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Abstract— In [1], an adaptive scheme was introduced in view
of optimizing the overall spectral efficiency of a multiuser MIMO
wireless broadcast channel where the channel state information
at the transmitting base station (CSIT), to be used for user
scheduling and beamforming, is acquired over a limited-rate
feedback channel. In this scheme, the feedback rate is no longer
constant per scheduling period but rather optimized as a function
of the time-dependent channel quality seen at the user side. The
present paper further refines this idea and elaborates on some
of the associated practical concerns.

I. INTRODUCTION

CSIT plays an essential role in a MIMO broadcast channel,
particularly when receivers have fewer antennas than the trans-
mitter, i.e. are incapable of eliminating or even significantly
reducing the interference due to the signals destined for others.
CSIT makes it possible to achieve the multiplexing gain
made possible by the multiple antennas at the transmitter, by
adapting the transmission to the selected receivers’ channels.
Further rate enhancements may also be achieved by appro-
priately selecting spatially compatible users to serve, thus
benefiting from multi-user diversity (MUD) [2].

However, acquiring said CSIT consumes system resource
(especially in an FDD system). These two facts, potential rate
gains on the one hand, and the cost of resource to make that
possible on the other, have stimulated a large body of research
on the partial CSIT, limited channel state feedback, case (see
[3] and references therein).

Among strategies for MIMO broadcast transmission based
on limited CSIT, one may distinguish between two large
categories of schemes, namely (i) opportunistic schemes and
(ii) non-opportunistic channel quantization-based schemes. In
a subset of the former (e.g. [5], [6]), randomly designed beams
are launched from the base station, then the users reply with
a simple SINR feedback to allow the assignment of the best
set of users to the pre-launched beams, while in another (e.g.
[12], [13], [14]) only an appropriate subset of the users feed
back their channel and a subgroup of these users is selected for
transmission. In the second category, the beamforming matrix
is designed after receiving CSIT from all users in the form
of their quantized channel information (see among others [8],
[9], [10]). In this line of work, the channel quantization is
based on a codebook with fixed number of feedback bits,

though this number may possibly be adapted to macroscopic
system parameters such as number of users and average SNR.
Recently, several ideas have emerged which suggest that the
system could gain significantly from the adaptivity of the
allocated feedback load. This is under the framework that a
flexible design of the feedback channel could be adopted in
forthcoming wireless standards, one in which the feedback
load can be made time-varying, fulfilling an average feedback
load constraint rather than a fixed load constraint.

In an example of such proposals, [11] noted that scheduling
and beamforming require very different accuracy levels in
CSIT description and recommended that the feedback rate
should be split optimally across two feedback stages, one
for scheduling and another one for beamforming, where the
number of CSIT bits is different for the two stages (yet the sum
remains constant). Note that as a variant of this idea applied
to opportunistic schemes, [15] investigated having a low-rate
first stage, complemented with a second stage to enhance the
performance of random beamforming [6] for cases when the
number of users is relatively low.

Recently, in [1], yet another adaptive feedback approach
is adopted, where the key idea is that, if each user were
subject to an average feedback rate constraint, rather than a
peak constraint, then the resource allocated for feedback at
each scheduling period could be optimized as function of the
instantaneous channel conditions. This idea follows the basic
intuition that a user ought to spend more on feedback at a
particular time slot when the expected return for him/her in
terms of downlink rate is larger. Conversely, if the odds to be
selected by the scheduler for a particular user are low, there is
little interest for that user to describe the channel accurately to
the base at that time. Therefore the feedback rate optimization
can be formalized so as to take into account (i) the user’s
channel quality and (ii) the probability with which this user
will be selected.

In this paper, we revisit the results obtained in [1] to take
a more general scenario for channel quality indicators into
consideration, reformulate the feedback rate adaptation prob-
lem in this ’corrected’ framework, discuss its complexity and
describe some suboptimal solutions. Performance is illustrated
with Monte Carlo simulations.
Notation: E denotes statistical expectation. Cn denotes the



n-dimensional complex space. Boldface lowercase letters are
used to denote vectors, and boldface uppercase denote ma-
trices. fx(.) gives the probability density function (pdf) of
random variable x, and Fx(.) its cumulative density function
(cdf). The probability of an event A occuring is denoted
by Pr[A]. The l2-norm of vector x is denoted as ‖x‖, and
x̃ , x

‖x‖ . Finally, log(.) is the natural logarithm.

II. SYSTEM MODEL

We consider a multi-antenna Gaussian broadcast channel,
where a transmitter equipped with Nt antennas serves selected
users among N ≥ Nt single-antenna receivers under a total
transmit power constraint P . The latter are assumed to have
perfect channel knowledge. The received signal at user k,
denoted yk ∈ C can be written as:

yk = hkx + nk (1)

where x ∈ C
Nt×1 is the transmitted signal vector, such that

E‖x‖2 = P , hk ∈ C1×Nt and and nk ∈ C represent the
channel vector and the noise at the kth user, respectively. We
assume perfect channel knowledge at the receiver, and that
the entries of the noise vector are i.i.d. zero mean unit vari-
ance complex Gaussian random variables (r.v.’s), CN(0, 1).
Furthermore, we assume a block-fading channel and focus on
the ergodic sum rate as system performance measure.

A. CSI and Quantization

We assume the N receivers have i.i.d. Rayleigh fading
channels, and assume that the fed back CSI consists of: i)
quantized channel direction information (CDI), and ii) channel
quality information (CQI) [8], [9], [10]. h̃ denotes the true
direction, ĥ its quantized version.

We assume different users use different, independent code-
books. The corresponding quantization error is defined as
sin2 ε, where ε , ∠(h̃, ĥ), the angle between the true and
quantized channel directions. The cdf of any CDI quantizer
may be upper-bounded by [17]:

Fsin2 ε(x) =

{

δ1−NtxNt−1 0 ≤ x ≤ δ
1 x > δ

(2)

where δ , 2−b/(Nt−1), b being the number of bits used for
quantization. For tractability, this distribution will be adopted
in our derivations.

Although there are several different options for defining the
CQI at the user level, a popular CQI measure, adopted here,
is the following SINR estimate given by [8], [9], [10]:

γ̂ ,
P/Ntα cos2 ε

1 + P/Ntα sin2 ε
(3)

where α , ‖h‖2. This choice is justified in the following
section.

As in the cited papers, CQI is assumed to be unquantized.
However the effect of quantizating it is investigated through
simulations at the end of the paper.

B. User Selection and Precoding Scheme

Zero-forcing beamforming (ZFBF) with uniform power
allocation is the adopted precoding scheme. Thus, the trans-
mitted signal x is given by:

x =

√

P

K
Ws (4)

where K ≤ Nt is the number of users scheduled, W ∈
CNt×K is a zero-forcing matrix with respect to the quantized
channel matrix, having unit norm columns, and s is the vector
of K symbols to be transmitted, its entries being indepen-
dently generated zero-mean unit-variance complex Gaussian
variables.

The scheduling scheme tries to maximize the sum rate
achieved by ZFBF to a subset of users, based on the fed
back CSI: in the optimal case, this is done through exhaustive
search over all groups of up to Nt users; a suboptimal scheme
would use a greedy algorithm such as those of [4], [19]. As
the transmitter relies on limited feedback information, and
the CDI will involve some quantization error, only taking
the channel norm into consideration when scheduling (i.e.
using the product of CDI and true channel norm as a channel
estimate and using that for quantization) will lead to the MUD
gain eventually being lost [9]. Thus the scheduling algorithm
should rely on a CQI, such as the one in (3), which takes
both channel norm and quantization error into consideration
[9], [10], [18].

III. ADAPTIVE FEEDBACK RATE ALLOCATION

To maximize the total throughput of the system, the trans-
mitter needs to i) determine the best group of users, and ii)
design the corresponding precoding matrix for transmission
to those users. Under an average feedback rate constraint, it
thus makes sense for a given user to quantize its channel more
accurately if it is more likely to be scheduled, since this would
lead to a higher throughput being achieved. As a given user
only has access to partial channel information (it knows its
own local channel state information, and possibly the channel
statistics of the other users as assumed here), this amounts to
adapting the feedback rate so as to maximize a user’s expected
rate, based on its current local knowledge. As first argued
in [1], this adaptation could be made as a function of the
channel energy α , ‖h‖2, since the channel direction of an
individual user does not provide information on its separability
from other users, the directions of which being unknown to
the user under consideration.
Denoting the event of being scheduled by S, this can be
approximated as:

ER =

∫ ∞

0

E[Pr[S]R|α = a]fα(a)da, (5)

where the expectation is over all unknowns/random variables
at the user.

Note that the probability of being scheduled and the
achieved rate will both depend on the scheduling algorithm,
and on the knowledge at the transmitter. Thus, for a scheduling



rule based on the fed back CQI γ̂α (cf. (3), the subscript
emphasizes the dependence on the channel energy), we have:

E[Pr[S]R|α = a]

=

∫ ∞

0

E[Pr[S]R|α = a, γ̂a]fγ̂α|α(γ̂a|a)dγ̂a. (6)

Given γ̂a, and that α = a, the achievable rate may be
approximated by: log2(1+ γ̂a). This amounts to assuming that
Nt users, whose quantized channels are orthogonal, will be
scheduled, an approximation which will become more accurate
as the number of users increases. The conditional distribution
fγ̂α|α(γ̂a|a) may be obtained by combining (2) and (3).

Equation (5) becomes1:

ER ≈

∫ ∞

0

dafα(a)

[
∫ ∞

0

dγ̂aPr[S|α = a, γ̂a] log2(1 + γ̂a)fγ̂α|α(γ̂a|a)

]

. (7)

Ideally, a user should maximize its expected rate, as de-
scribed above, i.e. find the best function b(α), which specifies
the number of feedback bits as a function of channel energy
α, subject to an average feedback rate constraint B̄:

∫ ∞

0

b(a)fα(a)da = B̄. (8)

But expressing Pr[S|α = a, γ̂a] in a closed form manner
turns out to be quite untractable: the probability of being
scheduled will be a function of the distribution of the CQI
γ̂, which in turn depends on the way the bits are allocated
over the entire domain of the channel norm random variable.
This leads us to consider sub-optimal solutions.

A. Scheduling-Independent Adaptation

The simplest approach would be to ignore the scheduling
probability in the optimization (as if it were independent of
any of the parameters, or always equal to 1). This could be a
reasonable approach if the user does not know the distributions
of the other users, or if the number of users in the system
changes too fast to be tracked.

The expected rate (7) becomes:
∫ ∞

0

dafα(a)

[
∫ ∞

0

dγ̂a log2(1 + γ̂a)fγ̂α|α(γ̂a|a)

]

. (9)

The inner integral is given by (cf. Eq. (15) in [1]):
∫ ∞

0

dγ̂a log2(1 + γ̂a)fγ̂α|α(γ̂a|a)

=
1

log2 e

{

log (1 + ca) −

(

1 +
(−1)Nt

(caδa)Nt−1

)

log (1 + caδa)

+

Nt−2
∑

i=0

(−1)i

(caδa)i

1

Nt − 1 − i

}

, (10)

where ca = Pa
Nt

and δa = 2−b(a)/(Nt−1).

1This formulation assumes that exactly Nt users are scheduled, which
will depend on the type of scheduling algorithm used, and on other system
parameters such as transmit power.

This is a concave function of b(a) so that relaxing the inte-
ger constraint on it transforms the problem into a variational
problem for which an optimum can be guaranteed (negative
second variation).

B. Quantization-Error Independent Adaptation

Another, alternative, approach is to instead assume the
probability of being scheduled is some increasing function of
the channel energy alone α, which will be denoted Pr[S|α =
a]. The intuition behind why this would work better is that
for fixed CDI quantization error, the CQI γ̂ is an increasing
function of α. Thus, at higher α, there is more to gain
(in terms of rate achieved) by assigning more bits to CDI
quantization and consequently feeding back a higher CQI
value, so that it makes sense to assign higher weight (the
scheduling probability) to these values of α.

Equation (7) is thus approximated by:
∫ ∞

0

dafα(a)Pr[S|α = a]

[
∫ ∞

0

dγ̂a log2(1 + γ̂a)fγ̂α|α(γ̂a|a)

]

(11)

Though conceptually different, this last formulation is sim-
ilar to that of the problem solved in [1], for which a ’water-
filling’ solution was derived, by relaxing the integer constraint
on the channel norm to feedback bit rate mapping function
b(.). The solution is restated here for completeness. Reformu-
lating the quantity in brackets in (11) as a function of the
channel energy instance a and the corresponding number of
bits b(a), and denoting it by g(a, b(a)), the problem can be
reduced to solving for a positive scalar, the optimal ’water
level’ λ∗, using a line search method such as the bisection
method, so as to meet the average bit rate constraint with
equality.
λ∗ determines a threshold channel energy athres, at which:

PS(athres)
∂g(athres, b(athres))

∂b(athres)

∣

∣

∣

∣

b(athres)=0

= λ∗. (12)

For a ≤ athres, no bits are allocated for feedback, whereas
for a > athres, the optimal mapping b∗(.) is such that:

PS(a)
∂g(a, b(a))

∂b(a)

∣

∣

∣

∣

b(a)=b∗(a)

= λ∗ (13)

The scheduling probability function Pr[S|α = a] used is
the probability of belonging to the group of Nt users with the
best channel norms:

Pr[S|α = a] =

Nt−1
∑

i=0

(

N − 1

i

)

(Fα(a))N−1−i (1 − Fα(a))
i
.

(14)

Though this yields a bit rate allocation similar to the one
in [1], we emphasize that there is a fundamental difference in
the actual scheduling scheme implemented in both systems:
in [1] the CQI used for scheduling was the channel norm, as
opposed to the SINR estimate used here.



IV. SIMULATION RESULTS

To illustrate the performance gains of the suggested scheme,
Monte Carlo simulations were carried out, for different num-
bers of users and antennas under different average feedback
bit rate constraints. For the CDI quantization, random vector
quantization (RVQ) [16] was used: since the cdf of the
quantization error is known for this particular scheme, the
latter can be used to generate the quantized CDI, thus speeding
up simulations [20]; using RVQ also shows that the results
based on the model (2) are still meaningful for a more realistic
quantization scheme. Note that in this case, the quantization
error model used in the bit rate adaptation algorithm and the
actual one differ. The scheduling algorithm used is the one
from [18], which is a greedy algorithm that schedules up to Nt

users, stopping when adding one more user no longer increases
the estimated total throughput.

Figure 1 illustrates the importance of taking the scheduling
probability (even if it is actually only an approximation) into
consideration: the gains obtained from applying the scheme
described in section III-A are negligible for low numbers of
users (mainly due to the fact that the expected rate approx-
imation is quite inaccurate), and relatively small for higher
numbers, since this scheme essentially wastes bits on cases
where the likelihood of being scheduled is small. We thus
focus on the scheme from section III-B in what follows.

Figures 2 and 3 show the performance of the latter scheme,
where additionally quantization of the CQI was considered,
and the performance degradation it causes tested. Thus, instead
of assuming the CQI is known perfectly at the base station, a
fixed codebook is generated by applying Lloyd’s algorithm to
CQI samples corresponding to the given channel model and the
CDI feedback bit rate allocation obtained from the algorithms
considered. Denoting by bCQI the number of bits used for CQI
quantization, this could be viewed as a suboptimal feedback
allocation over the entire CSI (CDI + CQI), under an average
total feedback rate equal to B̄ + bCQI .

Though quantizing CQI causes losses in total throughput,
comparing to the scheme where a constant feedback rate is
used and the CQI is perfectly known, the adaptive scheme
still performs better, sometimes even under a lower average
bit rate (4 bits/user vs. 6 bits/user in figure 2). Moreover, as
expected, the more users in the system, the more there is to
gain from adapting to instantaneous channel conditions, as this
leads to the probability of being scheduled to be concentrated
within a shrinking (with the number of users) interval of the
channel norm range. On the other hand, the greater the number
of antennas at the transmitter, the greater the loss with respect
to the full CSIT case: this is in accordance with non-adaptive
schemes such as [7], [9] which show that the number of bits
used needs to be scaled linearly with the number of antennas
and the SNR in order to maintain a fixed performance loss
gap; however, as figure 3 shows, the contrast between the
adaptive scheme and a constant feedback rate scheme may
still be quite significant in this case (more transmit antennas),
for sufficiently many users in the system.

0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

18

20

22

SNR (dB)

S
um

 r
at

e 
(b

its
/H

z/
se

c)

Full CSIT, N = 5 users
Full CSIT, N = 20 users
Scheme 1, N = 5 users
Scheme 1, N = 20 users
Scheme 2, N = 5 users
Scheme 2, N = 20 users
Uniform CDI quantization, N = 5 users
Uniform CDI quantization, N = 20 users

Fig. 1. Achievable sum rate for N=5, 20 users, and average feedback rates
per user of 6 bits for both suboptimal schemes (scheme 1 corresponds to
section III-A, scheme 2 to section III-B)
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Fig. 2. Achievable sum rate for N=10 users and Nt = 2 antennas

V. CONCLUSION

The adaptive scheme in which the feedback rate is optimized
as a function of the channel quality first proposed in [1] was
reformulated to account for a better scheduling algorithm,
and suboptimal algorithms to implement it were proposed for
users with Rayleigh fading i.i.d. channels in the system. The
associated performance gains were illustrated through Monte
Carlo simulations, which included investigating the effect of
quantizing the CQI. Future work should investigate adaptation
in more general channels, for example in the case where user
channels are no longer identically distributed.
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