Overbot - A botnet protocol based on Kademlia

Guenther Starnberger
Distributed Systems Group
Vienna Univ. of Technology

gst@infosys.tuwien.ac.at

ABSTRACT

One crucial point in the implementation of botnets is the
command and control channel, which is used by botmas-
ters to distribute commands to compromised machines and
to obtain results from previous commands. While the first
botnets were mainly controlled by central IRC servers, re-
cent developments have shown the advantages of a more
decentralized approach using peer-to-peer (P2P) networks.
Interestingly, even though some botnets already use P2P
networks, they do so in a naive fashion. As a result, most
existing botnet implementations allow attackers to disrupt
messages from the botmaster and to learn IP addresses of
other nodes within the botnet.

This paper introduces Overbot, a botnet communication
protocol based on a peer-to-peer architecture. More pre-
cisely, Overbot leverages Kademlia, an existing P2P proto-
col, to implement a stealth command and control channel.
An attacker can neither learn the IP addresses of other nodes
in the botnet nor disrupt the message exchange between the
botmaster and the bots, even when the attacker is able to
capture some of the nodes within the network. Overbot
demonstrates the threats that may result when future bot-
net generations utilize more advanced communication struc-
tures. We believe that it is important to outline these threats
to allow the research community to develop solutions before
such botnets appear in the wild. To help the search for ef-
fective countermeasures, we also discuss possible directions
where future research seems promising.

Categories and Subject Descriptors

C.2.0 [Computer Systems Organization|: Communi-
cation/Networking and Information Technology— Network-
level security and protection

Keywords

Botnet Protocol, Malware, Network Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SecureComm 2008 September 22 - 25, 2008, Istanbul, Turkey

Copyright 2008 ACM ISBN # 978-1-60558-241-2 ...$5.00.

Christopher Kruegel
UC Santa Barbara
chris@cs.ucsb.edu

Engin Kirda
Eurecom
kirda@eurecom.fr

1. INTRODUCTION

A communication channel in a botnet allows the botmas-
ter to issue commands to the nodes within the network and
to receive replies from the individual nodes. Many older
botnets used the Internet Relay Chat (IRC) protocol as a
means of communication [5]. This makes them vulnerable
to several kinds of attacks. First, the operator of the IRC
service is able to block the channel that is used for communi-
cation. Furthermore, it is possible to obtain the IP addresses
of hosts that join an IRC channel that is used by a botnet.
Additionally, the list of IRC servers and IRC channels used
for botnet communication may be distributed as a blacklist.
An advanced firewall may be able to drop connections when
a host tries to join a channel that is used by botnets.

Over time, botmasters have recognized the weaknesses of
a command and control channel that is based on a central-
ized IRC server. To address the problems, new botnet vari-
ations emerged that follow a distributed communication ap-
proach [3]. In particular, because legitimate peer-to-peer
systems are already wide-spread, it is straightforward to
abuse these existing applications. An example of a P2P-
based botnet and, so far, the most successful representative
is Trojan.Peacomm [5], also known as Storm. Peacomm uses
the distributed hash table of a P2P file-sharing system for
its communication, hiding its activity within legitimate ap-
plication traffic.

An innovative feature of Peacomm is that the botmaster
does not have to contact bots directly. Instead, the bot-
master stores commands under specific search keys, which
are derived from the current date. The bots independently
calculate the current search key and request these keys to
obtain the commands. Because the keys change frequently,
new commands can be injected easily. Of course, an at-
tacker! can capture bot instances and identify the keys that
Peacomm is searching for. This allows the attacker to join
the network with a node ID close to that key. When requests
for this key are received, one can collect the IP addresses of
nodes that are part of the botnet.

Other advanced botnets [13, 14] build custom P2P net-
works and attempt to limit the information that an attacker
can obtain by capturing a single node. The common ap-
proach is to let single nodes only know about few other
nodes. This is achieved by splitting a large botnet into sev-

Throughout this paper, we use the word “attacker” to refer
to a white-hat security person that attempts to disrupt and
detect botnets. We call this person attacker because we
assume the role of the botmaster here.

eral smaller botnets, restricting the connections of each node
to a small subset of other, compromised hosts.

In all the aforementioned approaches, an attacker is able
to learn some information about the botnet after capturing
a node. Because attackers can often control a significant
number of nodes, large fractions of the botnet can be re-
vealed.

This paper presents the botnet communication protocol
Overbot. It shows that it is possible to create a botnet
where a captured node reveals no information about the
other nodes in the botnet. Its design assures that:

e An attacker who is able to capture some of the nodes
is not able to identify any of the remaining nodes.

e The behavior of nodes within the botnet is not distin-
guishable from legitimate P2P nodes.

e The botmaster does not contact the botnet nodes di-
rectly. Therefore, botnet nodes do not obtain the IP
addresses that are used by the botmaster to issue com-
mands.

Experiments conducted on the Bittorrent distributed hash
table (DHT) implementation show the feasibility of our ap-
proach.

We believe that it is important for the security community
to study the design space of botnet command and control
structures. The reason is that current techniques that are
effective against today’s botnets may not be sufficient to dis-
rupt future botnet generations. Overbot serves as an exam-
ple of a certain type of future botnet. This allows researches
to develop techniques against these kinds of botnets before
they appear in the wild. Furthermore, new P2P protocols
should be designed in a way that makes it harder for bots
to hide between legitimate nodes.

2. INTRODUCTION TO KADEMLIA

Overbot is based on Kademlia [7], a distributed hash ta-
ble (DHT) used by several P2P applications. There exist
slightly different implementations of the Kademlia protocol
that are used on the Internet. One popular variant is used by
eMule, another one by Bittorrent. These differences require
small adaptations to our Overbot protocol. In the follow-
ing paragraphs, we will first present the underlying, general
protocol. Then, we will discuss the specifics of two popular
variants (Kad and Kashmir) that are relevant for Overbot.

In Kademlia, nodes are identified by 160-bit node IDs, and
data items are identified by 160-bit keys. A node usually
stores data items whose key values are close to its own node
ID. Key values of data items are typically calculated by using
a hash function, while node IDs are randomly generated by
the nodes themselves. The distance between two values is
defined by the XOR metric d(z,y) = z ® y, where x and y
are the node IDs of the respective nodes. As the distance
is only based on IDs, a low distance does not implicate any
kind of closeness on the underlying network.

As a routing table, Kademlia maintains lists that contain
information about nodes in the distance from 2¢ to 2°+!,
where 0 < i < 160. These lists are termed as k-buckets.
Nodes in the k-buckets are sorted by the time when the least
recently sent message of a particular node was received and
each k-bucket can store up to k elements.

Generally, k-buckets prefer old nodes to new nodes. If
a message is received from a new node and the k-bucket
is not full, information about this node is stored in the k-
bucket. If the k-bucket is full, it is checked whether the least-
recently seen node responds to a PING request. If it responds,
information about the new node is not stored, otherwise
the stored information about the least-recently seen node
is replaced by the information of the new node. Therefore,
an old node is only evicted from the k-bucket if no recent
messages have been received and if it fails to respond to PING
requests.

The Kademlia protocol defines four RPC (remote pro-
cedure call) type messages: PING, STORE, FIND_NODE and
FIND_VALUE.

Nodes are located iteratively by using the FIND_NODE RPC
function. When a node wants to find another node, it issues
a FIND_NODE request to k of its neighbors, providing the ID
of that node as argument. Each neighbor will then return a
list of its closest k neighbors. The original node stores these
new node IDs and continues querying nodes, until no better
results are returned or until the desired node ID is found.

FIND_VALUE works similarly to FIND_NODE. Each nodes re-
turns its closest k neighbors. However, if a node contains
the requested key, it returns the data item associated with
the key instead of a list of neighbors. After the original re-
quester received this item, it stores the data at the neighbor
node nearest to the key that did not return the value.

STORE is used to store data in the DHT. By using FIND_
NODE, a node first determines k£ nodes that are located close
to the key value. Afterwards, it sends STORE requests to
all of these nodes. In order to ensure persistence of stored
values, each node republishes each value that it stores once
per hour to the k£ nodes closest to the particular value.

The PING RPC allows a node to check whether another
node is online. Furthermore, a PING reply also contains the
respective node ID.

In order to initially connect to the network, the IP address
of at least one node in the DHT is required. This node can
then be queried about other nodes close to the own node
ID. To this end, clients typically contain a list of hard-coded
nodes (IP addresses) that serve as initial contact points.

2.1 Kad

Kad [8] is an implementation of the Kademlia DHT that is
used by several P2P applications. Examples of applications
that use Kad are Overnet and eMule.

When a P2P application wants to publish information
about a file in the Kad network, it first creates a MD4 hash
of this file. This MD4 hash is then used as the key of a lo-
cation entry. Such a location entry contains the node ID as
well as the IP address and port number of the node on which
the file is available. To make it possible to search for a file
by its name, each word in the filename is first converted to
lowercase and then hashed to a MD4 value. Each of these
values is used as the key of a DHT record that contains the
MD4 hash of the file, together with additional meta infor-
mation about the file such as the type or the file size.

An example of an entry that contains meta information
about a file is: #1234 #5678 NAME=test.avi;SIZE=123456;
TYPE=Video, where #1234 is the key of the entry and the
hash value of a term in the filename, and #5678 is the MD4
hash of data inside the file and the key of a location en-
try. An example of such a location entry is: #5678 #9876

loc=bcp://192.168.3.10:4661, where #5678 is the MD4
value of the data and #9876 is the node ID of the host con-
taining the data. The loc entry indicates how the host in
question can be contacted.

Assume that a client wants to search for the file test.avi.
The client first hashes the filename to #1234. The first search
result yields a DHT entry with #5678 as value. This value
is used as key for the second search, this time to find the
location entry that stores the file location.

2.2 Khashmir

Khashmir [6] is another Kademlia implementation, which
is used in the Bittorrent protocol. Bittorrent uses the DHT
to allow clients to find other peers without requiring a cen-
tral tracker. Each Bittorrent download is identified by a
160-bit value called an infohash. Under the DHT key of the
infohash, the IP addresses and port numbers of all peers
currently downloading the file in question are stored.

The Khashmir protocol is based on a RPC mechanism
that allows peers to call remote procedures of other peers.
This mechanism is used by the Bittorrent protocol to im-
plement the announce_peer and get_peers functionalities.
If a peer starts a download, it calls announce_peer at other
nodes close to the ID of the infohash. This notifies the peers
that the node is downloading the file. Other peers can use
the get_peers RPC to retrieve a set of nodes that are cur-
rently downloading a specific file. get_peers is comparable
to the FIND_VALUE function in eMule.

Unlike eMule, the DHT implementation of Bittorrent re-
stricts the information stored in the DHT to IP addresses
and port numbers. It is not possible to store any other infor-
mation. This is important because it restricts the freedom
for Overbot to store information in those entries.

3. THREAT MODEL
3.1 Attacks against botnets

There are different levels at which a botnet and the com-
promised nodes that are part of this botnet can be attacked:

e Directly at the host on which the bot is running. For
example, an attacker might capture and analyze one
of the nodes that are part of the botnet.

e At the network level, when an attacker has access to
the traffic that is sent and received by botnet nodes.

e At the application level, when the botnet makes use of
a legitimate protocol (such as IRC or P2P file-sharing),
and the attacker joins the system and monitors the
node’s behavior at the application-level.

Attacks at these three levels are discussed in more detail in
the following paragraphs.

Host level.

We assume that an attacker is able to capture an arbitrary
number of botnet nodes, and he can completely reverse en-
gineer the software running on these nodes. All information
stored on a captured node is, therefore, accessible to the
attacker. If a node is able to identify other nodes or the
botmaster, this knowledge is also available to the attacker.

Network level.

At the network level, we assume that an attacker has full
access to the traffic sent and received by a number of bot-
net and legitimate nodes. An example for such an attacker
is a firewall or an ISP. An attacker can analyze the traffic
generated by a node to determine whether this host is part
of the botnet. Thus, the behavior exhibited by a compro-
mised node must not obviously differ from any legitimate
DHT client. In particular, this is a problem for botnet de-
signs that make use of custom protocols that “stand out” in
normal network traffic. To a lesser degree, this is also true
for statistical patterns. If a node shows abnormal behavior,
this might reveal its botnet membership.

Application level.

An attacker who is able to join the application that is
abused by a botnet has several possibilities to identify com-
promised nodes. These possibilities are often related to ob-
servable differences between the behavior of a bot and a
legitimate node. An attacker might observe that a node is
always querying for non-existent keys in a distributed hash
table. Or a bot might issue a suspiciously large number of
requests. For example, in Kademlia, it may be unlikely that
a legitimate node issues a lot of FIND_VALUE requests within
a short time-span.

Often, an attacker can also launch a Sybil attack [4] to
obtain control of a large set of nodes that are part of the
botnet. This does not only give the attacker a higher chance
to identify suspicious queries, but he might also try to de-
tect statistical patterns that are typical for a member of the
botnet.

Combined attacks.

Clearly, information obtained at different levels can be
combined to launch a successful attack. An example of an
attack that leverages combined knowledge from the host and
the network level is the way in which Trojan.Peacomm nodes
can be identified. First, the attacker captures a compro-
mised node to predict keys that bots are searching for to
obtain commands. Then, the attacker joins the P2P net-
work and injects nodes that have IDs close to the search key.
Finally, the attacker waits for other bots to request this key.
At this point, the attacker can learn the IP addresses of the
malicious nodes.

3.2 Weak points in current botnets

We note that Overbot is designed to withstand attacks at
all three levels. This is not true for current botnet protocols;
a fact that allows detection of nodes and disruption of com-
munication in these systems. Details of the shortcomings of
current botnet designs are outlined below.

In TRC-based botnets, capturing a node reveals the name
of the IRC network and the name of the IRC server to the
attacker. If the traffic to the IRC server is not encrypted,
it can also be used to obtain the name of the IRC channel.
On many IRC networks, any member of a channel is able to
obtain the IP addresses of other members. If this feature is
not available to normal users, the cooperation of the admin-
istrator of the IRC service is required. In both cases, the
IPs of the clients that are logged on can be used to identify
compromised hosts. IRC-based approaches are, therefore,
vulnerable to host and network level attacks.

As mentioned previously, the shortcomings of IRC-based
command and control structures prompted botmasters to
seek alternatives that rely on more robust, distributed de-
signs. A number of botnets, which use more advanced net-
work designs, are discussed in [5]: Among the notable ones
are Phatbot and Nugache. Phatbot uses the Gnutella P2P
network; infected nodes can identify other nodes because
they use a fixed version string, together with a non-standard,
fixed port-number [12]. Such behavior is easy to identify at
the network level. In Nugache, the binary is equipped with
a list of 22 server IPs to which an infected host can con-
nect. When connecting, the servers send an updated server
list to the bot. Therefore, filtering access to these 22 hard-
coded IPs prevents bots from updating their server list and,
as a result, from receiving commands. Additionally, Nu-
gache listens on port number 8; this makes it straightfor-
ward to identify any Nugache-related traffic. A number of
additional possibilities to detect the aforementioned botnets
are described in [11].

Trojan.Peacomm [5] uses a botnet protocol based on the
Overnet flavor of the Kademlia DHT. In Peacomm, both,
botmaster and nodes calculate a set of hash values using a
function that takes the current date as an input. The bot-
master can store commands to the nodes under these hash
values, and the nodes fetch their content in regular intervals.
To receive messages from the botmaster, nodes need to ac-
tively request the content of specific hash values. As men-
tioned previously, Trojan.Peacomm uses predictable DHT
hash values under which commands to the bots are stored.
At the network level, an attacker can identify DHT search re-
quests for these hash values, detecting infected hosts. More-
over, at the application level, an attacker may assign his
nodes an ID close to one of the hash values used by Tro-
jan.Peacomm. Therefore, many bots will issue their search
requests to the attacker. This allows the attacker to obtain
a list of IP addresses on which botnet nodes may be active.

The approach explored in the paper “Army of Botnets” [13]
splits a large botnet into several smaller botnets, or cells. As
a result, a large botnet may be composed of thousands of
such small cells. This makes it harder for an attacker to ob-
tain a list of all active nodes. However, each bot has some
(routing) information about other botnet nodes. Thus, an
attacker who controls a large number of bots can identify a
significant portion of the botnet. Also, as mentioned in the
paper, the approach is vulnerable to host-based anti-virus
software. If the anti-virus software detects that the host is
part of a botnet, it could report the IP addresses of itself
and other known hosts within the botnet to a central defense
location. This may allow an attacker to obtain information
about a large set of the small networks.

In [14], the authors describe a hybrid peer-to-peer botnet
that partitions the botnet into servent bots and client bots.
Servent bots use routing tables to store information about
some other servent nodes in the botnet that they forward
commands to. The robustness of the approach is built upon
the idea that each node only knows about a few neighbors.
Communication between servent hosts is performed using
a custom-built, encrypted protocol. Similar to the army of
botnets, each captured node reveals some information about
other nodes in the network. Also, the connections between
nodes use a non-standard protocol, and thus, could be de-
tected at the network level.

4. OVERBOT

Overbot is a botnet communication protocol based on
Kademlia. It provides a stealth means to send commands
from the botmaster to compromised nodes. The design of
Overbot is such that it is robust to the attacks outlined pre-
viously. Capturing nodes does not reveal any information
about other nodes of the botnet. Also, the botnet leverages
existing P2P networks to hide its communication among le-
gitimate traffic. Finally, compromised nodes behave simi-
larly to legitimate clients, and the botmaster never contacts
a bot directly.

Similar to Peacomm, the Overbot protocol uses search
requests in an existing P2P network (Kademlia) to have
bots request commands from the botmaster. The differ-
ence to Peacomm is the way in which these search requests
are crafted. In Overbot, each bot sends queries that only
the botmaster can identify as command requests. At the
network level, these requests appear indistinguishable from
regular search queries. This is true even when the attacker
controls several bots and is able to observe and record the
requests that these captured nodes send. Obviously, this
implies that every bot has to send different queries.

To craft search queries that request commands, Overbot
makes use of a public-key model. That is, the botmaster
owns a public-private key pair, and the public key of the
botmaster is known to all compromised nodes. In order
to communicate with the botmaster, botnet nodes encrypt
messages with the public key of the botmaster. Only the
botmaster, who possesses the private key, can identify these
messages.

The following section discusses the way in which a com-
promised node requests a command. Then, we present the
way in which the botmaster can respond and deposit a com-
mand.

4.1 How to request commands

To request commands, or, more general, to send messages
to the botmaster, the nodes issue search requests in regular
intervals. The target of each search request is a cipher text
that is generated by encrypting a sequence number with the
public key of the botmaster. For an outsider, these requests
look like requests for legitimate hash values. However, the
botmaster (who possesses the secret key) is able to recog-
nize these requests. Moreover, once a message is decrypted,
he can extract the node’s sequence number. This sequence
number is then used to send a command to the node.

Encoding information inside messages.

A node has to transmit two pieces of information in the
search requests that it sends out. First, it has to secretly
announce to the botmaster that the request is sent from a
compromised node that is part of the botnet. Second, it has
to request commands.

There are several options how information can be encoded
within search requests:

The first option is the usage of the FIND_NODE and FIND_
VALUE functions, which allow a node to search for a specific
value inside the DHT. The hash value, which has a length
of 160-bit, can be used by the node to embed information
for the botmaster.

Second, it is possible to use the STORE RPC function in
order to encode information within requests. However, some
Kademlia implementations restrict the data that is accepted

by the STORE function. In eMule, it is possible to store a hash
value and alternatively meta-data of a specific file. In Bit-
torrent, instead, only the own IP address and port number
can be stored.

The third option to encode information within search re-
quests is the node ID of the sender. A node ID has 160 bits,
and each node can select its own ID is a way that some in-
formation can be transmitted to another node that receives
a message.

Overbot uses the first option to request commands. That
is, Overbot uses the 160-bit hash values that are part of
search queries to transmit a sequence number that can be
used by the botmaster to publish commands. Moreover, the
protocol uses the node’s ID to announce its botnet member-
ship.

Node IDs and sequence numbers.

When a node is initialized, it generates its own node ID.
In Overbot, this ID is generated by encrypting a hard-coded
string with the public key of the botmaster. This string
serves as a magic value, and the same string is used by all
nodes within a botnet. Overbot uses the non-deterministic
elliptic curve cryptography for encrypting this string. As
a result, the same clear text is mapped to different cipher
texts, ensuring that the node IDs of every bot will be differ-
ent. Also, the space of possible node IDs is sufficiently large
so that an attacker cannot enumerate all possible encryp-
tions of the hard-coded string (which would allow a straight-
forward way to identify bots). If a deterministic algorithm
such as RSA is used, a random padding would be required
to guarantee different node IDs. The magic value allows the
botmaster to identify a node as part of the botnet when he
receives a message containing such a node ID.

Individual botnet nodes use sequence numbers, which al-
low the botmaster to predict the hashes of future search
requests and to derive a symmetric key that can be used
for messages that are sent to a node (as discussed in more
detail later). At initial deployment, the sequence number
is initialized to a random value. This ensures that different
bots send different search requests. Afterwards, the num-
ber is increased by one after each time interval (e.g., after
one minute). If the sequence number reaches the maximum
value, it wraps back to zero.

Sending information to the botmaster.

To announce itself to the botmaster, a compromised node
issues searches for DHT keys in regular intervals. These
keys are generated by encrypting the current sequence num-
ber with the public key of the botmaster. Receiving such a
message allows the botmaster to learn about the existence
of the node as well as its current sequence number.

To be able to receive messages sent by the botnet nodes,
the botmaster injects multiple sensor nodes into the DHT.
These sensor nodes participate as regular clients in the P2P
network. They are under direct control of the botmaster and
store sensitive data such as the private key of the botmaster.
The nodes are different from bots since they are not random,
compromised machines but hosts owned by the botmaster.
Sensor nodes do not produce any botnet-related traffic, and,
thus, cannot be identified as malicious by an attacker.

Whenever a sensor nodes receives an incoming search re-
quest, it attempts to decrypt the node ID with its private
key. If this decryption operation yields the magic value, it is

very likely that the peer is part of the botnet. At this point,
the sensor node adds the IP of the sending host to the list of
compromised machines. Also, the sensor node extracts the
current sequence number from the key (hash value) that the
bot is searching for.

It is crucial to observe that a compromised node does not
have any knowledge about the locations of the sensor nodes.
Thus, it regularly issues requests for different search keys
(determined by encrypting the increasing sequence num-
bers), with the “hope” that one of these requests will even-
tually reach a sensor node. Clearly, not every request will
reach a sensor node. The botmaster has to ensure that he
joins with sufficient sensor nodes such that the probability
that a request will eventually reach a sensor node within a
reasonable amount of time is high. This issue is discussed
in more detail in Section 6.

4.2 Sending commands to botnet nodes

There are two different options how the botmaster may
transmit messages to botnet nodes. The optimal choice de-
pends upon the properties of the used DHT implementation.
In eMule, it is possible to store nearly arbitrary values in the
DHT. Therefore, the botmaster may store a message in the
DHT, which can then be read by a botnet node. As Bittor-
rent restricts the values which can be written to the DHT,
this technique is not possible in that case. However, the us-
age of an UDP-based DHT protocol makes it possible to use
out-of-band methods, sending commands by using forged
IPv4 source addresses.

Messages are sent to the botnet using actuator nodes.
These nodes obtain their commands and the network lo-
cation of the intended recipients by the botmaster. Unlike
sensor nodes, actuator nodes actively issue requests to the
network. Therefore, the risk of detection is higher than in
the case of sensor nodes.

In-band messages.

When the botmaster receives a search request from a bot-
net node, he learns this node’s current sequence number. As
sequence numbers are increased at a particular, known rate,
the botmaster is able to calculate the sequence number of
the node at any later point in time.

If a deterministic public key algorithm would be used,
the botmaster could directly predict the target ID of fu-
ture search requests by encrypting the respective sequence
number with its own public key. With non-deterministic al-
gorithms such as elliptic curve cryptography (ECC), this is
not possible. The reason is that the same sequence number
can be mapped to different values. Therefore, the botmaster
cannot predict the cipher text. To work around this prob-
lem, the botmaster and the node can both calculate the
SHA-1 hash of the sequence number. This hash, which is
deterministic, is then used as a meeting point value. More
precisely, for each new sequence number, the botnet node
issues an additional search request, using the meeting point
value as key. If the botmaster wants to transmit a message
to the node, he can encrypt the message (using the SHA-1
hash as a key) and then instruct an actuator node to store
the message under the calculated hash value. Typically, this
would store the command information on a legitimate client
in the DHT. The bots would then contact this client via the
search for the meeting point value and download the com-
mand. Of course, a checksum can be added to the command

to handle situations where, by accident, an unrelated data
item is already stored under the meeting point value.

As messages are stored in the DHT for some time, it is
not necessary to know the exact sequence number of a bot-
net node. The botmaster just needs to know a sequence
number that will be looked up by the botnet node at some
future point in time. Furthermore, from a technical point
of view the interval in which sequence numbers are incre-
mented may be arbitrarily large. As the output of ECC is
non-deterministic, a botnet node does not need to change its
sequence number in order to announce itself to the sensor
nodes.

Out-of-band messages.

When Bittorrent is used, it is not possible to store com-
mands for nodes directly in the DHT. The reason is that a
node may only store IP addresses in the DHT. Furthermore,
a token by the remote DHT node needs to be received first
before an IP address can be stored. This prevents a host
from using fake IPv4 addresses to store arbitrary values.

To send messages to a bot with Bittorrent, another mech-
anism needs to be used. If the botmaster controls a host
that can use fake IP addresses and no egress filtering is in
place, he can directly send information to the compromised
machine. To this end, the message can be embedded within
a normal DHT request (to prevent intermediary nodes or
firewall software from identifying any suspicious requests).
By using the same symmetric encryption mechanism as de-
scribed for the in-band message case, and by storing the
information inside the source node ID, this allows the bot-
master host to use the full 160-bit available in the node ID
when transmitting information. Because a spoofed source
IP address is used, the botmaster cannot be traced back
easily.

S. ENCRYPTION

Overbot communication is encrypted by means of public
key and symmetrical cryptography. When requesting com-
mands, parts of the messages (i.e., the key of search requests)
sent by regular nodes are encrypted with the public key of
the botmaster. Commands that are deposited (or directly
sent) by the botmaster are encrypted with a symmetric key,
which is derived from the sequence number. This ensures
that an attacker is not able to identify botnet nodes by look-
ing at the content of these messages. In this section, we first
discuss the reasons why elliptic curve cryptography (ECC)
has been chosen for public key cryptography. Afterwards,
we outline the algorithm that is used to encrypt messages
from the botmaster to the compromised nodes.

5.1 RSA vs. ECC

A requirement on the used encryption algorithm is that
it should be possible to store encrypted data in the various
160-bit fields that are used by Kademlia. This requires that
the length of the cipher text generated by the encryption
algorithm does not exceed 160-bit.

The obvious first choice for a public key algorithm is RSA.
When RSA is used, a cipher text with a length of 160-bit lim-
its the value of n in the public key (n, €) to a maximum size
of 160-bit. Unfortunately, a 160-bit number can be factored
in less than an hour on a modern computer. By factoring
n, the attacker is able to calculate the private key of the

botmaster. Therefore, RSA cannot be used for the required
purpose.

An alternative to the RSA algorithm is elliptic curve cryp-
tography (ECC). One property of elliptic curve cryptogra-
phy is that it offers security comparable to RSA, at much
smaller key sizes. According to the NSA, an 160-bit ECC
key is roughly comparable to a 1024-bit RSA key [9]. As of
March 2008, the largest ECC key which has been cracked
had a size of 109-bit. It was cracked using 10.000 Pentium
class PCs, working for 540 days [1].

The SECG secpl12rl [2] curve has a size of 112-bits and
provides about 56-bits of security. If a plain text of up to
40-bits is used, the size of the cipher text has a maximum
value of 160-bits. While it is possible that keys based on
the secpl12rl curve can be cracked in the future, the se-
curity provided by the secpl12rl curve is sufficient for our
purposes. It should be noted, however, that the Standards
for Efficient Cryptography Group (SECG) compares the se-
curity of secp112rl to 512-bit RSA. A 512-bit RSA key had
already been factored in 1999 [10].

5.2 Encrypting messages from sensor nodes

When the botmaster has knowledge about a node’s cur-
rent sequence number, he is able to use this information to
derive a symmetric key. This key can be used to protect
messages intended for the botnet nodes. An option would
be to use the SHA-1 hash of the sequence number as a sym-
metric key. The length of the key is equal to the length of
the plain text, and each key is only used once. Therefore,
the cipher text could be obtained by using the XOR combi-
nation of the plain text with the key. Encrypted messages
need to include a checksum to allow botnet nodes to verify
that the message has been encrypted with a given key.

When the sensor node intends to decrypt a message, it
tries to decrypt the message with the set of key values that
are likely to have been used to encrypt a message. The size
of the set of possible keys depends on the time intervals used
to increment sequence numbers. The botnet node can verify
successful encryption by validating an included checksum.

If the range of valid sequence numbers is small and other
information, such as the node ID, is available to the bot-
master, it is beneficial to also include this information in
the generation of the SHA-1 hash. This prevents an at-
tacker from being able to pre-compute all possible SHA-1
values and then check the hash values of incoming requests
against these pre-computed values.

Care must be taken that the SHA-1 input range for the
generation of the symmetric key and the SHA-1 input range
for the calculation of the meeting point do not overlap, e.g.,
by negating the sequence number in one of the cases. Oth-
erwise, it is trivial for an attacker to decrypt messages sent
by the botmaster.

6. PROBABILITY OF
RECEIVING REQUESTS

An important consideration for the feasibility of Overbot
is the time that it takes for a sensor node to learn about
the existence of a compromised machine. In this section, we
estimate the probability that at least one sensor node (and,
as a result, the botmaster) learns about the existence of a
compromised node within a certain time interval. To this
end, we propose a model that can be used to calculate the

probability of at least one query hitting a sensor node within
this interval. The model requires the knowledge of certain
parameters of the used P2P application. These parameters
include the numbers and the types of queries that are sent
within a given interval, as well as the total number of nodes
present in the network.

Using our model, we can estimate the probability that a
compromised node can announce its presence and retrieve
commands. To validate this model, we have implemented
the Overbot protocol and performed experiments on the ac-
tual Bittorrent DHT network. Moreover, we discuss several
optimizations that allow a bot to contact sensor nodes faster.
If it is not required that a node conforms perfectly to a le-
gitimate DHT node, it is possible to reach the desired goal
much faster than with a faithful DHT implementation. The
drawback is that such atypical behavior could be used by an
attacker to distinguish between legitimate and compromised
nodes.

6.1 Botnet model

The Overbot model is used to estimate the probability
that at least one request of a particular botnet node is re-
ceived by a sensor node. We model a botnet node as an
entity that sends packets at a given rate to other nodes
within the DHT. The probability that a request sent by a
botnet node is received by a sensor node can be modeled as
a Bernoulli trial. Therefore, the probability that, after n re-
quests, k sensor nodes have been contacted, can be modeled
with the binomial distribution:

P(k) = (1)p"(1 - p)"~*

where n is the total number of requests by a particular
node and k is the number of successes with a probability
of p. For the probability that after n requests at least k
requests have been received by the sensor nodes, the above
formula can be used:

P(X > k) =30, ()L -p)" "

where M denotes the number of sensor nodes. To calcu-
late the probability that, after n requests, at least one sensor
node has been contacted, the simplified formula 1 — (1 —p)"
can be used.

The expected value E(X) of the binomial distribution is
given as E(X) = n-p. That is, after n Bernoulli trials, each
with a probability of p, we expect n - p successes.

As a simplification, we assume that the probability of a
single packet being received by a sensor node is %, where N
is the total number of nodes and M is the number of sensor
nodes. Especially for nodes that have only been a member
of the DHT for a short time, this assumption will be invalid.
In this case, only few other peers will know about the new
node. Therefore, the node will receive less incoming queries
than other peers. Furthermore, nodes in the local routing
table have a higher chance of receiving requests than other
random nodes.

6.2 Measurements

For our model, we need to determine the number of nodes
N in the Bittorrent DHT (to determine p =), as well
as the number of requests n that are typically issued to lo-
cate a particular key. For these measurements, we built a
modified Bittorrent DHT client. This client iteratively is-
sues search requests for random infohashes. Directly after
the DHT implementation marks a query as finished, a new
query is started.

The first test was used to estimate the current size of the
Bittorrent DHT. The Khashmir library is able to estimate
the size by calculating K % 2"buckets=1 In the Khashmir
Kademlia implementation, K has the value 8. After an up-
time of approximately ten hours, the client reported an es-
timated DHT size of 8, 388, 608.

In the following tests, the number and types of outgoing
packets sent by a peer were recorded. For this experiment,
the same, modified Bittorrent client was used. After an
uptime of two hours, a tcpdump process was started, cap-
turing all network packets for about 140 minutes. The delay
of about two hours is required because packets sent during
the bootstrap phase would otherwise modify the results.

According to the network traffic capture file, 119 different
infohashes were looked up by the local node. On average, a
lookup required 45 get_peers requests to other nodes of the
DHT. A total of 69,328 packets were recorded. 36,806 pack-
ets (53%) were outgoing packets, and 32,522 (47%) pack-
ets were incoming packets. Of the 36,806 outgoing packets,
10,961 (30%) were queries and 25,768 (70%) were responses
to remote queries. Most of the remaining packets included
error messages to remote peers that sent invalid tokens. The
10,961 queries were sent to a total of 7,433 unique IP ad-
dresses. The queries can be further subdivided into 4,575
(42%) find_node requests, 1,034 (9%) ping requests, and
5,351 (49%) get_peers requests. The 5,351 get_peers re-
quests were sent to 4,355 unique IP addresses. Therefore,
about 20% of the get_peers requests were sent to nodes in
the local routing table.

6.3 Experiment

Using our model, together with the parameters that we
determined for the Bittorrent DHT, we can estimate the
expected number of queries that a compromised machine
has to send before a sensor nodes receives a message. To
validate this model, we built a client application based on
the Bittorrent DHT library that iteratively issued search
requests for random IDs to the DHT.

The tests were performed using a total number of 10 sen-
sor nodes (that is, M = 10) and 10 bot nodes (that were
querying for random keys). The total time of the test was
4,150 minutes (slightly less than 3 days). During this time,
34,918 different infohashes were requested. When multiply-
ing this number by 45 (for the number of get_peers requests
for each infohash - see the previous section), and then sub-
tracting the 20% of queries that are sent to nodes in the local
routing table, this results in about 1,250,000 get_peers re-
quests that have been sent (roughly 125,000 by each bot
node). During our experiment, a total of five get_peers
requests were received by the sensor nodes.

By applying our model to the numbers mentioned above,
we expect the total number of received get_peers requests
to be E(X) = mn - p, where n is the total number of re-
quests and p is the probability that a request is received
by a sensor node. For our test setup, with approximately
1,250,000 requests and 10 sensor nodes, the expected value
is B(X) = 1,250,000 - 3535605 = 1.49. This is somewhat
lower than the five requests that were actually received.

There could be several reasons why the number of ex-
perimentally received requests is higher than the predicted
number. As the size of the DHT is an approximation, this in-
troduces inaccuracies into the model. Another factor is that
the uptime of our nodes may be higher than the uptime of

other DHT peers. Therefore, our nodes may receive a higher
percentage of incoming requests than other nodes. However,
as the experimental results are within the same magnitude
as the predicted results, this shows that the proposed model
is applicable to the problem.

If a 90% probability is desired that at least one packet of
a particular botnet node is received by one of the M sen-
sor nodes, this can be calculated by deriving the formula of
the binomial distribution to n = 40t For 100
sensor nodes, this would result in about 193,000 requests.
These requests would require about 4.4 days on the setup
used for the measurements. For 1,000 nodes, this time would
drop to less than 12 hours. Thus, it is entirely feasible to lo-
cate most compromised nodes within a day, using a modest
amount of sensor nodes that are injected into the DHT.

6.4 Optimizations

The model above assumes that the compromised nodes
behave exactly as other client nodes. However, several opti-
mization techniques are possible to increase the probability
that a query is received by a sensor node.

The first, simple optimization is the removal of the rate
limiter, which limits the maximum outgoing bandwidth to
one kilobyte per second. In this case, many more requests
can be sent out every second. A original Bittorrent node
would transmit about ten outgoing UDP packets per second.
When assuming that the modified DHT implementation is
issuing ten find_node requests per second, the chances of
hitting a sensor node would be significantly higher. While
the original implementation, which issued 31 get_peers re-
quests per minute, required about 4.4 days for a 90% prob-
ability of hitting a sensor node, an implementation which is
able to issue 600 get_peers requests per second would only
require 5.3 hours.

Furthermore, find_node requests could be utilized by a
node in order to announce itself. The DHT specification
states that when a bucket has not changed for a least 15
minutes, the node should issue a find_node request for a
random ID in the range of the bucket. This ID could be
generated by encrypting the sequence number with ECC.
This encryption needs to be repeated until the resulting ci-
pher text is located within the required range.

The disadvantage of the aforementioned optimizations is
that a node does not exhibit the same behavior as a real
Bittorrent client anymore. Therefore, an observer may be
able to discover nodes that are members of the botnet.

7. ATTACKS / COUNTERMEASURES

In this section, we discuss possible countermeasures and
attacks against the Overbot protocol. In particular, we ob-
serve that bot nodes and sensor nodes could be identified
based on behavioral differences that distinguish them from
legitimate nodes when observed for a longer period of time.
An attacker who is able to identify different behaviors be-
tween a botnet node and a legitimate client might be able to
detect that a given host on the network is part of the bot-
net. This allows the attacker to create a blacklist of infected
hosts.

One problem for Overbot stems from the fact that an
attacker can launch statistical attacks that look at the be-
havior of nodes. For example, a single botnet node commu-
nicates with many other host in the DHT network. Thus,
when one single nodes is issuing a lot of requests, the node

might be part of the botnet. To perform this kind of de-
tection, more research is required to obtain better models
that can describe the expected behavior of normal nodes in
P2P networks, as significant or persistent deviations could
provide indications of infected hosts.

Another problem stems from the fact that the botmaster
needs to control a large number of node IDs. If a single IP
address or net block is used for all the connections by the
botmaster, an attacker might be able to identify these IPs.

Finally, when analyzing the DHT provided by Bittorrent,
we observe an important design decision that should be con-
sidered when implementing future network protocols: only
allow to store information that is actually required, and
check as much information as possible. In Bittorrent, the
value of a DHT entry may only include the IP addresses and
port numbers of peers that are part of the torrent swarm.
If an IP address is stored, the host that wants to store the
value must be able to receive DHT packages at this IP ad-
dress. This ensures that it is more difficult to inject fake
information in the DHT. Thus, when designing new proto-
cols, care should be taken to restrict the amount of freedom
that nodes have when choosing identifiers or embedding data
in messages.

There is a tradeoff between the length of the intervals after
which the sequence number is incremented and the security
of the botnet nodes. If the botmaster decides to store infor-
mation for the nodes in the DHT, a long time interval might
allow an attacker to better predict the hashes used to store
information. This allows the attacker to join the DHT with
a node ID close to the predicted hashes. By observing the
STORE requests to his own node, he can, therefore, obtain
the network address of the botmaster.

8. CONCLUSIONS

This paper presents the design of Overbot, a botnet pro-
tocol based on Kademlia. One of the main goals was to
improve the robustness and stealth of the command and
control channel compared to existing botnet protocols. In
particular, even an attacker with control over the network
and many bot nodes is not able to definitely assert if a node
is part of the botnet. The usage of an existing P2P protocol
makes traffic analysis harder, as the direct neighbors of a
node are likely to be legitimate DHT peers. Queries issued
by Overbot look similar to legitimate search requests, which
makes filtering harder.

P2P botnets can be much more resilient to attacks than
traditional client-server networks. If existing P2P protocols
are used, it is hard to distinguish a legitimate node from
a malicious one. The purpose of developing Overbot is to
anticipate future developments of advanced command and
control channels. The hope is that the research community
can find solutions before such botnets appear in the wild.

A promising approach to attack botnets such as Overbot
is to create models that capture the behavior of legitimate
nodes. If a node acts differently, over a longer period of time,
this might be an indication of a malware infection. For ex-
ample, issuing a lot of requests for non-existing hashes might
be a sign that this node is part of the botnet. Also, a major
issue in the design of new P2P protocols is to prevent bot-
nets from utilizing their infrastructure. Thus, more research
in the area of P2P botnets needs to be carried out, as we
are likely to see more of these botnets in the real world.

9.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments on improving this paper.

This work has been supported by the Pathfinder project
in FIT-IT Trust in IT Systems, the Austrian Science Foun-
dation (FWF) and by Secure Business Austria (SBA) under
grants P-18764, P-18157.

10.

1]

3]

[4]

[5]

(11]

(12]

REFERENCES

Certicom. Press Release: Certicom Announces Elliptic
Curve Cryptosystem (ECC) Challenge Winner.
http://www.certicom.com/2002-press-releases/
38-2002-press-releases/340, Nov. 2002.

Certicom Research. SEC 2: Recommended Elliptic
Curve Domain Parameters. http:
//wwu.secg.org/download/aid-386/sec2_final.pdf,
Sept. 2000.

D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of
Botnet Structures. In Annual Computer Security
Applications Conference (ACSAC), 2007.

J. Douceur. The Sybil Attack. In International
Workshop on Peer-to-Peer Systems, 2002.

J. Grizzard, V. Sharma, C. Nunnery, B. Kang, and
D. Dagon. Peer-to-peer botnets: Overview and case
study. In First Workshop on Hot Topics in
Understanding Botnets, 2007.

A. Loewenstern. Bittorrent DHT Protocol.
http://www.bittorrent.org/beps/bep_0005.html,
Jan. 2008.

P. Maymounkov and D. Mazieres. Kademlia: A
peer-to-peer information system based on the XOR
metric. In International Workshop on Peer-to-Peer
Systems, 2002.

E. Michelangeli. KadC (P2P library) Documentation.
http://kadc.sourceforge.net/, Oct. 2006.

National Security Agency (NSA). The Case for Elliptic
Curve Cryptography. http://www.nsa.gov/ia/
industry/crypto_elliptic_curve.cfm, Mar. 2008.
RSA Laboratories. Announcement: RSA-155 is
factored!
http://www.rsa.com/rsalabs/node.asp?id=2098,
Aug. 1999.

R. Schoof and R. Koning. Detecting peer-to-peer
botnets. http://staff.science.uva.nl/"delaat/
sne-2006-2007/p17/report.pdf, Feb. 2007.

J. Stewart. Phatbot Trojan Analysis. http:
//wwu.secureworks.com/research/threats/phatbot,
Mar. 2004.

R. Vogt, J. Aycock, and J. M. J. Jacobson. Army of
Botnets. In Network and Distributed System Security
Symposium (NDSS), 2007.

P. Wang, S. Sparks, and C. Zou. An advanced hybrid
peer-to-peer botnet. In First Workshop on Hot Topics
in Understanding Botnets, 2007.

