The Leurre.com Project: Collecting Internet Threats Information
using a Worldwide Distributed Honeynet

C. Leita !, V.H. Pham !, O. Thonnard 2, E. Ramirez-Silva !
F. Pouget 3, E. Kirda !, M. Dacier !

Institut Eurecom, Route des Cretes 2229, Sophia Antipolis (France)
{leita, pham, ramirez, kirda, dacier }Qeurecom. fr
2olivier.thonnard@Qrma.ac.be,® fabien.pougetQgmail .com

Abstract

This paper aims at presenting in some depth the
Leurre.com project and its data collection infrastructure.
Launched in 2003 by the Institut Eurecom, this project is
based on a worldwide distributed system of honeypots run-
ning in more than 30 different countries. The main objec-
tive of the project is to get a more realistic picture of certain
classes of threats happening on the Internet, by collecting
unbiased quantitative data in a long-term perspective. In
the first phase of the project, the data collection infrastruc-
ture relied solely on low-interaction sensors based on Hon-
eyd [24] to collect unsolicited traffic on the Internet. Re-
cently, a second phase of the project was started with the
deployment of medium-interaction honeypots based on the
ScriptGen [15] technology, in order to enrich the network
conversations with the attackers. All network traces cap-
tured on the platforms are automatically uploaded into a
centralized database accessible by the partners via a con-
venient interface. The collected traffic is also enriched with
a set of contextual information (e.g. geographical localiza-
tion and reverse DNS lookups). This paper presents this
complex data collection infrastructure, and offers some in-
sight into the structure of the central data repository. The
data access interface has been developed to facilitate the
analysis of today’s Internet threats, for example by means
of data mining tools. Some concrete examples are presented
to illustrate the richness and the power of this data access
interface. By doing so, we hope to encourage other re-
searchers to share with us their knowledge and data sets, to
complement or enhance our ongoing analysis efforts, with
the ultimate goal of better understanding Internet threats.

1. Introduction

Understanding the existing and emerging threats on the
Internet should help to effectively protect the Internet econ-
omy, our information systems and the net citizens. To reach
this goal, it is thus necessary to collect sound measurements
about the ongoing attack processes observed worldwide on
the net. In the last years, the experimental study of Internet
threats has gained much attention and many valuable ini-
tiatives now exist for monitoring malicious activities or for
capturing malware binaries. Important contributions have
been made in the field such as: i) the so-called Darknets and
Internet telescopes [18, 28, 23], ii) various projects based
on the development of low- or high-interaction honeypots
[9, 27, 24, 2, 32], and iii) other initiatives aiming at collect-
ing and sharing firewall and IDS logs [10].

In this paper, we present in depth the Leurré.com project
and its data collection infrastructure. Launched in 2003 by
the Institut Eurécom, this project is based on a worldwide
distributed system of honeypots running in more than 30
different countries covering the five continents. The main
objective of the project is to get a more realistic picture of
certain classes of threats happening on the Internet by col-
lecting unbiased quantitative data in a long-term perspec-
tive. We have decided to keep in one centralized database
very precise information concerning a limited number of
nodes under close scrutiny. Concretely speaking, we de-
ployed identically configured honeypots based on Honeyd
[24] on the premises of several partners around the globe.
Recently, we started the development and the deployment
of new honeypot sensors based on the ScriptGen technol-
ogy [15] to improve the interaction with the attackers and
to enrich our data collection. We record all packets sent to
or from these machines, on all platforms, and we store the
whole traffic into a database, enriched with some contextual
information and with meta-data describing the observed at-

tack sessions. Special care has been taken in the design of
such a database to offer an easy and intuitive way to re-
trieve meaningful information very efficiently. In the next
Sections, we present not only the structure of this database
but also how it can be used to bring to light some ongoing
attack processes on the Internet.

The structure of the paper is as follows: Section 2 presents
the initial data collection infrastructure that is based on the
deployment of low-interaction honeypots. Section 3 gives
some implementation insights into our central repository.
We briefly highlight the rationales behind the database de-
sign, and we explain why, from a usability point of view, we
explicitly included redundant information in the database
to make the execution of complex queries more efficient.
Section 4 gives a series of practical examples on how to
take advantage of this huge database via a convenient in-
terface. We show how this powerful data access interface
can greatly facilitate the extraction of rich and meaningful
patterns, which can then easily be used as input for data
mining tools. In Section 5, we present how we extended
our infrastructure with the SGNET deployment, which has
recently been opened to anybody willing to host one of its
sensors. We explain how we have been able to combine
different techniques and analysis tools to increase the rich-
ness of the information collected by the honeypots. Then,
we present also a practical example on how to retrieve very
rich information about the collected threats using SGNET
data. Finally, we conclude in Section 6.

2. Leurre.com v1.0 Honeyd
2.1. Historical background

The Institut Eurécom has started collecting attack traces
on the Internet in 2003 by means of honeypot responders.
The first platform consisted of three high interaction honey-
pots built on top of the VMware technology (the interested
readers in the platform configuration are invited to read [8]
for more information). As shown in [8, 7], these first ex-
periments allowed us to detect some locality in Internet at-
tacks: activities seen in some networks were not observed
in others. To validate this assumption, we decided to deploy
multiple honeypots in diverse locations. With diversity, we
refer both to the geographical location and to the sensor
environment (education, government, private sectors, etc).
However, the VMware-based solution did not seem to be
scalable. First, this solution had a high cost in terms of
security maintenance. Second, it required significant hard-
ware resources. In fact, to avoid legal issues we would have
needed to ensure that these systems could not be compro-
mised and could not be exploited by attackers as stepping
stones to attack other hosts. For those reasons, we have cho-
sen a low-interaction honeypot solution, honeyd [24]. This

solution allowed us to deploy low-cost platforms, easy to
maintain and with low security risk, hosted by partners on
a voluntary basis. The low-cost of the solution allowed us
to build a distributed honeynet consisting now of more than
50 sensors distributed all over the world, collecting data on
network attacks and representing this information under the
form of a relational database accessible to all the parters.
Information about the identity of the partners and the ob-
served attackers is protected by a Non-Disclosure Agree-
ment signed by each entity participating to the project. We
have developed all the required software to automate the
various regular maintenance tasks (new installation, recon-
figuration, log collection, backups, etc.) to reduce the main-
tenance overhead related to the management of such a com-
plex system.

2.2. Some technical aspects

We describe here some important technical aspects,
including the platform architecture, the logs collection
mechanism, the DB uploading mechanism, and the data
enrichment mechanism.

Platform architecture: As mentioned before, the main
objective is to compare unsolicited network traffic in diverse
locations. To make sound comparisons, the platform archi-
tecture must be the same everywhere. We tried to make our
Honeyd-based solution as similar as possible to the initial
VMware setup. We configured Honeyd to simulate 3 virtual
hosts running on three different (consecutive) IP addresses.
We configured Honeyd’s personality engine to emulate the
presence of two different configurations, namely two iden-
tical virtual machines emulating Windows 2000 SP3, and
one machine emulating a Linux Kernel 2.4.20. To the first
two configurations (resp. the last) correspond a number of
open ports: FTP, Telnet, Web server, Netbios name service,
Netbios session service, and Service Message Block (resp.
FTP server, SSH server, Web server on ports (80), Proxy
(port 8080,8081), remote shell (port 514), LPD Printer ser-
vice (port 515) and portmapper). We require from each part-
ner hosting the platform a fourth IP address used to access
the physical host running Honeyd and perform maintenance
tasks. We run tcpdump [29] to capture the complete net-
work traces on each platform. As a security measure, a re-
verse firewall is set up to protect our system. That is, we
accept only incoming connections and drop all the connec-
tions that could eventually be initiated from our system (in
theory, this should never happen). The access to the host
machine is very limited: SSH connections are only allowed
in a two-hour daily timeframe and only if it is initiated by
our maintenance servers.

Data collection mechanism: An automatized mechanism
allows us, on a daily basis, to connect to the platforms

through an encrypted connection to collect the tcpdump
traces. The script downloads not only the last day’s log file
but also the eventual older ones that could not have been
collected in the previous days due to, for example, a con-
nectivity problem. All the log files are stored on a central
server.

Data uploading mechanism: Just after the data retrieval,
the log files are then uploaded to a large database (built on
top of Oracle) by a set of Perl programs. These programs
take tcpdump files as input and parse them in order to cre-
ate different abstraction levels. The lowest one corresponds
to the raw tcpdump traffic. The higher level is built on the
lower ones and has richer semantics. Due to space con-
straint, we do not present here all the concepts, focusing
only on the most important notions.

1. Source: A source corresponds to an IP address that
has sent at least one packet to, at least, one platform.
Note that, in our Source model, a given IP address can
correspond to several distinct sources. That is, an IP
remains associated to a given source as long as there
is no more than 25 hours between 2 consecutive pack-
ets received from that IP. After such a delay, a new
source will be assigned to the IP. By grouping pack-
ets by sources instead of by IPs, we minimize the risk
of gathering packets sent by distinct physical machines
that have been assigned the same IP dynamically after
25 hours.

2. Large_Session: it’s the set of packets which have been
exchanged between one Source and a particular hon-
eypot sensor. A Large_Session is characterized by the
duration of the attack, the number of packets sent by
the Source, the number of virtual machines targeted
by the source on that specific platform, ...

3. Ports sequence: A ports sequence is a time ordered se-

quence of ports (without duplicates) a source has con-
tacted on a given virtual machine. For example, if an
attacker sends the following packets: ICMP, 135 TCP,
135 TCP, 139 TCP to a given virtual machine, the asso-
ciated ports sequence will be represented by the string
I|135T'|139T . Each large session can have, at most,
three distinct clusters associated to it.
This is an important feature that allows us to classify
the attacks into different classes. In fact, as mentioned
in [8], most attack tools are automatized, it is as likely
that the same attack tools will leave the same port se-
quences on different platforms.

4. Tiny_Session: A Tiny_Session groups the packets ex-
changed between one source and one virtual host.
A Large Session is thus composed of up to three
Tiny_Sessions, ordered according to the virtual hosts
IP addresses.

5. Cluster: A Cluster is a set of Sources having exhib-
ited the same network fingerprint on a honeypot sen-
sor. We apply a clustering algorithm on the traffic gen-
erated by the sources. The first step of this cluster-
ing algorithm consists in grouping large sessions into
bags. This grouping aims at differentiating between
various classes of activity taking into consideration a
set of preliminary discriminators, namely the number
of targeted virtual hosts and the unsorted list of port
sequences hitting them. In order to further refine the
bags, a set of continuous parameters is taken into con-
sideration for each large session, namely: its duration,
the total number of packets, the average inter arrival
time of packets, and the number of packets per tiny
session. These parameters can assume any value in the
range [0, oo, but some ranges of their values may be
used to define bag subclasses. This is done through
a peak picking algorithm that identifies ranges of val-
ues considered discriminating for the bag refinement.
Large sessions belonging to a bag and sharing the same
matching intervals are grouped together in a cluster.
A very last refinement step is the payload validation.
The algorithm considers the concatenation of all the
payloads sent by the attacker within a large session
ordered according to the arrival time. If it identifies
within a cluster multiple groups of large sessions shar-
ing similar payloads, it further refines the cluster ac-
cording to these groups. In summary, a cluster is by
design a set of large sessions that seem to be originat-
ing from a similar attack tool.

Information enrichment: To enrich the information
about each source, we add to it three other dimensions:

1. Geographical information: To obtain geographical
location such as: organization, ISP, country of a given
IP address, we have initially used Netgeo [20], devel-
oped in the context of CAIDA Project. It provided a
very surprising result which considered Netherlands
and Australia as two of the most attacking countries.
As a sanity check, we have used Maxmind [17] and
we have detected problems with the Netgeo classifica-
tion. [22] provides a comparison of these two tools.
It comes out from this analysis that Netherlands and
Australia were not among the top attacking countries
anymore when using different sources of information
for the geographical loctaion of attacking IP addresses.

2. OS fingerprint: To figure out the OS of attacking
hosts, we have used passive OS fingerprinting tech-
niques. We take advantage of disco [1] and pOf [33].
It has been shown that pOf is more accurate than
disco. Active fingerprinting techniques such as Nmap,
Quezo, or Xprobe have not been considered to mini-

mize the risk of alerting the attacker of our investiga-
tions.

3. Domain name: We also do the reverse DNS lookup to
get the domain name of the attacking machine if it is
available.

2.3. Generic picture

x 10

Platform identifier
Number of sources
o

05

0
Jan03 Jan04 Jan05 Jan06 Jan07 Jan08 Jan09 Jgnoa Jan04 Jan05 Jan06 Jan07 Jan08

Figure 1. Left: Evolution of platforms, Right: number of
sources

Figure 1 (left) shows the evolution of platforms. Each
curve corresponds to the time life of a platform. As we
can see, we started our data collection in January 2003 with
one VMware honeypot and we have started to deploy the
distributed low interaction honeypots in April 2004. Since
then, the number of partners joining us has kept increasing.
In total, we have around 50 offical partners and around 20
former partners. These platforms have, in total, covered 37
different /8 networks, locating in 28 different countries in
five continents. In total, we have observed 5173624 sources
corresponding to 3461745 different IP addresses. Figure 1
(right) shows the evolution of the number of sources over
time. The variation of the curve is of course influenced
by the number of platforms. Note that up to April 2004,
the traffic is negligible. After that, the number of sources
has increased. It is interesting to observe that the number
of sources on the last six months of 2004 is much higher
than that of the last six months of 2005 even through, in
the second case, we have more platforms. In total, there
are 155041 different clusters. Figure 2 (left) represents the
cumulative distribution function of number of sources per
number of cluster. Point (X,Y) on the curve means that
Y*100% of the total amount of clusters contain less than
X sources. As we can see, most of clusters are very small.
There are, in fact, only 15521 clusters containing more than
10 sources each. Interestingly enough, by querying the
database one can find that these clusters, ie. around 10%
of the total number of clusters, contain in fact 95% of the
observed attacks! In other words, the bulk of the attacks is
found in a limited number of clusters whereas a very large
number of diverse activities originate from a very limited

number of sources. In term of attacking machines’ OS, ac-
cording to pOf, almost all attacking machines are Windows
ones. This confirms again the results in [8, 7]. Figure 3
shows the top ten attacking countries with US in the head,
followed by China and Canada. But the surprising thing is
that CS (corresponding to former Serbia and Montenegro) is
at the fifth position. The reason is that there is one (and only
one!) platform which is heavily attacked by this country. In
total, it shows up as one of the most attacking countries. Fi-
nally, as an example to show the diversity of the attacks over
different platforms, Figure 2 (right) shows the distribution
of the number of different clusters per platform. Each col-
umn represents the number of distinct clusters observed on
a platform. We have as many columns as number of plat-
forms. As we can see, the attacks are highly diverse. On
some platforms, we observe just small number of clusters,
but it is not the case for others.

CDF of cluster per number of sources

Nr of Clusters

0 20 40 60 80 100

Platforms
Number of sources-X

Figure 2. Left:Cumulative distribution function of num-
ber of source per cluster; Right:Distribution of number of
clusters per platform

Figure 3. Top ten attacking countries

3. Implementation Insights
3.1. ERD Design Rationales
The purpose of an Entity-Relationship model is to allow

the description of the conceptual scheme based on a practi-
cal relational model. We can usually optimize this process

with respect to various types of constraints (speed, mem-
ory consumption, table sizes, number of indices, etc.). Best
practices in designing relational databases address problems
such as data redundancy and update/insertion anomaly is-
sues. These problems are typically solved by transforming
non optimal entity relationships models into their so-called
“normal forms” (Third Normal Form, Boyce-Codd Normal
Form). In our case, though, the problem is slightly differ-
ent and offers us the freedom not to follow that path. The
reasons for that are twofold. First, we do not care about
update and insertion anomaly issues as we do not modify
the data once it is inserted into the database, as it represents
a fact of the past. Second, we do care about the efficiency
of querying the database and we are not so concerned by
space efficiency (be it on disk or in memory) as the total
amount of data we deal with remains rather modest, com-
pared to what existing database systems can handle. There-
fore, we have consciously decided to integrate in our design
some redundant information. In other words, certain tables
contain information that could be retrieved by querying or
joining other tables. However, having the results of such
queries available at hand in ad-hoc tables proves to be ex-
tremely useful when using the database. As a consequence,
we decide to keep them, acknowledging the fact that, with-
out their presence, the database would be more ‘optimal’
according to the classical criteria.

3.2. Leurre.com Architecture

Main ERD Components The data we collect must be
properly organized as it will be used for further analysis
and experiments. In our setup, as we have three honeypots,
a Large Session can be made of 1 to 3 Tiny Sessions (see
Section 2). This idea of Tiny and Large Sessions is at the
core of the design of the database. Therefore, the five most
important tables in the database are the following ones:

Host: this table contains all attributes (or links to other ta-
bles containing attributes) required to characterize one
honeypot virtual machine.

- Environment: this table contains all attributes (or links
to other tables containing attributes) required to char-
acterize one honeypot platform, i.e. a group of three
hosts.

- Source: this table gathers all attributes (or links to other
tables containing attributes) required to characterize
one attacking source as defined before.

- Large_Session: this table contains all attributes (or links
to other tables containing attributes) required to char-
acterize the activity of one Source observed against
one Environment.

- Tiny_Session: this table contains all attributes (or links to
other tables containing attributes) required to charac-
terize the activity of one Source observed against one
Host.

In Figure 4, we present the class diagram corresponding
to the ERD model to highlight the respective roles of these
main tables. The relationship between Source and Environ-
ment is called Large_Session. The relationship between one
Source and one Host is called a Tiny_Session. Primary keys

Large_Session
1% +Large Session Id 1.
+Source_Td
+Environment_TId =
1 | Environment
1 +Environment Id
1
Source 1
+Source_Id
+IF_Address 1
+Date_Id
1:3 13
1.%

Tiny_Session 1t 1 Host
+Tiny Session Id Host Td
+Host_TId +Enviromment_Id
+Source_Td

+Large_Session Id

Figure 4. Class diagram of the main DB tables

are underlined in Figure 4. As explained previously, some
redundancies have been introduced on purpose. Some ex-
amples of meta-data fields include the number of packets,
the duration of the attack session, the number of hosts that
have been hit, etc (a few other examples of meta-data fields
are given a bit further). This redundancy is however benefi-
cial for performance when executing complex queries (see
Section 4). Moreover, it greatly simplifies the process of
writing new queries.

As of March 2008, the whole database comprises about 40
tables. Recently, we included some new tables to repre-
sent data that is specific to the richer information collected
thanks our new ScriptGen-based sensors (see Section 5). As
of March 2008, the database contains a total of 135 Gbytes.
It has been implemented on an Oracle DBMS, running on
a cluster of two Red Hat Enterprise Linux servers equipped
with a Dual Intel Xeon 3.6 GHz, 6GB RAM and 1.67 TB of
SAN. The number of entries for the previously introduced
tables are given in Table 1. In the following, we introduce a
few other tables. Due to space limitations, we are not able
to reproduce the whole database schema. So we will briefly
sketch the relevant information that is available in the DB,
and we invite the interested reader to contact us if she wants
to obtain the whole diagram.

Table names Number of entries
Source 5,177,283
Large_Session 5,891,633
Tiny_Session 9,854,328
Environment 81
Host 320

Table 1. Volume overview of the main tables (March
2008)

Packets information We store in the database detailed in-
formation on all the packets sent and received by all our
honeypots following the same schema used the Snort In-
trusion Detection System. Packets are either coming from
a Source or sent by a Host. They are linked to a given
Tiny_Session. Figure 5 presents the resulting new tables.
Each packet has its unique identifier, called cid.

Tiny_Session

+Tiny Session Td
+Large_Session_Id
+Host_Id

Host_To_Source_Traffic Source_To_Host_Traffic
+Tiny Session Id +Tiny Session Id
Heid +Cid
iphdr iemphdr tephdr udphdr data
+ip_wer +icmp_type +tcp_sport +udp_sport +data_payload
+ip_hlen +icmp_code +tep_dport +udp_dport
+ip_tos +icmp_csum +tcp_seq +udp_len
+ip_len +imep_id +tcp_ack +udp_csum
+ip_id +icmp_sedq +icp_res
+ip_flags +tcp_flags
+ip_off +tcp_win
+ip_ttl +top_csum
+ip_proto +tcp_urp
+ip_csum

Figure 5. Class diagram of the packets tables

Additional Contextual Information

1. Geographical location. The geographical location of
IPs can provide interesting information to better un-
derstand where the attacks are coming from. As there
are differences between NetGeo and other tools such
as MaxMind, [P2location or GeoBytes, we have de-
cided to include into our database the geographical
information provided by several tools and leave it up

to the user to choose the ones he felt more comfort-
able to work with. We have subscribed to a commer-
cial solution called MaxMind, and we kept NetGeo
information as well in separated tables for compari-
son purposes. The geographical information can be
found in two tables called Info_Source_Maxmind and
NetGeolnfo [16, 20].

. Passive OS Fingerprinting. Today, there is general

consensus that most worms and botnets propagate
through Windows machines. So it seems there exists
some correlation between the Operating System of the
attacker and the attack type it is performing. As we
want our honeypot machines to remain passive, we run
so-called passive fingerprinting tools on the collected
packets in order to guess the OS of the attacker. Most
of those fingerprinting tools compare packet fields to a
given fingerprints database. As there may be some dif-
ferences between those tools, we have decided to use
two different passive OS fingerprinting utilities. They
are respectively called Disco and pOf [1, 33]. Their
output is in text format which we parse to store the
information into the database. For practical reasons,
we consider that the OS fingerprinting information is
related to a given Large_Session and not to a given
Source. So this information is stored in a new sepa-
rate table called Info_OS.

. Domain Name Resolution and Subnet Information.

Another potentially interesting information can be the
machine hostname and the domain it belongs to. Both
Netgeo and Maxmind provide information on the net-
work the Source is coming from. We derive from the
IP-range network values the CIDR (Classless Inter-
Domain Routing) network mask. So, we introduce
into the database three new external important infor-
mation types: the domain reverse resolution, the ma-
chine hostname and the network parameters. Since
this information characterizes uniquely a given Source,
we have decided to enrich the corresponding table
with this information by adding attributes, the value
of which point to new tables providing the imported
information. Some interesting statistics can be done
on the domain names like the extraction of the top
most attacking domains involved in certain attack pro-
cesses. Other statistics can be done quite easily by
checking if the machine hostname belongs to a com-
pany network or is more likely to be a home com-
puter. For instance, simple extractions of patterns like
‘%dsl%’, ‘Y%cable%’, ‘%dial%’ are good indicators
of home computers. On the other hand, patterns like
‘Dweb%’, ‘Yomail%’, ‘Yserv%’ in the machine name
are likely to show up for machines providing some well
defined services.

Additional Meta-Data Meta data information can be
seen as redundant information that is saved in specific ta-
bles but that could also be derived by means of queries
against the other tables. Meta-data tables are built by means
of automated scripts that are run whenever new data is en-
tered into the database. We provide in the following a non-
exhaustive list of meta-data information describing the at-
tack sessions, that can be found today in the database:

- For each Large_Session: the identifier of the attack clus-
ter, as determined by our clustering engine (see Section
2)

The duration of the observation for a given Large_Session

The average inter-arrival time between packets sent by a
given Source

An attribute that indicates how many virtual machines
were targeted

The sequence of ports that have been targeted during the
attack on a virtual machine

A boolean value indicating if a given Source has already
been observed or not

- An attribute to mark Tiny_Sessions that are likely due to
backscatter activities

- Another boolean value to indicate if attacks on multiple
virtual machines were performed in sequence or simul-
taneously.

The main idea is that we do not want to compute this meta-
data information whenever we need it. It is considered to be
useful enough to be part of the database information.

4. Threats Analysis - Some Illustrative Exam-
ples

In this Section, we provide a series of illustrative ex-
amples on how to effectively use our database to perform
meaningful analyses on the observed threats. These exam-
ples are based on the data collected with the low-interaction
honeypots; we provide in the next Section some insights
into the enriched information collected through the new
ScriptGen-based sensors. For the interested reader, we give
in Appendix 1 some global statistics about the traffic col-
lected in Leurre.com on a yearly basis, starting from 2004
until March 2008.

4.1. Temporal Evolution of Attack Clusters

Time series analysis can provide valuable information
(e.g. trends, abrupt changes, and emerging phenomena) to

security practitioners in charge of detecting anomalous be-
haviors or intrusions in the collected traffic. In this first
illustration we want to show how an analyst can retrieve the
temporal evolution of a given attack cluster, by counting
the number of sources belonging to that cluster on a chosen
time scale (e.g. by day or by hour).

For that purpose, we chose the attack cluster 17718 that
is mostly targeting two platforms (platform 14 in Belgium,
and platform 42 in the UK.). This cluster is related to attack
sessions that have created the port sequence [I|445T (i.e.
ICMP followed by 445/TCP). By executing the Query 1
(see Appendix), we can easily retrieve the time series of the
cluster 17718 for a time period ranging from 1-Dec-06 until
01-Mar-07, and by grouping the source count by day. Ob-
viously, this groups all platforms together; so we could run
similar queries for each platform separately just by adding
one additional WHERE clause, so as to analyze the impact
of this attack cluster on different platforms. The results of
this kind of queries have been represented on Fig 6. One

Cluster 17718 - Poris seq. |-445T Cluster 17718 on sensors 14 and 42

w
s
3
a
&

17718.14
.......... 17718.42

N

@

2
N
8

Nr of Sources
4 4N
s @ 8
s & 3
Nr of Sources

50 20

10/01 30/01 1902
Time (by day)

0 0
0112 2112 10/01 30101 19102 0112 2112
Time (by day)

Figure 6. Left: the global time evolution of attack cluster
17718, with the sources aggregated by day. Right: the time
evolution of the same cluster for the platforms 14 and 42
separately.

could wonder why we have chosen a time scale of one day.
Indeed, for certain types of attack phenomena, it might be
useful to look at a finer time granularity, such as intervals
of 1 hour, for instance. This type of queries can easily be
executed as well, and we give one more illustration with
the case of a very large cluster (15611) which appears to
be closely related to the previous cluster, as the time plot
might suggests on Fig 7 (left). The cluster 15611 is related
to ICMP traffic only. It might be correlated with the first
stage of the same root attack phenomenon as cluster 17718,
because of their very similar (and synchronized) temporal
patterns.

To conclude this illustration, we counted the number of
sources for the same cluster but on a smaller time window
(from 31-Jan-07 until 10-Feb-07) and with a time scale of
one hour (with minor modifications to the query given here
above). The chosen time window corresponds to the last
“wave” of attacks of that cluster, which is visible on Fig 7
(left). The result of this new query has been represented

Country of origin | Nr of Sources | Relative %
CN 1150 353
us 378 11.6
CA 255 7.8
FR 236 7.2

unknown 215 6.6
™ 137 42
Jp 128 39

IT 120 3.6
DE 107 33
Others 524 16.1

Table 2. Geographical distribution for attack cluster
17718

on Fig 7 (right). As the graph suggests, we can observe a
strong recurrent diurnal/nocturnal activity pattern, and those
regular attack waves last apparently for 7 or 8 days.

Cluster 15611 on sensor 72 (Poris seq: ICMP)
1000

Cluster 15611 - Zoom 31/01 > 10/02/07

Nr of Sources

Nr of Sources
2NN owow
o 8 & & o

=

o o

0 24 48 72 96 120 144 168 192 216
Time (by hour)

0
0112 2112 10/01 30/01 19/02
Time (by day)

Figure 7. Left: the time evolution of attack cluster 15611
on sensor 72, with the sources aggregated by day. Right: A
zoom by hour in the time window 31-Jan until 10-Feb for
the same attack cluster.

4.2. Geographical Localization of Attackers

If we consider the previous example, we could wonder
from which countries the sources belonging to attack cluster
17718 are coming from during the activity period of this
attack process. We can easily retrieve such information with
a query similar to Query 2 (see Appendix).

The result of executing this query gives a 2-column ta-
ble (Table 2): the first column indicates the country of ori-
gin (represented with its ISO code) and the second column
gives the number of sources belonging to that country. Also,
we have put in a third column the corresponding relative
percentage for each country with respect to the total num-
ber of sources for this attack process (i.e. 3250).

4.3. Attackers Domain Names

In the same way as we did for the geographical aspect,
we could also analyze the domain information related to the

Domain of origin (Level-1) | Nr of Sources

.net 817

.com 171

Jp 143
.cn 129
At 120

fr 61

tw 51

.de 48

Others 353

Table 3. Distribution of Level-1 domains for attack cluster
17718

attacking sources, which would give us a refined view on the
origins of the attackers. If we execute the Query 3 given in
the Appendix, we obtain a table with the Level-1 domains in
the first column, and the corresponding number of attacking
sources in the second column (Table 3). By slightly modify-
ing the regular expression in the query, we can retrieve do-
main information at different levels (Level-1, Level-2, ...).

4.4. Attackers Subnets Information

Finally, an analyst could be interested in looking at the
subnets of origin of the attackers. This is also a quite easy
task to do thanks to the database scheme. For example, we
can easily retrieve the class A information about the attack-
ing sources belonging to the very same cluster as in the
previous examples (cluster 17718) by executing the SQL
Query 4 given in Appendix. The results are presented in
Table 4 '. Again, the regular expression can be modified so
as to catch a larger part of the IP addresses (Class B, C, ...).

5. Leurre.com v2.0: SGNET
5.1. Increasing the level of interaction

We have seen in the previous Section how we have been
able to generate valuable dataset with quantitative informa-
tion on the localization and the evolution of Internet unso-
licited traffic. We are able to observe interesting behaviors,
most of which are very difficult to justify or to attribute to
a specific root cause. It is, indeed, very difficult to link a
given observation to a class of activities, and our search for
answers in this direction had to deal with a limited amount
of information about the final intention of the attacker. The

ITo preserve the confidentiality related to the IPs of the attackers, the
first byte values have been replaced by letters in the table

Subnet of Origin - Class A | Nr of Sources
AX.X.X 451
B.x.x.x 193
C.x.x.x 168
D.x.x.x 160
E.x.x.x 159
F.x.x.x 123
G.X.X.X 113
H.x.x.x 100
Ix.x.x 91
Jx.x.x 90
Others 1602

Table 4. Anonymized distribution of Class A-subnets for
attack cluster 17718

low level of interaction of the Leurré.com honeypots is a
limiting factor: when a honeypot receives a client request,
it is not able to carry on the network conversation with the
attacker, nor to “understand” it.

For instance, in our experience within the Leurré.com
project, due to the lack of emulation scripts we have been
able to observe only the first request of many interesting
activities such as the spread of the Blaster worm [4]. But
since Blaster sends its exploit in the second request of its
dialog on port 135, we have never been able to observe such
a payload. Therefore it becomes very difficult to distinguish
Blaster’s activity from other activities targeting the same
port using solely the payload as a discriminating factor. For-
tunately, experience shows that, even such limited amount
of information, a large variety of analyses remain applicable
and deliver useful results. In order to increase the amount of
available information on attackers, we need to increase the
level of interaction with the honeypots. However, in order
to keep carrying on our deployment of sensors on a volun-
tary basis, we need to achieve this objective at the lowest
possible cost. This led to the development of the ScriptGen
approach.

5.2. ScriptGen

The ScriptGen technology [15, 14] was created with the
purpose of generating honeypots with a high level of inter-
action having a limited resource consumption. This is pos-
sible by learning the behavior of a given network protocol
when facing deterministic attack tools. The learnt behavior
is represented under the form of a Finite State Machine rep-
resenting the protocol language. The generated FSM can
then be used to respond to clients, emulating the behavior
of the real service implementation at a very low cost.

The ScriptGen learning phase is completely protocol ag-
nostic: no knowledge is assumed neither about the struc-

. MAIL FROM: <*@eurecom.fr> »

Figure 8. ScriptGen FSM generalization

ture of the protocol, nor on its semantics. ScriptGen is thus
able to replay any deterministic run of a protocol as long as
its payload is not encrypted. The ScriptGen learning takes
as input a set of samples of network interaction between
a client and the real implementation of a server. The core
of the learning phase is the Region Analysis algorithm in-
troduced in [15]: taking advantage of bioinformatics align-
ment algorithms [19], the algorithm exploits the statistical
variability of the samples to identify portions of the proto-
col stream likely to carry a strong semantic meaning and
discard the others. In order to build reliable representations
of the protocol interaction, it is thus necessary to collect a
clean set of samples with enough statistical variability to
correctly identify semantically important regions. Figure 8
shows an example of semantic abstraction for an excerpt of
SMTP FSM.

The properties of the ScriptGen approach allow to per-
form a completely automated incremental learning of the
activities as shown in [14]. ScriptGen-based honeypots are
able to detect when a client request falls out of the current
FSM knowledge (a 0-day attack or, more exactly, a yet un-
seen attack) by simply detecting the absence of a matching
transition. In such case, the honeypot is thus unable to pro-
vide a valid answer to the attacker. We showed in [14] how
the honeypot can react to this situation relying on a real host
(an oracle) and acting as a proxy between the attacker and
the real host. This allows the honeypot to continue the con-
versation with the attacker, and to collect a new sample of
protocol interaction that can be used to automatically refine
the protocol knowledge.

ScriptGen is able to correctly learn and emulate the
exploit phase for protocols as complex as NetBIOS [14].

ScriptGen thus allows to build highly interactive honeypots
at low cost. The oracles needed to learn new activities can
be hosted in a single virtualization farm and contacted by
the honeypots through a tunneling system, in a structure
similar to Spitzner’s honeyfarm concept. Differently from
classical honeyfarms, access to the real hosts is a rare event
resulting from the occurrence of a new kind of attack. As
a consequence, systems based on the ScriptGen honeypots
potentially have a high degree of scalability.

5.3. SGNET: a ScriptGen-based honeypot
deployment

We took advantage of this technology to build an experi-
mental honeypot deployment, called SGNET, meant to fol-
low the lines of the Leurré.com deployment but providing
a significant improvement in the richness of the collected
data.

SGNET and code injections SGNET is a scalable frame-
work that offers almost the same amount of information
than real high interaction systems for a specific class of at-
tacks, namely server-based code injection attacks generated
by deterministic scripts. We are aware of the fact that they
correspond only to a subset of the possible attack scenarios.
However, as of today, they are considered to be responsible
for the creation of large botnets [25] and the preferred prop-
agation mechanisms of a large number of different malware.

The final objective of a code injection attack consists in
forcing the execution of executable code on a victim ma-
chine exploiting a vulnerable network service. Crandall et
al. introduced in [6] the epsilon-gamma-pi model, to de-
scribe the content of a code-injection attack as being made
of three parts.

Exploit (¢). A set of network bytes being mapped onto
data which is used for conditional control flow decisions.
This consists in the set of client requests that the attacker
needs to perform to lead the vulnerable service to the con-
trol flow hijacking step.

Bogus control data (y). A set of network bytes being
mapped onto control data which hijacks the control flow
trace and redirects it to someplace else.

Payload (7). A set of network bytes to which the
attacker redirects the vulnerable application control flow
through the usage of € and ~.

The payload that can be embedded directly in the net-
work conversation with the vulnerable service (commonly
called shellcode) is usually limited to some hundreds of
bytes, or even less. It is often difficult to code in this lim-
ited amount of space complex behaviors. For this reason
it is normally used to force the victim to download from a
remote location a larger amount of data: the malware. We

extend the original epsilon-gamma-pi model in order to dif-
ferentiate the shellcode 7 from the downloaded malware .

An attack can be characterized as a tuple (¢, 7,7,). In
the case of, old, classical worms, it is possible to identify
a correlation between the observed exploit, the correspond-
ing injected payload and the uploaded malware (the self-
replicating worm itself). Thanks to the correlation between
the 4 parameters, retrieving information about a subset of
them was enough to characterize and uniquely identify the
attack. This situation is changing. Taking advantage of
the many freely available tools such as Metasploit [30, 26],
even unexperienced users can easily generate shellcodes
with personalized behavior and reuse existing exploit code.
This allows them to generate new combinations along all the
four dimensions, weakening the correlation between them.
It is thus important to try to retrieve as much information
as possible on all the 4 dimensions of the code injection.
We designed SGNET in such a way to delegate to different
functional components the 4 dimensions, and combine the
information retrieved by these components to have an exact
picture of the relationships among them.

The ScriptGen approach is suitable for the learning of the
exploit network interaction e, offering the required level of
interactivity with the client required to lead the attacker into
sending code injection attacks. For the previously stated
reasons, in SGNET we extend this capability with the infor-
mation provided by other tools in order to retrieve informa-
tion on the other dimensions of the epsilon-gamma-pi-mu
(EGPM) model. We take advantage of the control flow hi-
jack detection capabilities of Argos [21] to detect successful
code injection attacks, understand the bogus control data v
and retrieve information about the location of the injected
payload m. We take advantage of the shellcode emulation
and malware download capabilities of Nepenthes [2] to un-
derstand the payload 7, emulate its behavior and download
the malware sample .

When facing an attacker, the SGNET activity evolves
through different stages, corresponding to the main phases
of a network attack. SGNET distributes these phases to
three different functional entities: sensor, sample factory
and shellcode handler.

The SGNET sensor corresponds to the interface of the
SGNET towards the network. The SGNET deployment
aims at monitoring small sets of IPs deployed in multiple
locations of the IP space, in order to characterize the het-
erogeneity of the activities along the Internet as observed
in [8, 5]. SGNET sensors are thus low-end hosts meant
to be deployed at low cost by different partners willing to
join the project and bound to a limited number of IPs. The
deployment of the sensors follows the same win-win part-
nership schema explained before. Taking advantage of the
ScriptGen technology, the sensors are able to handle au-
tonomously the exploit phase € of attacks falling inside the

FSM knowledge with minimal resource requirements on the
host.

The SGNET sample factory is the oracle entity meant to
provide samples of network interaction to refine the knowl-
edge of the exploit phase when facing unknown activities.
The sample factory takes advantage of a real host running
on a virtual machine and monitors the host state through
memory tainting. This is implemented taking advantage of
Argos, presented by Portokalidis et al. in [21]. Keeping
track of the memory locations whose content derives from
packets coming from the network, Argos is able to detect
the moment in which this data is used in an illegal way. Ar-
gos was modified in order to allow the integration in the
SGNET and load on demand a given honeypot profile with
a suitable network configuration (same IP address, gateway,
DNS servers, ... as of the sensor sending the request). The
profile loading and configuration is fast enough to be instan-
tiated on the fly upon request of a sensor.

The Argos-based sample factories provide information
about the presence of code injections () and are able to
track down the position in the network stream of the first
byte being executed by the guest host, corresponding to the
byte B; of the payload 7. We have developed a simple
heuristic to identify the injected payload 7 in the network
stream starting from the hint given by the sample factory
[12]. This allows to embed in the ScriptGen learning ad-
ditional knowledge, namely the a tag identifying the final
state of a successful code injection and information within
the preceding transitions that allows to extract from the at-
tacker’s procotol stream the payload 7.

The final steps of the code injection attack trace are del-
egated to the SGNET shellcode handler. Every payload m
identified by the SGNET interaction is submitted to a shell-
code handler. The shellcode handler is implemented reusing
part of the functionality of the Nepenthes [2] honeypots. We
take advantage of Nepenthes shellcode analyzer to “under-
stand” the payload 7 and emulate its behavior using Ne-
penthes download modules. In the context of the SGNET,
Nepenthes is thus used as an oracle for the payload emu-
lation. Differently from the exploit phase, we do not try
to learn the Nepenthes behavior in terms of FSM. We con-
sider the payload emulation a too complex interaction to be
represented in terms of a FSM.

SGNET Architecture The general architecture of the
SGNET is presented in Figure 9. All the SGNET entities
communicate through an ad-hoc HTTP like protocol called
Peiros [13]. The Peiros protocol allows communication un-
der the form of a set of service requests, allowing for in-
stance a sensor to require the instantiation of a sample fac-
tory. The sensors, distributed over the IP space and hosted
by partners of the project, are connected to a central en-
tity called SGNET gateway, that acts as an application-level

Sensor 1
Sample

v Factory #1

Sample
Factory #2
AN B

Shellcode

\ . Handler

Sensor 2

Sensor 3

Sensor 4

Figure 9. SGNET architecture

proxy for the Peiros protocol. The gateway receives service
requests from the sensors and dispatches them to a free in-
ternal entity, performing a very simple load balancing. The
architecture offers a clean separation between the sensors,
relatively simple daemons running over inexpensive hosts,
and the internal entities, having a higher complexity and
higher resource requirement.

We saw how the ScriptGen learning exploits the vari-
ability of the samples to produce “good” refinements of the
FSM knowledge. The architecture of Figure 9 shows how
the SGNET gateway offers a unique standpoint to collect
interaction samples: all the tunneled conversations between
any sensor and any sample factory flow through the gate-
way. The gateway becomes thus the best candidate to per-
form ScriptGen refinements to the current FSM knowledge.
Once a new refinement is produced, the gateway takes care
of updating the knowledge of all the sensors pushing them
the FSM updates. This makes sure that all the sensors on-
line at a given moment share exactly the same knowledge
of the protocols.

An important aspect related to the ScriptGen learning is
the strict relation between the ScriptGen ability to learn ex-
ploits and the configuration of the sample factories. If a ser-
vice is not installed or activated in the configuration of the
virtualized host handled by the sample factory, the SGNET
architecture will not be able to observe activities targeting
it. It is thus important to carefully configure the sample fac-
tories in order to maximize the visibility of malicious ac-
tivities. We chose to address this problem supporting the
assignment of different profiles for the IPs of the SGNET
sensors, similarly to what was done on the Leurré.com de-
ployment. Each profile is assigned to a different sample
factory configuration, with different services and different
OS versions to maximize the visibility on network attacks
of our deployment.

The description of the SGNET deployment clearly
shows a difference with respect to the original Leurré.com
deployment. SGNET is a more complex architecture, that

succeeds in raising the level of interaction of the honey-
pots without raising the resource requirements for the part-
ners hosting the sensors. Taking advantage of the Script-
Gen learning, the deployment also allows to minimize the
usage of expensive resources such as the sample factories,
that are needed only to handle those activities that do not
fall yet in the FSM knowledge. An important concern for
the partner taking advantage of this deployment is the secu-
rity of the solution. SGNET raises the level of interaction of
the honeypots; it is thus important to guarantee that the in-
creased interactivity does not impact the safety of hosting a
honeypot platform. The network interaction driven by FSM
knowledge is virtually as safe as any low-interaction honey-
pots: the attacker interacts with a simple daemon perform-
ing state machine traversals to provide answers to client re-
quests. When a new activity is handled, the sensor acts as a
proxy and the attacker is allowed to interact with a real (and
thus vulnerable) host. Two measures are in place to ensure
the safety of this process. Firstly, the tunneling system en-
sures that any outbound packet generated by the sample fac-
tory is directed only towards the attacking source (blocking
any attempt of exploiting the honeypot as a stepping stone
to attack others). Secondly, the memory tainting capabilities
of Argos allow us to stop execution as soon as the attacker
successfully hijacks the host control flow. This does not
include for instance successful password brute-forcing at-
tacks, but this class of attacks can be prevented by a careful
configuration of the virtualized host.

5.4. Retrieving information on the attacker
using SGNET

In this Section, we will show how we are able to exploit
the increased level of interaction of the SGNET deployment
to extract information about the attacker, following the 4 di-
mensions of the epsilon-gamma-pi-mu model. This Section
aims at giving an overview on the nature of the information
and on the main concepts, but does not aim at being exhaus-
tive. The SGNET deployment has been running in an exper-
imental form starting from late 2007, proving the validity of
the approach [12]. We underlined in [13] how the whole de-
sign of the SGNET was conceived to ease the integration of
different information sources or functional modules.

The experimental SGNET deployment is running on a
limited number of sensors hosted by partners that agreed
to participate to the experimentation. All the honeypot IPs
have been assigned to a single sample factory profile, corre-
sponding to an unpatched Windows 2000 host running IIS
5.0. We expect the implementation of the SGNET (as well
as the representation of the collected data) to evolve further,
and we strongly invite other research groups interested in
these subjects to contribute along these lines.

SGNET follows a data collection schema similar to that

proposed for the Leurré.com deployment. Network dumps
are collected from each sensor and stored in a relational
database. The increased information provided by SGNET
is retrieved under the form of a set of logs that are combined
together into additional concepts that extend those seen in
Section 2.2.

e Sensor logs. Information about the network interaction
(traversal of FSM, presence of code injections,...)

e Sensor dumps. Complete tcpdump trace of the net-
work interaction of the attackers with the sensors.

e Gateway logs. Information about the status of the sen-
sors (activity status, configuration) and about the FSM
refinement.

e Nepenthes logs. Information about the nature of the
shellcodes, on their network behavior, and downloaded
malware samples.

The additional concepts derived from these logs are
spread over the 4 dimensions of the epsilon-gamma-pi-mu
model.

Exploit information Most of the SGNET concepts are
based on the concept of ScriptGen Session (or SGSession).
ScriptGen Sessions are a specialization of the concept of
Tiny Session introduced in Section 2.2. A ScriptGen Ses-
sion identifies a single TCP session or to a couple of UDP
request and answer. A ScriptGen Session corresponds to
the scope of a ScriptGen FSM: in the case of TCP, the FSM
root corresponds to the establishment of a connection and
the leaf to its completion through RST or FIN packets.

The sensor logs provide information on the way each
ScriptGen Session is handled. Each session is character-
ized by a source and destination address, the corresponding
ports and a timestamp. It is also associated to two main at-
tributes: fype and path. The type can correspond to one of
these 4 values.

o Type SG. The session was handled taking advantage of
the FSM knowledge only.

e Type HY. The session was partially handled by FSMs,
but an unknown request required the instantiation of a
sample factory.

e Type AG. When a sample factory was instantiated for
a given activity, all the following sessions generated
by the same attacker are relayed to that same sample
factory and are marked with this type.

e Type NP. The session was handled by the shellcode
handler to emulate the behavior of a successfully in-
jected payload. These sessions correspond to the mal-
ware download phase.

The path identifier associates a ScriptGen Session of
type SG to the corresponding FSM traversal produced by
the network activity. The path identifier proved to be a
very reliable indicator of the type of activity being observed.
Since the ScriptGen algorithm aims at grouping together
similar network activities and generalize their network be-
havior under the form of FSM traversals, each traversal is
a very reliable identifier of a given type of activity. At the
moment of writing, the SGNET experimental deployment
identified 66 paths, 11 of which led to successful code injec-
tions. These 11 traversals classify into 11 different groups
2548 exploits leading to successful code injections observed
between the 1st of November 2007 and the Ist of March
2008 and handled taking advantage of the sole FSM knowl-
edge.

Bogus control data and shellcode information SGNET
can identify a code injection either during the interaction
with the sample factory (when handling a new exploit) or
through the knowledge already embedded in a Finite State
Machine. In both cases, SGNET is able to identify the posi-
tion of the payload 7 within the protocol stream and extract
its content. We are able to retrieve and store for further
analysis the payload binary 7.

The analysis of the payload 7 performed by the shellcode
handler produces two main outputs: the CMD shell string
and the download URI.

We have observed that certain classes of payloads force
the victim host to open a socket listening for incoming con-
nections, and associate this socket with a cmd.exe instance.
This allows the attacker to connect to that port, upload a
malware binary (using, for instance, tftp) and then execute
such file. Also, in some cases the attacker directly embeds
the shell commands to be executed by cmd.exe within the
injected payload, that is then packed and inserted within the
network stream. In both cases, the Nepenthes shellcode an-
alyzer enables us to retrieve the stream of commands issued
by the attacker. For instance, the sequence of cmd com-
mands issued by the Blaster worm and retrieved by SGNET
is the following: “tftp -i 1.1.1.1 GET msblast.exe; start ms-
blast.exe; msblast.exe; msblast.exe” where 1.1.1.1 is the ad-
dress of the attacker. This information is extremely valuable
to characterize this class of payloads.

The output of the Nepenthes shellcode analyzer is a URI
representing the location of the malware sample to be down-
loaded. This URI gives valuable information on the kind of
protocol being used for the download (ftp,http,tftp,...) as
well as the malware distribution strategy. We can in fact
distinguish:

e Phone-home strategies. The victim is forced to down-
load the malware sample from the attacker through a
download session initiated by the victim. This strategy

maximizes the probability of success in downloading
the sample also in presence of firewalls, on the victim
side, and was used by many worms such as the previ-
ously cited Blaster [4]. It can fail if the attacking side
is NATed and/or protected by a firewall.

e Central malware repositories. An attacker may dis-
tribute malware samples taking advantage of central-
ized repositories, eventually hidden behind fast-flux
networks.

e Push-based strategies. The victim is forced to receive
the malware sample opening a port and passively re-
ceiving the malware through a connection initiated by
the attacker. This technique is used, for instance, by
the Allaple [11] worm and has the opposite advantages
and drawbacks than the phone-home strategy.

The data collected by the experimental deployment in the
period between the 1st of November 2007 and the 1st of
March 2008 shows some interesting insights with respect to
the preferred download methods used by currently spread-
ing malware. Out of a total of 1511 injections whose shell-
code was successfully analyzed by the shellcode handler,
826 of them (54%) took advantage of push-based strategies.
In 803 of these cases, the port used to upload the malware
was port 9988. The remaining 685 code injections took
advantage of phone-home strategies. Until now, we never
observed the usage of central malware repositories to dis-
tribute binaries.

The interaction of the SGNET with the shellcode han-
dler has already underlined some interesting facts related to
the ability of the shellcode handler (whose implementation,
being derived from Nepenthes, is signature based) to rec-
ognize the shellcodes collected by SGNET. We have been
able to identify shellcodes not correctly recognized by the
shellcode handler due to the lack of a proper signature in
the Nepenthes shellcode engine [12]. We have been able to
report these cases to the Nepenthes development team that
refined the corresponding signature.

Malware information The ultimate result of the shell-
code handler activity is the download of a malware sample.
The malware dimension g potentially provides extremely
detailed information on the identity of the attacker (being in
a way a sample of the attacker itself), and gives us a way
to link the network activities observed within SGNET to
other sources of information, such as the malware databases
maintained by AV vendors. Each malware sample p; col-
lected by SGNET is treated taking advantage of different
tools and services. From a static analysis point of view, we
perform very simple analyses such as looking at the size
of the samples and at the file magic numbers to understand

their nature. We take advantage of VirusTotal [31] to re-
trieve information about the signature given to the malware
by 22 different AntiVirus vendors. This information is ex-
tremely valuable to evaluate, for instance, the relevance of
a given malware sample: if a malware sample is detected
by a few vendoirs, it is likely to be a new threat and as such
deserves special attention.

We take advantage of the Anubis sandbox [3] to retrieve
information about the dynamic behavior of the malware
sample. Anubis provides a wide range of information, that
we use to build a behavioral profile of the malware. This in-
formation ranges from the name of the processes, services
and registry key being created by the execution of the sam-
ple to aggregate information on its network behavior (con-
nections to IRC channels, scanning attempts on the different
ports, ...).

In the previously considered period among the Ist of
November 2007 and the 1st of March 2008 we collected 788
unique MD35s of malware samples. These malware samples
corresponded to 48 different malware families according to
the F-Secure AV solution, and only 14 according to Syman-
tec Antivirus. 525 of these MD5s were downloaded a single
time, and are thus likely to belong to families of malware
taking advantage of some polymorphism to avoid detection
(i.e. the Allaple worm). This shows the difficulty of the
problem of the malware classification, and the need to elab-
orate better ways to classify malware samples taking advan-
tage, for instance, of the behavioral information. Also, the
information provided by the Anubis sandbox allows us to
detect among the 788 malware samples 102 cases in which
the downloaded sample was corrupted and could not be ex-
ecuted by the Windows host. The file corruption seem to
be due to lack of reliability of some download protocols.
Anubis information allows to filter out from the antivirus
statistics those cases in which the behavior of an antivirus
solution is not clearly defined. We saw that certain vendors
seem to choose not to generate alerts when facing a cor-
rupted binary, while others tend to generate an alert in any
case. Since this is mainly due to a policy choice, it is im-
possible to compare the performance of different vendors in
the case of corrupted binaries.

A case study In order to exemplify the kind of informa-
tion provided by the SGNET deployment, let’s consider a
real-world example extracted from our current dataset. The
18th of December, at 21:16 UTC, one of our honeypots was
exploited by a host located in Romania.

The exploit, targeting port 135, was known and thus au-
tonomously handled by the ScriptGen knowledge. This ex-
ploit is composed of only two packets targeting port 135,
and is used for the propagation of various malware samples,
such as “Hupigon.gen83” and “W32/Pinfi.A” (F-Secure).

The injected payload is quite small, 573 bytes of which

161 are NOP instructions. According to the shellcode han-
dler, the payload forces the victim to download a malware
sample using the /ink protocol from the attacking host con-
necting on port 3165 (ie, push-back strategy). The SGNET
honeypot successfully downloaded the malware sample.

The malware sample, of length 71175 bytes and MD5
hash caf208342b87013543333059c189a34d, was recog-
nized by most antivirus vendors with different names, such
as:

- “W32/Smalldoor. AWCI” (F-Secure),

“Trojan Horse” (Symantec),
- “W32/Poebot.NN.worm” (Panda Antivirus),
- “Trojan.Agent-11146” (ClamAV).

Submitting the malware to Anubis, a number of malicious
behaviors was detected by the sandbox. The malware
started to scan random IPs trying to connect on port 135
(supposedly trying to propagate), connected to a IRC server
and joined multiple channels, and also connected to a web
server located in Canada and downloaded from there two
additional executable files placed in the Windows system di-
rectory with filenames “shdcmg.exe” and “tnnhpmbhj.exe”.
This is an example of the vast amount of information
provided by the SGNET deployment for a single code in-
jection attack. The amount and the quality of the col-
lected data is potentially extremely significant, but requires
a widespread deployment of sensors along the IP space. We
thus strongly invite any research or industrial entity to take
part to the deployment and actively contribute to it and, by
doing so, to benefit from the access to this rich dataset.

6. Conclusions

In this paper, we have presented in detail Leurré.com, a
worldwide distributed system of honeypots running since
2003. We have extensively described its internal archi-
tecture that has been developed to collect meaningful data
about some ongoing attack processes observed at various
places on the Internet.

Several examples have been given throughout the text to il-
lustrate the richness of our central data repository and the
flexibility of its design, enabling a large diversity of anal-
yses to be carried out on it. It is not the purpose of this
paper to report on a specific analysis. Other publications
have focused on some of these issues and some more work
is ongoing. We have shown though by means of simple
examples that this database helps in discovering trends in
the attacks and in characterizing them. Next to this, we
have also presented the important improvements we made
to our infrastructure by deploying high-interaction Script-
Gen sensors, which enable us to collect even more precise

and valuable information about malicious activities. In the
light of some early promising results, we showed that this
entire data collection infrastructure holds a great potential
in augmenting our threats intelligence capability on the In-
ternet. Being able to conduct in-depth analyses on this huge
data collection, in a systematic way, will hopefully help us
to make some advances towards the creation of early warn-
ing information systems.

So, it is our wish to share the data contained in this database
with those interested in carrying some research on it. The
authors can be reached by mail to get detailed information
regarding how to join the project in order to gain access to
the database.

References

(1]
(2]

3

—

4

—_

[5

—

[6

—_

(7]

(8]

(9]

[10]

(1]

[12]

ALMODE Security. Home page of disco at at
http://www.altmode.com/disco/.

P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling.
The Nepenthes Platform: An Efficient Approach to Collect
Malware. Proceedings of the 9th International Symposium
on Recent Advances in Intrusion Detection (RAID), Septem-
ber 2006.

U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for
Analyzing Malware. PhD thesis, Master’s Thesis, Technical
University of Vienna, 2005.

CERT. Advisory CA-2003-20 W32/Blaster worm, August
2003.

E. Cooke, M. Bailey, Z. M. Mao, D. Watson, F. Jahanian,
and D. McPherson. Toward understanding distributed black-
hole placement. In WORM ’'04: Proceedings of the 2004
ACM workshop on Rapid malcode, pages 54-64, New York,
NY, USA, 2004. ACM Press.

J. Crandall, S. Wu, and F. Chong. Experiences using Minos
as a tool for capturing and analyzing novel worms for un-
known vulnerabilities. Proceedings of GI SIG SIDAR Con-
ference on Detection of Intrusions and Malware and Vulner-
ability Assessment (DIMVA), 2005.

M. Dacier, F. Pouget, and H. Debar. Attack processes found
on the internet. In NATO Symposium IST-041/RSY-013,
Toulouse, France, April 2004.

M. Dacier, F. Pouget, and H. Debar. Honeypots, a practi-
cal mean to validate malicious fault assumptions. In Pro-
ceedings of the 10th Pacific Ream Dependable Computing

Conference (PRDCO04), Tahiti, February 2004.
M. Dacier, F. Pouget, and H. Debar. Leurre.com: On the

advantages of deploying a large scale distributed honeypot
platform. In Proceedings of the E-Crime and Computer
Conference 2005 (ECCE’05), Monaco, March 2005.

DShield. Distributed Intrusion Detection System,
www.dshield.org, 2007.
F-Secure. Malware information pages: Allaple.a,

http://www.f-secure.com/v-descs/allaplea.shtml, December
2006.

C. Leita and M. Dacier. Sgnet: a worldwide deployable
framework to support the analysis of malware threat models.
In Proceedings of the 7th European Dependable Computing
Conference (EDCC 2008), May 2008.

[13]

[14]

[15]

[16]
(17]
(18]

(19]

(20]

(21]

(22]

(23]
[24]

[25]

(26]

[27]

(28]
[29]

(30]
(31]
(32]
(33]

C. Leita and M. Dacier. SGNET: Implementation Insights.
In IEEE/IFIP Network Operations and Management Sym-
posium, April 2008.

C. Leita, M. Dacier, and F. Massicotte. Automatic han-
dling of protocol dependencies and reaction to O-day attacks
with ScriptGen based honeypots. In RAID 2006, 9th Inter-
national Symposium on Recent Advances in Intrusion De-
tection, September 20-22, 2006, Hamburg, Germany - Also
published as Lecture Notes in Computer Science Volume
4219/2006, Sep 2006.

C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an au-
tomated script generation tool for honeyd. In Proceedings
of the 21st Annual Computer Security Applications Confer-
ence, December 2005.

Maxmind. Ip geolocation and online fraud prevention,
www.maxmind.com.

Maxmind Product. Home page ot the maxmind company at
http://www.maxmind.com.

D. Moore, C. Shannon, G. Voelker, and S. Savage. Network
telescopes: Technical report. CAIDA, April, 2004.

S. Needleman and C. Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of
two proteins. J Mol Biol. 48(3):443-53, 1970.

Netgeo Product. Home page of the netgeo company at
http://www.netgeo.com/.

G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emula-
tor for fingerprinting zero-day attacks. Proc. ACM SIGOPS
EUROSYS, 2006.

F. Pouget, M. Dacier, and V. H. Pham. Understanding
threats: a prerequisite to enhance survivability of computing
systems. In IISW’04, International Infrastructure Surviv-
ability Workshop 2004, in conjunction with the 25th IEEE
International Real-Time Systems Symposium (RTSS 04) De-
cember 5-8, 2004 Lisbonne, Portugal, Dec 2004.

T. C. D. Project. http://www.cymru.com/darknet/.

N. Provos. A virtual honeypot framework. In Proceedings of
the 12th USENIX Security Symposium, pages 1-14, August
2004.

M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multi-
faceted approach to understanding the botnet phenomenon.
InACM SIGCOMM/USENIX Internet Measurement Confer-
ence, October 2006.

E. Ramirez-Silva and M. Dacier. Empirical study of the im-
pact of metasploit-related attacks in 4 years of attack traces.
In 12th Annual Asian Computing Conference focusing on
computer and network security (ASIANO7), December 2007.
J. Riordan, D. Zamboni, and Y. Duponchel. Building and de-
ploying billy goat, a worm detection system. In Proceedings
of the 18th Annual FIRST Conference, 2006.

I. M. Sensor. http://ims.eecs.umich.edu/.

TCPDUMP Project. Home page of the tcpdump project at
http://www.tcpdump.org/.

The Metasploit Project. www.metasploit.org, 2007.
VirusTotal. www.virustotal.com, 2007.

T. Werner. Honeytrap. http://honeytrap.mwcollect.org/.

M. Zalewski. Home page of pOf at
http://lcamtuf.coredump.cx/pOf.shtml.

Appendix 1: Leurre.com Traffic Statistics

The tables here under reflect global statistics of the traffic gathered by Leurre.com sensors for each year, from 2004 until March 2008,
and for the low-interaction honeypots only. The different fields in the colomns are as follows:

- Seq_Id and Description: the identificator of the port sequence created by the attackers on the honeypots and their description (e.g. |1
|445T means ICMP followed by 445/TCP);

- Nr of Sources and %: the total number of sources and their relative weight in the global traffic observed that year;
- Top attacking countries: the main countries of origin where the sources seem to come from, according to Maxmind;

- Main platforms and Nr of subnets hit: the most targeted sensors for each port sequence (with a threshold of min. 7% of the sources
observed on a sole sensor) and the number of different subnets (Class A) where those sensors belong to;

- Host distribution: the relative proportion of sources having hit respectively one of the three virtual hosts emulated by honeyd (H1 and
H2 = windows, H3 = linux), and only for the most targeted sensors.

Id Description Nr Sources % Top Attacking Countries Main Platforms Hit Nr Subnets Host Distribution
(class A) [HI,H2,H3]

1 1445T 135,417 25 US: 16%, CS: 13%, DE: 8% 6,20,5, 10 4 [0.33;0.33; 0.33]
3 |135T 107,901 20 TW: 18%, US: 13%, DE: 10%, 20, 6,8, 10 4

4 | 33,730 6 US: 11%, CN: 9% 5,20,23,10,6,9 5

7 |1026U 26,883 5 US: 22%, GB: 11%, DE: 10% 4.5,9,13 3

8 10270 25,097 4 US: 22%, GB: 11%. DE: 10% 4.5,13.9 3

23 |1]445T 12,574 2 DE: 13%, JP: 11%, US: 9% 20,5,10,23,6 5

2 11370 12,477 2 US: 24%, CN: 8%, BR: 6% 20,4,6,5 4

27 1139T 11,634 2 US: 24%, KR: 15%, TW: 12% 10,6,21,1,5,8 5
21 180T 11,615 2 US: 23%, CN: 20%, JP: 11% 1,20 2
22 |5554T|9898T 11,586 2 CN: 62%, CA: 14%, HK: 10% 25,10 2

15 |1433T 11,253 2 US: 26%, DE: 12%, KR: 11% 1,21,14,4,5,9,2,20 5
40 [1025T 10,561 1 CN: 37%, KR: 13%, US: 10% 10, 20, 25 2

6 |1434U 10,443 1 US: 27%, CN: 14%, JP: 9% 5,14, 20,23, 6, 10 6

19 |19898T 9,363 1 CN: 79% 25,10 2

17 |5554T|1023T[9898T 8,739 1 KR: 76%, CN: 18% 5.21,9.13,20 2

14 |135T|4444T 6,970 1 US: 24%, DE: 12%, FR: 10%, 1,5.10, 14,20 5 B
52 |5554T 5,398 1 CN: 58%, CA: 8% 25,10 2 [0.33; 0.33; 0.33]

Table 5. Global Statistics of the Main Port Sequences for 2004

Id Description Nr Sources %o Top Attacking Countries Main Platforms Hit Nr Subnets Host Distribution
(class A) [HI, H2, H3 |
3 |135T 198,239 20 US: 15%, DE: 11%, CS: 8% 20, 6,31,8,21,27 3 5;,0.33;0.31]
1 |445T 191,902 19 CS:24%, US: 11%, DE: 8% 6,20,31,9 3 .31:0.31; 0.37]
7 |1026U 97.368 10 US: 31%, JP: 8% 44,31,26,23,39.9,49 3 3:0.33;0.33]
27 1139T 61,910 6 US: 12%, CS: 11%, KR: 8% 6,20,31,40,23,9 3 :0.31: 0.37]
15 |1433T 45,497 4 CN: 34%, US: 14%, KR: 8% 20,25,21,27,6,32,9 3
4 it 35,776 4 US: 27%, CN: 10%, TW: 7% 9.20,31,23,6,8,27,26 4
21 180T 35,707 4 CN: 22%, US: 21% 25,20,8 1
8 1027U 33,691 3 US: 37%, GB: 8%, DE: 1% 31,26,22,13,9,4,23,6, 1,21 4
6 |1434U 28,723 3 CN: 39%, US: 18%, JP: 9% 27,14,25,6,9,21,23,31,20, 13,43 7
2 [137U0 19,675 2 US: 21%, BR: 8% 20,6,31,27,9,4 3
40 [1025T 18,281 2 CN: 40%, KR: 15%, US: 9% 20,25,8 1
176 |445T[135T|445T[135T 14,959 1 CS:39%, DE: 8% 6,31,23 2
29 14899T 12,423 1 KR: 30%, CN: 19%, US: 15% 6,31,9,14,8 2
22 |5554T|9898T 10,500 1 CN: 77%, CA: 9% 25 1
Table 6. Global Statistics of the Main Port Sequences for 2005
Id Description Nr Sources % Top Attacking Countries Main Platforms Hit Nr Subnets Host Distribution
(class A) [HI,H2,H3]
7 11026U 274,711 21 US: 48% 57,27,34,9,54 4 [0.33; 0.33; 0.33]
4 T 237,953 18 US: 31%, CN: 18% 50,57 1 [0.3 0.31]
1 1445T 142,397 11 CS: 34%, US: 8% 6,53,71 2 [0.30; 0.28; 0.42]
3 |1135T 89.542 7 US: 14%, CS: 11%, JP: 9%, DE: 8% 6,20, 21,27, 65, 56, 31 3 [0.34;0.33: 0.33]
27 1139T 84,058 6 US: 10%, FR: 9%, KR: 8% 6,55,31,49, 32,20, 21,27,57,54,45.9 2 [0.27; 0.34: 0.38]
15 |1433T 53,540 4 CN: 40%, US: 14% 25,50,9, 64,45, 57 2 [0.34;0.33; 0.33]
1478 |1/80T 41,756 3 US: 44%, CN: 21%, KR: 8% 50, 56 1 [0.44;0.31; 0.25]
132 15900T 32,275 2 US: 22%, CN: 12%, FR: 7% 64,45,25,9,41,55,57,54,6 2 [0.3
21 180T 30,401 2 US: 24%, CN: 11%, FR: 7% 41, 25, 50, 47 2 [0.3:
6 [1434U 30,197 2 CN: 44%, US: 15%, JP: 7% almost all 10 [03
427 [1026U[1027U[1028U 20,235 2 CA: 100% 57 1 [0.3
2 [137U 18,078 1 US: 13%, BR: 10% 64,31,6 1 [0.3
61 22T 17,529 1 CN: 25%, US: 14%, KR: 10% 50, 60, 8, 54, 32, 56, 9, 27 1 [0.3: 5
29 |4899T 15,532 1 US: 19%, CN: 18%, KR: 16% 41,31,57,9,45,6, 55,54 2 [0.33;0.33; 0.33]

Table 7. Global Statistics of the Main Port Sequences for 2006

Id Description Nr Sources % Top Attacking Countries Main Platforms Hit Nr Subnets Host Distribution
(class A) [HI,H2,H3]
4 I 692,038 34 US: 19%, KR: 12%, CN: 10% 77 1 [0. 36 0.32;0.32]
427 [1026U]1027U[1028U 192,440 9 CA: 100% 57,84, 64 3 [0. 0.33]
7 [1026U 175,890 9 US: 45% 34,27,9,89 3 [0,3‘% 0.33;0.33]
1 [445T 134,861 7 CS: 25%, RS: 23% 6 1 [0.3
132484 12967T 90,036 4 US: 21%, CN: 8% 25, 64,57 2 [0.3
3 |135T 88,723 4 JP:13%, US: 11%, CN: 8% 6,56,71 3 [0.33;0.33; 0.33]
132 15900T 68.249 3 US: 22%, FR: 7%, KR: 6% 25, 64,57, 41 3 [0..
15 |1433T 60.829 3 CN: 32%, US: 15% 25.64,77 2 [0.. 34 0 33:0.32]
1478 [1/80T 46,112 2 US: 56%, KR: 11%, CA: 7% 50,77, 56 1 [0.37; 0.40; 0.23]
10337 [1]139T|445T 45,794 2 US: 15%, PL: 9%, TW: 7% 9,21,58,45 3 [0.02; 0.02; 0.95]
160 [1]139T 44,601 2 KR: 48%, US: 9% 9,21,45 2 [0.34;0.35; 0.31]
27 [139T 35,628 2 US: 15%, RS: 7%, KR: 7% 6, 64,57 3 (0.
61 22T 25,985 1 CN: 23%, US: 14%, KR: 8% 71, 50, 56 1 [0..
6 [1434U 25,801 1 CN: 41%, US: 15%, JP: 7% almost all 12 [0.3
Table 8. Global Statistics of the Main Port Sequences for 2007
1d Description Nr Sources %o Top Attacking Countries Main Platforms Hit Nr Subnets Host Distribution
(class A) [HI,H2,H3]
4 i 83,593 24 US: 25%, KR: 12% 77 1 [0.36: 0.31; 0.32]
427 11026U[1027U]1028U 67,486 19 CA: 100% 57, 84, 64 3 [0.35; 0.32; 0.32]
7 |1026U 19,074 5 US: 43%, CA: 8% 89, 27,57 3 [0.33:0.33; 0.33]
433 |1027U(1026U[1028U 15,798 4 CA: 100% 84,57, 64 3 [0.37:0.31; 0.31]
3 |135T 15,324 4 JP: 16%, US: 13%, CN: 10% 56, 64,32,21,87,49,27,6 5 1 0.33:0.33]
1 |445T 12,962 4 RS: 28%, US: 7%, DE: 1% 6, 64,53 3
132484 12967T 12,401 4 US: 22%, DE: 14%, PL: 7%, CN: 7% 25,53, 64,57, 41 4
132 [5900T 10,230 3 KR: 13%, US: 12%, CA: 7% 57,80 2
21765 11028U11026U[1027U 9,841 3 CA: 100% 57, 64 2
15 [1433T 9,401 3 CN: 40%, PK: 11%, US: 9% 77,87,25, 64 3
3107 [1027U11028U]1026U 8,294 2 CA: 100% 64, 84,57 3
61 22T 6,893 2 CN: 25%, US: 11%, KR: 7% 71, 56,87 2
10337 |T|139T|445T 6,605 2 US: 21%, JP: 8% 59,87,21,9,58 4
1478 |1/80T 5.819 2 US: 54%, KR: 14%, CA: 7% 717,56 1 3;0.30; 0.16]
466 |1028U 5416 2 CA: 100% 84,64 2 : 0.43; 0.46]
160 |1]139T 5,203 1 KR: 37%, US: 12% 9,21,58,59,87 4 0.34; 0.30]
6 |1434U 5,027 1 CN: 44%, US: 12%, JP: 1% almost all 13 0.33;0.33]
428 [1026U11028U[1027U 4,483 1 CA: 100% 64,57 2 [O '& 0.33;0.33]
2 |137U 4,300 1 US: 19%, BR: 8%, FR: 7% 64,78 2 10.33. 0.33;0.33]

Table 9.

Global Statistics of the Main Port Sequences for 2008 (as of March)

Appendix 2: Illustrative Queries

Query 1: Temporal evolution (by day) of attack cluster 17718

SELECT count(Source.Source_Id) as nbs, floor((cast(Large_Session.Begin_At as date)
— to_date(’01/12/06"))/1) AS Date_

FROM Source, Large_Session, Environment

WHERE Large_Session.Begin_At> to_date(’01/12/06")

AND Large_Session.Begin_At<to_date(’01/03/07")

AND Large_Session.Tool_.Id = 17718’

AND Large_Session.Source_Id=Source. Source_Id

AND Large_Session.Environment_-Id = Environment.Environment_Id

GROUP BY floor ((cast(Large_Session.Begin_At as date) — to_date(’01/12/06°))/1)
ORDER BY floor ((cast(Large_Session.Begin_At as date) — to_date(’01/12/06°))/1), nbs
DESC

Query 2: Geographical location of the attackers

SELECT Country AS Country, count(Large_Session.Source_Id) as nbs
FROM Large_Session, Environment , Info_Source_Maxmind

WHERE Large_Session.Begin_At > to_date(’01/12/06°, DD/MM/YY’)
AND Large_Session.Begin_At < to_date(’01/03/07’, 'DD/MM/YY’)

AND (Large_Session.Source_Id=Info_Source_Maxmind. Source_Id)

AND Large_Session.Tool_.Id = ’17718°

GROUP BY Info_Source_-Maxmind. Country

ORDER BY nbs DESC

Query 3: Attackers Domain names

SELECT REGEXP_SUBSTR(dom_name,’ \.[".]*$’) as Domain, count(Source.Source_Id) NBS
FROM Source, Domain, Large_Session

WHERE Large_Session.Begin_At > to_date(’01/12/06°, 'DD/MM/YY’)

AND Large_Session.Begin_At < to_date(’01/03/07’, DD/MM/YY’)

AND Source.Source_Id = Large_Session. Source_Id

AND Source.Domain_Id= Domain.dom_id AND Large_Session.Tool_Id = *17718"

AND REGEXP_LIKE(dom_name, \.[".]*$")

GROUP BY REGEXP_SUBSTR(dom_name,’ \.[".]%$")

ORDER BY NBS DESC

Query 4: Attackers Subnets Information

SELECT REGEXP_SUBSTR(INET-NTOA(Source.Ip_Address),’"\d{1,3}’) as ClassA,
count (Source. Source_Id) as NBS

FROM Source, Large_Session

WHERE Large_Session.Begin_At > to_date(’01/12/06°, 'DD/MM/YY’)

AND Large_Session.Begin_At < to_date(’01/03/07’, 'DD/MM/YY’)

AND Source.Source_Id = Large_Session.Source_Id

AND Large_Session.Tool_-Id = 17718°

AND REGEXP_LIKE (INET_.NTOA(Source . Ip_Address), "\d{1,3}\..x")

GROUP BY REGEXP_SUBSTR (INET_.NTOA(Source.Ip_Address), "\d{1.,3}")

ORDER BY NBS DESC

