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I. ABSTRACT

We consider a cognitive radio scenario in which two (or
more) operators providing services in the same area wish
to share the same licensed band of spectrum. This scenario
differs from the classical cognitive setup with a primary and a
secondary operators, as both operators here are instead on an
equal footing. The operators face the choice of competition
or cooperation in the way they choose their transmission
parameters (here beamforming vectors) to communicate with
their respective users. We build on interesting recently pub-
lished work [5] [6] analyzing the gains of cooperation in this
context and propose novel techniques for beamforming within
this interference channel. The proposed techniques outperform
classical non-cooperative game solutions and mimic known
cooperative game solutions while introducing a distributed
aspect for the algorithm.

II. INTRODUCTION

Interference mitigation is a central problem in cognitive
radio. We consider here the problem of independent operators
sharing one identical band in the same geographical area, thus
creating interference to one another. This context is different
from the traditional cognitive setup where some hierarchy is
respected between a primary operator and a secondary operator
sharing the band. In our scenario, there is no hierarchy as both
operators seek to maximize the rate experienced by their own
users by the choice of transmission parameters, at the cost
of creating and receiving interference to/from the other party.
In our paper, we consider multiple-antenna transmitters and
the choice of a transmission parameter (from the base to the
terminal) is limited to the choice of a beamforming vector,
subject to a transmit power constraint. However other type
of transmission parameters could also be considered such as
power level, modulation/coding, subcarrier assignement etc.

As the the operators (and their users) have the selfish goal
of maximizing their own performance, this results in a conflict
situation between the transmitter-receiver pairs. Game theory
has been a popular tool for years for analysing optimization
problems with conflicting objectives by independent players
[7] [8]. The classical way of analyzing performance opti-
mization in this scenario is through so called non-cooperative
games [7] [10] . The optimal operation point is then known to

be the Nash equilibrium, defined to be the set of transmission
strategies, such that unilateral deviation from it by one of
the player cannot result in an increase of his/her uitility
(here, rate). However, in the context of spectrum sharing, the
NE can often be seen as a worst case scenario, over which
improvements can be made by using concepts of bargaining
and learning [11].

A game where some form of trust is established between
players for the sake of maximizing their utilities jointly is
referred to as a cooperative game. Such games have been
brought up recently in the wireless networking literature [1]
[2] [3]. The trust is exploited to allow bargaining between the
players. The optimal point of operation was analyzed in the
game theory literature and referred to as the Nash bargaining
(NB) point. The application of cooperative games and NB
theory to the spectrum sharing problem was undertaken in
[4] [5] [6] [9]. The advantage of the NB point over the
classical NE is that it is possible to operate closer to the
Pareto boundary of the rate region. The disadvantage of it is
that the computation of the NB-achieving strategies require
a full exchange of channel state information between the
users, which is not possible in practice, especially in the
cognitive context where different users belong to different
operators. The practicality thus decreases with the growth of
the network. Clearly there is a trade-off between cooperation
and ability to implement interference mitigation algorithms
in a distributed manner. This paper aims at exploring this
trade-off by proposing semi-distributed techniques that exploit
cooperation in the spectrum sharing context.

More specifically, we propose an iterative beamforming
algorithm where each transmitter updates its transmission
vector as function of a single bit of feedback provided by
their terminal. The bit of feedback allow the transmitters to
implicitly learn about the channel from the other transmitters,
thus improving their own strategy, while maintaining semi-
distributedness. In one version of the algorithm, the feedback
is exploited in order to adjust the transmit beamforming vector
as a linear combination of the NE solution and the so-called
zero forcing solution.

Although mainly heuristic in nature, this algorithm finds
some theoretical justification in the recently published lit-
erature. [5] and [6] showed that all beamforming strategies



resulting in rate points lying on the boundary of the rate
region (so-called Pareto boundary) are composed from a linear
combination of the zero-forcing solution and maximum-ratio-
combining solution. But in principle, the construction of such
beamformer with an algorithm other than exhaustive search or
some other centralized technique, remains an open problem.
Our solution thus serves as an practical alternative solution to
exploit cooperation.

III. SYSTEM MODEL

A. Channel model

We consider a set of M operators, each featuring the
downlink communication between a base station equipped
with Nt antenna and one receiver node, all sharing the same
frequency band in a given geographical area. Note that here,
whether the band is licensed or unlicensed is irrelevant as we
ignore any other external source of interference.

Each receiver node i, 1 ≤ i ≤ M , has a single receive
antenna and therefore sees a 1 ×MNt MISO channel. The
MISO channel between receiver node i and transmitter node
k is a complex vector H̄ki ∈ C1×Nt .

H̄ki =
√
PL(dki)Y Hki (1)

where PL(dki) is the path loss of dki, distance between
transmitter k and receiver i. Y is the linear scale shadowing
(which in dB is gaussian distributed with zero mean and
shadowing variance σ2

y). Hki is a complex gaussian vector
with zero mean and unit variance.The symbol si has unit
energy E|si|2 = 1. The channel vector is hii ∈ C1×Nt and
the beamforming vector is wi ∈ CNt×1. The receive signal of
user i is

yi = hiiwisi +
M∑
k 6=i

hkiwksk + ni. (2)

where ni has variance σ2
n.

1) User rates and network sum rate: The Signal-to-
Interference-and-Noise-Ratio (SINR) of user i is

γi = γi(w1, . . . ,wM ) =
|hiiwi|2∑M

k 6=i |hkiwk|2 + σ2
n

(3)

Assuming perfect codes, the theoretic data rate of user i, ri,
is

ri = log2(1 + γi) (4)

and the network overall sum rate is therefore

R =
M∑
i=1

ri (5)

2) Local Channel Information: We assume the transmitter
nodes have only locally observable information of the chan-
nel, to ensure semi distributed-ness. This includes the direct
channel hii and the interference channel to other receiver
nodes hik; transmitter nodes do not know the direct channel
of other users hkk or the interference channel from others to
its receiver hki. Furthermore, we assume that the receiver is
able to measure its local signal to interference and noise ratio

(SINR). The goal by the transmitters is to optimize the choice
of a beamforming vector based on this limited information,
so as to reach ”good” points in the achievable rate region.
There may be numerous desirable points in the achievable rate
region depending on the objective of the system. However in
a spectrum sharing scenario with independent operators it is
likely that points maximizing a trade-off between sum rate
and fairness are desirable, rather than maximizing sum rate
alone. It is very interesting to see that cooperative game theory
provides an answer (or at least a framework) for this problem.
In this framework, the maximization of individual rates is the
objective (not the sum rate) and cooperation only serves that
purpose.

B. Achievable rate region and pareto boundary
We assume that no interference precancellation is allowed

and interference from other transmitter nodes are treated as
noise. The achievable rate region R is characterized by a set
of all possible rate tuples r such that each rate element ri
satisfies the power constriant.

R =
{
r = (r1, . . . , rM ) : |wi|2 ≤ 1, 1 ≤ i ≤M

}
(6)

The pareto boundary R∗ is simply the boundary of the
achievable rate region.

Definition 1: The pareto boundary contains rate tuples r =
(r1, . . . , rM ) such that any increment of any user’s rate in the
tuple would fall outside the achievable rate region defined in
equation 6.

C. Particular solutions
In this section, we first discuss some particular solutions for

the joint beamforming problem above, as introduced recently
in [5]. These solutions are not always good ones, but have
the merit of being simple to understand and they bear strong
connections with game theory. These solutions are generalized
readily from classical single cell MIMO theory.

1) The Zero-Forcing solution: The philosophy behind the
Zero-Forcing solution (ZF) is altruism in a game theory sense.
This means that each transmitter selects a beamforming vector
so that no interference is created to other receivers. The ZF
beamformer is in the null space of the channel matrix between
transmitter i and the remaining receivers. Denote the channel
matrix excluding the channel from transmitter i by H−i ∈
CNt×M−1,

H−i = [hTi1, . . . ,h
T
i(i−1),h

T
i(i+1), . . . ,h

T
iM ]. (7)

Define the projection matrices onto the column space of H−i
[5]

ΠH−i = H−i
(
HH
−iH−i

)−1
HH
−i (8)

and the orthogonal complement

Π⊥H−i
= I −H−i

(
HH
−iH−i

)−1
HH
−i. (9)

The ZF solution is therefore

w(ZF )
i =

Π⊥
H†−i

h†ii

|Π⊥
H†−i

h†ii|
(10)



where H denotes complex conjugate transpose. Note that if
the null space of H†−i has dimension larger than one, the ZF
solution is the projection of h†ii onto the null space such that
|hiiw(ZF )

i | is the largest.
2) The Maximum-Ratio-Combining solution: The

maximum-ratio-combining (MRC) beamformer is employed
to maximize the received power selfishly at the user, by
alining the direction of the beam and the channel, ignoring
the resulting interference generated. In a game theory sense,
it forms a egoistic solution. Also it can be shown to coincide
with the Nash Equilibrium (NE) in a non-cooperative strategic
game [5] [6].

The MRC breamformer w(MRC)
i for base station i is

w(MRC)
i =

h†ii
|hii|

(11)

where † denotes the complex conjugate transpose. Like the ZF
solution the computation of the MRC solution only requires
channel knoweledge which is locally observable at the base
(at least in a TDD mode). The following theorem gives an
intriguing characterization of the Pareto optimal beamforming
strategies. It will serve a justification for the algorithm pro-
posed later on.

Theorem 1: [5] Any point on the Pareto Boundary is proved
to be achieved by beamforming vectors which are the linear
combination of the zero-forcing solutions maximum-ratio-
combining solutions . ∀r = (r1, . . . , rM ) ∈ R∗, 1 ≤ i ≤M,

ri = log2(1 + γi({wk})) (12)

where wk = αkw
(ZF )
k +(1−αk)w

(MRC)
k

|αkw
(ZF )
k +(1−αk)w

(MRC)
k |

and 0 ≤ αk ≤ 1, 1 ≤
k ≤M .

IV. DISTRIBUTED ALGORITHMS

In this section, we present a distributed bargaining solution
(DBS) and we will compare it to the non-cooperative (Nash
E) and altrustic solutions above presented. The difficulty is
that the optimum cooperative points (on Pareto boundary)
are given by a linear combination between the ZF and MRC
beamformers where the weights are a function of the com-
plete, centralized CSIT. To preserve semi-distributedness, we
introduce the idea of a limited feedback link from each user
and its serving base. The second novel aspect is the idea of
iterative bargaining where the transmitters will simultaneously
realize small increments of their beamformer in a directon
leading to improvements for all parties involved. Users are
expected to monitor their rates and indicate to their serving
base whether the bargaining is successful or not (via a single
bit of feedback). In the proposed framework, a loss of rate by
one of the users will cause this user to cease the cooperation.

A. The DBS algorithm

We provide an iterative algorithm which approaches the
pareto boundary by incrementally steering the beamforming
vector in each iteration so that every transmitter and receiver
pair would have a higher transmission rate.

Denote the beamforming vector of transmitter i in iteration
j by wi(j). Intuitively, it is reasonable to initialize the
beamforming vectors wi(0) to be the MRC solutions w(MRC)

i

because as users start off with a non-cooperative setting.
However they can also initialize in an joint altruistic setting
(see later).

The beamforming vector is updated at each iteration j by

wi(j) = wi(j − 1) + δw(j) (13)

wi(j)→
wi(j)
‖wi(j)‖

(14)

where δw(j) is computed based on the available (quasi-
distributed) CSIT feedback. At each iteration j, each receivers
computes its rate r

(j)
i = log2 (1 + γi(w1(j), . . . ,wM (j)))

using locally available information ,

r
(j)
i = log2

(
1 +
|hiiwi(j)|2

IPi(j)

)
(15)

where IPi(j) is the measured interference and noise power at
receiver i at j-th iteration.

IPi(j) =
∑
k 6=i

|hkiwk|2 + σ2
n (16)

and reports to its transmitter a single bit to inform the base
about its satisfaction: increment of data rates (1) or decrement
of data rates (0).

B. Iterative Bargaining

Note that MRC outperform ZF solutions in low SNR
region and vice versa in high SNR. To further improve the
performance, we need an algorithm that can adapt to the
channel realizations. and can distributedly and dynamically
operate at a better sum rate point. Therefore, we have the
following initialization policy:

wi(0) =

{
w(ZF )
i if R(ZF ) > R(MRC);

w(MRC)
i otherwise.

(17)

where R(ZF ) =
∑M
i=1 log2(1 + γi(w

(ZF )
1 , . . . ,w(ZF )

M )) and
R(MRC) =

∑M
i=1 log2(1 + γi(w

(MRC)
1 , . . . ,w(MRC)

M )). It is
interesting to note that different update mechanics in (13)
would result in a different data rates trajectory (data rate
improvement curve) and would result in a different converged
system sum rate. Here we provide two simple examples of
δwi(j) which will be shown later to perform better than the
non-cooperative and altruistic solutions. Both these algorithm
provide with a trajectory linking the MRC and ZF points in
the rate region.

1) Zero-Forcing Increment (ZFI): In ZFI, assuming we start
with MRC solution, the beamforming vector is steered towards
the ZF solution in each iteration. Intuitively, the transmitters
are willing to cooperate by lower the interference level caused
to other receivers as long as they get benefits, increment
in transmission rates, in return. The beamforming vector of
transmitter i in iteration j is updated as

wi(j + 1) = wi(j) + αiw
(ZF )
i (18)



where αi is a preset step size constant. The beamforming
vector is then normalized as in equation (14). On the other
hand, if we start with ZF solution, the beamformer is steered
towards the MRC solution in each iteration.

2) Orthogonal Bases Increment (OBI): In OBI, the beam-
forming vectors are a linear combination of the ZF solution
and the following vector of orthogonal to ZF solution,

w⊥(ZF )
i =

ΠH†−i
h†ii

|ΠH†−i
h†ii|

. (19)

Let the beamformer of transmitter i at iteration j be

wi(j) =
√
βi(j)w

⊥(ZF )
i +

√
1− βi(j)w(ZF )

i . (20)

As illustrated in [5] [6], to achieve pareto optimality, it is
sufficient to parameterize βi(j) over 0 ≤ βi(j) ≤ β̃i, where
L1 = |ΠH−ihii|2, L2 = |Π⊥H−i

hii|2 and β̃i = L1
L1+L2 .

To initialize, the beamformer equals

βi(0) =
{
β̃i if R(MRC) > R(ZF )

0 Otherwise.
(21)

At each iteration j + 1,

βi(j + 1) =
{
βi(j)− δβ if R(MRC) > R(ZF )

βi(j) + δβ Otherwise.
(22)

where δβ is a predefined constant. The beamformer is then
normalized as in equation 14.

C. Stopping Condition

A stop condition is implemented so that the beamformer
trajectory is halted as near as possible to the Pareto boundary.
The stop condition reflects the sharing policy and many
options are available. A reasonable and intuitive stopping
condition is that each transmitter would stop cooperating and
terminates the algorithm when it encounters a decrement of
transmission rate. User i, 1 ≤ i ≤M would stop cooperating
if

|hiiwi(j)|2

IPi(j)
>
|hiiwi(j + 1)|2

IPi(j + 1)
(23)

where IPi(j) is the measured interference and noise energy
in equation (16).

V. RESULTS AND DISCUSSION

In this section, we illustrate the dynamics (trajectory in the
rate region) and the rate performance of DBS. We choose to
plot the sum rate.

A. Dynamics of DBS

In figure 1, the achievable rate region is plotted for two
transmitter receiver pairs. The ZF solution and MRC solution
are both marked within the achievable rate region. The signal
to noise ratio is at 15dB. In this channel realization, neither the
ZF or the MRC is reaching the pareto boundary. The trajectory,
rate bargained at each iteration, starts at the MRC solution.
The solid line is the trajectory with stopping condition which
ensures the bargaining stops when one of the transmitters

has rate decrement. The dotted line is the trajectory path
without stopping condition. As seen, the path eventually goes
to the ZF point but there is no guarantee of each transmitters’
rates. Note that the beamforming vector is steered towards
ZF beamformer. Yet, it stops before reaching the ZF solution
because one of the transmitter encounters rate decrement
which results in a higher sum rate operating point and close to
the pareto boundary. As shown in the figure, the resulting rate
is higher than both ZF solution and MRC solution. Note that
DBS reaches close to the Pareto boundary in 3 iterations in
this realization which means that only 3 bits of feedback are
required to improve the performance. With such small amount
of overhead, the performance of the system is significantly
improved.

B. Performance Comparison of DBS

The sum rate comparison between DBS, ZF and MRC
between two transmitter pairs against SNR is illustrated in
figure 2. In low SNR, SNR < 9dB, the interference is
not strong, MRC outperforms ZF as expected. We see that
ZFI and OBI outperform conventional NE MRC solution. In
medium and high SNR, ZF outperform MRC because the
interference power is stronger than noise power and mitigation
of interference improves performance. Because of the adaptive
initialization, ZFI and OBI outperform ZF solution.

In figure 3, the sum rate of DBS ZF and MRC schemes
are plotted against the distance between two transmitters. The
distance is calculated as a multiple of the coverage of the
transmitter. As the distance increases, interference becomes
weaker. MRC and DBS both improves in performance and
DBS outperform MRC. On the other hand, ZF solution did
not take into account of the power of interference. Instead,
ZF scheme consume all transmitter power to mitigate a weak
interference, resulting in a constant performance.

VI. CONCLUSION

In cognitive radio, unlicensed users are competing for
frequency resource selfishly. With a lack of network structure,
a distributive interference mitigation algorithm is essential to
improve the system performance. We provided two simple
distributed bargaining solutions, ZFI and OBI which outper-
form non-cooperative game theory solutions. Future directions
include the investigation of different stopping conditions and
different game theory models such as coalitions of transmitter
and receiver pairs.
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