Automatic Network Protocol Analysis

Gilbert Wondracek®, Paolo Milani Comparettif, Christopher Kruegel*, and Engin Kirda¥

$ Secure Systems Lab
Technical University Vienna

gilbert@seclab.tuwien.ac.at

¥Scuola Superiore S.Anna

pmilani@sssup.it

*University of California,
Santa Barbara

chris@cs.ucsb.edu

YEurecom Institute,

France

engin.kirda@eurecom. fr

Abstract

Protocol reverse engineering is the process of ex-
tracting application-level specifications for network pro-
tocols. Such specifications are very helpful in a number
of security-related contexts. For example, they are needed
by intrusion detection systems to perform deep packet in-
spection, and they allow the implementation of black-box
fuzzing tools. Unfortunately, manual reverse engineering
is a time-consuming and tedious task. To address this prob-
lem, researchers have recently proposed systems that help
to automate the process. These systems operate by ana-
lyzing traces of network traffic. However, there is limited
information available at the network-level, and thus, the
accuracy of the results is limited.

In this paper, we present a novel approach to automatic
protocol reverse engineering. Our approach works by dy-
namically monitoring the execution of the application, an-
alyzing how the program is processing the protocol mes-
sages that it receives. This is motivated by the insight that
an application encodes the complete protocol and repre-
sents the authoritative specification of the inputs that it can
accept. In a first step, we extract information about the
fields of individual messages. Then, we aggregate this in-
formation to determine a more general specification of the
message format, which can include optional or alternative
fields, and repetitions. We have applied our techniques to
a number of real-world protocols and server applications.
Our results demonstrate that we are able to extract the for-
mat specification for different types of messages. Using
these specifications, we then automatically generate ap-
propriate parser code.

1 Introduction

Protocol reverse engineering is the process of extract-
ing application-level protocol specifications. The detailed

knowledge of such protocol specifications is invaluable for
addressing a number of security problems. For example,
it allows the automated generation of protocol fuzzers [23]
that perform black-box testing of server programs that ac-
cept network input. In addition, protocol specifications are
often required for intrusion detection systems [25] that im-
plement deep packet inspection capabilities. These sys-
tems typically parse the network stream into segments with
application-level semantics, and apply detection rules only
to certain parts of the traffic. Generic protocol analyz-
ers such as binpac [24] and GAPA [2] also require pro-
tocol grammars as input. Moreover, possessing protocol
information helps to identify and understand applications
that may communicate over non-standard ports or applica-
tion data that is encapsulated in other protocols [14, 19].
Finally, knowledge about the differences in the way that
certain server applications implement a standard protocol
can help a security analyst to perform server fingerprint-
ing [29], or guide testing and security auditing efforts [3].

For a number of protocols (e.g., SMTP, HTTP), spec-
ifications and corresponding protocol parsers are publicly
available. However, there is also a large number of pro-
prietary, closed protocols (e.g., ICQ, SMB) for which such
information does not exist. For these protocols, the tradi-
tional way of determining a specification involves a sig-
nificant amount of manual analysis. Obviously, this is a
painful and time-consuming task that can only be justified
for very popular protocols such as SMB [27].

To address the limitations of manual protocol analysis,
automatic protocol reverse engineering techniques have
been proposed. The goal of these techniques is to auto-
matically generate the specification of an application-level
protocol, given as input one of two different sources: The
first source is the application program that implements a
particular protocol. So far, researchers have proposed a
static analysis approach that takes as input a binary pro-
gram and outputs the set of inputs that this program ac-
cepts [21]. Beside the fact that it is undecidable to statically
determine the complete set of inputs for a program, this ap-

proach also suffers from significant scalability issues. As
a result, in their paper [21], the authors were only able to
extract the protocol for very simple and small prototype
applications that they themselves developed.

The second source of input for automatic protocol re-
verse engineering systems is network traffic. More pre-
cisely, a number of systems [9, 10, 16, 17] have been pro-
posed that analyze network traces generated by recording
the communication between a client and a server. To this
end, the network traces are examined for the occurrence of
common structures or bytes that indicate a special meaning
for the protocol. While experiments have shown that these
systems are able to analyze real-world protocols, their pre-
cision is often limited. Because of the lack of information
that is present in network traces, messages of the same type
are sometimes considered different, and data artifacts are
falsely recognized as being protocol keywords.

In this paper, we present a novel technique for automatic
protocol reverse engineering that aims to combine the pre-
cision of systems that analyze application programs with
the scalability of systems that examine message instances
in network traffic. The basic idea of our approach is to
dynamically monitor the application when it is processing
protocol messages. That is, we observe how a program is
processing protocol messages that it receives. We believe
that our focus on the analysis of the application is reason-
able because the program itself encodes the protocol and
represents the authoritative specification of the inputs that
it can accept.

Our proposed system operates directly on binary pro-
grams. The analysis works by monitoring an application
that accepts network input (e.g., a server) while using an-
other program (e.g., a client) to send messages to this ap-
plication. We use dynamic taint analysis to mark the input
data and track how the monitored application propagates
and processes this data. Based on the ways in which tainted
data is used and manipulated, we extract a specification of
the received message. In a second step, the information
obtained from several, individual messages is combined to
determine a protocol specification for a particular type of
message. Finally, this specification is output as a gram-
mar that we use to generate parsing code. In addition, the
specification is augmented with automatically generated,
semantic information that provides a human analyst with
insight into the meaning of different parts of a message.
For our experiments, we analyzed large server programs
(such as apache or samba) that implement complex,
real-world protocols such as HTTP, DNS, or NES. Our re-
sults demonstrate that we can generate accurate specifica-
tions for different messages types such as HTTP GET re-
quests and DNS queries.

The contributions of this paper are the following:

e We present a novel approach for the automated ex-
traction of protocol information. To this end, we dy-
namically monitor the execution of an application and
analyze how it processes messages that it receives.

e We present techniques to automatically split a single
message into different protocol fields. Also, we show
how information for individual messages can be com-
bined to obtain a more general and abstract format
specification.

e We applied our techniques to a set of real-world server
applications that implement complex protocols such
as HTTP, DNS, SMTP, SMB, and NFS. Our results
show that we can automatically generate specifica-
tions that can be used to parse messages of certain

types.
2 System design

Automatic protocol reverse engineering is a complex
and difficult problem. In the following section, we intro-
duce the problem domain and discuss the specific problems
that our techniques address. Then, we provide a high-level
overview of the workings of our system.

2.1 Problem scope

In [9], the authors introduce a terminology for common
protocol idioms that allow a general discussion of the prob-
lem of protocol reverse engineering. In particular, the au-
thors observe that most application protocols have a notion
of an application session, which allows two hosts to ac-
complish a specific task. An application session consists of
a series of individual messages. These messages can have
different types. Each message type is defined by a cer-
tain message format specification. A message format spec-
ifies a number of fields, for example, length fields, cookies,
keywords, or endpoint addresses (such as IP addresses and
ports). The structure of the whole application session is
determined by the protocol state machine, which specifies
the order in which messages of different types can be sent.

Using that terminology, we observe that automatic pro-
tocol reverse engineering can target different levels. In the
simplest case, the analysis only examines a single message.
Here, the goal of the reverse engineering process is to iden-
tify the different fields that appear in that message. A more
general approach considers a set of messages of a particu-
lar type. An analysis process at this level would produce
a message format specification that can include optional
fields or alternative structures for parts of the message. Fi-
nally, in the most general case, the analysis process oper-
ates on complete application sessions. In this case, it is not
sufficient to only extract message format specifications, but
also to identify the protocol state machine. Moreover, be-
fore individual message formats can be extracted, it is nec-
essary to distinguish between messages of different types.

While it would be very desirable to have a system that
can work at the application session level, we leave this for
future work. In this paper, we focus on the goal of deter-
mining the format specification of a certain type of mes-
sage in a completely automated fashion. That is, we pro-
pose to analyze a set of messages of one type, and extract

the format specification for this message type. We believe
that automatically finding message format specifications is
an ambitious goal that is valuable in practice. For exam-
ple, it might be sufficient for a fuzzer or an intrusion de-
tection system to understand only messages of a particu-
lar type. Also, extracting message formats is a necessary
building block for a system that performs complete pro-
tocol recovery. Finally, we augment the message format
with additional semantic information that provides useful
information for a human analysts about the way in which
an application uses the data that it receives (e.g., indication
that a certain message field is used to hold the name of a
file that is accessed).

2.2 System overview

The goal of our system is to extract the format specifica-
tion for a certain type of message of an unknown protocol.
To this end, the system executes a number of steps:

Dynamic data tainting. In the first step, a number of
messages are sent to an application that “understands” the
protocol that we are interested in (e.g., a server program
implementing a particular network protocol). This appli-
cation is instrumented, and all instructions that operate on
input data read from protocol messages are recorded. More
precisely, we use dynamic data tainting to track the bytes
of the messages that are read by the application. Similar
to previous systems that use tainting [5, 7, 8], each input
byte receives a unique label. Then, we keep track of each
labeled value as the program execution progresses. As a
result of the dynamic data tainting process, an execution
trace is produced for each message. This trace contains
all operations that have one or more tainted operands. For
more details on dynamic data tainting, please refer to Ap-
pendix B.

Analysis of individual messages. In the next step, our
system analyzes the individual execution traces that are
produced for each message. The goal is to leverage the
information derived from the way in which the applica-
tion processes its input to identify the constituent parts of
a message. Many protocols make use of delimiter bytes
to group the sequence of input bytes into individual fields.
Others use length fields to indicate the length of a target
field. In addition, protocols can also define a sequence
of fixed-length fields. In this case, neither delimiters nor
length fields are necessary for the receiver to correctly
parse a message. Of course, a protocol can make use of
both delimiters and length fields. Moreover, fields can be
nested.

By observing how the application processes the mes-
sage, we attempt to identify delimiters and length fields,
as well as the structure they impose onto the message.
Furthermore, we extract semantic information for differ-
ent fields. For example, we can determine when a field
contains a protocol keyword, is used to access a file in the

file system, or is directly echoed back to the party that the
application is communicating with. Our techniques to ana-
lyze single message instances are discussed in detail in the
following Section 3.

Multiple messages and message format specification.
In the third and last step, we combine the information de-
rived for messages of one type to generate a more gen-
eral format specification. The reason for considering mul-
tiple messages is that it is possible that different messages
of the same type do not always contain exactly the same
number of fields in exactly the same order. To generate
a general and comprehensive message format specifica-
tion, the differences in the individual messages have to
be “abstracted away.” For this, we compare the results
for multiple runs, using an alignment algorithm from the
bio-informatics community. The goal is to align similar
fields, thereby identifying alternative parts that vary be-
tween messages, optional fields, or fields that appear a dif-
ferent number of times. The result of the alignment step
is a more general specification, which would not be possi-
ble to infer from a single message only. This specification
is then output as a regular expression that serves as input
for a protocol parser. A more detailed explanation of this
process is given in Section 4.

3 Analysis of a single message

When the monitored application has processed a mes-
sage, the first task of our system is to use the execution
trace produced by the dynamic taint analysis to split this
message into its components, or fields. Most network pro-
tocols use delimiters or length fields (or a combination of
both) to impose a structure onto the sequence of bytes that
make up the input message. Thus, we have developed two
techniques to locate such delimiter fields and length fields
in the message. These techniques are discussed in the two
following subsections. Once a message is decomposed, the
next step is to derive additional semantic information for
the fields (discussed in Section 3.3).

3.1 Finding delimiters

A delimiter is a byte (sometimes also a sequence of
bytes) with a known value that indicates the end of a pro-
tocol field. For example, consider the HTTP GET request
that is shown in Figure 1 below. In this example, the new-
line delimiter ‘\r\n’ divides the GET request into two
lines. Moreover, the space character is used to split the
three components of the first line (GET method, requested
resource, and HTTP version). When parsing a message,
the application searches each consecutive byte in the input
stream for the occurrence of a byte with the known delim-
iter value. Once this byte is found, the application recog-
nizes that the end of a field is reached, and can continue

accordingly. This observation directly translates into our
approach to identify delimiters.

GET /index.html HTTP/1.1\r\n
Host: 127.0.0.1\r\n\r\n

Figure 1. HTTP GET request.

To find delimiters, we examine the execution trace of
the application for operations that compare a tainted input
byte with an untainted value. For each comparison opera-
tion, we record the location of the input byte in the mes-
sage (based on its unique label), as well as the value of
the operand. Based on this information, we can create, for
each of the 256 possible byte values (single characters), a
list that stores the labels that this character was compared
against. In other words, we record, for each possible de-
limiter character, the positions of the bytes in the message
that it was compared against. For example, assume that we
observe that the application compares the first three bytes
of the message against character ’a’, and the fourth byte
against 'b’. This fact is recorded by adding the labels O,
1, and 2 to the list that corresponds to character ’a’, and
by adding label 3 to the list for "b’. Note that it is possi-
ble for the same input byte to be compared against several
characters. In this case, the same label is added to multiple
lists.

Once all comparison operations are recorded, we tra-
verse each list and check it for the occurrence of consec-
utive labels. Consecutive labels are merged into intervals.
Labels that are not part of any interval are discarded. The
assumption is that an application has to scan at least two
consecutive input bytes for a particular value when this
value is a delimiter. This is because a delimited field should
be at least one byte long, and the delimiter itself occupies a
second position. In the example introduced in the previous
paragraph, we would create the interval [0,2] for character
’a’ and discard label 3 in the list for ’b’.

Scopes and delimiter hierarchy. The intervals that are
computed for each character indicate regions, or scopes, in
the input message where this character is used as delim-
iter. We call such intervals scope fields. A certain delimiter
character can be present multiple times in the scope field of
a message. In this case, this delimiter splits the scope field
into multiple parts. These individual parts are referred to
as delimited fields. Furthermore, scopes for different de-
limiter characters can overlap, indicating that a delimited
field is further broken up into multiple, smaller parts de-
limited by another character. In other words, a delimited
field can itself be a scope field for another character.

As example, consider the HTTP GET request in Fig-
ure 2. One can see that the apache web server checks
different parts of the message for the occurrence of differ-
ent delimiter characters. The sequence *\r\n’ is used to
split the entire message into lines, and thus, the server com-
pares every byte of the message against *\r’. Hence, the
message is a scope field for the character *\r’, and each

line is a delimited field. Then, the space character is used
to further split the first line into three parts. Thus, the first
line is not only a delimited field (with regard to the "\ r’
delimiter), but also a scope field (with regard to the space
character). The complete set of scopes for the exemplary
request are shown in the top, left part of Figure 2. The
corresponding intervals are depicted on the bottom left.

When extracting the structure of a message, it would be
desirable to obtain a hierarchy of fields that reflects nested
scopes. To determine such a relationship between scope
fields, we analyze the relationship between the intervals
that belong to different delimiter characters. When one
interval is a subset of another, the character that belongs
to the superset is considered to be the parent delimiter,
and its corresponding scope is called the outer scope. In
the special case that two intervals are the same, the scope
whose corresponding delimiter character is checked first
in the execution trace is chosen as the outer scope. It is
also possible that two intervals overlap, but neither of the
two completely contains the other one. Note that we have
never observed such a case in practice. However, if en-
countered, we would deal with this situation by removing
both intervals from further consideration. This is because
it is not possible to clearly attribute a section of a message
to a certain delimiter in this special case. In case there is
no overlap between two intervals, the corresponding scope
fields are at the same hierarchical level, and the fields are
connected to the scope field that encompasses both. When
there is no such scope, they are connected to the root node
(which represents the entire message).

Once we have identified an outermost scope (a scope
field that is not contained in any other scope), we use the
corresponding character to break the scope field into fields
separated by that delimiter. Then, we apply the same anal-
ysis recursively to all the delimited fields that have been
created. In the example of the HTTP GET request, the
’\r’ character corresponds to the outermost scope field.
Once this character is used to break the complete request
into lines, the analysis proceeds recursively for each line.
At this point, the scope that corresponds to the space char-
acter is the outermost scope, and as a result, the first line is
broken into three fields. Eventually, our analysis produces
the hierarchy of scopes shown on the right in Figure 2.

Multi-byte delimiters. Some protocols use delimiters
that are longer than a single byte. It is, therefore, neces-
sary to extend single byte delimiters to multi-byte delim-
iters. We achieve this by checking the bytes before and
after all occurrences of a particular delimiter. The delim-
iter is extended in either direction by the maximum number
of preceding/succeeding bytes with constant value over all
occurrences of the delimiter. In the HTTP example intro-
duced previously, we would observe that the delimiter byte
"\ r’ is always followed by the byte *\n’. As a result, the
line delimiter is (correctly) extended to contain the multi-
byte sequence \r\n’.

Interestingly, certain protocols use multi-byte delimiters
that have to occur aligned at some word boundary. That is,

0 4 8 12 16 20 24

'GET:/indexhtml: HTTP/1.1\r\n:
; : ' : ; . scan for "\r"

. scan for™""

- scanfor"."

. scan for "/"

Initial Intervals
"\r" [0,25]
nn [0123]
" [4,15]
Il/ll [4,9]

delimiter: "\r"

/ delir;iter: \
G
delimiter: "."
¥ P
G
delimiter: "/"

-

Figure 2. Finding delimiters.

the server does not check for such delimiters at all positions
(offsets) in the packet, but only at those that are located at a
word boundary. An example of such a delimiter is the Uni-
code string terminator in the SMB protocol. To detect such
delimiters, we use the techniques previously described, but
at a word level rather than the byte level (currently only for
a word size of two bytes). In other words, we look for com-
parison instructions with two-byte operands that compare
the same constant value against consecutive labels (which
are two bytes apart).

3.2 Identifying length fields

An alternative mechanism to structure protocol mes-
sages are length fields. A length field is a number of bytes
that store the length of another field. This other field, from
now on referred to as a rarget field, holds a number of bytes
or fixed-size records that are a function of the value stored
in the length field. The goal of our analysis is to accu-
rately detect both length fields and the corresponding tar-
get fields. Initially, we do not make any assumption on the
encoding of the length fields, and we do not assume that
the target field immediately follows the length field itself.
Similar to the case with nested scope fields, a target field
can itself contain other fields.

When an application parses a message that contains a
length field, this length field is typically used by the pro-
gram to determine the end of the target field. For exam-
ple, the length field can be used as a counter that is decre-
mented until it reaches zero. Another possibility is to first
compute an “end pointer” by adding the length field to a

variable that points to the start of the target field. Then,
the program can step through the message until this end
pointer is reached. When processing a variable length (tar-
get) field, we expect the application to access a number of
consecutive bytes of the message. Typically, these repeated
accesses are performed in a loop. The condition that deter-
mines the end of these accesses (and the exit of the loop) is
derived from the length field. This insight is leveraged to
specify an algorithm for identifying length fields, together
with their target fields.

Static analysis. Because our approach to detect length
fields requires the knowledge of loops and loop exit points
in the program, an initial static analysis step is required.
To this end, we employ a tool that we developed for a pre-
vious project [15]. To improve its accuracy with regard to
loop detection, a few additional improvements were neces-
sary. First, we implemented the Sreedhar algorithm [28],
which correctly handles non-natural/irreducible loops (i.e.,
loops with multiple entry points). Moreover, we extended
the tool with a very simple intra-procedural data flow anal-
ysis and a heuristic [6] to recover jump table targets. When
the static analysis step terminates, it outputs the program’s
loops. As a result, we know (a) which comparison instruc-
tions represent loop exit points, and (b), the set of loops
that each instruction belongs to. Note that a single instruc-
tion can be part of multiple loops when loops are nested.

Finding length and target fields. Using the information
provided by our static analysis step, we scan the execu-
tion trace for all comparison instructions that are both loop

exit points and that operate on tainted data. When such in-
structions are found, we know that the corresponding loop
is controlled by some bytes of the input. These bytes po-
tentially represent a length field.

We then narrow down the results by further requiring
that a loop uses the same set of tainted bytes (labels) in
its exit condition for every iteration. The rationale behind
this is that, for length fields, we expect the tainted bytes
to appear in every loop iteration. Other uses of tainted
data in loop exit conditions, on the other hand, typically
do not repeatedly test the same exit condition on the same
bytes. Finally, if the taint labels in the set are consecutive,
the corresponding input bytes are considered a length field
candidate.

Once we have identified length field candidates, we at-
tempt to determine their corresponding target fields. As
discussed previously, we can identify those loops that are
controlled by a certain length field. Now, we assume that
a target field is comprised of all bytes in the message that
are accessed by a certain loop. For example, when a length
field is used to control a loop that runs a pointer through
a target field (either for copying the field, or checking its
values), we expect that all of the target field’s bytes are ac-
cessed by one or more instructions in at least one iteration.
Thus, for each length field candidate, we record all the la-
bels (i.e., positions of input bytes) that are “touched” by a
loop that is controlled by this length field. By touched, we
mean that the label appears as an operand of at least one
instruction executed by the loop.

In the next step, we remove all labels that are touched
in every loop iteration. The reason is that the presence of
those bytes is independent of the current loop iteration, and
thus, they are likely not related to the target field currently
analyzed. As a convenient side effect, this also removes the
labels that belong to the length field itself (since, by defi-
nition, the labels of the length field have to appear in the
exit condition in every loop iteration). Once we have de-
termined the set of input bytes that are accessed, we check
whether they are consecutive. If this is the case, we assume
that we have correctly identified a length field with its cor-
responding target field. If the bytes are not consecutive, the
length field candidate is discarded.

Once a target field is identified, we can look for padding
fields. Padding is used in some protocols to keep fields
aligned to a word size (either two, four, or eight bytes).
We detect a padding field if we find an appropriate number
of unused bytes immediately preceding or following the
end of the target field. A byte is unused if, throughout the
execution trace, its taint label only occurs as operands of
move instructions.

Additional information on length and target fields can
be obtained by directly examining the parameters of sys-
tem calls which read data from the network, such as the
Unix read and recv system calls. If the number of bytes
to be read is tainted with a set of labels, those labels clearly
correspond to a length field, while the bytes being read are
the target field.

3.3 Extracting additional information

Once the input message is decomposed into its con-
stituent fields, we attempt to extract additional informa-
tion that might provide insight into the semantics of certain
fields. Currently, we derive four types of additional infor-
mation: First, we attempt to detect the use of keywords that
have a special meaning for the protocol. Second, we iden-
tify fields that are used as file names in file system accesses.
Third, we locate input fields that are directly echoed in a
program’s network output (e.g., part of the response to the
host that sent a request). This indicates that the field might
be used as cookie or message identifier. Fourth, we identify
pointer fields, which encode the absolute or relative offset
of another field in the input message.

To identify keywords, we use two different techniques.
First, we scan the execution trace for the occurrence of x86
string compare instructions (such as comps) that success-
fully compare a sequence of one or more tainted input bytes
with a constant (untainted) string. The second check looks
for a sequence of comparison instructions that successfully
compare one or more bytes in a field with untainted char-
acters. These comparisons have to be equality checks, all
other comparisons are ignored. The rationale behind our
keyword identification is that protocol keywords are typ-
ically hardcoded in some way by the application. When
a certain sequence of characters is successfully compared
with tainted input bytes, we mark this sequence as a key-
word candidate. Note that our keyword detection leverages
information derived by the delimiter analysis. This is nec-
essary to exclude delimiter checks from the keyword anal-
ysis. Otherwise, all delimiter bytes would be considered as
keywords, as they appear as operands in successful com-
parison operations.

Once a keyword candidate is found, we then attempt to
verify it by scanning for this keyword in the server binary.
That is, a keyword candidate is considered a keyword only
when it is contained as a sequence of bytes in the appli-
cation binary. Additionally, we require keywords to be at
least three bytes long, to avoid false positives where a short
string occurs in the program binary by chance. Of course,
in general, a keyword does not necessarily have to appear
directly in the binary. However, since a keyword is a string
(or byte sequence) that is defined by the protocol, and thus,
often encoded in the application, we consider this infor-
mation a valuable confirmation. Moreover, we have so far
found all keywords of the protocols that we analyzed em-
bedded in the server binary.

The mechanism outlined above also allows us to im-
plement a technique to extend keywords. More precisely,
once we have found a keyword string (or byte sequence),
we attempt to extend this string by considering the bytes
that follow that keyword in the protocol message. As long
as the extended string is still present in the program binary,
we extend the keyword by those bytes. This is helpful to
correctly identify keywords in cases where programs only
compare a part of a keyword with the actual input data.
For example, in the SMB Negotiate Protocol message, the

SMB server is only checking for the existence of the string
“MICROSOFT NETWORKS ”, however, by employing
our technique, we can extract the complete protocol key-
word “MICROSOFT NETWORKS 1.03.”

File names are straightforward to recognize. Whenever
a sequence of tainted bytes is used as the argument of a
system call that opens or creates files, these bytes are as-
sumed to represent a file name. Also, when a sequence of
tainted bytes is found in the argument of a system call that
sends out network traffic, and the values of these bytes re-
main unchanged, we consider them as being a field that is
echoed back.

Identifying pointer fields is also simple. Whenever
tainted bytes are accessed through a pointer tainted with
a set of consecutive labels, those labels are marked as a
pointer field. The lowest offset in the message of the bytes
accessed through the pointer field is taken to be the offset
that the pointer points to.

4 Analysis of multiple messages

When analyzing a single protocol message, our system
breaks up the byte sequence that makes up this message
into a number of fields. As mentioned previously, these
fields can be nested, and thus, are stored in a hierarchical
(tree) structure. The root node of the tree is the complete
message. Both length field and delimiter analyses are used
to identify parts of the message as scope fields, delimited
fields, length fields, or target fields. Input bytes that cannot
be attributed to any such field are treated as individual byte
fields or, if they are in a delimiter scope and end at a delim-
iter, as arbitrary-length token fields. We refer to fields that
contain other, embedded fields as complex fields. Fields
that cannot be divided further are called basic fields. In
the tree hierarchy, complex fields are internal nodes, while
basic fields are leaf nodes.

It is possible, and common, that different message in-
stances of the same type do not contain the same fields in
the same order. For example, in a HTTP GET request, the
client can send multiple header lines with different key-
words. Moreover, these headers can appear in an almost
arbitrary order. Another example is a DNS query where
the requested domain name is split into a variable num-
ber of parts, depending on the number of dots in the name.
By analyzing only a single message, there is no way for the
system to determine whether a protocol requires the format
to be exactly as seen, or whether there is some flexibility
in the way fields can be arranged. To address this ques-
tion, and to deliver a general and precise message format
specification, information from multiple messages must be
combined.

When combining two (or more) messages, two steps
need to be carried out. In the first step, we have to find
an alignment between the messages such that similar mes-
sage structures are aligned. That is, we aim to locate those
fields that do not change between messages of the same
type. Then, in a second step, the messages have to be com-
bined such that the result generalizes over all input mes-

sages. This makes it necessary to identify optional fields,
or to find fields that can appear in one or more alternative
variants.

Alignment. To find common structures between mes-
sages, we make use of a sequence alignment algorithm
(the Needleman-Wunsch algorithm [20], which is heav-
ily used in bio-informatics). The goal of this algorithm
is to take two sequences as input and find those parts of
the sequence that are similar, respecting the order of the
elements. These similar parts are then aligned, exposing
differences or missing elements in the sequences. An ex-
ample is shown in Figure 3. Here, the alignment algorithm
receives two strings as input and produces an alignment
that identifies the elements ’a’ and ¢’ as similar. Also, it
shows that there is a gap in the second sequence, because
the first one has an additional element ’b’. Finally, the
alignment shows that the strings end with different char-
acters ’d’ and ’e’, indicating that the strings can have (at
least) two alternative ends.

Sequence alignment algorithms have been used previ-
ously [9, 16] for automatic protocol reverse engineering.
More precisely, these algorithms have been used on net-
work traces to identify similar byte sequences in messages.
However, in previous work, the systems operate directly on
the input byte sequences. In our case, the alignment oper-
ates on fields that have been extracted by analyzing indi-
vidual messages. Because we have a significant amount
of structural information about individual messages, the
alignment algorithm operates on elements of a higher level
of abstraction, and thus, the results are more accurate.

To perform alignment, the Needleman-Wunsch algo-
rithm uses a scoring function that defines how well two
elements of a sequence match. For example, when apply-
ing the algorithm to strings, one can assign a negative score
when the algorithm attempts to align two different charac-
ters, or when it attempts to align a character in one string
with a gap in the other one. When the two characters are
the same, a positive score is assigned. Based on the scores,
the algorithm finds the alignment that maximizes the over-
all score.

For our system, the scoring function used for alignment
has to take into account that a message is not simply a se-
quence of basic fields. Instead, a message can be composed
of complex, nested fields. To obtain a score for a pair of
complex fields (fields arranged in a tree hierarchy), we ap-
ply the Needleman-Wunsch algorithm in a recursive fash-
ion. That is, we view the immediate children of the root
node (i.e., the first layer of the tree) as a sequence of fields.
This is done for both trees, yielding two sequences of child
nodes. We then apply the alignment algorithm to these se-
quences. The score that is calculated is taken as the score
for the two root nodes. Of course, because each child node
can itself be a complex field, the alignment might be called
recursively again.

When comparing two complex fields, the alignment al-
gorithm is called recursively. In order for the recursive
calls to terminate, we require a function that can resolve
the base cases. More precisely, we require a way to calcu-

abcd abcd
Ao
Alignment P

a c e

N —>
& Generalization

a b? ¢ [d]e]

Figure 3. String alignment based on the Needleman-Wunsch algorithm.

late a score for a pair of basic fields, and a basic field that
is matched with a complex field.

To calculate the score for a pair of basic fields, we use
the following, simple method: We return a value of +1 if
two basic fields match, and a value of -1 if they do not
match. Also, the penalty for a single gap is set to -1. Two
length fields match if they have the same number of bytes.
A target field matches another target field only if the corre-
sponding length fields match. A scope field and a delimited
field match if they use the same delimiter. A token field al-
ways matches another token field. An individual byte field
always matches another individual byte field, even if the
value of the byte is different. This highlights how our al-
gorithm does not rely on textual similarity between mes-
sages, but on the message structure as inferred from server
behavior.

Clearly, fields of different types never match. Therefore,
for the alignment between a basic and a complex field, we
always report a mismatch. However, the score cannot be
simply set to -1. This is because a complex field can con-
tain many embedded fields, and thus, the penalty has to be
increased proportionally to the number of elements that the
complex field contains. We solve this by simply multiply-
ing the penalty score by the number of embedded elements.

It would be possible to further tune the values used
for the scoring function. In fact, the authors of previ-
ous work [10], who used alignment algorithms on net-
work traces, found it very challenging to select appropri-
ate weights. However, because we operate on input that is
well-structured and on a high level of abstraction, tuning
was not necessary as our alignment approach immediately
returned good results.

Generalization. After the alignment step, it is necessary
to produce a generalized result that can serve as an abstrac-
tion for the inputs. As an example for the generalization
step, revisit the example shown in Figure 3. Note that the
character "b’ appears as optional in the generalized regular
expression, while there is an alternative expression inserted
for the characters ’d” and ’e’.

For generalization, simple rules apply. When a node
in the tree is aligned with a gap, then this node becomes
an optional node. When two nodes are aligned that do
not match, we introduce an alternative node. This alterna-
tive node simply indicates that either one of the two struc-
tures can appear in the message. When matching, but non-
identical nodes are aligned, a new node is created that pre-
serves common properties of the aligned nodes. Two non-
identical nodes can be aligned when those nodes have the

same type, but their content is different. For instance, when
two byte fields are aligned that have different content, the
resulting node is a generic byte node that represents arbi-
trary bytes.

Once we have created a “generalized” tree, this tree can
be traversed to produce a regular expression. This regular
expression then represents the generalized message format
specification. For a more complex example of running the
alignment and generalization algorithm on two messages
with a hierarchy of fields, please refer to Appendix C.

Repetition detection. A common pattern is for a proto-
col message format to allow an arbitrary number of repe-
titions of a certain part of the message. We use a simple
but effective heuristic to detect such cases. At the end of
the generalization phase, we look for two (or more) con-
secutive, optional nodes that match. When we find such
nodes, we merge them into a single repetition node. For ex-
ample, using the standard regular expression notation, the
sequence ‘a?a?a?’ would become ’a«’. If there is a non-
optional field of the same type before or after the newly
created repetition node, it is merged into a “one or more”
repetition. For example, the sequence aa?a?’ would be-
come ’a+’. The limitation of our technique is that it only
detects repetitions of identical nodes, missing more sub-
tle cases in which repeating elements contain a number of
different fields, such as in the case of HTTP header lines.

Parsing. We developed a simple parser that leverages the
generalized regular expressions that are produced by the
previous step to demonstrate that it is possible to parse ad-
ditional protocol messages of the same type. Since it is
a non-deterministic parser, the worst case computational
complexity of parsing is exponential. In practice, this has
not been a problem: the parser runs on our entire data set
in under two minutes. For parsing messages, a regular ex-
pression is almost sufficient. However, some additional
information is necessary. In particular, to parse a target
field, we need to compute its length from the value of the
corresponding length field. Otherwise, we do not know
when to stop reading bytes from a target field. For this,
we need to make some assumptions on the encoding of the
length field. In our current system, we assume that a length
field stores an integer value with either little-endian or big-
endian encoding. With no further loss of generality, we can
assume that 7' = L * scale + offset under one of the two
encodings, where 7" and L are, respectively, the length of
the target field and the value of the length field, and scale

| TestCase | Server [Protocol | Message | #Msg |
apache apache HTTP GET 34
lighttpd lighttpd | HTTP GET 34
ircnick iacd IRC NICK command 5
ircuser iacd IRC USER command 5
smtphelo sendmail | SMTP HELO command 8
smtpquit sendmail | SMTP QUIT command 8
smtpmail sendmail | SMTP MAIL command 8

| dnsquery | named [DNS | Query IPv4 Address IE ‘
nfslookup nfsd RPC/NFS | Lookup 12
nfsgetattr nfsd RPC/NFS | Getattr 9
nfscreate nfsd RPC/NFS | Create 12
nfswrite nfsd RPC/NFS | Write 16
smbnegotiate | samba SMB negotiate protocol request 8
smbtree samba SMB tree connect andX request 9
smbsession samba SMB session setup andX request 8

Table 1. Test case summary.

and offset are two integer constants. When merging two
length fields a and b, we can compute

scale = (T, — 1) /(Lo — Lp)

offset = T, — L, * scale = Ty, — L * scale

This computation will only be successful for one of the
two encodings (returning an integer result for scale, and a
consistent value for offset). This allows us to individually
detect the endianess of each length field, without assuming
a common encoding of fields in the protocol.

In a similar way, to be able to parse a pointer field, we
need to compute the position in the packet that it points
to. In addition to the two possible encodings, a pointer
field can represent an absolute position in the message or
an offset relative to the pointer field itself. As for length
fields, we compute a scale and an offset and discard encod-
ing options for which this computation fails. When parsing
a pointer field, we check that the offset this field points to
is a valid offset inside the message.

5 Evaluation

In this section, we present the experimental evaluation
of our approach. We applied our techniques to multiple
server implementations of six real-world protocols. In par-
ticular, we selected HTTP, IRC, DNS, NFS, SMB and
SMTP. These protocols were chosen because they have
been used in the evaluation of previous work [4, 9, 10], be-
cause they represent a good mix of text-based (HTTP, IRC,
SMTP), binary (DNS, NFS) and mixed (SMB) protocols,
and because they are implemented by complex, real-world
programs (such as apache, bind, or samba). Note that
all programs that we analyzed are x86 Linux binaries. This
is because our dynamic tainting tool currently onl runs on

this platform. However, our general approach equally ap-
plies to other systems (e.g., such as Windows) as well.

For each of the six analyzed network protocols, we se-
lected one well-known server program that implements this
protocol (two in the case of HTTP), and one or more mes-
sage types (e.g., a GET request for HTTP, Lookup, Getattr,
Write and Create requests for NFS). The full list of test
cases is detailed in Table 1. This table shows the server,
protocol, and message type that we analyzed. For each test
case, we used client programs to send the server a num-
ber of messages of the selected type. The number of client
messages for each test case is shown as column Message
in the table.

The server programs were monitored while processing
the requests, and we generated an execution trace for each
message. In the next step, our system analyzed these ex-
ecution traces and generated appropriate message format
specifications. In Appendix A, we present the full speci-
fications obtained for one message format for each of the
tested protocols. Table 2 shows the field detection results
for different types of fields in each of the test cases, while
Table 3 further details the keyword and delimiter detection
results for each server. The results in these tables were
obtained by manually comparing our specifications with
official RFC documents and with Wireshark [30] output.
More details about the results for each individual protocol
are discussed in the following paragraphs. In general, how-
ever, we can observe that most of the fields were correctly
identified.

Finally, the specifications obtained for each test case
were used with our simple protocol parser to parse another
set of messages (of the same type). Despite imperfections
in the inferred formats (as highlighted by Table 2), parsing
succeeded in all test cases. This demonstrates that our sys-
tem is capable of automatically deriving accurate format

| TestCase | Length | Target | Padding [Pointer | Delimiter | Keyword | File | Repetition [| Total
apache 0 0 0 0 4/5 6/6 1/1 172 12/14 (86%)
lighttpd 0 0 0 0 4/5 717 171 172 13/15 (87%)
ircnick 0 0 0 0 1/1 1/1 0 0 2/2 (100%)
ircuser 0 0 0 0 2/2 171 0 0 3/3 (100%)
smtphelo 0 0 0 0 172 1/1 0 0 2/3 (67%)
smtpquit 0 0 0 0 1/1 1/1 0 0 2/2 (100%)
smtpmail 0 0 0 0 3/5 3/3 0 0 6/8 (75%)

[dnsquery | 11 | U1 [0 | 0 | 0 [0 [0] 11 [33(100%
nfslookup 4/5 4/4 2/2 0 0 0 1/1 0 11/11 (92%)
nfsgetattr 3/4 3/3 1/1 0 0 0 0 0 7/8 (88%)
nfscreate 4/5 4/4 2/2 0 0 0 0 0 10/11 (91%)
nfswrite 4/6 4/4 2/2 0 0 0 0 0 10/12 (83%)
smbnegotiate 2/2 2/2 1/1 0 1/1 10/10 0 0/1 16/17 (94%)
smbtree 2/3 2/2 0 1/1 2/2 3/3 0 0 10/11 (91%)
smbsession 8/9 8/8 0 777 2/2 2/2 0 0 27/28 (96%)

Table 2. Field detection results

: correctly identified fields / total fields in message format.

Server Detected Missed | False Unsupported
positives
apache keywords | "GET”, ”’HTTP/1.1”, "Host”, ”Connec- ”Accept-" ”Accept-Language”,
tion”, “close”, ’keep-alive” ”Accept” ”Accept-Encoding”,
”Accept-Charset”, “User-
Agent”, "Keep-Alive”
delimiters | CRLF, SPACE, ”/”,”.”
lighttpd keywords | "GET”, “HTTP/’, ”“Host”, “User- ”Accept” ”Accept-Language”,
Agent”, ”Connection”, ’close”, “keep- ”Accept-Encoding”,
alive” ”Accept-Charset”, “Keep-
Alive”
delimiters | CRLF, SPACE, /”, .
iacd keywords | "NICK”, "USER”
delimiters | CRLF, SPACE
.. | keywords | "HELO”, ”QUIT”, "MAIL”, "FROM”,
sendmail o
delimiters | CRLF, ”.”,”:”,”>” CRLF
samba keywords | "MICROSOFT NETWORKS 1.03”, ”PC NETWORK PRO-
"MICROSOFT NETWORKS 3.07, GRAM 1.0”
"LANMANI1.0”, ”DOS LAN-
MAN?2.17, ”"LM1.2X002”, "NT
LANMAN 1.07, "NT LM 0.127,
”Samba”, ”0xffSMB”, ”IPC”, 77?777
"NTLMSSP”
delimiters | ”0x00”, ”0x0000”

Table 3. Keyword and delimiter detection results. “Unsupported” keywords are part of the protocol

specification but are not supported by the server in the tested configuration.

specifications that can be directly used to parse messages
of a certain type. Also, the specifications contain detailed
information about the format of the message and the way
in which the sequence of bytes at the network level are split
into meaningful, application-level fields.

Hypertext Transfer Protocol (HTTP). For our anal-
ysis of HTTP, we selected the latest stable versions of
apache and the Lighttpd web server (versions 1.3.39
and 1.4.18, respectively). Then, we used clients such as
the Firefox web browser to generate HTTP GET messages
that request different pages stored at the server. These mes-
sages contained the “Host” header (which is mandatory
in HTTP/1.1), as well as a number of additional, optional
header lines.

Results for both servers are presented in Table 2 and
Table 3. The complete grammar that was automatically
derived from analyzing the way in which apache pro-
cessed the GET messages is presented in Appendix A.
When examining this grammar in more detail, one can see
that our system has extracted a quite accurate specification
for HTTP GET requests. The message has been split into
lines that are separated by the multi-byte delimiter ‘\ r\n’,
and the first line (“GETLINE”) is split into three fields by
the space character. The system has identified keywords
such as the name of the “GET” operation and of header
fields such as “Host” and “Connection.” Moreover, thanks
to repetition detection, the name of the requested resource
(“FILENAME”) was recognized as a file name with an
arbitrary number of directories, followed by an optional
extension. The system also automatically recognized that
“FILENAME?” is indeed specifying a resource in the file
system. Also, the IP address following the “Host” header
was split into four character tokens separated by dots (rep-
resenting the general format of an IP address), and our sys-
tem determined that the values of the connection header
can take one of the two alternatives “keep-alive” or “close”.
Finally, one can see that the specification correctly captures
the fact that the first two lines (the request line and the
“Host” header) have to be present in a request, while the
additional header lines are all optional. Note that the HTTP
RFC does not specify an optional file extension in the URL
that is delimited by a dot characters (’.”). However, this is
not an error of analysis but reflects the way in which the
server actually processes the input. In fact, apache uses
file extensions to decide which extension module to use to
process a request. Interestingly, for Lighttpd, the dot
character the file name is not used (and thus, not recog-
nized) as delimiter.

Of course, our HTTP grammar is not flawless, exposing
some limitations of our system. For example, the tokens
“Accept” and “Accept-" are incorrectly identified as key-
words'. This is because apache scans for the supported
keyword “Accept-Ranges.” As this keyword is not present
in our HTTP traffic, parsing always fails after processing

“Accept” is in fact a valid HTTP header name, but it is not supported
in the tested configuration.

the string “Accept-.” Nevertheless, our analysis considers
the sequence of successful comparison operations as indi-
cation that the keyword “Accept-" is part of the protocol
message specification.

Another inaccuracy is the fact that our specification ac-
cepts header lines with arbitrary content. This can be
seen on the right side of the grammar production for “UN-
USEDHDR”, which includes (TEXT) +. The reason for
this is that apache ignores the “User-Agent” and “Keep-
Alive” headers in its default configuration. Thus, our sys-
tem cannot infer any constraints on the value of these head-
ers, and has to assume that they can hold arbitrary content.
This shows that it is difficult for our approach to derive
information for parts of a message that are not processed
by the server. Similarly, several headers starting with “Ac-
cept” are not further parsed by apache, so the format in-
ferred for those headers is overly permissive. In fact, we
tested apache by sending garbage header lines (with no
’:”), and they were indeed accepted by the server, as long
as they did not start with a supported keyword.

The colon character (’:”) is not recognized as a delim-
iter because the server is only checking for it directly after
it has identified a keyword. As a result, the server only
checks a single input character for the occurrence of the
delimiter. This is not sufficient for our delimiter analysis,
which requires at least two consecutive input bytes to be
analyzed before considering a character as delimiter (see
Section 3.1). Finally, our system is not capable of general-
izing the request header lines as repeating elements. This is
because our repetition detection technique cannot identify
repetitions of different (non-matching) nodes (as explained
in Section 4).

The grammar extracted from analyzing the 34 GET re-
quests was used as input to our parser. This parser was then
applied to an additional set of 20 different GET requests.
The additional messages could be parsed correctly, demon-
strating that our automatically derived specification is suf-
ficiently accurate to generate parsing code for this type of
messages.

Internet Relay Chat (IRC). To analyze IRC, we chose
the fully-featured iacd IRC server. As for HTTP, we
recorded a set of messages that clients send to the server
when establishing a connection. Results for the NICK and
USER commands are shown in Tables 2 and 3, and the
grammar for the USER command is in Appendix A. When
examining the specifications produced for these two types
of messages, it can be seen that the message format is sig-
nificantly simpler than the one for HTTP. Our system has
produced correct format descriptions and recognized the
relevant keywords (such as “NICK” and “USER”). When
using these two specifications to parse an additional set of
IRC messages, we observed no problems.

Simple Mail Transfer Protocol (SMTP). We analyzed
SMTP by examining the well-known sendmail SMTP
server (version 8.13.8-3). For our experiments, we

recorded a set of eight SMTP sessions. Our tool pro-
duced grammars for the HELO, QUIT, and MAIL com-
mands (shown in Appendix A) that appear in each of these
sessions.

The QUIT command was identified correctly. For the
HELO command, the space delimiter was detected as a
constant part of the token that follows the keyword. The
reason is that the server only checks for the space in the
position after the HELO keyword, but our delimiter detec-
tion requires at least two consecutive checks to recognize a
delimiter character.

While our system can correctly identify most of the
keywords and delimited fields of the MAIL command, it
misses the @’ delimiter in the email address. The rea-
son is that the parser is not explicitly scanning the input
data for the * @’ character, but for any character in a non-
printable range. Also, the ‘\r\n’ sequence at the end of
the message is not classified as a delimiter, because, again,
the parser is only checking for this sequence once (after
the closing angle bracket). However, the angle brackets
and dot delimited field are identified correctly, as well as
the path repetition in the email address suffix.

Domain Name Service (DNS). For the DNS protocol,
we examined the latest named daemon from the bind dis-
tribution (version 9.4.1). We decided to extract the speci-
fication for the messages that resolve a DNS name to the
corresponding IP address. To this end, we issued a set of
nine DNS queries, using the Linux host command with
different names and flags. The complete specification that
we extracted can be found in Appendix A.

When examining this specification, one can observe that
our system correctly recognized length fields and the cor-
responding target fields. The protocol splits the DNS name
into the parts (or labels) that are separated by dots. That is,
the name www.example.com is split into the three la-
bels www, example, and com. Each of these labels is
stored in a variable length field, with its length directly
stored before. This is reflected in the grammar as a rep-
etition of one or more “NAMEPARTS”. Our system also
identified that the first two bytes of the message (which
represent the message ID) are echoed back to the client in
the server response.

Because all queries in our message set contain only a
single DNS query (and no additional resource records), the
corresponding bytes of the message are identified to have a
fixed content. Thus, using our specification, we can parse
any DNS query for an IP address. We verified this by using
our specification for parsing an additional set of messages
created by performing name lookups, and found that the
parsing was successful.

Network File System (NFS). We selected NFS because
it is a complex, binary protocol that is layered over an other
protocol (RPC). For our experiments, we used the NFSv2
daemon (with RPCv2) that ships as the default of the cur-
rent Ubuntu Linux distribution (version 2.2.betad7). To

generate messages, we performed several operations on an
NFS-mounted directory, such as obtaining a directory list-
ing as well as writing to and reading from a file. Results
for four types of NFS messages are listed in Table 2. The
specification extracted for NFS Lookup messages is shown
in Appendix A. This is the message used by NFS to look
up a file name and obtain a corresponding file handle.

When examining the resulting specification, one can see
that our system correctly recognized a number of com-
plex structures. This includes the file name, the ma-
chine name, and the set of additional group identifiers
that are all transmitted as variable length fields. We fur-
ther detect that the file name is used by the server to ac-
cess file information, and we detect that the four byte re-
quest ID (XID) is echoed back to the client. The ex-
ample of NFS also shows that we detect variable length
fields that are nested. The field “CREDENTIALS _BODY”
is a variable field whose length is stored in the preced-
ing field “CREDENTIALS_LENGTH.” Furthermore, the
“CREDENTIALS_BODY” field contains a number of ad-
ditional fields (such as machine name or the list of auxiliary
group identifiers) that are themselves of variable length.
Finally, note that our system can also deal with variable
length padding. We identify that the end of the variable
length field “MACHINE_NAME” is padded so that the
next field is word aligned.

Again, our specification is limited by the input that
we observe. For example, since we always use the
same type of authentication mechanism, the field “VER-
IFIER _LENGTH” is recognized as a constant 0, and we
do not detect it as a length field. The reason is that since
the length is always zero, our length field detection algo-
rithm has no loop iterations to work on. Also, the values
in the RPC part of the protocol are all fixed and represent
a NFS message (which is reasonable in this case, but pro-
vides very limited information about the general format of
RPC). Nevertheless, using this grammar, we could parse a
set of additional messages, created from looking up differ-
ent files, without problems.

In the NFS Getattr and NFS Create test cases, our tool
similarly misses the “VERIFIER_LENGTH” length field.
In the NFS Write test case, another length field is missed
by our system, which is the “total count” field. In this case,
the length field is redundant because it always holds the
same value as the “data length” field. Therefore, the server
does not actually use it in a loop to parse the target field
(it uses “data length” instead), and later just verifies that
the two values are equal. Similarly, our parser could suc-
cessfully use the specification produced to parse other NFS
write messages, despite this missing field.

Server Message Block protocol (SMB). For our exper-
iments with SMB, we selected a current version of the
Samba server (version 3.0.26a). To generate messages, we
used the smbclient program (which is part of the Samba
distribution) to connect to shared folders and then per-
formed some file operations. Results for three types of
SMB messages are listed in Tables 2 and 3.

The specification extracted for the SMB tree connect
andX request messages is shown in Appendix A. This is
the message used by SMB to connect to a share once a ses-
sion has been established. It is quite interesting because it
contains almost all of the types of fields our tool is capa-
ble of detecting: length, target, and pointer fields, which
are typically found only in binary protocols, but also de-
limiter and keyword fields which are typically found in
text-based protocols. Both “0x00” and “0x0000” are de-
tected as delimiters, used for ASCII and Unicode strings,
respectively. The “SERVICE” is an alternative of the two

services we connected to in our tests. It is also interest-
ing to note that several parts of the message are unused,
meaning that the corresponding taint labels never appear as
operands of anything but move instructions. This includes
the “PROCESS_ID” and “MULTIPLEX_ID” fields that are
echoed back to the client without using their values.

The main imperfection of the specification is that
we did not recognize “BYTE_COUNT” as length field,
which holds the length of the target fields “PASSWORD”,
“PATH”, and “SERVICE”. As for the NFS Write test case,
the server does not use this field in a loop to parse the
target field. Again, it is redundant because the length
of those three fields can be determined from the “PASS-
WORD_LENGTH” field, the “0x0000” delimiter, and the
“0x00” delimiter. Tree connect messages can therefore be
parsed using the specification produced by our tool.

Results for the SMB Tree test case have the exact same
issue, missing the “BYTE_COUNT” field. In the SMB Ne-
gotiate test case, the only imperfection is that our tool fails
to detect the sequence of “dialects” as a repetition. As for
HTTP headers, this is because each dialect node contains
a different keyword, and our repetition detection does not
detect repetitions of non-matching nodes.

6 Related work

Protocol reverse engineering. So far, protocol reverse
engineering has mostly been a tedious and labor-intensive
manual task. Such tasks have often been undertaken to
analyze popular, but proprietary protocols with the goal
to provide free, open source alternatives. For example,
Samba [27] is a project that offers a free re-implementation
of the SMB/CIFS networking protocol (a closed protocol
used by Microsoft for their network file system). Other re-
verse engineering efforts are targeting popular instant mes-
senger protocols (such as the OSCAR protocol, used by
ICQ and AIM [12]) or file sharing protocols (such as Fast-
Track [13]).

One of the first attempts to perform automated proto-
col analysis was aimed at application session replay. In
the context of honeypots, researchers require modules that
can correctly respond to connection attempts initiated by
malicious code (e.g., worms) and maintain an application
dialog long enough until the malware sends its payload.
To generate these modules automatically, systems such as
RolePlayer [10] and ScriptGen [16, 17] analyze network

traffic and attempt to generalize the traces so that correct
replies can be generated to new requests. These systems
only focus on the protocol format to the extent necessary
for replay, in particular, on the recognition of fields that
contain cookie values or IP addresses. In [21], the authors
propose to use static as well as dynamic binary analysis
(but not dynamic taint analysis) and program verification
techniques to provide a sound solution to the replay prob-
lem. That is, the system can guarantee to answer correctly
to a request, provided that the analysis terminates. Unfor-
tunately, the scalability is limited, and the system was not
tested on any real-world program.

In addition to techniques for replaying application di-
alogs, systems were proposed that attempt to discover the
complete protocol format. One such system was developed
by the “Protocol Informatics Project” [1]. In their work, the
authors propose to apply bio-informatics techniques (such
as sequencing algorithms) to network traffic. The goal is to
identify protocol structure and fields with different seman-
tics. A related, but improved technique extends the byte-
wise alignment with recursive clustering and type-based
clustering [9]. While these systems show some success
in extracting protocol formats, the precision of the analy-
sis is often limited and heavily relies on (protocol-specific)
heuristics. Because of the lack of information present in
network traces, messages of the same type are sometimes
considered as being different, and data artifacts are recog-
nized as protocol keywords.

Independently and concurrently to our work, the authors
of Polyglot [4] and AutoFormat [18] propose to extract
protocol information by observing the execution of a pro-
gram while it processes execution traces to detect the fields
which compose a message. Polyglot can, like our sys-
tem, infer some field semantics, such as detecting keyword
fields and “direction” fields (which can be either length or
pointer fields). AutoFormat, on the other hand, leverages
execution contexts (i.e., call stack information) to infer hi-
erarchical relationships between fields, but it does not ex-
tract any field semantics. Both of these systems analyze
only single messages and split them into fields; we go a
step further and consider multiple messages of the same
type and automatically produce a grammar which can be
used to parse other messages of that type. Analyzing mul-
tiple messages allows us to extract additional semantics
such as identifying alternative and optional fields, and sets
of keywords. Finally, we employ static binary analysis to
improve the quality of length field and keyword field de-
tection.

Dynamic taint analysis. The idea of dynamically moni-
toring the execution of a program, and tracking the ways in
which it processes and propagates information using taint
analysis, has been applied to a number of security prob-
lems. For example, in [5], the authors use taint informa-
tion to track the lifetime of data. The goal is to determine
the use of sensitive information by the operating system
and large applications. Other researchers used taint anal-
ysis to monitor program execution for the use of tainted

data as arguments to control flow instructions or systems
calls [7, 8, 22, 26]. The aim of these systems is to iden-
tify memory corruption exploits at run-time, and, in some
cases, to create signatures for detected attacks. Finally,
taint analysis has also been used to detect malicious soft-
ware based on their characteristic information flow behav-
ior. In [11], spyware is detected by finding programs that
leak sensitive user information, while in [31], a system is
presented that can identify a number of malware classes by
observing suspicious information access and propagation
patterns.

7 Conclusion

Protocol reverse engineering is the process of extract-
ing application-level protocol specifications. With respect
to security, having a detailed knowledge of protocol speci-
fications is important for a number of tasks (e.g., intrusion
detection, protocol fuzzing, service discovery). Unfortu-
nately, current approaches of determining a specification
typically involve a significant amount of manual analysis
or yield results with limited accuracy. To address these
problems, we introduced a novel approach to automatic
protocol reverse engineering. This approach works by dy-
namically monitoring the execution of an application and
analyzing how protocol messages are processed. To this
end, we first extract information about the fields of indi-
vidual messages and then derive more general specifica-
tions by aggregating the information collected for multiple
messages. Our experiments with real-world protocols and
server applications demonstrate that we are able to extract
the format specification for different types of messages.
Using these specifications, we then automatically gener-
ate appropriate parser code. We believe that the techniques
that we introduce in this paper will be useful for security
practitioners and researchers who need to deal with closed,
proprietary protocols.

Acknowledgments

This work has been supported by the Austrian Science
Foundation (FWF) and by Secure Business Austria (SBA)
under grants P-18764, P-18157, and P-18368. Paolo Mi-
lani’s work was funded by Telecom Italia S.p.A. under a
Ph.D. program.

References

[1] M. Beddoe. The Protocol Informatics Project. In Toorcon,
2004.

[2] N. Borisov, D. Brumley, H. J. Wang, J. Dunagan, P. Joshi,
and C. Guo. A generic application-level protocol analyzer
and its language. In 14h Symposium on Network and Dis-
tributed System Security (NDSS), 2007.

[3] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and
D. Song. Towards Automatic Discovery of Deviations in

[4

—

(5]

[6

—_

[7

—

[8

—

(9]

(10]

(11]

[12]
(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

Binary Implementations with Applications to Error Detec-
tion and Fingerprint Generation. In Usenix Security Sym-
posium, 2007.

J. Caballero and D. Song. Polyglot: Automatic Extraction
of Protocol Format using Dynamic Binary Analysis. In
ACM Conference on Computer and Communications Se-
curity (CCS), 2007.

J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via Whole
System Simulation. In Usenix Security Symposium, 2004.
C. Cifuentes and M. V. Emmerik. Recovery of Jump Ta-
ble Case Statements from Binary Code. Technical Report
Technical Report 444, The University of Queensland, 1998.
M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-End Contain-
ment of Internet Worms. In 20th ACM Symposium on Op-
erating Systems Principles (SOSP), 2005.

J. Crandall and F. Chong. Minos: Control Data Attack Pre-
vention Orthogonal to Memory Model. In 37th Interna-
tional Symposium on Microarchitecture (MICRO), 2004.
W. Cui, J. Kannan, and H. Wang. Discoverer: Automatic
Protocol Reverse Engineering from Network Traces. In
16th Usenix Security Symposium, 2007.

W. Cui, V. Paxson, N. Weaver, and R. Katz. Protocol-
Independent Adaptive Replay of Application Dialog. In
13th Symposium on Network and Distributed System Secu-
rity (NDSS), 2006.

M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dy-
namic Spyware Analysis. In Usenix Annual Technical Con-

ference, 2007.

A. Fritzler. UnOfficial AIM/OSCAR Protocol Specifica-
tion. http://www.oilcan.org/oscar/, 2007.
Open Source FastTrack P2P Protocol. http://
gift-fasttrack.berlios.de/, 2007.

P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS:
Automated Construction of Application Signatures. In
ACM Workshop on Mining Network Data, 2005.

C. Kruegel, F. Valeur, W. Robertson, and G. Vigna. Static
Analysis of Obfuscated Binaries. In Usenix Security Sym-
posium, 2004.

C. Leita, M. Dacier, and F. Massicotte. Automatic Handling
of Protocol Dependencies and Reaction to 0-Day Attacks
with ScriptGen-based Honeypots. In Symposium on Recent
Advances in Intrusion Detection (RAID), 2006.

C. Leita, K. Mermoud, and M. Dacier. ScriptGen: An Au-
tomated Script Generation Tool for Honeyd. In 2/st An-
nual Computer Security Applications Conference (ACSAC),
2005.

Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Proto-
col Format Reverse Engineering through Conectect-Aware
Monitored Execution. In 15th Symposium on Network and
Distributed System Security (NDSS), 2008.

J. Ma, K. Levchenko, C. Kreibich, S. Savage, and
G. Voelker. Unexpected Means of Protocol Inference. In
Internet Measurement Conference (IMC), 2006.

S. Needleman and C. Wunsch. A General Method Ap-
plicable to the Search for Similarities in the Amino Acid
Sequence of Two Proteins. Journal of Molecular Biology,
48(3), 1970.

J. Newsome, D. Brumley, J. Franklin, and D. Song. Re-
player: Automatic Protocol Replay by Binary Analysis. In
13th ACM Conference on Computer and Communications
Security (CCS), 2006.

[22] J. Newsome and D. Song. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. In Network and Dis-
tributed System Security Symposium (NDSS), 2005.

[23] P. Oechlert. Violating Assumptions with Fuzzing. [EEE
Security and Privacy, 3(2), 2005.

[24] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac:
a yacc for writing application protocol parsers. In Internet
Measurement Conference (IMC), 2006.

[25] V. Paxson. Bro: A System for Detecting Network Intruders
in Real-Time. In Usenix Security Symposium, 1998.

[26] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
Emulator for Fingerprinting Zero-Day Attacks. In ACM
SIGOPS EUROSYS, 2006.

[27] How Samba Was Written. http://samba.org/ftp/
tridge/misc/french_cafe.txt, 2007.

[28] V. Sreedhar, G. Gao, and Y. Lee. Identifying loops using
DJ graphs. ACM Transactions on Programming Languages
and Systems (TOPLAS), 18(6), 1996.

[29] S. Venkataraman, J. Caballero, P. Poosankam, M. Kang,
and D. Song. Fig: Automatic Fingerprint Generation. In
Symposium on Network and Distributed System Security
(NDSS), 2007.

[30] Wireshark: The World’s Most Popular Network Protocol
Analyser. http://www.wireshark.org

[31] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis. In /4th ACM Conference
on Computer and Communications Security (CCS), 2007.

Appendix A: Message format specifications

In the following subsections, we present the complete
format specifications that our system extracted from differ-
ent messages by analyzing four real-world protocols. To
improve the readability of the results, we assigned mean-
ingful names to the symbols based on their protocol se-
mantics. For example, for HTTP, our system would denote
the “GETLINE” non-terminal as “scope field delimited by
space”. However, all characters and strings that are en-
closed in quotes (such as the HTTP keyword “GET” or the
delimiter ’/’) are directly extracted by our system. Also,
when using these grammars to generate parsing code, no
modifications to the output of our system were necessary.
Finally, the grammar contains annotations that show the
semantics of certain fields (e.g., indication that a field is
a file name, a field that is being echoed back to the host,
etc.). These annotations are produced automatically by our
system and are shown in angle brackets.

HTTP

REQUEST = GETLINE
HOSTHDR
[UNUSEDHDR]
[ACCEPTHDR]
(XACCEPTHDR) %
[UNUSEDHDR]
[CONHDR]

CRLF

GETLINE =

FILENAME

"GET"

FILENAME
non
"HTTP/1.1"
CRLF

<file name>

= (PATHELEM) + [SUFFIXELEM]

PATHELEM = "/" (TEXT)+
<file name>
SUFFIXELEM = "." (TEXT)+
<file name>
HOSTHDR = "Host"™ ": " IP_ADDR CRLF
IP_ADDR = (TEXT)+
"o
(TEXT) +
n . "
(TEXT) +
" . "
(TEXT) +
UNUSEDHDR = (TEXT)+ CRLF
CONHDR = "Connection"
"w. "
"keep-alive" | "close"
CRLF
ACCEPTHDR = "Accept" (TEXT)+ CRLF
XACCEPTHDR = "Accept-" (TEXT)+ CRLF
CRLF = "\r\n"

TEXT = printable ASCII character

IRC
USERMSG = "USER"
n n
(TEXT) +
n "
(TEXT) +
(TEXT) +
(TEXT) +
CRLF
TEXT = printable ASCII character
CRLF = "\r\n"
SMTP MAIL Command
MESSAGE = "MAIL "
FROMLINE
CRLF
FROMLINE = "FROM:"
EMAIL
EMATL = "<"
(TEXT) +

(PATH) *
nsn

(no delimiter)

PATH ="
(TEXT) +

CRLF "\r\n"
TEXT = printable ASCII character

DNS

QUERY = TRANSACTION_ID
FLAGS
QUESTIONS
ANSWER_RRS

AUTHORITY_RRS
ADDITIONAL_RRS
NAME

TYPE

CLASS

TRANSACTION_ID = BYTE{2}

<echoed>

FLAGS = BYTE "0x00"
QUESTIONS = "0x0100"
ANSWER_RRS = "0x0000"
AUTHORITY_RRS = "0x0000"
ADDITIONAL_RRS = "0x0000"
NAME = NAMEPART (NAMEPART) +
NAMEPART = LENGTH BODY
LENGTH = BYTE
<target: BODY>

BODY = TEXT{N}

<N = LENGTH>

TYPE = "0x0001"
<echoed>

CLASS = "0x0001"
<echoed>

TEXT = printable ASCII character
BYTE = any byte

RPC-NFS

LOOKUP_CALL = XID
MESSAGE_TYPE
RPC_VERSION
PROGRAM
PROGRAM_VERSION
CREDENTIALS
VERIFIER
NFS_PAYLOAD

XID = BYTE{4}

<echoed>

MESSAGE_TYPE = CALL

RPC_VERSION = "0x00000002"

PROGRAM = NFS

PROGRAM_VERSION = "0x00000002"

PROCEDURE = LOOKUP

"Ox00"

CREDENTIALS = FLAVOUR
CREDENTIALS_LENGTH
CREDENTIALS_BODY

VERIFIER = VERIFIER_FLAVOUR VERIFIER_LENGTH

NFS_PAYLOAD = DIRECTORY_HANDLE
FILE_NAME_LENGTH
FILE_NAME
[PADDING]
CREDENTIALS_LENGTH = BYTE{4}
<target: CREDENTIALS_BODY>
<littleendian>

CREDENTIALS_BODY = STAMP
MACHINE_NAME_LENGTH
MACHINE_NAME
[PADDING]
UID
GID
AUXILIARY_GIDS

STAMP = "0X0000" BYTE{2}
MACHINE_NAME_LENGTH = BYTE{4}
<target: MACHINE_NAME>
<littleendian>

MACHINE_NAME = TEXT{N}
<N = MACHINE_NAME_LENGTH>
<unused>

UID = "0X0000" BYTE{2}

GID = "0X0000" BYTE{2}

AUXILIARY_GIDS = AG_LENGTH AG_BODY

AG_LENGTH = BYTE{4}
<target: AG_BODY>
<littleendian>

AG_BODY = BYTE{N}

<N = AG_LENGTH x 4>

DIRECTORY_HANDLE

BYTE{8} "0x00"{23}

FILE_NAME_LENGHT = BYTE{4}
<target: FILE_NAME>
FILE_NAME = BYTE{N}

<N = FILE_NAME_LENGTH>
<file name>

PADDING = BYTE{1l,3}
<pad to 4 bytes>

CALL = "0x00000000"

NFS= "0x000186a3"

LOOKUP = "0x00000004"

FLAVOUR = AUTH_UNIX

AUTH_UNIX = "0x00000001"
VERIFIER_FLAVOUR = "0x00000000"
VERIFIER_LENGTH = "0x00000000"

TEXT = printable ASCII character
BYTE = any byte

SMB Tree connect AndX Request

MESSAGE = NETBIOS_HDR SMB
NETBIOS_HDR = MESSAGE_TYPE LENGTH

MESSAGE_TYPE = SESSION_MESSAGE
SESSION_MESSAGE = "0x00"

LENGTH = BYTE{3}
<target: SMB>

SMB = SMB_HDR TREE_CONNECT

SMB_HDR = SERVER_COMPONENT
SMB__COMMAND
NT_STATUS
FLAGS
FLAGS2
PROCESS_ID_HIGH
SIGNATURE
RESERVED
TREE_ID
PROCESS_1ID
USER_ID
MULTIPLEX_ID

SERVER_COMPONENT = "Oxff" "SMB"
SMB_COMMAND = TREE_CONNECT_ANDX
TREE_CONNECT_ANDX = "0x75"

NT_STATUS = STATUS_SUCCESS

STATUS_SUCCESS = BYTE({4}

<unused>
FLAGS = "0x08"
FLAGS2 = "0x01c8"

PROCESS_ID_HIGH = BYTE({2}
<unused>

SIGNATURE = BYTE({8}
<unused>

RESERVED = BYTE{2}
<unused>

TREE_ID = BYTE{2}
<unused>

PROCESS_ID = BYTE{2}
<echoed>
<unused>

USER_ID = BYTE "O0x00"
<echoed>

MULTIPLEX_ID = BYTE "0x00"
<echoed>
<unused>

TREE_CONNECT = WORD_COUNT
ANDX__COMMAND
RESERVED2
ANDX_OFFSET
FLAGS3
PASSWORD_LENGTH
BYTE_COUNT
PASSWORD
PATH
SERVICE

WORD_COUNT = BYTE
<points-to: BYTE_COUNT>
<offset: valuex2>

ANDX_COMMAND = NO_FURTHER_COMMANDS
NO_FURTHER_COMMANDS = "Oxff"

RESERVED2 = BYTE
<unused>

ANDX_OFFSET = BYTE{2}
<unused>

FLAGS = "0x0000"

PASSWORD_LENGTH = BYTE{2}
<target: PASSWORD>
<bigendian>

BYTE_COUNT = BYTE "0xO00"

PASSWORD = BYTE{N}
<N = PASSWORD_LENGTH>

PATH = (UNICODE_CHAR)+ "0x0000"
SERVICE = ("IPC" | "2?2?2?2?2") "Ox00"

UNICODE_CHAR = BYTE{2}
<no delimiter>

Appendix B: Dynamic data tainting

The section discusses the used taint propagation ap-
proach in more detail. When monitoring an application,
we taint (i.e., tag) each input byte that is introduced into
the address space of the application process by being read
from the protocol message. Each byte receives a unique
label. This label establishes a relationship between a par-
ticular input byte and a location in memory and allows us
to determine the location in the message that certain in-
structions operate on. Then, we keep track of each labeled
value as the program execution progresses. To this end,
the output of every instruction that uses a labeled value as
input is tagged with the same label as well.

In addition to tracking direct dependencies, we also
consider address dependencies. Such dependencies occur
when a tainted operand is used to determine the location
from which a value is loaded. In this case, the outcome of
the load operation depends not only on the loaded value it-
self (a direct dependency) but also on the memory address
where this value is taken from. A typical example for an
address dependency is the use of tainted data as an index
into a table. In this case, the result of a table lookup does
not directly depend on the input value, but is indirectly in-
fluenced by the selection of the respective table element.
Here, it is important that address dependencies are tracked
as well. Otherwise, the simple transformation of a string
contained in the message into its uppercase representation
(e.g., using the toupper () function) could break the de-
pendencies between the resulting string and the original in-
put. This is because toupper () relies on a table that
stores the mappings of all 255 possible input characters to
their corresponding uppercase representations.

Msg#1) Alignment
I \ Msg #1
Delimiter: "/"
@ Alternative:
v Keyword: Y | Z

Delimiter: "/"

\A

Generalize

Delimiter: "/"

Final regular expression:

uXu[uKn LAl 1 (byte)+(nyn | nZn)

Figure 4. Alignment of two complex messages.

As aresult of the dynamic data tainting process, an exe-
cution trace is produced for each message. This trace con-
tains all operations that have one or more tainted operands.
In these execution traces, we are particularly interested in
control flow decisions that depend on tainted input bytes.
That is, we check for conditional branch instructions (i.e.,
comparison operations) that operate on tainted bytes. The
reason is that in such cases, values taken from the mes-
sage drive the control flow of the application, and thus, are
likely to hold information that is relevant and related to the
protocol specification. Note that when looking for com-
parisons, we do not only take into account the standard op-
erations such as test and cmp, but also sub or bit-wise
and instructions that are often used by compilers as fast
alternatives. An interesting technical detail is related to
the fact that the Intel x86 instruction set does not contain
conditional branch instructions that use register or mem-
ory operands. Instead, these branch instructions evaluate
a number of flag bits, which are usually set by preceding
compare or test instructions. As a consequence, our dy-
namic analysis has to retain the label sets of operands of
compare and fest operations until a subsequent conditional
branch operation is encountered.

Appendix C: Message alignment example

An example of an alignment between two messages is
shown in Figure 4 below. In this figure, the algorithm has
determined that the first fields contain the same keyword,

and thus, are properly aligned. At the first level, the sec-
ond nodes are both slash-delimited scope fields. However,
in one case, this field holds a keyword and a token field,
while in the other case, only a single token field is present.
Because the alignment algorithm proceeds recursively, it
aligns the two token fields at the second level, and inserts a
gap for the keyword field of the first message. Finally, the
third fields hold two different keywords, and are aligned
with a penalty.

The regular expression generated for the generalized
tree is shown at the bottom of the figure. Note that the
token field is replaced with a sequence of bytes (as we do
not know which and how many bytes will be present in the
actual messages). Also, appropriate optional and alterna-
tive keyword fields have been introduced. Similar to the
grammars shown in Appendix A, keyword and delimiter
values are enclosed by quotes.

