
d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in
A framework for attack patterns’ discovery in honeynet data
Olivier Thonnarda,*, Marc Dacierb

aRoyal Military Academy, Polytechnic Faculty, Brussels, Belgium
bInstitut Eurecom, 2229 Route des Cretes, Sophia Antipolis, France
Keywords:

Honeypot forensics

Traffic analysis

Attack patterns

Security data mining

Knowledge discovery
* Corresponding author.
E-mail addresses: olivier.thonnard@rma.a

1742-2876/$ – see front matter ª 2008 Digita
doi:10.1016/j.diin.2008.05.012
a b s t r a c t

Collecting data related to Internet threats has now become a relatively common task for

security researchers and network operators. However, the huge amount of raw data can

rapidly overwhelm people in charge of analyzing such data sets. Systematic analysis

procedures are thus needed to extract useful information from large traffic data sets in

order to assist the analyst’s investigations. This work describes an analysis framework

specifically developed to gain insights into honeynet data. Our forensics procedure aims

at finding, within an attack data set, groups of network traces sharing various kinds of

similar patterns. In our exploratory data analysis, we seek to design a flexible clustering

tool that can be applied in a systematic way on different feature vectors characterizing

the attacks. In this paper, we illustrate the application of our method by analyzing one spe-

cific aspect of the honeynet data, i.e. the time series of the attacks. We show that clustering

attack patterns with an appropriate similarity measure provides very good candidates for

further in-depth investigation, which can help us to discover the plausible root causes of

the underlying phenomena. The results of our clustering on time series analysis enable

us to identify the activities of several worms and botnets in the collected traffic.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Collecting malicious traffic

The experimental study of attacks on the Internet is a very

active research domain, and it has gained a lot of attention

in recent years. Many valuable initiatives exist for capturing

or monitoring malicious activities. Broadly speaking there

are three approaches used to monitor unsolicited traffic. The

first approach uses low- or high-interaction honeypots (Leur-

re.com project; Riordan et al., 2006; Provos, 2004; Baecher

et al., 2006; Werner); in the second approach the so-called

Internet telescopes, or darknets (Moore et al., 2004; Internet

Motion Sensor; Team Cymru), are used in order to monitor

all traffic directed to unused subnets within a locally allocated

address space. The last class of techniques for gathering
c.be (O. Thonnard), mar
l Forensic Research Work
information about computer attacks aims at collecting and

sharing firewall and IDS logs collected from a very large

number of heterogeneous sources (DShield).

Collecting data related to Internet threats has thus become

a relatively common task for security researchers or network

operators. However, effectively analyzing the vast amounts of

data collected using these above-mentioned sensors can

prove challenging. The volume and the diversity of the raw

data can rapidly overwhelm people in charge of analyzing

those data sets. As a result, deciding which samples or which

attack patterns should be investigated first is a difficult task.

1.2. Towards a systematic analysis framework

This research develops a systematic analysis framework for ex-

ploring the malicious Internet traffic obtained from a distributed
c.dacier@eurecom.fr (M. Dacier).
shop. Published by Elsevier Ltd. All rights reserved.

mailto:olivier.thonnard@rma.ac.be
mailto:marc.dacier@eurecom.fr
http://www.elsevier.com/locate/diin

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9 S129
set of honeypot responders. The framework relies on a quality-

based clustering technique specifically designed to identify all

groups of highly similar attack patterns in a ‘‘one-pass proce-

dure’’. Although other dimensions are discussed here below,

the primary clustering feature is ‘‘time signature’’. The contribu-

tion is being able to discover attack patterns via attack trace

similarity, rather than via a rigid signature. More specifically,

the contributions are: (i) an ability to detect attacks as a function

of a series of (potentially stealthier) connections, rather than

detecting a single nefarious connection; (ii) detecting zero-day

or polymorphic attacks based on similarity to other attacks;

and (iii) a systematic approach for obtaining knowledge from

honeynet data that can be leveraged in intrusion detection

efforts for real-world systems or networks.

1.3. Identifying relevant attack features for clustering

Experience has shown that certain attack features may provide

valuable information about the root causes of attack phenom-

ena. First, the geographical location of the attackers may be

useful for identifying attacks coming only from specific coun-

tries, hence revealing something about the spatial aspects of

the attack root causes. The IP subnet characteristics of the

attackers are also an interesting feature for data exploration.

Attackers’ subnets can provide a good indication of the spatial

‘‘uncleanliness’’ of certain networks, i.e. the tendency for

compromised hosts to stay clustered within unclean net-

works, especially for zombie machines belonging to botnets,

as demonstrated in Collins et al. (2007). This information can

thus help us to determine appropriate counter-measures to

defend ourselves against this kind of attack phenomena.

Other studies have demonstrated that certain worms show

a clear bias in their propagation scheme, such as a tendency

for scanning machines of the same (or nearby) network so

as to optimize their propagation (Chen et al., 2003). So, if we

analyze the collected attacks by looking at the distance be-

tween the attackers’ IP addresses and the ones of the victims

(i.e. our sensors), then experience has shown that we can

recognize the propagation mode of certain malware families.

Also, time series analysis can provide useful information

about the underlying attack phenomena and might thus also

be used as clustering feature. In this specific case, the choice

of a good time granularity will depend on the kind of attack

phenomena we want to investigate: for short high-intensity

attacks, like botnet probes or flash worms, it might be useful

to represent attacks with smaller time intervals (e.g. 1 h),

while other types of worms will use a stealthier propagation

scheme that will only show up on a larger time scale (e.g. by

day).

Yet other features can prove relevant at one given time for

learning about the attack processes and the modus operandi

of attackers, such as the name resolution of the attackers

(TLDs, ISPs or hostnames), or the malware characteristics

when available (executable name, MD5 hash, name given by

AV-vendors).

As detailed above, performing network-based forensics on

real-world attack traces can be challenging, as attack features

may varyover timeor are not alwaysrelevant for allphenomena.

In other words, attack phenomena have not only a very large

dimensional space, but also a highly dynamic and changing
behavior. This has motivated us to introduce some flexibility in

our analysis framework, in order to allow the analyst to plug in

different feature vectors and appropriate similarity metrics to

be used in the clustering step. This flexibility helps the analyst

to effectively investigate the collected malicious traffic by taking

different views on the data set. In this work, we illustrate the

application of our framework by exploiting one specific aspect

of the attacks, namely the time series of the attacks, as explained

here after.

1.4. Exploring attack time signatures

We use here the time signatures of a large set of attacks as input

features of our framework, with the objective of discovering

similarities among them. By ‘‘time signature’’, we mean

a time series representing the aggregated source count for

a given type of attack. Fig. 1 gives a concrete example of two

different attacks observed on two different sensors. We repre-

sent on the x-axis, the time (by day), and on the y-axis, the

number of IP sources belonging to a given attack. We consider

that two sources realized the same attack when they have

created a very similar network trace on a honeypot with

respect to the following characteristics: the ordered sequence

of ports that have been targeted on the honeypot, the number

of packets and bytes exchanged in the complete set of connec-

tions, the duration of the whole attack and the packets’

payload. Note that this preliminary classification of the traffic

is explained in more detail in Section 3.1. Each type of attack is

then identified by a unique number. We note that the two

attacks represented in Fig. 1 present strong temporal similar-

ities on both sensors, even though they target completely

different ports (5900/TCP and 1433/TCP).

So, there are several reasons for interest in discovering

similarity patterns between the temporal evolutions of the

attacks. First, very similar temporal patterns can bring some

evidence of synchronized activities on different sensors,

revealing a certain spatial diversity for similar attack activi-

ties, which originate most probably from the same root

phenomenon. Then, the type of pattern (i.e. the ‘‘shape’’ of

the time series) may also reveal valuable information about

the observed activity. For instance, a recurrent diurnal/noc-

turnal activity pattern may indicate a botnet propagation

scheme, as suggested by the diurnal propagation model of

Dagon et al. (2006). The authors observed dozens of botnets

representing millions of victims. They noted diurnal proper-

ties in botnet activity, which might, for example, occur

because victims are clustered in different time zones and

turn their computers off at night. Finally, when we find very

similar patterns shared by completely different attacks, say

for instance probes on completely different TCP ports, this

may also help to discover so-called ‘‘multi-headed’’ attack

tools as identified in Pouget et al. (2006b), which combine

different types of attack techniques (i.e. different exploits) to

propagate.

The remainder of the paper is organized as follows. Section 2

presents a general graph-based clustering method we designed

to discover similarity patterns from a large data set, which we

have implemented in our framework. In Section 3 we illustrate

step-by-step the application of our method to analyze

time series. Then we present the results of the experiments we

Fig. 1 – Two different attacks (identified by no. 60231 and no. 15715) observed on two different sensors (no. 9 and no. 45).

While targeting completely different ports (5900/TCP and 1433/TCP), these attacks present strong temporal similarities.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9S130
performed on a large set of real-world attack traces collected

with 44 worldwide distributed honeypots. We illustrate the

efficacy of our method, and we underline its good potential in

assisting investigations about attack phenomena. Finally, we

conclude with a discussion and we outline some future work.
2. Graph-based clustering

2.1. Method overview

The clustering method of our analysis framework involves the

following steps, which are commonly used in many typical

data mining tasks (Jain and Dubes, 1988):

1. feature selection and/or extraction, and pattern

representation;

2. definition of a pattern proximity measure appropriate to

the data domain; and

3. grouping similar patterns.

In the very first step of any clustering task, we select or

extract a certain feature characterizing a relevant aspect of

the data. Then we represent the aggregate data series with

an adequate means, usually with an array of values (for in-

stance, a times series for representing the temporal evolution

of an attribute). Sometimes, the term ‘‘feature vectors’’ is used

to denote such data series.

Once created, we need an effective means to measure how

similar two data series are with respect to a certain distance.
For that purpose, we can find many valuable contributions

which thoroughly study various types of similarity distances

(e.g. Mahalanobis, Minkowski, Pearson or Spearman correla-

tions, jackknife correlation, etc.). Obviously, the similarity

metric must be carefully determined in consideration of the

original data series and the expected properties of the clusters

(e.g. cluster size, quality, consistency, etc.), but this discussion

lies outside the scope of this work. In Section 3.2, we will briefly

present one efficient similarity measure called SAX, which we

adapted specifically to our honeypot time series to obtain the

desired properties when measuring the similarities.
2.2. Grouping patterns – a graph-based approach

The last step consists of grouping all patterns that look very

similar. There exists a plethora of clustering algorithms for

doing this. We outline and compare some well-known tech-

niques in the last subsection. In the design of our method,

we used a graph-based approach to formulate the problem,

which is for us a convenient representation in this case.

A graph is a structure used to model pairwise relations

between objects from the same domain. It comprises a set of

vertices (or nodes) connected by links called edges, which

can be directed or undirected. We can define G¼ (V, E, w) as

an undirected edge-weighted graph with no self-loops where

V¼ {1, 2, ., N} is the vertex set, E 4 V�V is the edge set and

represents the relationships between each pair of vertices,

and w : E/Rþ is a positive weight function associated with

each edge of E.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9 S131
We can represent the graph G with its corresponding

weighted adjacency matrix (aka the similarity matrix), which

is the n� n symmetric matrix A(i, j) defined as: A(i, j)¼w(i,

j), c(i, j) ˛ E; and 0 otherwise. The weight of each relationship

w(i, j) is computed with the similarity metric defined at step 2.

A clique is defined as an induced subgraph of a (un)directed

graph in which the vertices are fully connected. A clique is

maximal if it is not contained within any other clique.

Hence, finding the largest group of similar elements in

a data set can be transformed into the problem of searching

for complete subgraphs where the links express the similarity

relationships between the vertices. This is a classical NP-

complete problem studied in graph-theory, also known as

the maximal clique problem (MCP) (Bomze et al., 1999). The

MCP is a combinatorial optimization problem that involves

finding the largest subset of fully connected nodes in a graph.

It has many important practical applications, especially in

information retrieval, classification theory and cluster analy-

sis, economics, scheduling, VLSI design and computer vision

(Pardalos and Xue, 1994). In fact, the maximal complete

subgraph was considered the strictest definition of a cluster

in Gary Augustson and Minker (1970). Because of its NP-hard

complexity, many approximate algorithms for solving the

MCP have been developed, like the dominant sets’ approach

(based on replicator equations; Pavan and Pelillo, 2003), local

search heuristics, Hopfield network, ant colony optimization,

and the heuristic-based genetic algorithm, among others (Xin-

shun et al., 2007). Those methods are often elaborate and have

provable bounds on how well they can approximate the MCP.
Fig. 2 – (Left) Three time series of attack 15611 as observed on t

representations obtained with SAX, which are far easier to com

W32/Allaple.B worm.
In the early stages of our framework design, we used the

dominant sets’ approach of Pavan and Pelillo (2003), which

proved to be an effective method for finding maximal cliques.

Although the results were satisfactory in terms of solution

quality, we were still confronted with the problem of a very

high computational cost, mostly due to the fact that MCP

algorithms require the calculation of the complete adjacency

matrix (i.e. N(N� 1)/2 elements of the symmetric matrix A(i,

j)). This is too computationally expensive for our application

due to two constraints: (i) the size of the data set; and (ii) the

function used to compute the pairwise similarities between

complex time series like the ones depicted in Figs. 1 and 2.

2.3. Fast quality-based clustering

2.3.1. Design choices
For the reasons outlined above, we needed to define a cheaper

clustering algorithm to find cliques in our data set. The desired

properties of the algorithm are (i) to identify fully connected

components with a ‘‘one-pass run’’; (ii) to focus on finding

cliques that have a (high) quality guarantee; and (iii) to reduce

the total processing time by eliminating the link calculations

that are not really necessary to obtain the expected results.

The last two properties can be achieved by defining a good

similarity function (i.e. characterized by a low false positive

rate) and by setting a quality threshold on it. This must ensure

a transitivity between any triplet of vertices in a clique. That

is, by setting a high quality threshold, any two vertices of a cli-

que must have a similarity value that is close to that threshold
hree different sensors. (Right) Their respective symbolic

pare. This attack is related to ICMP traffic generated by the

Algorithm 2.1 : FindCliques(V,q)

pattern) V[0]

V) V\V[0]

sim[0]) 1

i) 0

for each p ˛ V

do f i)iþ 1
sim½i)ComputeSimðpattern; pÞ�

clique) {j k sim[j]< q cj ˛ (1, ., jsimj)}
S) S W clique

S) FindCliques(V\S,q)

return (S)

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9S132
or higher. In other words, the algorithm focuses on the consis-

tency of the solutions by setting a certain ‘‘diameter’’ on the

clusters, so that only very close neighbors are clustered to-

gether to form a clique. Since all members of our clusters

will have by design a strong relationship with every other

node, we keep the clique denomination in analogy with the

concept used in graph-theory (even if the cliques we find

may not be maximal). We are aware that this algorithm no

longer addresses the initial MCP introduced in the general

formulation of the problem. These design choices are moti-

vated by a trade-off between the expected properties of the

results and the processing time. We want to quickly discover

the general attack patterns in a large data set. Once the

patterns are revealed, we may analyze specific patterns of

interest in more detail.

2.3.2. Quality-based clustering algorithm
The algorithm works as follows: a candidate clique is formed

by starting with the first pattern. The algorithm computes

the links between the considered pattern and all the remain-

ing ones. All the patterns that have a similarity of at least q

with this pattern are merged into the current clique. If the

clique size is at least 2 (or another threshold value defined

by the user), then the algorithm extracts the clique members

from the data set and saves them for later visual inspection.

The procedure continues with the next available pattern in

the reduced data set. The pseudo-code for the algorithm is

given below. The procedure takes as input parameters a set

of patterns V and a quality threshold q.

2.3.3. Strengths and limitations
The quality-based algorithm has several advantages over

other clustering techniques: firstly, neither the total number

of cliques nor the clique size are needed prior to running the

algorithm; at the end, all cliques will have the expected

quality level; and finally, this straightforward algorithm

has a low computational complexity and thus a fast running

time.

On the other hand, a first limitation of the algorithm is the

requirement for the definition of a quality threshold to decide

if two patterns must be grouped or not. Although the thresh-

old value may change the number and size of the final cliques,

this is not a serious problem in our case. Each clique will have

a guaranteed quality as specified by the user, and we note that

the precise threshold value is not so important. At this point of

our analysis, we want to discover the general patterns present

in the cliques, so they can guide further investigations. We

may accept that our cliques are not maximal ones.

A second limitation is that the algorithm output can be

influenced by the order in which the cliques are formed.

This could be avoided by forming, at each step, candidate cli-

ques for every remaining pattern and by selecting the largest

one. Doing so would minimize the impact of local decisions

on the final clique results, but again this would induce a higher

computational cost.

Another improvement (which we leave as future work)

consists of adding a second pass to the algorithm in order to

assess the quality of the results obtained with a preliminary

quality threshold, and to derive an optimal diameter for

each clique (adaptive approach; De Smet et al., 2002). This
would eliminate clique members that are not significantly

similar to the others, and it would also free the user from

finding an optimal value for the quality threshold.

2.3.4. Comparison with classical clustering techniques
The quality-based clustering has some resemblance to an

agglomerative hierarchical clustering technique, more specif-

ically the complete linkage procedure, which tends to find

small, compact clusters with all patterns in a cluster within

a given diameter threshold. The threshold value is determined

by the level at which the hierarchical tree is cut. For large data

sets, the tree can become extremely complex, so the choice of

where to cut the tree can be difficult to define. Also, the com-

plete linkage algorithm decides to join two elements based

only on the distance between those elements (local decision-

making scheme), which can induce mistakes in the clustering.

Two other classical methods include k-means clustering and

self-organizing maps. Although both algorithms have some

interesting features, one of their main problems is that the

number of clusters (k) must be specified in advance, and

thus the final clustering depends heavily on the choice of k.

In our application, k is unknown prior to the execution of

the clustering. Furthermore, clusters formed by those

methods do not guarantee a certain quality level.
3. Application to honeypot time series

3.1. Experimental environment

For the sake of completeness, we briefly introduce the exper-

imental environment used to collect honeypot data. The

reader familiar with previous publications in the context of

the Leurre.com Project may jump directly to Section 3.2 where

we describe our experiments.

3.1.1. Leurre.com
Our analysis draws upon extensive honeynet data obtained

through the Leurre.com Project (Leurre.com project). The main

objective of this global distributed honeynet is to get a more

realistic picture of certain classes of threats occurring on the

Internet, by using unbiased quantitative data over a long-

term perspective. Since 2003, a distributed set of identical

honeypots based on honeyd (Provos, 2004) have been deployed

in many different countries, and on various academic and

Table 1 – Data set characteristics

Total number
of sources

Data set size Protocol distribution
of the sources

1,738,565 w27 GB TCP only: 26.5%

UDP only: 32.3%

ICMP only: 35.8%

ICMPþTCP: 5.4%

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9 S133
industrial IP subnets. Each platform runs three virtual honey-

pots that emulate different operating systems (two Windows

and one Linux machine) with various common services (e.g.

the ports 21, 23, 80, 137, 139, and 445 are open on Windows hon-

eypots, and ports 21, 22, 25, 80, 111, 514, 515 and 8080 are open

on Linux responders). Each of the three virtual hosts has its

own public IP address, so each platform maintains three public

IP addresses. The collected traffic, including the payloads of the

packets, is automatically stored in an Oracle database. The

traces are also enriched with contextual information, such as

(i) the geographical localization of the attackers (obtained

with MaxMind); (ii) the passive OS fingerprinting (obtained

with P0f); and (iii) the DNS reverse lookups for domain names

and hostnames.

3.1.2. Attack fingerprints
Previous studies within this project focused on techniques for

identifying the attack tools behind the observed network traffic

by using clustering algorithms, and on the use of packet inter-

arrival times (IATs) to characterize anomalous traffic, mali-

cious or otherwise (Pouget et al., 2006a). A clustering engine

(presented in Pouget and Dacier, 2004) classifies all IP sources

based upon their network behavior. An attack source is defined

as an IP address that targets a honeypot platform on a given

day, with a certain port sequence. By port sequence we mean

the ordered list of ports targeted by the source on a honeypot,

so it can involve multiple protocols. For instance, if a source

tries to connect to port 80 (HTTP), and then to ports 8080

(HTTP Alternate) and 1080 (SOCKS), the associated port se-

quence of the attack session1 will be j80Tj8080Tj1080T. The

clustering technique aims to find a good trade-off between

specificity and generalization of the observed activities, by gen-

erating attack fingerprints based on the following network char-

acteristics: (i) the number of virtual machines targeted on

a platform, (ii) the number of packets sent to each virtual ma-

chine, (iii) the total number of packets sent to the platform,

(iv) the duration of the attack session, (v) the average inter-ar-

rival time between packets, and (vi) the associated port se-

quence. A last refinement step is the payload validation,

based on the Levenshtein distance, for the attack sessions

that contain data. If the algorithm identifies within a cluster

multiple groups of attack sessions sharing similar payloads,

it further refines the cluster according to these groups.

In the rest of the text, we will simply use the term attack to

refer to the set of IP sources having the same attack fingerprint

on a honeypot sensor.
3.2. Experiments

We analyzed the attacks collected by 44 honeypot sensors that

are located in various geographical places and belong to differ-

ent IP subnets. These sensors have been selected because they

have been up and running during the whole analysis period,

which spans 486 days starting from September 1st, 2006, until
1 By definition, we consider an attack session to be finished if no
more packets are sent by the source for more than 25 h after the
last received packet.
January 1st, 2008. Some characteristics of our data set2 are

given in Table 1.

3.2.1. Data aggregation
For each attack on a given sensor, we generate an aggregate

source count that we represent with a time series of 486

elements (one source count per day). The choice of 1 day for

the time scale is quite arbitrary and depends on the type of

phenomena we want to discover, as outlined in Section 1. To

take advantage of the distributed aspect of the sensors, we

create the time series of the attacks by considering them

separately by platform. In total we considered a set of 1268

time series which had at least one peak of activity with a min-

imum of 10 sources for a given day. Fig. 1 illustrates this first

step by showing two different attacks observed on two differ-

ent sensors. Although they target completely different ports

(5900/TCP and 1433/TCP), we observe strong temporal similar-

ities between these attacks (mostly around day 100), which is

quite likely due to a common root cause. This has been iden-

tified as ‘‘multi-headed attack tool’’ in Pouget et al. (2006b).

3.2.2. Similarity distance for time series
To compute the similarity between time series, we need to use

a technique that is able to reduce the data dimensionality, so

as to wipe out small details or irrelevant variations due to ad-

ditional noise. We can find numerous appropriate techniques

for this purpose in the scientific literature, such as singular

value decomposition, piecewise aggregate approximation,

discrete Fourier transform, wavelets, etc. The application of

one or another technique depends on the intrinsic character-

istics of the data, like periodicity, regularity or statistical

distribution. The method we chose in this paper, for illustra-

tion purposes, is called SAX (symbolic aggregate approxima-

tion) and falls in the category of PAA techniques which tend

to approximate time series by segmenting them into time

intervals of equal size and summarizing each of these inter-

vals by its mean value. An additional step of SAX regarding

the PAA technique is to use predetermined breakpoints during

the quantization. The quantized time series are then inter-

preted as a string of symbols since every quantization level

is mapped to a given symbol of a finite alphabet. SAX provides

a lower-bounding distance measure that is easy to interpret,

and which can be easily used in our method to decide if two

data series are similar or not. More details about the SAX

technique can be found in Lin et al. (2003).

Note that any other distance that the analyst considers as

relevant can be used transparently in our framework, as long

as it has the transitive property between any triplet of vertices.
2 Note that we do not consider the backscatter traffic for this
study.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9S134
Some care must be taken in setting the appropriate thresholds

for the similarity measurements, but this can be easily done

by inspecting some typical data series. In general, by setting

a very high similarity degree on the measurement given by

SAX (e.g. above 90%), we obtain fairly good results. For data se-

ries with an extremely ‘‘bursty’’ pattern (i.e. only a few high

peaks, and almost no activity elsewhere), some additional

care must be taken when applying SAX. That is, we also define

a local similarity degree between two time series in order to

measure how similar they are w.r.t. their peak values situated

in the upper 0.975-quantile. We refer the interested reader to

Appendix for a more detailed description of this SAX

adaptation.

Fig. 2 illustrates two attack time series that are summa-

rized with SAX, using a compression ratio of 3 days (on the

x-axis) and an alphabet of eight symbols (on the y-axis). Those

two similar time series correspond to the network activity of

the W32/Allaple.B worm as observed on two different sensors;

according to our measurements, the outbreak of this worm

commenced around November 5th, 2006. Allaple.B is a poly-

morphic worm that spreads to other computers by exploiting

common buffer overflow vulnerabilities, including: SRVSVC

(MS06-040), RPC-DCOM (MS04-012), PnP (MS05-039) and

ASN.1 (MS04-007) (Sophos Threat Analysis). To conclude this

illustration, we obtain with SAX a global similarity measure

of 92.3% between the two time series, which seems to be quite

consistent.

3.2.3. Grouping time series
On a commodity desktop, Algorithm 2.1 took about 209 s to

perform the clustering of the time series with a quality thresh-

old of 85%. A total of 164 cliques were found, with less than 3%

inconsistencies, i.e. the ratio of time series showing a pattern

that is significantly different from the others of the same

clique. In total, 755 time series have been classified into
Table 2 – Cliques results’ overview

Classes of activities No. of
cliques

No. of
time series

No. of
sources

Continuous 19 58 (4.6%) 581,136 (33.4%)

Sustained bursts 24 107 (8.4%) 204,336 (11.8%)

Ephemeral spikes

(epiphenomena)

109 554 (43.7%) 98,610 (5.7%)

Inconsistencies

or misclassifications

12 36 (2.8%) 25,716 (1.5%)
cliques. After a visual inspection of each clique, we note that

the quality of the results is high. We also assess the consis-

tency of the results by computing for each clique the mini-

mum similarity degree between a pair of time series which

we term clique quality. We find that 92 cliques have a quality

above 90% and 68 cliques have a quality between 80% and

90%. Only four cliques have a quality under 80% (e.g. around

77%). We now turn to the analysis of the results for which

we give a detailed description in the next subsection.

3.3. Results’ analysis

Table 2 gives an overview of our clique-based classification

made on 1268 attack time series. In total, we obtained 164

cliques that represent 52% of the whole traffic in terms of

attacking sources. We made an in-depth analysis of each

group of time series. We observe that each clique of attack

patterns can be seen as the expression of an attack phenom-

enon, or at least a part of its root causes. Due to space

limitations, we cannot reproduce all details of our clique

analysis. So, we give below only the essential part of our

findings to illustrate the feasibility and the usefulness of

this approach. Surprisingly, we observe only three broad

classes of activities:

(i) Continuous activity: 19 cliques, containing 58 time series

account for more than a third of the traffic volume

(in terms of sources). The involved attacks show a con-

tinuous activity pattern, typically several months, and

they are correlated on many different sensors. After in-

vestigation, we found out that this voluminous traffic

was mainly due to Messenger Spammers (on UDP ports)

and some classical network worms. Fig. 3(left) illustrates

one of these cliques, which has grouped attacks related

to the Allaple worm (Sophos Threat Analysis). This kind
Main port sequences Plausible root causes

j1026Uj1027Uj1028U Scam on Messenger Svc

jIj139Tj445T Classical worms (Allaple.B, Slammer)

j1434U

j135T Continuous scan

jI

jIj445Tj139T Large botnet activity

j5900T and j1433T Multi-headed worm

j2967T, j2968T Sustained scan activities

j445T

j6644T, j17838T, j6769T Ephemeral probes on

unusual high TCP portsj5168T, j53842T, j12293T

j6211T, j50286T, j9661T

j135T, j139T, j445T Targeted scans on common

Windows ports (NetBios,

Symantec, RPC, VNC, etc.)

j2967T, j2968T

j1025T, j80T, j1433T

j5900T, j5901T

j4662T, j4672T Misconfigurations (P2P)

j135T, j139T, j445T Background noise

on common servicesj1433T

Fig. 3 – (Left) Example of continuous activity: those time series belong to a clique of attacks related W32/Allaple.B on seven

different sensors (port sequences: jI, jIj139T and jIj139Tj445T). (Right) Example of sustained bursts: these time series belong

to a clique of attacks related to attack activities on three different sensors, targeting jI, jIj445T, jIj445Tj139T and jIj445Tj80T.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9 S135
of attack was observed on 12 different sensors located in

seven different IP subnets (class A) and most of those at-

tacks are still active at the end of our analysis time-

frame. The quality of this clique (i.e. the minimum

similarity value between a pair of time series) comes

to 84.9%.

(ii) Sustained bursts: 24 cliques containing 107 time series rep-

resenting about 11% of the traffic. The attacks involved

have a typical wave-like activity pattern; they maintain

their activity on a group of sensors for several days and

then disappear for a while. Fig. 3(right) illustrates one of
Fig. 4 – A zoom by hour of the first attack wave of the clique repre

with a period of 24 h, which is likely due to a botnet propagatio
these cliques, for which the quality level is close to 86%.

According to our in-depth analysis, likely root causes for

such phenomena can be attributed to large botnet attack

waves, multi-headed worms (Pouget et al., 2006b) or gen-

eral scan activity. Regarding botnets, we observe typical

diurnal activity patterns when analyzing some of those

sustained bursts with a time scale of 1 h, which probably

indicates that we face botnet propagation attempts com-

ing from zombie machines (see Dagon et al., 2006). This is

illustrated in Fig. 4 where we show a detailed view of the

first attack wave of the attacks represented in Fig. 3(right).
sented in Fig. 3(right). We observe a diurnal activity pattern

n attempt.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9S136
The three other attack waves of that figure have very sim-

ilar diurnal patterns. So, even if the attacks differ by their

port sequences and by the IP addresses of the sources, we

conjecture that all these attacks originate from the same

large botnet (or different botnets controlled by the same

entity).

(iii) Ephemeral spikes: a large majority of the cliques are related

to very ephemeral attacks targeting one or a few sensors

on the same day (Fig. 5). Although numerous, they repre-

sent a small traffic volume. Many of these probes were

observed on quite unusual high TCP ports. In light of

our detailed analysis, we hypothesize this can be due

either to small botnet probes, targeted scan activities or

misconfigurations (e.g. P2P traffic).

We have not yet set ourselves the goal of understanding

completely the phenomena that may hide behind the cliques.

We note, however, that clustering attack patterns with respect

to different features provides very good candidates for further

investigation.
4. Related works

Some facets of our work are related to the works presented in Li

et al. (2005) and Chen et al. (2006), where the authors develop

correlation and indexing techniques that enable the evaluation

of coordinated scanning along several dimensions, mainly

spatial and temporal dispersions. Another closely related

work, which inspired us in some ways, is the seminal work of

Yegneswaran and colleagues on ‘‘Internet situational aware-

ness’’ (Yegneswaran et al., 2005). In that work, they explore

ways to integrate honeypot data into daily network security

monitoring, with the purpose of effectively classifying and

summarizing the data to provide ongoing situational awareness.

A specific emphasis was also given to the problem of accurately

classifying large-scale events related to botnet sweeps and

worm outbreaks.
Fig. 5 – (Left) Example of ephemeral spike, where the superimpo

a single sensor on port j6769T. These attacks had slightly differe

same root phenomenon. (Right) A zoom by hour for three of th
Regarding network traffic classification, other interesting ap-

proaches have been developed for classifying traffic flows

according to the tools or the applications that generate them.

For instance in Karagiannis et al. (2005), the authors design

a multi-level approach called BLINC that aims to classify traffic

‘‘in the dark’’, i.e. without knowledge about the source applica-

tions of the network flows. It is based on identifying the behav-

ioral patterns of hosts at three increasing levels of details: the

social, functional and application levels. This approach is mostly

designed for analyzing traffic at a border router or a core switch;

hence it is not well-suited for a honeynet’s limited view. In

McHugh (2004) the author proposes a framework based on sets

of IP addresses for monitoring and analyzing high speed net-

works and very large data sets containing netflows (while we

use full packet traces gathered with honeypots). Finally, Kannan

et al. (2006) have proposed a framework for aggregating the net-

work connections to application sessions by using a Poisson-

based statistical technique, where a session is defined as a set

of connections between a pair of hosts with a specific purpose

(legitimate or malicious) and eventually involving multiple pro-

tocols. Although similar in certain aspects, our approach is

very different both in terms of techniques and final objectives.

Kannan et al. address the problem of effectivelymodeling source

behavior at the application level, so as to characterize network

traffic and to detect behavioral anomalies.
5. Conclusions

We have presented a systematic analysis framework for

discovering groups of attack traces having similar patterns.

Our framework includes a certain flexibility that allows

analysts to plug in different feature vectors and appropriate

similarity metrics to be used in the clustering step, depending

on the attack features they might find relevant to investigate.

The contribution is being able to draw knowledge out of

honeynet data by discovering attack patterns via attack trace

similarity, rather than via a rigid signature. To illustrate the
sed peaks belong to a clique of similar attacks targeting

nt network fingerprints, but now appear to be related to the

ose peaks.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9 S137
framework, we emphasized the temporal correlations

between attacks. Through the experimental results, we

showed how clique-based analysis can assist honeypot foren-

sics by highlighting the striking correlation patterns between

similar or even completely different attacks. The results of

our clustering applied to time series analysis enabled us to

identify activities of several worms and botnets in the traffic

collected by the honeypots.

The ultimate goal is to help the analyst figuring out if

a new imminent attack can be attributed to the very same

group of attacks, by looking at different correlation patterns

along multiple dimensions (geographical, temporal, IP sub-

nets, etc.). We are considering ways to improve our frame-

work so that it can be applied or used in real-world data

sets to detect imminent or latent intrusions. To achieve

this goal, we will adapt the framework so it can systemati-

cally cross-correlate the network traces with respect to dif-

ferent attack features.

Acknowledgements

This work has been partially supported by the European

Commission through project FP7-ICT-216026-WOMBAT

funded by the seventh framework program and by the Resist

Network of Excellence (contract number 026764). The opinions

expressed in this paper are those of the authors and do not

necessarily reflect the views of the European Commission.

Appendix.
A robust similarity metric for time series

To measure the similarity between time series, we have

adapted SAX (symbolic aggregate approximation; Lin et al.,

2003), a PAA3 technique which tends to approximate time

series by segmenting them into intervals of equal size and

summarizing each of these intervals by its mean value. An

additional step of SAX is to use predetermined breakpoints

during the quantization. The quantized time series are then

interpreted as a string of symbols since every quantization

level is mapped to a given symbol of a finite alphabet. An

SAX representation of a time series T of length N can be

denoted by WT(N, w, a), where N is the number of elements

in T, w is the number of segments in the SAX representation

of T, and a is the alphabet size (number of quantization levels).

The ratio r¼N/w is called the compression ratio. A value of

r¼ 10 means that 10 elements of T are mapped to a single

symbol in WT. Prior to the quantization, the time series are

standardized w.r.t. their mean and standard deviation. SAX

provides a distance measure that lower bounds the original

distance [e.g. Euclidean, see Lin et al. (2003) for the proof]. It

estimates the distance between two time series T1 and T2 as

the distance between their SAX representations WT1 and

WT2 . For the sake of efficiency, inter-symbol distances can be

pre-computed based on a normal distribution of the time

series and loaded in a lookup table. Let T1 and T2 be two

time series of the same length N, then the minimum distance

given by SAX can be calculated as follows:
3 Piecewise aggregate approximation.
SAX
�
WT1

;WT2

�
¼

ffiffiffiffi
N
w

r ffi Xw

i¼1

distðWT1
ðiÞ;WT2

ðiÞÞ
!2

vuut
The dist() function returns the inter-symbol distance and is

implemented using a table lookup for better computational

efficiency. Fig. 6 gives an example of a time series from our

data set that has been ‘‘symbolized’’ with SAX, using a com-

pression ratio of 2 days and an alphabet of six symbols. This

time series corresponds to probes on port 2968/TCP

(Symantec).

Global similarity measure. We define a global similarity in-

dex between a pair of symbolic time series by using the

formula below. The denominator represents the largest

lower-bounding distance that we can obtain theoretically

with SAX, as calculated for two symbolic series WT and ~WT

that have the largest difference between every pair of sym-

bols for all points.

SIMG

�
WT1

;WT2

�
¼ 1�

SAX
�
WT1

;WT2

�
SAX

�
WT; ~WT

�
Local similarity measure. SAX has by design an important

limitation. The predetermined breakpoints used during the

quantization are defined assuming that time series have

a Gaussian distribution. Many attacks though exhibit a temporal

pattern with only a few spikes and zeros or very small values

elsewhere. This leads to a skewed distribution and a median

value close to zero. In that case, the high similarity degree

given by SAX is obviously biased, due to the large amount of

very small or zero-values. We can illustrate this with a typical

example of two time series that have a few high peaks (Fig. 7).

The global SAX similarity between those two signals is about

90%, which is definitively inconsistent with the shapes of

the time series.

To circumvent this problem, we define also a local similarity

measure which compares only the relevant variations of the

two signals, on a point-by-point basis. By ‘‘relevant’’ we mean

the values that are situated in the upper 0.975-quantile of the

timeseries.Thus, for timeserieswitha few highpeaks andzeros

elsewhere, this measureconsiders only the similarities between

thosepeaks,sincethey are located inthe upper 0.975-quantile of

the distribution. Let X be the set of points that are situated in the

upper quantile UQ for either the first symbolic series WT1 or the

second symbolic series WT2 . More formally

XUQ ¼ W
2

k¼1

�
xi

��WTk
ðxiÞ > UQ; ci˛

�
1;.;

��WTk

��	�
Now we can define the local similarity between two time series

as

SIML

�
WT1 ;WT2

�
¼ 1�

PjXUQ j
j¼1 SAX

�
WT1

�
xj

�
;WT2

�
xj

��
PjXUQ j

j¼1 SAX
�

WT

�
xj

�
; ~WT

�
xj

��

Here the symbolic series WT and ~WT are generated so as to

obtain the largest difference between every pair of symbols,

hence we compute for the local points XUQ the highest lower-

bounding distance that we can obtain with SAX. By applying

the formula given by SIML, we obtain a local similarity of 0% be-

tween the two time series represented in Fig. 7, which is much

Fig. 7 – The inconsistent global similarity degree between those time series (about 90%), calculated with SAX, is biased due

to the large amount of small and zero-values, leading to a median close to zero. The definition of a local similarity measure

on the values in the upper quantile allows the two dissimilar signals to be discriminated.

Fig. 6 – An example of an attack time series (left) and its symbolic representation (right) obtained with SAX (compression

ratio of 2 days).

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9S138
more consistent than the global similarity value of 90%. So, by

combining both similitudes (i.e. global and local), we obtain

now an effective similarity measure for comparing our time

series.
r e f e r e n c e s

Baecher P, Koetter M, Holz T, Dornseif M, Freiling F. The
nepenthes platform: an efficient approach to collect malware.
In: Proceedings of the 9th international symposium on recent
advances in intrusion detection (RAID); September 2006.
Bomze I, Budinich M, Pardalos P, Pelillo M. The maximum clique
problem. In: Handbook of combinatorial optimization, vol. 4.
Boston, MA: Kluwer Academic Publishers; 1999.

Chen B, Yegneswaran V, Barford P, Ramakrishnan R. Toward
a query language for network attack data. In: Second IEEE
workshop on networks meets databases (NetDB ’06); April 2006.

Chen Z, Gao L, Kwiat K. Modeling the spread of active worms; 2003.
Collins MP, Shimeall TJ, Faber S, Janies J, Weaver R, De Shon M,

et al. Using uncleanliness to predict future botnet addresses.
In: IMC ’07: Proceedings of the seventh ACM SIGCOMM
conference on Internet measurement. New York, NY, USA:
ACM; 2007. p. 93–104.

Dagon D, Zou C, Lee W. Modeling botnet propagation using time
zones. In: Proceedings of the 13th annual network and
distributed system security symposium (NDSS’06); February
2006.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 1 2 8 – S 1 3 9 S139
De Smet F, Mathys J, Marchal K, Thijs G, De Moor B, Moreau Y.
Adaptive quality-based clustering of gene expression profiles.
Journal of Bioinformatics 2002;18:735–46.

DShield. Available from: <http://www.dshield.org>.
Internet motion sensor. Available from: <http://ims.eecs.umich.

edu/>.
Gary Augustson J, Minker Jack. An analysis of some graph theoretical

cluster techniques. Journal of the ACM 1970;17(4):571–88.
Jain AK, Dubes RC. Algorithms for clustering data. Prentice-Hall

advanced reference series; 1988.
Kannan J, Jung J, Paxson V, Koksal C. Semi-automated discovery

of application session structure. In: IMC ’06: Proceedings of the
sixth ACM SIGCOMM conference on Internet measurement.
ACM; 2006. p. 119–32.

Karagiannis T, Papagiannaki K, Faloutsos M. Blinc: multilevel
traffic classification in the dark. SIGCOMM Computer
Communication Review 2005;35(4):229–40.

Li X, Bian F, Zhang H, Diot C, Govindan R, Hong W, et al. Advanced
indexing techniques for wide-area network monitoring. In:
First IEEE international workshop on networking meets
databases (NetDB); 2005.

Lin J, Keogh E, Lonardi S, Chiu B. A symbolic representation of
time series, with implications for streaming algorithms. In:
Proceedings of the eighth ACM SIGMOD workshop on research
issues in data mining and knowledge discovery, California,
USA; 2003.

McHugh J. Sets, bags, and rock and roll: analyzing large data sets
of network data. In: ESORICS; 2004. p. 407–22.

Moore D, Shannon C, Voelker GM, Savage S. Network telescopes:
technical report. CAIDA; April 2004.

Pardalos PM, Xue J. The maximum clique problem. Journal of
Global Optimization 1994;4:301–28.

Pavan M, Pelillo M. A new graph-theoretic approach to clustering
and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition; 2003.

Provos N. A virtual honeypot framework. In: Proceedings of the
13th USENIX security symposium; 2004.

Pouget F, Dacier M. Honeypot-based forensics. In: AusCERT2004,
Brisbane, Australia; 23rd–27th May 2004.

Pouget F, Dacier M, Zimmerman J, Clark A, Mohay G. Internet
attack knowledge discovery via clusters and cliques of attack
traces. Journal of Information Assurance and Security March
2006a;1(1).

Pouget F, Urvoy Keller G, Dacier M. Time signatures to detect
multi-headed stealthy attack tools. In: 18th annual FIRST
conference, June 25–30, 2006, Baltimore, USA; June 2006b.

Riordan J, Zamboni D, Duponchel Y. Building and deploying billy
goat, a worm-detection system. In: Proceedings of the 18th
annual FIRST conference; 2006.

Sophos threat analysis. W32/allaple-b. Available from: <http://
www.sophos.com/>.

Team Cymru. Darknet project. Available from: <http://www.
cymru.com/darknet/>.

The Leurre.com project. Available from: <http://www.leurrecom.
org>.
Werner T. Honeytrap. Available from: <http://honeytrap.
mwcollect.org/>.

Xinshun X, Jun M, Jingsheng L. An improved ant colony
optimization for the maximum clique problem. In: Third
international conference on natural computation (ICNC 2007),
vol. IV; 2007. p. 766–70.

Yegneswaran V, Barford P, Paxson V. Using honeynets for
internet situational awareness. In: Fourth ACM SIGCOMM
workshop on hot topics in networking (Hotnets IV); 2005.

Olivier Thonnard graduated as an Engineer in Telecommuni-

cations from the Royal Military Academy, in Belgium. He

also holds a Master in Applied Computer Science from the

Vrije Universiteit Brussel. He is currently completing a PhD,

focused on honeypot traffic analysis, at EURECOM (France).

As an Officer, he is teaching at the Polytechnic Faculty of

the Royal Military Academy, where he is involved in several

courses related to computer and network security. His

research interests include intrusion detection, honeypot

technology, and network traffic analysis. His current research

activities are closely related to the analysis of Internet threats.

Most of his work concentrates on the identification of attack

patterns and trends in network traces, by means of classifica-

tion and correlation techniques applied to large sets of

real-world attack traces. For that purpose, he is developing

new specific data mining techniques based on clustering,

correlation methods, and clique algorithms.

Marc Dacier has joined Symantec as the director of Symantec

Research Labs Europe in April 2008. From 2002 until 2008, he

was a professor at EURECOM, France (www.eurecom.fr). He

also was an associate professor at the University of Liège, in

Belgium.

From 1996 until 2002, he worked at IBM Research as the

manager of the Global Security Analysis Lab. In 1998, he co-

founded with K. Jackson the ‘‘Recent Advances on Intrusion

Detection’’ Symposium (RAID). He is now chairing its steering

committee. He is or has been involved in security-related

European projects for more than 15 years (PDCS, PDCS-2,

Cabernet, MAFTIA, Resist, WOMBAT, FORWARD). He serves

on the program committees of major security and dependabil-

ity conferences and is a member of the steering committee of

the ‘‘European Symposium on Research for Computer Secu-

rity’’ (ESORICS). He was a member of the editorial board of

the following journals: IEEE TDSC, ACM TISSEC and JIAS. His

research interests include computer and network security,

intrusion detection, network and system management. He is

the author of numerous international publications and several

patents.

http://www.dshield.org
http://ims.eecs.umich.edu
http://ims.eecs.umich.edu
http://www.sophos.com
http://www.sophos.com
http://www.cymru.com/darknet
http://www.cymru.com/darknet
http://www.leurrecom.org
http://www.leurrecom.org
http://honeytrap.mwcollect.org
http://honeytrap.mwcollect.org
http://www.eurecom.fr

	A framework for attack patterns’ discovery in honeynet data
	Introduction
	Collecting malicious traffic
	Towards a systematic analysis framework
	Identifying relevant attack features for clustering
	Exploring attack time signatures

	Graph-based clustering
	Method overview
	Grouping patterns - a graph-based approach
	Fast quality-based clustering
	Design choices
	Quality-based clustering algorithm
	Strengths and limitations
	Comparison with classical clustering techniques

	Application to honeypot time series
	Experimental environment
	Leurre.com
	Attack fingerprints

	Experiments
	Data aggregation
	Similarity distance for time series
	Grouping time series

	Results’ analysis

	Related works
	Conclusions
	Acknowledgements
	A robust similarity metric for time series
	References

