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Abstract

Web applications are ubiquitous, perform mission-
critical tasks, and handle sensitive user data. Unfortu-
nately, web applications are often implemented by devel-
opers with limited security skills, and, as a result, they
contain vulnerabilities. Most of these vulnerabilities stem
from the lack of input validation. That is, web applications
use malicious input as part of a sensitive operation, with-
out having properly checked or sanitized the input values
prior to their use.

Past research on vulnerability analysis has mostly fo-
cused on identifying cases in which a web application di-
rectly uses external input in critical operations. However,
little research has been performed to analyze the correct-
ness of the sanitization process. Thus, whenever a web ap-
plication applies some sanitization routine to potentially
malicious input, the vulnerability analysis assumes that the
result is innocuous. Unfortunately, this might not be the
case, as the sanitization process itself could be incorrect
or incomplete.

In this paper, we present a novel approach to the analy-
sis of the sanitization process. More precisely, we combine
static and dynamic analysis techniques to identify faulty
sanitization procedures that can be bypassed by an at-
tacker. We implemented our approach in a tool, called
Saner, and we applied it to a number of real-world ap-
plications. Our results demonstrate that we were able to
identify several novel vulnerabilities that stem from erro-
neous sanitization procedures.

1 Introduction

Web applications have evolved from simple CGI-based
gateways that provide access to back-end databases into

full-fledged, complex applications. Such applications (e.g.,
email readers, web portals, or e-commerce front-ends) are
developed using a number of different technologies and
frameworks, such as ASP.NET [21] or PHP [32]. Even
though these technologies provide a number of mecha-
nisms to protect an application from attacks, the security
of web applications ultimately rests in the hands of the
programmers. Unfortunately, these programmers are of-
ten under time-to-market pressure and not always aware of
the available protection mechanisms and their correct us-
age. As a result, web applications are riddled with security
flaws that can be exploited to circumvent authentication,
bypass authorization checks, or access sensitive user infor-
mation. A report published by Symantec in March 2007
states that, out of the 2,526 vulnerabilities that were docu-
mented in the second half of 2006, 66% affected web ap-
plications [42].

One of the most common sources of vulnerabilities
is the lack of proper validation of the parameters that
are passed by the client to the web application. In fact,
OWASP’s Top Ten Project, which lists the top ten sources
of vulnerabilities in web applications, puts unvalidated in-
put as the number one cause of vulnerabilities in web ap-
plications [30]. Input validation is a generic security proce-
dure, where an application ensures that the input received
from an external source (e.g., a user) is valid and meaning-
ful. For example, an application might check that the num-
ber of items to purchase, sent as part of a form submission,
is actually provided as an integer value and not as a non-
numeric string or a float. As another example, an applica-
tion might need to ensure that the message submitted to a
bulletin board does not exceed a certain length or does not
contain JavaScript code. Also, a program typically has to
enforce that arguments to database queries do not contain
elements that alter the intended meaning of these queries,
leading to SQL injection attacks.
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A particular type of input validation is sanitization. In
general, sanitization is performed to remove possibly ma-
licious elements from the input. Section 2 introduces more
examples of how sanitization is performed in web applica-
tions. At this point, it suffices to say that sanitization is per-
formed on external input parameters before they are used in
critical operations. The lack of sanitization can introduce
vulnerabilities (e.g., cross-site scripting (XSS) [20] and
SQL injection [1,39] flaws) that can be exploited by attack-
ers. A number of past research efforts [9,13,17,18,22,45]
have focused on the problem of identifying vulnerabilities
in which external input is used without any prior sanitiza-
tion. These vulnerability detectors are typically based on
some form of data flow analysis that tracks the flow of in-
formation from the application’s inputs (called sources) to
points in the program that represent security-relevant oper-
ations (called sinks). The underlying assumption of these
approaches is that if a sanitization operation is performed
on all paths from sources to sinks, then the application is
secure.

Interestingly, there has been little research to precisely
model how effective the sanitization process actually is. In
fact, most approaches assume that if a regular expression
or a certain, built-in sanitization function is applied to an
external input, then the result is safe to use. Unfortunately,
this is not always the case. For example, a regular expres-
sion could be used by a programmer to check for the occur-
rence of certain values in the input without any intention to
perform sanitization. Also, it is possible to apply a saniti-
zation function to the input that protects from certain ma-
licious values, but does not offer complete protection from
all attacks. For example, in [41], the authors discuss the
possibility of subtle SQL injection vulnerabilities that can
be exploited even when the input has been processed by a
built-in PHP sanitization routine. Sanitization is particu-
larly dangerous when custom checking routines are used.
In these cases, a programmer does not rely on built-in input
validation functions, but, instead, manually specifies a list
of unwanted characters or a regular expression that should
remove malicious content.

In this paper, we introduce a novel approach to analyze
the correctness of the sanitization process. The approach
combines two complementary techniques to model the san-
itization process and to verify its thoroughness. More pre-
cisely, a first technique based on static analysis models
how an application modifies its inputs along the paths to
a sink, using precise modeling of string manipulation rou-
tines. This approach uses a conservative model of string
operations, which might lead to false positives. Therefore,
we devised a second technique based on dynamic analy-
sis. This approach works bottom-up from the sinks and
reconstructs the code used by the application to modify the
inputs. The code is then executed, using a large set of ma-
licious input values to identify exploitable flaws in the san-
itization process.

We implemented our techniques in a system called
Saner, a prototype that analyzes PHP applications. The

choice of PHP was driven by the fact that PHP is one of
the most popular languages for web application develop-
ment. According to the latest Netcraft survey [27], more
than 20 million sites were using PHP in June 2007. In the
monthly Security Space Reports [36], PHP has constantly
been rated as the most popular Apache module over the
last few years. To evaluate our system, we used Saner on
a set of real-world applications. The results show that the
sanitization process is faulty in a number of cases and that
apparently effective sanitization routines can be bypassed
to exploit the applications.

The contributions of this paper are the following:

• We describe a static analysis technique that charac-
terizes the sanitization process by modeling the way
in which an application processes input values. This
allows us to identify cases where the sanitization is
incorrect or incomplete.

• We introduce a dynamic analysis technique that is
able to reconstruct the code that is responsible for
the sanitization of application inputs, and then exe-
cute this code on malicious inputs to identify faulty
sanitization procedures.

• We compose the two techniques to leverage their ad-
vantages and mitigate their disadvantages.

• We implemented our approach and evaluated the sys-
tem on a set of real-world applications. During our
experiments, we identified a number of previously un-
known vulnerabilities in the sanitization routines of
the analyzed programs.

The rest of the paper is structured as follows. In Sec-
tion 2, we provide an example of the type of errors in the
sanitization process that we are interested in identifying.
In Section 3, we present our techniques for the analysis of
the sanitization process in web applications. Then, in Sec-
tion 4, we describe a prototype implementation of our ap-
proach and the results of its evaluation on real-world appli-
cations. Section 5 presents related work. Finally, Section 6
concludes and outlines future work.

2 Motivation

In this section, we discuss in more detail the ways in
which web applications can perform input validation. This
discussion also helps to establish a more precise notion of
sanitization. Then, we provide an example of a custom
sanitization routine that is typically not handled by static
vulnerability detectors. This demonstrates the need for an
improved analysis process and serves as an underlying mo-
tivation for our work.

2.1 Input Validation and Sanitization

Web applications typically work by first reading some
input from the environment (either provided directly by
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a user or by another program), then processing this data,
and finally outputting the results. As previously stated, the
program locations where input enters the application are
referred to as sources. The locations where this input is
used are called sinks. Of course, sources often take data
directly from potentially malicious users, and the applica-
tion can make little (or no) assumptions about the values
that are supplied. Unfortunately, many types of sinks can-
not process arbitrary values, and security problems may
arise when specially crafted input is passed to these sinks.
We refer to these sinks as sensitive sinks.

An example of a sensitive sink is a SQL function that ac-
cesses the database. When a malicious user is able to sup-
ply unrestricted input to this function, she might be able to
modify the contents of the database in unintended ways or
extract private information that she is not supposed to ac-
cess. This security problem is usually referred to as a SQL
injection vulnerability [1]. Another example of a sensitive
sink is a function that sends some data back to the user.
In this case, an attacker could leverage the possibility to
send arbitrary data to a user to inject malicious JavaScript
code, which is later executed by the browser that consumes
the output. This problem is commonly known as an XSS
vulnerability [20].

To avoid security problems, an application has to en-
sure that all sensitive sinks receive arguments that are well-
formed, according to some specification that depends on
the concrete type of the sink. Because input from poten-
tially malicious users can assume arbitrary values, the pro-
gram has to properly validate this input. Therefore, the ap-
plication checks the input for values that violate the specifi-
cation. When such invalid values are found, a programmer
has two options. The first option is to abort further process-
ing: the application stops to handle the request and returns
an error code to signal incorrect input. The second option
is to transform the input value such that the altered value
conforms to the input specification and no longer poses a
security threat when passed to a sensitive sink. We denote
the process of transforming the input to a representation
that is no longer dangerous as sanitization. Typically, sani-
tization involves the removal of (meta)-characters that have
a special meaning in the context of the sink, escaping these
characters, or truncating the length of the input.

2.2 Static Analysis and Proper
Sanitization

Static analysis tools that check the security of (web) ap-
plications often employ data flow analysis to track the use
of program inputs. The goal of these systems is to iden-
tify program paths between the location where an input en-
ters the application and a location where this input is used.
Once such a program path is identified, the tool checks
whether the programmer has properly sanitized the input
on its way from the source to the sensitive sink. When in-
put is properly sanitized on all paths from an input source
to a sensitive sink, the application is correct and does not

contain a security vulnerability. However, it is unfortu-
nately not immediately obvious when to declare input as
properly sanitized.

The first problem is that the input sanitization depends
on the type of sink that consumes the input. For example,
when an attacker can inject SQL commands into the output
that the application sends back to a user, this application is
not vulnerable. A security problem arises only when the
attacker can inject that same input into a function that ac-
cesses the database. As a result, static analysis tools typi-
cally require a policy that specifies for each type of sensi-
tive sinks (such as database access or output functions) the
set of operations that constitute proper sanitization.

The second problem that makes it hard to ascertain
proper sanitization is the difficulty of specifying all sani-
tization operations a priori. Fortunately, many languages
provide built-in functions that sanitize input. For exam-
ple, the PHP function htmlentities converts charac-
ters that have special meaning in HTML into their corre-
sponding HTML entities (e.g., the character ‘<’ is con-
verted into ‘&lt;’). This ensures that all characters
in a string preserve their meanings when interpreted as
HTML. The PHP manual states that this function is useful
“in preventing user-supplied text from containing HTML
markup.” Applying htmlentities to an input string
ensures that the resulting string can be safely sent back to a
user. The reason is that all script tags in the input (such as
“<script>”) are converted into tokens that are no longer
interpreted by a browser as the start of JavaScript code, but
simply displayed as the string “<script>.” Of course,
it is easy to recognize the use of such functions as proper
sanitization.

Besides the use of built-in sanitization functions, a pro-
grammer can also write custom code that strips dangerous
characters from an input string. For example, the program-
mer could apply the PHP function str replace to the
input string and remove all occurrences of the character
‘<’ (more precisely, to replace all occurrences of the angle
bracket character with the empty string). In this case, the
result would also be safe with respect to XSS and could be
sent back to the user. To see the difference between stan-
dard and custom sanitization, consider the example code in
Figure 1. Of course, the mere fact that the programmer ap-
plies a string replacement operation on an input value does
not ensure that the result is properly sanitized.

1 $input = _GET[’x’];
2

3 $standard = htmlentities($input);
4 $standard = ’Hello ’ . $standard;
5 echo $standard;
6

7 $custom = str_replace(’<’, ’’, $input);
8 $custom = ’Hello ’ . $custom;
9 echo $custom;

Figure 1. Standard and custom sanitization.

When analyzing the code in Figure 1, most static
analysis tools would correctly flag the use of variable
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$standard in Line 5 as safe. The reason is that they are
typically equipped with a policy that specifies that all val-
ues processed by htmlentities can be safely echoed
back to a user. The situation is more complicated when an-
alyzing the use of the function str replace, which per-
forms custom sanitization in this case. In principle, static
analyzers could interpret the application of any function
that modifies an input (e.g., through string replacement)
as an indication that the programmer performed sanitiza-
tion. If this strategy is used, the analysis would correctly
consider the application of the str replace function on
Line 7 as a form of sanitization. Of course, this approach
suffers from two drawbacks. First of all, the program-
mer might have simply applied this function to alter the
string based on some requirement implied by the applica-
tion logic, and changing the string does not imply that the
result is safe to be used by a sensitive sink. Second, the
programmer could have made a mistake. Even when the
input is modified with the intention to make it safe, there
is no guarantee that the result is correct (and our results
demonstrate that programmers do make frequent mistakes
when using custom sanitization routines). Also, the oppo-
site strategy of assuming that all custom sanitization oper-
ations are incorrect is problematic, because it causes static
analysis tools to report incorrect warnings in case a pro-
grammer has correctly applied custom sanitization.

Current static analysis systems (see Section 5 for a de-
tailed discussion of related work) typically disregard the
use of custom sanitization routines. The result is that
whenever a programmer makes use of custom sanitization,
these tools report an error. This requires a tedious, manual
inspection of the false positives. Of course, once a saniti-
zation routine has been manually examined and annotated
as safe, more powerful static analysis tools will honor this
annotation and no longer report false positives. Unfortu-
nately, programmers are often unlikely to spot the applica-
tion of incorrect custom sanitization. The reason for this is
that programmers expect the static analysis tools to report
an error in association with their custom sanitization rou-
tines, and, therefore, there is little need to double-check
them. This is dangerous, as we have found several in-
stances in a number of real-world programs in which cus-
tom sanitization was used incorrectly.

To address the shortcomings of current analysis tools,
we propose a technique that can handle the use of custom
sanitization routines and properly track the effect of func-
tions that manipulate and modify program input. The goal
is to model the effect of sanitization routines so that we
can check, for every sensitive sink, whether the input that
can reach these sinks might contain malicious values. This
solves two problems. First, we can reduce the number of
false positives produced by current static analysis tools by
taking into account correct sanitization. Second, we can
identify incorrect sanitization routines and alert the pro-
grammer when she has made a mistake.

3 Approach

The goal of Saner is to analyze the use of custom saniti-
zation routines to identify possible XSS and SQL injection
vulnerabilities in web applications. In the context of our
work, any function that takes as input a (string) value and
that can output a modified version of this input is consid-
ered a possible sanitization routine. In particular, this in-
cludes functions that replace or remove certain characters
or substrings from their input (such as the PHP functions
str replace or eregi replace). As mentioned pre-
viously, this requires our system to model the ways in
which these functions can modify the application’s input.
To this end, we use a combination of static and dynamic
program analysis techniques.

The core of the approach consists of a static anal-
ysis component that uses data flow techniques to iden-
tify the flows of input values from sources to sensitive
sinks. This component is based on the open-source web
vulnerability scanner called Pixy [17, 18]. In its current
form, Pixy only provides information about the presence
of data flows between sources and sinks. In addition, it can
determine whether built-in sanitization operations (such
as htmlentities) are applied on all paths between a
source and a sink. To achieve this, it is sufficient to as-
sign one of two types (or labels) to each program variable:
tainted or untainted. Whenever input is read from a user
and stored in a variable, the variable initially receives the
label tainted. Once a variable is sanitized, its label is set
to untainted. Whenever a tainted variable is used in a sen-
sitive sink, an error is signaled. Unfortunately, this simple
approach cannot model the effect of sanitization routines,
as a variable can only be tainted or untainted, and the tool
cannot capture the set of values that the variable can hold.
To address this problem, we have extended Pixy to derive
an over-approximation of the set of (string) values that each
program variable can hold. This calculation is done for ev-
ery point in the program. For each sensitive sink, we can
then check whether this value set contains any element that
poses a security risk when used at that sink.

The static analysis component is sound with respect to
the supported language features1. That is, whenever the
static analysis component declares a sanitization operation
to be correct, we are certain that there exists no vulnerabil-
ity. The drawback of this approach is that the system might
produce false positives (i.e., not every reported problem is
an actual vulnerability). Because the number of false pos-
itives can be large (depending on the application), we aug-
ment the static analysis with an additional dynamic analy-
sis phase.

The goal of the dynamic phase is to examine all those
program paths from input sources to sensitive sinks that
the static analysis has identified as suspicious. More pre-
cisely, using dynamic analysis, we attempt to confirm the
existence of a potential security vulnerability (reported by

1Most notably, our analysis does not support the eval function and
certain cases of aliased array elements.

4



the static analysis phase) by finding program inputs that
can bypass the sanitization routines and reach the sensitive
sink. To this end, the dynamic analysis is used to simulate
the effect of the program operations on the input while it is
propagated to the sensitive sink (in particular, sanitization
operations are of interest). Of course, the analysis is per-
formed by exercising the code with a large set of different
input values, which contain many different ways of encod-
ing and hiding malicious characters. In some sense, the dy-
namic analysis phase automates the actions of a program-
mer when a static analysis tool reports a warning. Similar
to our dynamic phase, the programmer would first identify
the operations that are applied to an input on the path from
the source to the sink. Then, using a number of test cases,
she would attempt to understand whether one of these in-
puts could lead to a security violation.

Whenever the dynamic analysis phase determines that
a malicious value can reach a sensitive sink, this input is
reported as a concrete example that violates the security of
the application. If no such input can be found, there are
two options. The first option is to assume that the static
analysis phase has incorrectly flagged a correct sanitiza-
tion routine as suspicious. This sacrifices soundness be-
cause the dynamic analysis might miss a true vulnerability,
but it is convenient as no further manual inspection is re-
quired. The second option is to report confirmed vulnera-
bilities with higher confidence, and to yield the remaining
warnings to the programmer.

3.1 Sanitization-Aware Static Analysis

As mentioned in Section 2, existing static analysis ap-
proaches simply “guess” whether a custom sanitization
routine is effective or not. A sound analysis would regard
all types of custom sanitization as ineffective, which typ-
ically leads to many false positives. An unsound analysis
would assume that custom sanitization is always correct,
which may result in missed vulnerabilities. Pixy, the anal-
ysis tool that we build upon, follows a sound approach.
Hence, our first goal is to improve the existing static anal-
ysis so that it is able to assess the effectiveness of custom
sanitization routines. As a result, whenever our improved
analysis verifies that a custom sanitization is correct, it has
essentially suppressed a false positive that (the original)
Pixy would have reported. To achieve this goal, we present
a technique that leverages transducer-based, implicit taint
propagation. Once the static analysis is finished, our sec-
ond objective is to provide the subsequent dynamic analy-
sis phase with appropriate information that allows for fur-
ther inspection of all suspicious sanitization procedures.

3.1.1 Basic String Automata

As a first step for modeling sanitization routines, we re-
quire information about the set of values that different pro-
gram variables may hold, not only the information whether
they are tainted or not. To this end, we employ an analy-

sis that can approximate the string values that certain vari-
ables might hold at certain program points, using finite au-
tomata. Commonly, automata are used as acceptors. That
is, they are applied for deciding whether string values be-
long to a certain language. For our purposes, we make use
of another property of automata (or, equivalently, regular
expressions), namely the ability to describe an arbitrary set
of strings.

In our automata representation, every edge denotes a
single-character transition. Note that the label 〈.〉 stands
for an arbitrary character. In addition to the characters that
make up a string value, automata also need to be able to en-
code information about the taint status of these stings. That
is, we want to be able to express that certain parts of a string
value are tainted, whereas other parts are untainted. This
allows us to reconstruct which parts of the strings are pos-
sibly derived from (malicious) user input, and which parts
stem from static strings embedded in the program source
code. This property is achieved by associating taint quali-
fiers to the transitions of the automata. An edge can either
represent a tainted character (represented by a dotted line)
or an untainted character (represented by a solid line).

H E L L O
<.>

Figure 2. Automata for the string “Hello”,
and for an unknown, tainted string.

As example, two automata are shown in Figure 2. The
left automaton represents the static string value “Hello”,
and hence, contains a series of transitions labeled with the
individual characters of this string. Since the string derives
from a static literal provided by the programmer, it is con-
sidered to be untainted, which is represented by solid tran-
sitions. In contrast, the automaton on the right side could
represent the value set for variable $ GET[’x’]. Because
this value is user-supplied and not known until runtime, the
automaton describes the set of all possible strings. The dot-
ted transition indicates that the value is tainted.

Dependence Graphs. To compute the set of string val-
ues that a variable at a certain program point can hold, we
leverage Pixy’s dependence analysis. Dependence anal-
ysis is a data flow analysis that computes a dependence
graph for every program point (and each variable). Such
dependence graphs provide reaching definitions for a par-
ticular program point. Intuitively, this means that a de-
pendence graph provides a list of all variables (program
points) that might directly influence (or reach) the current
program point. As an example, consider the dependence
graph in Figure 3. This graph reflects the dependencies for
variable $custom on Line 9 in Figure 1.
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GET['x'],1

'<', 7 '', 7 $input, 7

str_replace, 7

$custom, 8"Hello", 8

strcat, 8

$custom, 9

Figure 3. Example dependence graph.

1 decorate(Node n) {
2 decorate all successors of n;
3 if n is a string node:
4 decorate n with an automaton for this string
5 else if n is an <input> node:
6 decorate n depending on type of input
7 else if n is an operation node:
8 simulate the operation’s semantics
9 else if n is a variable node:

10 decorate n with the union of n’s successor
11 automata
12 else if n is a SCC node:
13 decorate n with a star automaton
14 (the taint value of its transition depends
15 on the successor nodes)
16 }

Figure 4. Dependence graph decoration al-
gorithm.

Computing Automata. Assume for the moment that a
dependence graph for a certain variable (at a particular
program point) does not contain cycles. In this case, we
can compute the automaton for this variable by applying
the algorithm shown in Figure 4. This algorithm takes the
root of the dependence graph as input, and recursively pro-
cesses all nodes of the graph in a postorder traversal. Dur-
ing this traversal, each processed node is associated (deco-
rated) with a separate automaton. Each of these automata
describes the possible string values of the corresponding
node. For computing such an automaton, the automata of
all successor nodes are required as input, which explains
the postorder traversal. Once all successors of a node have
been successfully decorated, the way how the current node
is decorated depends on the type of this node.

In the simplest case, the current node represents a string
literal. Such nodes are simply decorated with an automaton
that describes exactly this string. For a program 〈input〉
node (shown shaded in Figure 3), it is necessary to ana-
lyze the type of this input. If the node represents a variable
whose value is taken from the user, such as $ GET[’x’],
the automaton shown on the right in Figure 2 is used for
decoration. This automaton represents the set of all pos-
sible strings (we will refer to such an automaton as “star
automaton” from now on). Its sole transition is tainted to

reflect the fact that the user input can be malicious. If the
input cannot be directly controlled by a remote user, the
transition would be untainted.

If the node to be processed is an operation node (that
is, a call to a built-in function), then the semantic of this
operation has to be simulated. In case of a string con-
catenation operation (represented as strcat), this is sim-
ply done by concatenating the automata of the successor
nodes. All other operations are divided into two groups
(and our system is equipped with a list that assigns built-in
functions to one of these categories). The first group con-
tains functions that are precisely modeled. That is, our sys-
tem is able to compute an automaton that describes all pos-
sible output strings, even when the input parameters to the
function are not concrete string instances but automata as
well. This is realized with the help of transducers, which
are described in more detail in the following Section 3.1.2.
We have developed a number of transducers for functions
that manipulate strings (such as str replace) as well
as functions that are commonly used for input sanitization
(such as html entities). This is essential to be able to
precisely capture the effect of sanitization routines.

The second group of operations contains functions that
are not modeled. In this case, we resort to a conservative
approximation and assume that each function returns the
set of all possible strings (represented as the star automa-
ton). The taint status of the automaton’s transition depends
on the taint status of the function’s actual parameters. To
be more precise, the taint status for such functions is the
least upper bound over the taint status of their parameters.
That is, if any parameter is tainted, then the return value is
tainted as well. Otherwise, the return value is not tainted.

The next case in the algorithm of Figure 4 (Line 9)
applies if the current node is a node representing a vari-
able. In a dependence graph, the successor nodes of a
variable node represent the values that this variable may
possess. Different successor nodes correspond to different
paths through the program. This fact can be translated into
an automaton by creating the union of the successor nodes’
automata. For example, if a variable $a depends on the two
string literals “b” and “c”, it means that $a can hold one
of these two strings at runtime. An automaton that encodes
this information is created by computing the union of the
two automata that represent “b” and “c”, respectively.

Cyclic Dependence Graphs. The previously described
algorithm for transforming dependence graphs into au-
tomata is not directly applicable to graphs that contain cy-
cles. In general, the precise modeling of cyclic string op-
erations is a difficult problem [4, 24]. Our solution is to
replace strongly connected components (SCCs) in the de-
pendence graph with special SCC nodes, which results in
a dependence graph without cycles. This explains the fi-
nal Lines 12 to 15 of our decoration algorithm in Figure 4.
Here, SCC nodes are treated analogously to built-in func-
tions that are not modeled. That is, they are decorated with
a star automaton, and the taint value of this automaton’s
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transition is given by the taint values of the SCC node’s
successors.

Discussion. In general, strings can be created or mod-
ified by one of the following three methods: the use of
string literals (e.g., $s = ’ab’), the concatenation of two
strings, or the use of a built-in function. The use of the
first two methods, string literals and string concatenation,
are always handled precisely by our algorithm. This is also
true for built-in functions that are modeled by transducers.
Built-in functions that are not explicitly modeled are con-
servatively approximated with a star automaton. As a re-
sult, our analysis either computes precise results, or a safe
approximation of the actual result. The only exception is
that we do not handle the manipulation of strings through
indexing. For instance, it is possible to change the value
of the third character of some string variable $s through
an assignment to $s{2}. While this technique for modi-
fying strings is common in C programs, it occurs rarely in
PHP applications. In fact, all applications that we evalu-
ated for this paper did not make use of index-based string
modifications.

3.1.2 Precise Function Modeling

As mentioned previously, for the analysis of custom san-
itization, it is necessary to introduce a precise modeling
of string-modifying functions (such as str replace)
and replacement functions using regular expressions
(ereg replace and preg replace). A suitable al-
gorithm was presented in the natural language processing
community by Mohri and Sproat [25]. This algorithm is
based on the use of finite state transducers. A transducer
is an automaton whose transitions are associated with out-
put symbols. This way, it is not only able to accept (or
reject) input strings, but it also produces output for each
input string.

For example, when using Mohri and Sproat’s algorithm
to analyze the string operations on Lines 7 and 8 in Fig-
ure 1, we obtain the automaton shown in Figure 5. This au-
tomaton precisely captures the possible values of the vari-
able $custom. That is, it describes the set of strings that
start with the prefix “Hello”, and end with a suffix that
does not contain the ‘<’ character. Unfortunately, the com-
puted automaton does not distinguish between tainted and
untainted transitions anymore. Instead, it simply assumes
all transitions to be untainted. This is because Mohri and
Sproat’s algorithm is not designed to work on taint-aware
automata. We will present a solution to this problem later
in this section.

H E L L O not(<)

Figure 5. Automaton after replacement of ’<’.

not(<)
<

any

Figure 6. Example target automaton for XSS.

3.1.3 Vulnerability Detection Through Intersection

To check whether a program is vulnerable at some sensi-
tive sink (even when sanitization routines are previously
applied), it is necessary to determine whether it is possi-
ble that the input to this sensitive sink contains any ma-
licious characters or strings. For instance, an XSS attack
typically requires characters such as ‘<’ to be present, as
they are needed to construct JavaScript or HTML code.
In our approach, we verify this requirement by intersect-
ing the automaton that represents the sink’s input with an
automaton that encodes the set of undesired strings (the
target automaton). If the automaton that results from this
intersection is empty2, it means that none of the undesired
strings can be contained in the input, and that this sink is
safe.

We are aware of the fact that certain XSS attacks do
not require the attacker to inject a ‘<’ character into the
program output. For example, if an application lets a user
modify HTML tags (such as CCS properties or fonts), an
attacker could inject script handlers into tag attributes. In
such cases, the automaton that captures such attacks will
need to be more complex. This can be done without requir-
ing any modifications to our basic technique. Moreover,
by checking for the presence of the ‘<’ character, our sys-
tem already covers a significant fraction of existing XSS
threats.

A simple example automaton that represents a conser-
vative approximation of the undesired strings with respect
to XSS is shown in Figure 6. This target automaton repre-
sents all strings that contain at least one ‘<’ character. In-
tersecting this automaton with the automaton from Figure 5
yields an empty automaton, which means that this input
cannot be used to successfully perform an attack. By doing
this, we have successfully determined that the applied cus-
tom sanitization was effective. In contrast, the intersection
of the target automaton with the automaton that represents
the potentially dangerous value of variable $ GET[’x’]
(right side of Figure 2) is non-empty, since the unknown
value might contain an arbitrary number of ‘<’ characters.

3.1.4 Implicit Taint Propagation

Unfortunately, the techniques for function modeling and
vulnerability detection described above are still lacking an
important ingredient for reaching a sufficient level of preci-
sion. The reason is that the algorithm of Mohri and Sproat

2To be precise: If the resulting automaton accepts only the empty lan-
guage.

7



does not operate on taint-aware automata, but, instead, on
traditional automata without taint qualifiers associated to
their transitions. That is, the algorithm is not able to prop-
agate taint values through the modeled functions. Without
additional measures, this information loss would lead to
false positives, as taint information is essential for vulner-
ability detection. For instance, the simple example code
depicted in Figure 7 below would result in a false positive.

$s = "Hello\n";
$x = str_replace("\n", ’<br/>’, $s);
echo $x;

Figure 7. Code that causes a false positive.

$s = ’a’;
$x = str_replace(’a’, $_GET[’x’], $s);
echo $x;

Figure 8. Code that could cause a false neg-
ative.

In this code, all occurrences of the ‘\n’ control char-
acter are replaced with an HTML line break. Intersecting
the automaton that is computed for $x with the XSS target
automaton would yield a non-empty result, since $x does
contains a ‘<’ character. As a consequence, our analysis
would report a vulnerability for this example.

A possible approach to solve the problem of propa-
gating taint values through custom sanitization functions
would be to modify Mohri and Sproat’s algorithm such that
it becomes taint-aware. This modification would ensure
that the algorithm accepts taint-aware automata as input
(i.e., the arguments of the modeled sanitization function),
and returns a taint-aware automaton as output. However,
we propose an alternative solution that is sound, efficient,
less complex, and less error-prone than a modification of
the existing algorithm. Instead of explicitly keeping track
of both tainted and untainted values, we concentrate our at-
tention on the tainted parts of the automata. In this implicit
taint propagation, strings that are statically embedded into
the application by the programmer (and hence, untainted)
are replaced by the empty string during the automata com-
putation. This has the effect that only tainted strings are ex-
plicitly encoded in the automata, and that static, untainted
strings can no longer lead to false positives.

If used without care, however, implicit taint propaga-
tion can cause false negatives in certain cases (i.e., vulner-
abilities might be missed). Consider the (rather contrived)
example in Figure 8. Here, the program replaces the char-
acter ‘a’ inside the string $s with a user-provided value
(taken from $ GET[’x’]). If our analysis would prop-
agate taint values implicitly (and replace the value of $s
with the empty string), it would incorrectly deduce that
the str replace operation results in the empty string
as well. Under the XSS target automaton defined above,
an empty string is benign, and, therefore, the vulnerability
would be missed. To ensure soundness, it is necessary to

compensate the information loss due to the implicit taint
propagation with a supplementary “safety net.” This ad-
ditional mechanism corresponds to checking whether the
second parameter of str replace (or, analogously, the
replacement parameter of similar functions) is tainted. If
the parameter is tainted, the result of the function invo-
cation is conservatively approximated with the automaton
that describes the set of all possible strings. This ensures
that implicit taint propagation does not introduce false neg-
atives.

3.1.5 Providing Information to Dynamic Analysis

The dynamic analysis that follows the static analysis
phase is focused on the detection of routines that perform
insufficient custom sanitization. Hence, it only requires
information about those vulnerabilities reported by the
static analysis process that actually involve the use of
custom sanitization routines. For instance, consider the
following example code:

1 $x = str_replace(’<script>’, ’’, $_GET[’x’]);
2 echo $x;

In this program, the variable $ GET[’x’] is insuffi-
ciently sanitized. The programmer attempted to remove all
script tags from the input. Unfortunately, this simple
sanitization technique can be easily circumvented by em-
bedding JavaScript code in HTML event handlers (such as
onload), which do not require the use of script tags.
When checking this code, the dynamic analysis should be
informed that there is a possible vulnerability due to insuf-
ficient sanitization, and that this vulnerability involves the
user-controlled variable $ GET[’x’] as source and the
echo statement on Line 2 as sink. That is, the dynamic
analysis is provided with source-sink pairs that describe
possible vulnerabilities due to insufficient custom sanitiza-
tion. This information is extracted from the dependence
graphs that static analysis uses internally by means of a
simple reachability computation.

Recall that the focus of this paper is on the analysis of
custom sanitization routines. As a consequence, we do not
provide dynamic analysis with information about vulnera-
bilities that do not involve any custom sanitization. Instead,
these vulnerabilities are immediately reported to the user.

3.2 Testing Sanitization Routines

The static analysis phase is conservative, and, therefore,
it may generate false positives, which a developer needs
to manually assess. This process, however, is tedious and
error-prone. The goal of the dynamic analysis (or testing)
phase is to automate this task, or at least, to automatically
confirm vulnerabilities for which inputs can be found that
bypass sanitization functions.

During the dynamic phase, we test the effectiveness of
the sanitization routines applied along the paths between a
source and the corresponding sink. This is done by directly
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executing the corresponding sanitization routines, using as
input a number of attack strings. Then, a decision function
(typically called an “ oracle” in a testing context) is used
to evaluate whether the attack strings were successfully re-
duced to non-malicious values. If the testing process con-
firms that the sanitization is actually ineffective between a
source and a sink, it also provides the path along which
malicious input can reach the sink, as well as a sample at-
tack string that successfully exploits the vulnerability. This
information can then be leveraged by the developer to iden-
tify and fix the problem.

Ideally, one would run dynamic tests on a live installa-
tion of the application. However, it is often the case that
a vulnerability may be exploited (and, therefore, discov-
ered through testing procedures) only if the application is
in a certain, well-defined state (e.g., after the administra-
tor has logged in and the database contains specific val-
ues). Unfortunately, it is very difficult to test an application
under these conditions in a completely automated fashion.
Therefore, we take a different testing approach that focuses
only on the sanitization process itself and abstracts away all
other details of the application.

The dynamic analysis phase is composed of two differ-
ent steps. First, we construct a sanitization graph for each
pair of sources and sinks that are provided by the static
analysis component. Conceptually, we model the sanitiza-
tion process as the execution of a sequence of primitive op-
erations, i.e., sanitization functions. The sanitization graph
is the data structure that we use to efficiently store the se-
quences of sanitization operations that are applied to the
input along all paths from a source to its sink. The second
step of the dynamic analysis uses the sanitization graph to
test the corresponding sanitization code using a number of
predefined test cases.

3.2.1 Extracting the Sanitization Graph

For a given pair of source and sink nodes, the sanitiza-
tion graph is a slice (subgraph) of the interprocedural data-
flow graph of the application. This slice contains all nodes
that correspond to sanitization instructions along the paths
from the source to the sink. More precisely, we first com-
pute the interprocedural data-flow graph of the program
between the source and the sink nodes. By definition,
each node of the resulting subgraph represents an oper-
ation that affects the contents of the variables used by
the sink. This graph is then simplified by keeping only
those nodes that correspond to statements relevant to the
sanitization process. These include all calls to language-
provided sanitization routines (such as strip tags and
htmlspecialchars), regular-expression-based substi-
tution functions (preg replace), string-based substi-
tutions (e.g., str replace, strtoupper), as well as
other built-in string operations (e.g., concatenation).

As an example, consider the code snippet shown in Fig-
ure 9. The static analysis of the program identifies that a
user-provided input on Line 11 (the source) can reach the

1 <?php
2 function sanitize($data){
3 $res = eregi_replace("<script", "", $data);
4 if(version_compare(phpversion(),"4.3.0")=="-1")
5 $res = mysql_escape_string($res);
6 else
7 $res = mysql_real_escape_string($res);
8 return $res;
9 }

10

11 $name = sanitize($_GET["username"]);
12 echo "Name: ".$name;
13 ?>

Figure 9. Customized sanitization function.

source

eregi_replace

mysql_escape_string mysql_real_escape_string

sink

Figure 10. Sanitization graph.

echo statement at Line 12 (the sink) without proper sani-
tization. Following the data flow edges, we identify three
operations that affect the content of the variable $name
that is used by the sink: mysql real escape string
at Line 5, mysql escape string at Line 7, and the
regular expression at Line 3. The nodes corresponding to
these three functions are connected according to the edges
in the data flow graph, to reflect the order in which the op-
erations are performed in the original program. Figure 10
shows the resulting sanitization graph for our simple ex-
ample.

3.2.2 Testing the Effectiveness of the Sanitization
Routines

To analyze the effectiveness of the sanitization operations
performed by the application, we use the sanitization graph
to extract all possible paths Pi that lead from the source to
the sink. In our experiments, we found that the sanitiza-
tion graph is usually acyclic. However, in order to avoid
possible paths of infinite length, we adopted the common
solution of traversing each loop only once. For each path
Pi, we generate a block of code Ci by concatenating the
PHP instructions that correspond to each node that belongs
to Pi. This operation may involve resolving values of vari-
ables to determine (or extract) parameters used in a func-
tion call. In our example, the call to eregi replace is
examined to fetch the constant values of the first and sec-
ond parameter. The set of all the blocks Ci corresponds
to all the possible combinations of sanitization operations
that are applied by the program between the source and the
sink.
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Since the sanitization graph only considers data flow in-
formation, it is possible that our analysis generates code
corresponding to infeasible paths, i.e., paths that cannot be
executed at runtime. This can result from the fact that the
sanitization graph does not model branch conditions, and,
therefore, the dynamic analysis might consider branches
that, in the original program, are infeasible. In case user
input is not properly sanitized along an infeasible path, the
tool might generate a false positive. This would occur if
proper sanitization is performed on all other, feasible paths.
However, we have not observed such a case in our exper-
iments. Also, note that even though we remove all cycles
from the sanitization graph, the number of paths can still
grow exponentially. When the number of paths exceeds
the capacity of our dynamic analysis to examine them all,
we assume that the sanitization is incorrect. Again, this
problem has not occurred during our experiments.

Depending on the type of the sink, we then select the
appropriate test suite to be used in the experiment. For the
prototype implementation of Saner, we implemented two
different test suites: one for testing cross-site scripting at-
tacks and one for testing SQL injection attacks. Both test
suites contain a large number of test cases, each represent-
ing a particular value of user input that contains malicious
data. We created these test suites using attack strings de-
rived from both our own experience and from specialized
web sites (such as [23,35]). For instance, typical input val-
ues that can be used to test the effectiveness of sanitization
code for XSS are:

<script>alert(1);</script>
<scr<scriptipt src=http://evil.com/attack.js>
<img onmouseover="alert(1);" src=""></img>
<SCRIPT src="http://..."?<B>

Some of these test cases are just straightforward exam-
ples of XSS attacks, while others represent more complex
cases that are likely to evade poorly-written sanitization
routines. Note that we do not claim that the set of test cases
that we adopt in our test runs is complete. Instead, the goal
of the dynamic analysis part is to examine automatically
and in detail those cases in which the static analysis phase
has reported a potential vulnerability.

Finally, we invoke the PHP interpreter to evaluate the
result of executing each block of code Ci on the list of
malicious inputs contained in the selected test suite. The
results of the executions are collected and analyzed by
a special oracle function associated with the test case.
This function is responsible for deciding whether the input
string was successfully sanitized by the code under test.
To do that, it is usually enough to check for the occurrence
of particular substrings in the result. However, more ad-
vanced techniques can be used to implement oracle func-
tions, such as analyzing the structure of a SQL query to
verify the result of a SQL injection.

In our example of Figure 10, we can identify two dif-
ferent paths through the sanitization graph. During the ex-
ecution of the first test case (the one that uses the input
string <script>alert(1);</script>), we invoke

the PHP interpreter to evaluate the two following pieces of
code:

Code 1:
$tmp = "<script>alert(1);</script>";
$tmp = eregi_replace("<script", "", $tmp);
$tmp = mysql_escape_string($tmp);

Code 2:
$tmp = "<script>alert(1);</script>";
$tmp = eregi_replace("<script", "", $tmp);
$tmp = mysql_real_escape_string($tmp);

At the end of the two executions, the value of the $tmp
variable is analyzed by the oracle function associated with
the test case. In this simple case, the oracle is realized
as a check to verify that the resulting string still contains
the unescaped script tag. Note that the execution
of this test does not spot any vulnerability, since the
eregi replace function does remove the opening tag
from the input string. However, the following test case,
which is based on the attack string <scr<scriptipt
src=http://evil.com/attack.js>, will immedi-
ately reveal the weakness of the sanitization routine.

4 Evaluation

We implemented our approach in a prototype tool called
Saner, and we evaluated this system on five popular,
publicly-available PHP applications that contain custom
sanitization routines.

The results of our analysis are shown in Table 1. The ta-
ble shows the total number of security-sensitive sinks that
are present in each analyzed program (sinks total). The
next column (sinks with sanitization) shows the subset of
sinks that have as input at least one value that depends on
the output of a sanitization routine. That is, for each sink,
there exists at least one program path such that the output
of a sanitization routine flows into this sink. This number
is important, as it represents those cases where incorrect
sanitization could have a potential impact on the security
of the program. It serves as a baseline for those sinks that
need to be further analyzed for incorrect sanitization. Note
that the number of sinks with sanitization is significantly
smaller than the total number of sinks. The reason is that
many of the sensitive sinks do not receive any tainted in-
put. Also, in a few cases, tainted input reaches sensitive
sinks directly, without any sanitization. In such cases, Pixy
would report a vulnerability. However, for this paper, we
are only interested in paths on which sanitization opera-
tions are performed.

The column eliminated (basic) shows the number of
sensitive sinks with sanitization for which the basic anal-
ysis of Pixy determines that there is no security problem.
This could be, for example, when the sanitization routine
is not processing any malicious input, and, as a result, its
output is guaranteed to be benign. The column eliminated
(advanced) counts those cases in which the sensitive sinks
do process potentially malicious input, but our improved
static analysis is able to verify that the sanitization process
works as intended. Finally, all sinks for which the static
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Application
Sinks Static Analysis Dynamic Analysis

Total
With Sinks Sinks Sinks Sinks Not

Sanitization Eliminated Eliminated Analyzed Vulnerable Vulnerable
(Basic) (Advanced)

Jetbox 2.1 311 7 5 0 2 1 1
MyEasyMarket 4.1 737 50 0 45 5 5 0
PBLGuestbook 1.32 41 5 2 0 3 3 0
PHP-Fusion 6.01 1,015 67 19 0 48 4 44
Sendcard 3.4.1 84 10 2 0 8 1 7

Totals 2,188 139 28 45 66 14 52

Table 1. Detection results.

analysis process cannot verify the correctness of the pre-
ceding sanitization routines are forwarded to the dynamic
analysis (sinks analyzed).

The column sinks confirmed reports the total number
of sinks that are confirmed to be vulnerable after running
the dynamic analysis phase. The last column (not vulner-
able) shows those sinks for which the dynamic analysis
could not find input to bypass the sanitization routines. We
manually verified that all these cases are indeed harmless
and represent false positives produced by the static anal-
ysis phase. This demonstrates that the dynamic analysis
phase was able to correctly produce input values to bypass
the sanitization routines in all vulnerable cases. Of course,
in general, dynamic analysis suffers from false negatives.
Thus, to remain sound, a human analyst would have to ver-
ify all cases manually in which no malicious input is found.
However, our experiments show that the dynamic analysis
phase is very accurate in practice. Therefore, one could
choose to trust its results. In this case, the system would
only report sanitization routines that are very likely incor-
rect and also suggest input values that can be used to ex-
ploit the identified vulnerabilities.

The outcome of the experiments confirms our original
hypothesis that sanitization mechanisms used in real-world
applications are not always effective and can often be cir-
cumvented by determined attackers. To the best of our
knowledge, all the ineffective sanitization routines discov-
ered during the experiments correspond to novel, previ-
ously unknown vulnerabilities (with the exception of one
of those found in PBLGuestbook, which was previously
described in CVE-2006-3617). Therefore, we identified 13
novel vulnerabilities in the five applications we analyzed.
We have working exploits for each vulnerability and noti-
fied the appropriate application developers.

4.1 Discussion of Sanitization Errors

A detailed analysis of the vulnerabilities detected in our
experiments reveals that the sanitization process performed
by a program can be ineffective for several reasons, which
we classify based on the most common cases that we have
encountered.

First, the code that performs the sanitization can contain
programming errors. That is especially true if the sanitiza-
tion is based on regular expressions, whose complex syn-
tax can lead inexperienced developers to introduce subtle
bugs in their specification. For example, MyEasyMarket
attempts to sanitize the user-provided parameter www by
using the following regular expression-based substitution:

ereg_replace("[ˆA-Za-z0-9 .-@://]","",$www);

Clearly, the parameter is used to store a URL and the devel-
oper intended to allow it to include the ‘-’ (dash) charac-
ter. Unfortunately, the dash character, when used inside a
character class definition (marked by the square brackets),
is interpreted as the character range separator. Therefore,
the regular expression leaves unaffected all characters in-
cluded in the range between ‘.’ (dot) and ‘@’ (at), which
includes the open and close tag characters (< and >) and the
equal symbol (=). Thus, an attacker can inject the string
<script src=http://evil.com/attack.js/> and
successfully perform a cross-site scripting attack.

Second, the sanitization process can be bug-free but in-
sufficient. This is usually due to two reasons: the devel-
oper is not aware of all possible attack vectors (e.g., does
not remove all HTML elements that can cause the execu-
tion of JavaScript code), or, even if she is, she ignores the
fact that browsers accept and interpret malformed, non-
standard documents. As an example of the first problem,
consider the following sanitization performed in Jetbox
(slightly simplified for readability):

function removeEvilTags($source){
$allowedTags = "<h1><b><i><a>";
$source = strip_tags($source, $allowedTags);
return preg_replace(’/<(.*?)>/ie’,

"’<’.removeEvilAttributes(’\\1’).’>’",
$source);

}

function removeEvilAttributes($tagSource){
$stripAttrib = ’javascript:|onclick|".
"ondblclick|onmousedown|onmouseup|".
"onmouseover|onmousemove|onmouseout|".
"onkeypress|onkeydown|onkeyup|style|".
"onload|onchange’;

return preg_replace("/$stripAttrib/i",
’forbidden’, $tagSource);

}
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The developer intended to only permit the use of a
limited number of HTML tags cleaned of attributes that
allow for the execution of JavaScript code. However,
the list of insecure attributes is not complete: for exam-
ple, the input string <a onfocus="malicious code"
href="url">dummy</a> remains unaltered when it is
processed by the sanitization routines, and thus, it can be
used to execute malicious code. As an example of the
second problem, consider the sanitization performed by
PBLGuestbook:

preg_replace(
"/\<SCRIPT(.*?)\>(.*?)\<\/SCRIPT(.*?)\>/i",
"SCRIPT BLOCKED", $value);

Note that the specified pattern looks for a closing
script tag. Unfortunately, most browsers accept mal-
formed documents where an open tag is not followed by
a corresponding close tag, and automatically insert the
missing close tag. Therefore, an attacker can provide the
input string <script>malicious code< to circumvent
this sanitization.

Finally, the sanitization process implemented by a de-
veloper may correctly take into account all attack vectors
but still be evadable. For example, consider the following
sanitization:

str_replace("script","", $input)

This sanitization routine is intended to completely re-
move all occurrences of the string “script” from the
user input. Unfortunately, an attacker can bypass this sani-
tization by providing the string <scrscriptipt> code
</scrscriptipt> as input. The reason is that this
string is transformed by the sanitization procedure into
<script>code <script>, which invokes the embedded
JavaScript code.

4.2 Discussion of Effectiveness and
Efficiency

The combination of static and dynamic techniques
proved to be effective. In fact, for the smaller applications,
the dynamic testing phase was always able to automati-
cally confirm all the alerts provided by the static analysis
part. The advantage of using the dynamic analysis is more
evident when analyzing larger applications. For example,
in PHP-Fusion, the static analysis component generates a
large number of alerts, which, in all benign cases, were cor-
rectly identified as false positives by the dynamic analysis
phase.

Our results also indicate that current state-of-the-art vul-
nerability analysis tools would benefit from our approach,
especially when analyzing applications that use a non-
trivial amount of custom sanitization code. In fact, our ap-
proach provides a method to reduce the false positives that
are generated when a tool conservatively considers all cus-
tom sanitization routines to be ineffective, and false nega-
tives if the tool takes the opposite approach of considering
all sanitization routines to be secure. The reason is that

the sanitization functions are precisely modeled, and not a
priori assumed to be either entirely correct or faulty.

Table 2 presents the runtime performance of Saner. For
each application, we report the total number of lines of
code (lines of code), the time required to perform the static
analysis phase (static analysis time), the time required
to perform the dynamic analysis phase (dynamic analy-
sis time), and the total time (total time). Note that, even
though in this prototype implementation performance was
not a primary consideration, the time required to perform
our analysis is in the order of a few minutes for almost
all applications, and, in all cases, well under 20 minutes.
Through careful engineering, the performance of our re-
search prototype could be further enhanced. However, we
believe that the current system operates well in practice
and can be successfully used with large, real-world appli-
cations.

Interestingly, during the dynamic analysis phase, most
of the time was spent to compute the inter-procedural data
flow graph and extract the sanitization graphs. In our ex-
periments, sanitization graphs were generally small, both
in terms of number of nodes (i.e., sanitization primitives
used) and of number of paths. Therefore, the time spent
running the test attacks had a limited impact on the total
time.

5 Related Work

The approach described in this paper is a composition
of static and dynamic analysis techniques. Therefore, in
the following two sections, we review the research work
that is related to these two types of analysis.

5.1 Static Analysis

Type-Based Analysis. For typed programming languages,
information about the taint status of variables can be propa-
gated through the program by extending the type system of
the language. For example, CQual [7] is a tool that allows
one to extend the type system of the C language with user-
defined qualifiers. After defining the new type system, the
programmer manually introduces the additional qualifiers
at a few key points in the application. CQual’s qualifier
inference then determines whether the program contains
a type error under the extended system. This technique
was used by Shankar et al. [38] for the detection of format
string vulnerabilities, and by Johnson and Wagner [16] to
identify user/kernel pointer bugs in the Linux kernel. Anal-
ogously, Zhang et al. [46] discovered security problems re-
garding the placement of authorization hooks in the Linux
Security Modules framework.

JFlow [26] is an extension to the Java programming
language that adds a type system for tracking information
flow. In this system, the user is provided with annotations
(labels) that define restrictions on the way in which the in-
formation may be used in the program, permitting the veri-
fication of information confidentiality and integrity. JFlow
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Application Lines of Code (#) Static Analysis Time (s) Dynamic Analysis Time (s) Total time (s)

Jetbox 2.1 69,177 62 5 67
MyEasyMarket 4.1 2,544 202 26 228
PBLGuestbook 1.32 1,595 40 180 220
PHP-Fusion 6.01 56,339 723 386 1,109
Sendcard 3.4.1 8,504 130 38 168

Table 2. Performance results.

supports a wide range of language features (such as objects
and exceptions), and is implemented in the Jif [15] tool.

Rule-Based Bug Finding. In [5], Engler et al. present
meta-level compilation, a technique for the translation of
simple user-defined rules (such as “never use floating point
in the kernel”) into extensions for the C compiler. Dur-
ing the compilation of a program, these extensions are able
to determine whether the program violates the specified
rules. An automated extraction of such program rules from
a given application is described in [6]. In [2], the authors
use the system to detect potentially dangerous accesses to
user-supplied, unchecked values in Linux and OpenBSD.

Web Application Analysis. There exist several ap-
proaches that are focused on the detection of “taint-style”
vulnerabilities (such as XSS or SQL injections), which
frequently occur in web applications. Huang et al. [13]
adapted parts of the techniques used in CQual to develop
an intraprocedural analysis for PHP programs. In [14], the
same authors present an alternative approach that is based
on bounded model checking. Whaley and Lam [44] de-
scribed an interprocedural, flow-insensitive alias analysis
for Java applications. Their analysis is based on binary de-
cision diagrams, and was used by Livshits and Lam [22]
for the detection of taint-style vulnerabilities. As already
mentioned, our approach is based on Pixy [17,18], an open
source static PHP analyzer that uses taint analysis for de-
tecting XSS vulnerabilities.

In [9], the authors applied the Java String Analyzer by
Christensen et al. [4] to extract models of a program’s
database queries, and used these models as the basis for
a runtime monitoring and protection component for SQL
injection attacks. The main difference compared to our ap-
proach is that the extracted models do not contain infor-
mation about the taint status of embedded variables. As
a result, it is not possible to detect vulnerabilities using
static analysis only. In our system, we can identify vulner-
abilities using static analysis alone. In addition, we use a
dynamic phase to automatically determine inputs that can
exploit a vulnerability.

Xie and Aiken [45] presented an interprocedural and
flow-sensitive system for the discovery of SQL injec-
tion vulnerabilities through a bottom-up analysis of basic
blocks, procedures, and the whole program. In their work,
the authors take into account the effect of applying one
of a number of regular expressions to an input value. In
principle, the authors manually specify a list of regular ex-

pressions that simply extends the list of built-in sanitiza-
tion routines (such as htmlentities). In contrast, our
technique automatically decides whether an arbitrary reg-
ular expression is suitable for sanitization, and requires no
manual extensions when scanning new applications.

The system that is probably closest to ours was devel-
oped by Wassermann and Su [43]. In their paper, the au-
thors present a static analysis technique for finding subtle
SQL injection flaws. For this, they independently and con-
currently developed a mechanism to determine the possi-
ble string values of variables in PHP programs. This al-
lows them to take into account the effect of sanitization
routines. The differences to our work are twofold. First,
our focus is different. We attempt to verify the correctness
of the sanitization process and do not limit our analysis to
the detection of SQL injection vulnerabilities. Second, our
system employs an additional dynamic analysis phase to
find automatically input values that can exploit a vulnera-
bility.

5.2 Dynamic Analysis

The dynamic techniques described in this paper are
related to the research in the area of applying dynamic
taint propagation analysis to web applications. Perl’s Taint
mode [31] is one of the best-known examples of such ap-
proaches. Similar approaches have been applied to other
languages as well: Nguyen-Tuong et al. [28] propose
modifications of the PHP interpreter to dynamically track
tainted data in PHP programs, and Haldar et al. [8] have
instrumented the Java Virtual Machine. Pietraszek and
Vanden Berghe [33] present a unifying view of injection
vulnerabilities and describe a general approach to the de-
tection and prevention of injection attacks through the dy-
namic tracking of the flow of untrusted data inside an ap-
plication. None of these approaches, however, provides a
precise modeling of sanitization routines used to untaint
data, and, thus, these approaches do not offer an effective
protection against web attacks.

The dynamic part of our work is also related to a num-
ber of research results and tools in the areas of application
security testing and fault injection [3,12,19,29,37,40]. All
these systems inject malicious (or sometimes random) in-
put into the applications to identify security problems. In
our tool, we inject strings corresponding to possible XSS
and SQL injection attacks to dynamically execute parts of
the analyzed applications. Our work is also related to the
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data flow testing of applications, such as [10, 11, 34]. In
this type of testing, data flow graphs are used to identify
the test case requirements for a program. In our approach,
we use data flow graphs to find program statements related
to the sanitization process.

6 Conclusions

Web applications perform mission-critical tasks and
handle sensitive information. Even though there have been
a number of research efforts to identify the use of un-
validated input in web applications, little has been done
to characterize how sanitization is actually performed and
how effective it is in blocking web-based attacks.

In this paper, we have presented Saner, a novel ap-
proach to the evaluation of the sanitization process in web
applications. The approach relies on two complementary
analysis techniques to identify faulty sanitization proce-
dures. We implemented our approach, and by applying
it to real-world applications, we identified novel vulnera-
bilities that stem from incorrect or incomplete sanitization.
Future work will focus on the analysis of type-based val-
idation procedures, as scripting languages often allow the
programmer to interpret the values of variables in different
ways, depending on the application context. This might
lead to vulnerabilities that are difficult to detect.
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