside the person whereas the
background structure changes.

3.2. Volume Descriptors

Visual descriptors have been intensively investigated in content-
based image and video retrieval. A standardization of these de-
scriptors is proposed by MPEG-7 and has been proved to work
reasonably well for different domain of applications [4]. To extend
existing spatial region/image descriptors to volume descriptors, two
main approaches can be considered:

• Extraction from the whole volume at once.

• Aggregation of frame region descriptors.

The first approach is straightforward for color-based features
which do not depend on the volume mask. In the MPEG-7 standard
[7], these include Dominant Color and Scalable Color descriptors.
Other spatial descriptors consider spatial distribution of one feature

Fig. 2. Examples of video shots and their corresponding ARG.

(Edge Histogram, Color Structure) or are based on 2D image trans-
forms (Color Layout, Homogeneous Texture, Region Shape). In the
first case, the extension to the spatiotemporal domain requires the
redefinition of the descriptors. In the second case, fast implementa-
tions of 3D image transforms have been proposed.

In the second approach, a volume is considered as a sequence
of frame regions. For histogram-based descriptors, MPEG-7 has
proposed the Gof/Gop color for joining multiple image frames of
a video segment by computing the mean, median or intersection
of histograms bins. When adapting to multiple frame regions, the
choice of one of these methods is governed by the expected volume
properties. Short-length volumes are likely to be homogeneous, so
that the descriptors can be averaged. When the volume duration is
more important, median could be preferred as the region features
have more variability. The intersection is quite pessimistic on the
accuracy of the extracted volume, as it represents the least common
characteristics between frame regions. The descriptors concerned
are typically Edge Histogram, Color Structure, Color Layout, Re-
gion Shape. Scalable Color must be first reconstructed in the HSV
domain. For Homogeneous Texture, volume descriptor can be ob-
tained by computing the average intensities and energies inside the
volume, along with the standard deviations. Aggregation can be pre-
ferred in practice as the volume and region descriptors are the same.
Moreover, it enables to reuse existing implementations (MPEG-7
XM) and to communicate with MPEG-7 based systems.

Besides spatial descriptors, we also store the sizes and location
of the volumes. This last feature can be used to qualify spatiotem-
poral relationships. More precisely, each volume is located by its
center and its bounding box. To further consider temporal evolution
of the volumes, we store the locations of the frame regions in the
same way.

3.3. Temporal selection

Extracting descriptors in all frames and all volumes of the shot is a
tedious task, especially when considering complex ones. Therefore,
it could be desirable reduce substantially the cost of this task in func-
tion of the available time or the desired accuracy of the descriptors.

For the aforementioned spatial descriptors, we propose to use
the segmentation to select temporally a set of frames, extract the re-
gion descriptors and finally aggregate the region descriptors to their
corresponding volumes. For this purpose, we consider a selection of
frames FT at times T . Given a fixed size for T , we choose the set
Tsel that maximizes the span of the labeled volumes:

Tsel = argmax
T

X
V ∩FT 6=φ

|V | (1)

The first advantage of this criterion is its independence to the
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Fig. 3. (a)Example of matching between video volumes. (b) The
corresponding bipartite matching graph.

descriptor type. Compared with fixed sampling, a second benefit is
that it offers scalability for the extracted descriptors in function of
the desired total volume span for the shot. Indeed the span increases
with the number of frames selected.

4. SHOT COMPARISON

To compare efficiently video shots, we define a similarity measure
between two ARGs. One important point is that a volume in one
shot can appeared as split into several volumes in another shot due
to scene changes, occlusion and several other factors. In order to
address this problem and limit the complexity of the matching, we
constrain that each volume in the two ARGs to have at most one
match, but we tolerate that two volumes have the same match. This
constraint is illustrated fig.3(a).

We define an attributed ARG as a tuple (V, E, ν). A node
v ∈ V is a volume, an edge e ∈ E a spatiotemporal relationship
between two volumes and ν is a fonction that generates node at-
tributes in the set of volume descriptors D. Let G1(V1, E1, ν1)
and G2(V2, E2, ν2) two attributed ARGs. We consider a directed
bipartite graph L(V, E, W ) with V = V1 ∪ V2 which represents the
matching between V1 and V2 (fig.3(b)). The arcs in E represents
either a match from V1 to V2 or V2 to V1. We denote respectively
by wv1→v2 and wv1←v2 the weight of the matches from V1 to V2

and from V2 to V1. For two vertex sets Q1 ⊂ V1 and Q2 ⊂ V2, we
extend the notation wQ1→Q2 as the sum of the weights from Q1 to
Q2.

The indegree of a node vi ∈ Vi ⊂ L is denoted deg+(vi), its
outdegree deg−(vi). Given the defined constraints on the matching,
we have deg+(vi) ∈ [0, |L/Vi|] and deg−(vi) ∈ [0, 1]. We impose
that the weights of the matches incoming to a node are distributed
uniformly. This is defined as follows :

wv1→v2 =

�
0 if deg+(v2) = 0

1
deg+(v2)

else (2)

wv2→v1 is defined symmetrically. The idea is that when one node
has been matched, we do not consider furthermore its properties, but
only its relationships in these graphs. To establish the matches we
focus on the visual attributes of the ARG. Based on the definition of
the ARG and matching graph, we define a similarity measure which
takes into account both the structural and the visual properties. The
basic similarity between two nodes (v1, v2) ∈ V1 × V2, sn(v1, v2)
is defined as:

sn(v1, v2) = αsv(v1, v2) + βss(v1, v2) (3)

sv is the overall similarity between the volume visual descriptors.
Usually, this can be computed by linear combination of the descrip-
tors in D:

sv(v1, v2) =
X
d∈D

αdsd(v1, v2) (4)

where sd the similarity measure defined for the feature d ∈ D. The
structural similarity ss(v1, v2) is based on the matches between their
respective neighborhoods N1(v1) and N2(v2) in G1 and G2. The
principle is inspired by the normalized cuts [10] which is a dissocia-
tion measure between two subgraphs.

In the matching graph L, we compare the flow incoming to
N2(v2) from N1(v1) to the total flow incoming to N2(v2). This
gives the strength of the match from N1(v1) to N2(v2). Moreover,
when v2 and one of its neighbors n2 ∈ N2(v2) matches both v1, v2

is excluded from N2(v2). Indeed in this case v2 and n2 are likely
to correspond to subparts of v1, i.e. they could be merged in a sin-
gle node. The reasoning is the same for the matches from N2(v2)
to N1(v1). We note M2(v1) = {n2 ∈ N2(v2)|wv1←v2 6= 0} and
M1(v2) = {n1 ∈ N1(v1)|wv1→v2 6= 0} these excluded vertex sets
in the neighborhood of v2 and v1, respectively. Thus we consider
restricted neighborhood of v2 to N ∗2 (v2) = N2(v2)/M2(v1) and
N ∗1 (v1) = N1(v1)/M1(v2). Formally, the similarity is defined as :

ss(v1, v2) =
1

2

 
wN1(v1)→N∗

2 (v2)

wV1→N∗
2 (v2)

+
wN∗

1 (v1)←N2(v2)

wN∗
1 (v1)←V2

!
(5)

Finally, if there are no matched nodes in N1(v1) or N2(v2), the
similarity is set to zero, as there are no common matches between
the neighborhoods.

Now, we consider the complete ARGs. The total similarity is
computed on a set of matched pairs S ∈ V1 × V2:

s(G1, G2) =
1

|S|
X

(v1,v2)∈S

sn(v1, v2) (6)

The selection of the matched pairs is based on the visual simi-
larity. First we compute a similarity matrix between V1 and V2 and
find the best matches S1 from V1 to V2 and S2 from V2 to V1. When
the best match for a volume v1 is not reliable, we further compare
N1(v1) to the neighborhood of the possible candidates. For each
node in N1(v1), we find the best match in the candidate neighbor-
hood. Then we compute the average distance on the k-best matches,
where k is the minimum cardinality of the neighborhoods. In this
way more visual information is considered to select the match.

When all matches have been established, the next step consists
in pruning the matches which are the most visually different. First,
they are not likely to represent the same element, and secondly com-
puting the structural similarity will be not relevant. One method is
to consider the distribution of similarities and choose the number of
matches |S| from the x-percentile of the distribution. Given a fixed
percentile, |S| is low when a few volume matches clearly distinguish
from the other, and high if all the distribution of matches is uniform.
Finally, the algorithm to compute the similarity measure is summa-
rized below.

1. Compute all the visual similarities between V1 and V2.
2. Find the matches S1 from V1 to V2 and S2 from V2 to V1.
3. Build the selection S from S1 and S2.
4. Build the matching graph L from S.
5. Compute the structural similarity for the matches in S.
6. Compute the total distance from visual and structural sim-
ilarities in S.

Table 1. Building of the similarity measure.



Girl Pineapple Turtle Shark Dolphin Dog Ball mean
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n 
P

re
ci

si
on

W (vis)
W (vis+struct)
ST (vis)
ST (vis+struct)

Lect1 Lect2 Drawing Screen Students mean
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n 
P

re
ci

si
on

W (vis)
W (vis+struct)
ST (vis)
ST (vis+struct)

(a) (b)

Fig. 4. Retrieval performance (mean precision). (a) Docon video. (b) Lecture video.

5. EXPERIMENTS

To highlight the advantages of the proposed framework, we con-
ducted experiments for the task of video retrievalWe considered two
different videos: a cartoon video (Docon) from the MPEG-7 dataset,
and a lecture video from the open-video project. For each video,
we defined visual shot categories corresponding to objects appearing
along the movie or a certain type of scene. Significant variation is
generally observed within each category, due to viewpoint changes,
object or camera motion, and interaction between categories.

We compare different approaches for shot representation and
matching. First approach is based on key-frame segmentation based
on a watersheding technique (W) and matching using the visual de-
scriptors only (vis). For the second approach, we consider the full
similarity measure, including visual and structural parts (vis+struct).
Third and fourth approaches use the spatiotemporal representation
(ST) instead of key-frame regions.

Mean average precision results are reported fig.4(a) and fig.4(b)
using Color Structure and Edge Histogram as visual descriptors.
Globally, the performance observed for each category is function
of the variability of the layout and of the extracted descriptors. Best
categories retrieved are depicted globally with discriminative visual
descriptors(screens, shark), whereas the other ones with more vari-
able descriptors and less common elements are more difficult to re-
trieve (girl, ball, students).

As regards shot representation, spatiotemporal approach out-
performs the key-frame approach, in particular in the lecture video
where key-frame regions can be inaccurate and do not reflect well
visual elements in the shot. Using the graph structure leverages the
results for the categories with more variable descriptors, but where a
common structure still remains between shots. The improvement is
noticeable for several categories such as lecturer, girl and ball. This
effect is also more remarkable on the spatiotemporal representation,
as the neighborhood is enlarged and more reliable matches can be
found between shots.

6. CONCLUSION

In this paper, we have presented a new approach to construct spa-
tiotemporal modeling of video shots. Volumes are accurately de-
scribed by a set of visual descriptors, and the structural relations
between volumes are represented by an adjacency graph. With an
adapted graph matching technique, this description enables to com-

pute shot similarities in an efficient way and can potentially adapt to
scene changes. First experiments show that the framework is quite
interesting for video indexing and retrieval applications.
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