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Abstract: In-network data processing in wireless sensor net-

works (WSN) is a rapidly emerging research topic. The dis-
tributed processing could have several advantages for wireless
sensor networks. First of all, in WSN computation is typically
much less energy consuming than communication. Secondly,
in-network processing enables WSN to provide more com-
plex services to application layer, and not only data gath-
ering functionality. However, in addition to computational
overhead, in-network data processing introduces also many
challenging security issues. Most of them are still open and
require development of innovative security mechanisms. In
this article we survey the current research related to secu-
rity of in-network data processing in wireless sensor networks
and highlight the directions, which are most promising in our
opinion.

1 Introduction
Wireless sensor networks (WSN) introduce several technical
challenges (16, 59). Some of the most important issues are
related to extracting useful, reliable and timely information
from the deployed sensor network, and include distributed
information processing, data fusion and security (40). In-
network data processing is defined as a processing the network
nodes carry out on data in a distributed manner. The process
is performed while data is exchanged, i.e. before it is acquired
and used by the higher layers. Such distributed processing
could have several advantages for wireless sensor networks.
First of all, in WSN, computation is typically much less en-
ergy consuming than communication. In fact, on a power-
constrained sensor, sending one bit requires almost the same
amount of energy as executing 50 to 150 instructions (52).
Hence, one of the goals is of course to reduce the traffic as
much as possible, e.g. by exploiting the high redundancy and
correlation that is normally present in sensor data. Secondly,
in-network processing enables sensor networks to provide ser-
vices, and not just data, and to fully exploit its multitude
and redundancy properties. Therefore in-network data pro-
cessing, such as data fusion and aggregation (53), has emerged
in the recent years as an active research area in WSNs. One
of the important issues related to in-network data process-
ing is to find a realistic balance between computational over-
head, delay, data resolution, and data trustworthiness. There-
fore, in-network data processing in wireless sensor networks
requires development of new secure and energy-efficient meth-
ods enabling fusion of relative large amount of data.

In our survey we focus on security and trust aspects of in-

network data processing. In Section 2 we present rationales
behind in-network data processing in WSN. In Section 3 we
describe the main trust challenges in WSN. In Section 4 we
introduce various security mechanisms, which can be used to
address these challenges. In Sections 5 and 6 we discuss the
in-network data processing and data aggregation. Finally, in
Section 7 we briefly reiterate our main conclusions.

2 Secure Data Processing in Wireless
Sensor Networks

Sensor networks are often described as the next hype tech-
nology of the 21st century (10, 56). Its ability to monitor
and control diverse physical environments, ranging from bat-
tlefield to human body, makes them attractive for multitude
of application domains, including military, health care and
traffic control (16).

Most of the ongoing research activities in WSN focus on
the lower layers, namely radio communication, routing and
self-organization. But first on top of these layers the real ca-
pabilities of WSN are unleashed. Indeed, WSN can be seen
not just as data source, but rather as a provider of services
tightly related to data collection and processing. It is clear
that WSNs must collect data, but the real added value lays in
the fact that the multitude of nodes can also process this data.
This is what is called in-network data processing (19): this
processing can range from concatenation, aggregation, and
simple mathematical operations such as averaging to more
complex reasoning on data. The in-network processing layer
represents one of the real strengths of WSNs: it can deliver
not just raw data but also process it in real-time with no in-
tervention of the infrastructure and leverage on redundancy
to cope with data loss and corruption. In-network data pro-
cessing can also be used to reduce the amount of information
transmitted, as data coming from multiple sensors is usually
highly correlated, and thus to achieve a longer network life-
time.

However appealing and powerful, in-network processing re-
quires a high level of security: tampering with data at this
level can indeed introduce threats that range from simple
unauthorized data access to malicious data modification. The
first line of defense against these threats are cryptographic
mechanisms: integrity and confidentiality can be achieved us-
ing cryptographic schemes. The field of cryptography within
in-network data processing (what we call secure data pro-
cessing) is a very promising research field, and introduces
many interesting challenges. For instance, a straightforward
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approach is to achieve hop-by-hop encryption and integrity
protection. However, nodes can be captured and the disclo-
sure of their key material can lead to the disclosure of raw
data and partial results, or malicious modification of data.
In particular, the packaging of sensor nodes can also be af-
fected by the low-cost requirements, not allowing for tamper-
resistant devices: hence, nodes may be captured and their
secret material can be disclosed to an attacker. To overcome
this problem, techniques are proposed, that exploit end-to-
end encryption in conjunction with particular key distribu-
tion mechanisms, homomorphic encryption schemes or public
cryptographic schemes. Nevertheless, in order to make sen-
sor networks economically viable, sensor devices are limited
in their energy, computation and communication capabilities;
hence these schemes have to take into account the technical
and economic constraints.

Once data has been sensed and possibly processed by
nodes, it must be delivered to data sinks, i.e. nodes that are
responsible for gathering data and passing it to application
gateways. Application gateways are nodes that are responsi-
ble to deliver data to the real point of exploitation. The sink
nodes and gateways may suffer constitute single point of fail-
ure, given that they are normally much less numerous than
wireless nodes. Sinks and gateways, being the eventual des-
tination of data, are also the perfect point of attack in order
to get access to data, modify it or supply false data. Coun-
termeasures to such attacks include mutual authentication of
the gateway and the nodes, ensuring that both the gateway is
entitled to receive data and that the data is sent by legitimate
nodes.

Higher layers of a WSN deployment include a middleware
layer and an application layer. In addition to providing im-
portant functional service, WSN can be seen also as a source
of external risks to the middleware and applications, as net-
work layer can be used as means to attack them. A straight-
forward example can be the usage of a captured sensor node
to supply a particularly crafted input to the middleware layer,
in order to exploit software vulnerabilities such as buffer over-
flows.

Cross-layer security considerations in WSN are often re-
lated to the limited resources of sensor nodes in terms of en-
ergy, computation and communication capabilities. We want
to stress however, that this might not always be true: indeed
WSNs can also be deployed in scenarios that justify more
powerful nodes, e.g. in automotive. If limited resources is the
case, then every layer can be exposed to over-consumption
attacks. Such denial of service attacks do not necessarily just
focus on depletion of batteries, but also of memory or com-
putational resources. The depletion attacks normally aim at
requesting a huge amount of non-legitimate work by the sen-
sor nodes in so that there are no resources left for legitimate
requests.

Other risks can be categorized as general risks associated
with the usage of WSNs. One of them is the so-called func-
tion creep. A function creep is what occurs when an item,
process, or procedure designed for a specific purpose ends
up serving another purpose for which it was never planned
to perform. For instance, an ubiquitously deployed WSNs
can allow secret surveillance, which was not planned as one
of the intended usages. The protection against such threat is
not straightforward since surveillance can take many different

forms. Moreover, the countermeasures can require an imple-
mentation and enforcement of legal mechanisms and not just
technical solutions.

3 Trust Challenges in Wireless Sensor
Network

Sensor nodes used in typical WSN are not tamper-resistant
devices (63), mostly due to the cost and power constraints.
Weak physical security protection implies that an attacker
can relatively easy capture and analyze nodes or introduce
new malicious nodes. When a node is compromised, all the
cryptographic material is disclosed to the attacker. This ma-
terial is typically used for encryption and authentication of
exchanged sensor data. By capturing the cryptographic ma-
terial, the attacker can generate new malicious code includ-
ing proper cryptographic mechanisms. The attacker can also
disseminate forged sensor data in a properly encrypted and
authenticated manner. His objective is often to disrupt the
normal behavior of the WSN and compromise in-network data
processing. Depending on his strategy, the attacker can in-
fluence in-network data processing in long-term or in short
term. In the case of long-term attacks, the attacker can aim at
skewing in-network data processing without being detected.
It permits him to control the WSN behavior, and to influence
application decisions based on in-network data processing. In
the case of short term attacks, the attacker might not care
about being detected, and aim at making the WSN inopera-
ble.

An alternative approach to the problem of compromised
nodes consists of evaluating trustworthiness of sensor data.
When collecting or aggregating sensor data, we aim at com-
puting the distance between the real and the delivered sensor
value. This distance is related to sensor characteristics (e.g.
accuracy, quality of service, resilience to failure), its repu-
tation in the WSN, and the sensor data value itself. Few
approaches have been already proposed in the literature for
determining the trustworthiness of in-network processing of
sensor data. Those approaches will be discussed in Section
6. In-network evaluation of trustworthiness of sensor data is
based, e.g., on probability theory. The trust information can
thus be used in order to determine if the sensor data should
be skipped or be used for further data processing. Unfortu-
nately, the scalability of those approaches is still questionable.
Actually, the efficiency of those approaches is tightly related
to the number of nodes involved in the WSN.

4 Security and Trust Primitives
In this section we will introduce the basic security and trust
primitives that are needed to achieve secure and trusted in-
network data processing. Some of the common cryptographic
schemes are not suitable for WSN environment due to the par-
ticular characteristics of WSNs. For instance, limited energy
supply calls for usage of the shortest possible keys required
in order to achieve the adequate level of security. The lack
of tamper-resistance calls for mechanisms where the capture
of intermediate nodes does not allow to disclose all sensor
data, or for mechanisms for determining the trustworthiness
of sensor data.

The first primitive that we introduce is Elliptic Curve Cryp-
tography (ECC). Elliptic curve cryptography is an approach
to public key cryptography based on the algebraic structure of
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elliptic curves over finite fields. The ECC was first introduced
in (34) and (44). As we will explain in Section 4.1, the ECC
is suitable for WSNs because of the reduced key-size when
compared to classic public-key cryptography system with the
same security level.

In addition, we will also introduce bilinear pair-
ings (20), (21) and (23). Bilinear pairings are admissible maps
of the group of points of a suitable elliptic curve; they possess
particular properties such that they can implement oracles
for the Decisional Diffie-Hellman (DDH) problem, yet keep-
ing the Computational Diffie-Hellman (CDH) problem a hard
one. This property can be useful in many circumstances, as
we will see in Section 5.

Another family of primitives that we will introduce is
Privacy Homomorphisms (PH). An homomorphism is a
structure-preserving map between two algebraic structures:
if the map is also an encryption scheme, then we call it Pri-
vacy Homomorphism. Generally speaking, PH is a tool that
allow us to perform calculations on encrypted data. Privacy
homomorphisms (PH) were first introduced by Rivest et al.
in (54).

Regarding trust primitives for in-network data processing,
we introduce an existing metric for trust evaluation based
on beta distribution, which encompasses the notion of uncer-
tainty. This metric is not particularly related to sensor data,
but it supports determination of the probability that the pro-
cessed data matches the real data. We also present subjective
logic, which is based on a notion of opinion derived from the
evidence theory (58) and supports operators for manipulating
opinions about sensor data trustworthiness during in-network
data processing.

4.1 Elliptic curves and bilinear pairings
The integration of ECC in wireless sensor nodes has been a
research topic of central importance in last years. The main
question in recent years has always been the same: is ECC
suitable for WSNs? The first studies in this area started with
the works documented in (11) and (29), conducted in 2000
and 2002 respectively. Unfortunately, the heavy energy re-
quirements of public-key algorithms, reported in the above
works, have raised serious concerns about the feasibility of
ECC deployment in WSNs. However, since then, an enor-
mous progress has been made in the efficient implementation
of ECC (27). This progress allows to completely re-evaluate
the energy requirements of elliptic curve cryptosystems and
their applicability to WSNs. In fact, the energy cost of ECC
is far lower than earlier believed, and state-of-the-art algo-
rithms now allow researchers to conduct further experiments
on a possible integration of ECC over WSNs.

Typically, nodes in WSNs cannot afford to run conven-
tional public key cryptography (PKC). By using ECC it has
been shown that PKC is feasible in WSNs since ECC, for
a given security level, consumes considerably less resources
than conventional PKC. This is in particular due to use of
much shorter keys when compared to, e.g., RSA. Lenstra and
Verheul (39), in fact, showed that 163 bits long key sizes for
ECC correspond to RSA keys that are much longer than 1024
bits. More precisely, one could achieve that level of security
with around 130 bits long ECC keys. This suggests that ECC
seems to be very suitable for ubiquitous computing devices,
requiring exchange of less data in the system, when compared

to other cryptographic methods for the same level of security.

Many cryptographic applications based on elliptic curves
use bilinear pairings, a powerful mathematical tool which en-
ables efficient implementation of ID-based cryptography. Bi-
linear pairings allow Diffie-Hellman problem, a well-known
class of hard computational problems, to have an easy deci-
sional version. The question whether a quadruple (a, b, c, d) is
a Diffie-Hellman instance, which is a hard decisional problem
in the general case, can be efficiently answered in case of bi-
linear pairings. The difference between the decisional version
and the computational version of a cryptographically useful
NP problem enables radically new ways to implement secu-
rity algorithms. But ECC implemented with bilinear pairings
introduces an overhead, which has to be taken into account:
the particularly time consuming part of the scheme is a pair-
ing computation.

Despite of all challenges, WSNs introduce suitable sce-
narios for implementing security algorithms based on ECC.
For example, pairings-based cryptography schemes such as
Identity-Based Encryption (IBE) have strong requirements
such as the existence of an unconditionally trusted entity,
that is responsible for issuing users private keys. Fortunately,
most of proposed WSNs possess such an entity, i.e. the sink
node. Another requirement of IBE is that the keys must be
delivered over confidential and authentic channels to users.
In most of the WSN applications such private keys can be
distributed offline, i.e. they can be generated and preloaded
directly into nodes prior to deployment.

In spite of all its advantages, ECC-based schemes such as
IBE still are a public key cryptosystem and thus they are or-
ders of magnitude more complex than symmetric cryptosys-
tems. Even though results of TinySA implementation of pair-
ings for resource constrained nodes (24) show that strong el-
liptic curve cryptography is feasible on sensor nodes, its en-
ergy requirements are still much higher than that of sym-
metric cryptosystems. The authors of (24) explicitly under-
line that TinySA must use elliptic curve cryptography only
for infrequent, but security critical, operations such as key
establishment during the initial configuration of the sensor
network or the authentication of routing information. Never-
theless, experiments with TinySA and others cryptosystems
show that ECC, when implemented properly, is a valuable
tool to improve the security of wireless sensor networks.

These first experiments open new possibilities for imple-
mentation of some security services with ECC, such as key-
distribution, authentication, data encryption and access con-
trol. As we will see in the next section, ECC can also be used
for its homomorphic properties.

In the recent years several experiments were focused on im-
plementations of security policies based on ECC. These ex-
periments were usually conducted with 8-bit or 16-bit CPUs.
It was shown that ECC based PKC is feasible on sensor nodes
or RFID tags with a hardware implementation of the security
protocols. In (62), Wang et al. implemented an elliptic curve
cryptography-based access control in sensor networks, with a
160-bit ECC implementation on Atmel ATmega128, a CPU of
8MHz and 8 bits. They showed that an ECC point multipli-
cation takes less than one second with that hardware. With
the same CPU and only 4KByte RAM, Carman et al. (11)
obtained 6.88s for ECDSA signature and 24.17s for ECDSA
verification. Other results described in (47) were measured
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on a MICAz node running TinyOS. The obtained average ex-
ecution time to compute a pairing was 30.21s. The costs con-
cerning RAM and ROM flash memory were 1 831 and 18 384
bytes, respectively. Gura et al. in (26) documented their ex-
periments with an Atmel ATmega128 at 8 MHz. They made
a comparison between ECC and RSA on this 8-bit CPU in
order to evaluate the execution time and the memory cost for
different operations with these two approaches. They veri-
fied that a 160-bit ECC point multiplication requires around
half of the memory space and a similar execution time of a
RSA-1024 operation. The relative performance advantage of
ECC point multiplication over RSA modular exponentiation
increases with the decrease in the processor word size and the
increase in the key size.

The two main parameters that are used to characterize an
ECC system are the key size and the security multiplier. Con-
cerning the key size, for most PBC schemes (including IBE)
security requirements can be satisfied by choosing it equal to
160 bits. However, in WSN the system security requirements
are often relaxed (51) in order to increase efficiency. This is
often possible because of the relatively short system lifetime,
especially when the goal is not to protect each node indi-
vidually, but the network operation as a whole. The largest
broken Elliptic Curve Discrete Logarithmic Problem yet had
109 bits key size over the finite field F (2109) and it took 17
months (13) to break it. Instead, the largest broken Dis-
crete Logarithmic Problem yet had 160 digits key size (33).
Therefore, it seems that even 128 bits ECC key size is able to
secure sensitive information in sensor networks.

For example, in (3) a curve over F (2113) was chosen as
it offers about 16 times more security than 109 bits, which
seems enough security for todays hardware. Batina et al. (2)
assumed in their work that ECC over F (2131) provides a good
level of security for their application.

The key size is not the only important parameter. In fact,
during the creation of the system one can choose a specific
value of K, also called the security multiplier K. The value
of K is crucial as all the pairings computations are actually
going to be performed in E(Fpk ), with E being an elliptic
curve studied over Fpk .

A pairing can be computed efficiently if K is small. Super-
singular curves are a particular kind of curves, which impose
a small number of possible group structures and depend on
the number of points in the E(Fpk ). Supersingular curves,
although in the past used to be avoided in cryptography be-
cause they are more vulnerable to some specific attacks, let
the security multiplier be K ≤ 6. It is known from (60)
that, with K = 2, 1024 bits finite field is roughly equivalent
to 512 bits on the corresponding elliptic curve. If K = 3, it
is equivalent to 340 bits. If K becomes big, the ratio is not
the same: 1024 bits security on finite field is not equivalent
to 51 bit security on elliptic curves, it is rather equivalent to
160 bits.

For non-supersingular curves, K could be greater (10 ≤
K ≤ 50). If the security parameter is large it is good from
a security point of view, because it is directly proportional
to the system level of security, but the computation will be
hard. The choice of K thus depends on these two properties.

4.2 Privacy homomorphism
A privacy homomorphism is a family of functions
(ek, dk, α, γ), such that

dk(γ(ek(m1), . . . , ek(mr))) = α(m1, . . . ,mr)

for each key k in some key space and for any m in some
message space.

Privacy homomorphisms (PH) were first introduced in (54).
The authors already noticed that if a given PH allows to
evaluate the ≤ predicate and allows an attacker to generate
encrypted versions of constants, then the scheme does not
provide confidentiality, as a binary search strategy can easily
reveal the encrypted value. Although the schemes proposed
in (54) were broken in (7), PHs have been since then an im-
portant research topic.

The two most common variations of PHs are the additive
PH and the multiplicative PH. The latter provides the prop-
erty

ek(m1×m2) = ek(m1)⊕ ek(m2).

Well known examples of multiplicative PHs are RSA and the
discrete logarithm ElGamal. Additive PHs provide the prop-
erty

ek(m1 +m2) = ek(m1)⊕ ek(m2)

and are useful since they can be used to calculate, e.g., the
average value.

A first very simple family of privacy homomorphisms are
simple variations of the one-time pad scheme. An example of
such scheme is

ek(x) = (x+ k)modn

The security of such scheme relies on the one time use of the
key and n is a publicly known value. Although this scheme is
provably secure, it should be complemented with mechanisms
to create a secure key stream that must be used only once.
This family of PH schemes allows the computation of the sum
of encrypted values.

A large subgroup of PH cryptographic algorithms is based
on high degree residuosity (50). These schemes provide the
additive PH, but need very long keys that in turn imply large
messages and computation effort. In (5) the properties of
finite bilinear groups with composite order are used in order
to construct a new scheme that allows to compute a single
multiplication on the encrypted data, along with an arbitrary
number of sums.

A symmetric PH scheme with both the additive and the
multiplicative PH property, which makes it an algebraic PH,
was introduced in (18). It is a symmetric algorithm that
requires the same secret key for encryption and decryption.
The scheme generates a vector of d integers that sum up to
the cleartext value; these integers are then multiplied by the
secret key, risen to all the powers in the interval [1, d]. The ag-
gregation is performed with a key that can be publicly known.
The same secret key must be distributed to every node in the
network. The message size is proportional to the parameter
d, so that for d > 100, the messages become very large. This
scheme has been broken in (15), where it has been shown
that it is possible to break the scheme given d + 1 known
plaintexts: we underline that this assumption can be easily
met in a WSN setting, were it is possible to deploy a fake sen-
sor that measures the same value of a rightful one and in the
same time eavesdrop the encrypted message generated by the
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latter. It is generally agreed that privacy homomorphisms are
weak under chosen-plaintext attacks and some of them have
been broken by weaker attacks such as known-plaintext or
even ciphertext-only attacks.

In contrast to PHs discussed above, the PHs based on el-
liptic curve ElGamal (ECEG) rely on an asymmetric cryp-
tography. The benefit of this PH is that the encryption key
may be publicly known. The ECEG cryptographic algorithm
requires that the message text must be mapped on the EC
space. An approach has been proposed that multiplies the
message text m with the generator of the EC G. A problem
with such solution is that the decryption leads again to the
mapped point m · G, but it is not trivial to compute m out
of m · G. Since it is the fundamental property of ECC that
the point multiplication is not efficiently invertible, the only
solution is a brute force computation that relies on a limited
domain of the mapping. In most cases this approach is very
reasonable.

Another family of homomorphic cryptographic primitives
are homomorphic signature schemes (31). The first type of
such schemes are redactable signatures: given a text signed
with a signature, we can produce the signature for a subset of
the text (for instance, given a sentence and its signature, we
can produce - without access to the private key - the signature
for the given sentence with some words missing). Another
type, set-homomorphic signatures, when given the signature
over sets of elements allow to produce signatures over the
union of these sets.

4.3 Subjective Logic
Subjective logic is based on Dempster-Schafer theory of ev-
idence (58) and enables handling of opinions about proposi-
tions. An opinion is represented by a 4-tuple (b, d, u, a), where
a represents the a priori probability in absence of opinion. As
we only consider binary state space for proposition P , we as-
sume a = frac12. Respectively, b, d and u represent the belief
that P is true, the belief that P is false, and the uncertainty
is the amount of belief that is no committed to the truth or
falsehood of P . The range of those four value is [0, 1] where

b+ d+ u = 1.

The opinion of A about P is defined as

ωA
P = b+ au.

Moreover, subjective logic framework provides a set of logical
operators for combining opinions, such as conjunction, dis-
junction and negation. Subjective logic supports also non-
traditional operators such as average or discount of opin-
ions (32).

Applying subjective logic to evaluation of trustworthiness
of sensor data consists of determining opinion about the fol-
lowing proposition : the sensor data is trustworthy enough to
be used for intended application. In addition, subjective logic
permits to represent the uncertainty about quality and ac-
curacy of sensor data. Thus, in-network data processing can
benefit from subjective logic operators for combining opinions
on collected sensor data. The use of beta probability density
function in subjective logic enables also the establishment of
opinions on sensor data based on sensor reputation (30). In
beta probability density function φ(p|a, b), the positive and
negative feedback on sensor node are determined by a and

Figure 1: Beta Distribution for f(p|8, 2) (30)

b. In the scope of sensor data trustworthiness, beta distri-
bution provides sound mathematical tool for determining the
future evolution of the sensor data. Following the example
presented in (30), given 7 outcomes close to real-value and 1
outcome different to real-value, we have a beta function de-
fined by f(p|8, 2), plotted in Figure 1. We can calculate the
probability E(p) = 0.8 that an outcome is close to real-value.

5 Secure in-network data processing

Although most of the research in the security of in-network
data processing is quite recent, it has produced many promis-
ing results. As we already discussed, a topic that has
attracted particular attention is homomorphism of crypto-
graphic functions such as encryption or signatures. These
PH techniques provide foundations for adding security to in-
network data processing. The security goals of in-network
data processing are mainly confidentiality, integrity and au-
thentication of data origin. The operations involved in in-
network data processing range from concatenation of data
and mathematical operations (mainly addition and multipli-
cation) to operations on sets (such as subset queries or com-
parison queries).

5.1 Concealed data aggregation techniques
Concealed data processing techniques aim at processing sen-
sor data while protecting confidentiality of both raw data
and intermediate results. In (57) two general approaches are
presented: hop-by-hop encrypted data aggregation and end-
to-end encrypted data aggregation. The former is easier to
achieve, but it leaves aggregator nodes vulnerable to attacks
because the sensor readings are decrypted by those aggrega-
tors. In the latter, the intermediate aggregation nodes do not
have the decryption keys and can only perform some opera-
tion on encrypted data. In the hop-by-hop scenario, a boot-
strapping phase is needed, which consists of either pair-wise
or group-wise key distribution schemes. Once keys are shared
between nodes, data is decrypted, processed, encrypted and
sent on toward a sink. In the end-to-end scenario, a network-
wise key needs to be established between the sink and all the
sensor nodes. This can be achieved using a master key or a
public-key based solution. The additional security with re-
spect to the hop-by-hop scenario is that all the sensors have
the network key, but aggregators do not. Once the key is es-
tablished, one of the privacy homomorphisms introduced in
Section 4.2 can be used to aggregate the data.

In (48), a technique for end-to-end secure data aggrega-
tion is described. The network is modeled as a tree rooted
in a sink. The encryption algorithm is an additive privacy
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homomorphism based on the standard one time pad. The
pseudo-random key stream is generated by successive encryp-
tion, using a random key, of a counter. Nodes are organized
in layers: a node belonging to a layer has n − k keys, while
there are n layers of encryption. When data is processed at
a given layer, n − k layers of encryption are stripped, i.e. a
node performs the decryption process n − k times using the
keys it possesses. The encrypted value is processed - thanks
to the privacy homomorphism - and n − k layers are then
restored. The advantage of this scheme is that if nodes are
compromised, it is still impossible to disclose partial informa-
tion because there are always k layers of encryption to protect
the data. The drawback of this approach is that it heavily re-
lies on the key pre distribution phase and a very rigid network
topology.

In (12) another end-to-end technique for secure data ag-
gregation is presented. This scheme is similar to the one pre-
sented before: the homomorphic function used to perform
the computation is again a simple variation of a one-time
pad scheme and the network model is a tree rooted at the
sink. In the previous scheme, a group of nodes belonging to
a given layer shared a set of keys; in turn, in this scheme,
each node shares with the sink a single, distinct, long-term
key; with this key, each node generates the keystream used to
encrypt its data. Every node can then aggregate encrypted
data thanks to the homomorphic properties of the encryption
scheme. Even if a node is compromised and its secret material
revealed, the secrecy of other nodes’ data and of temporary
results is preserved, since it is still protected by the encryption
performed by other nodes.

In (41) the network is organized in clusters and the ag-
gregation is performed only by cluster heads. Similarly to
the previous two solutions, key distribution is required. The
authors present a protocol for establishing cluster keys using
ECC: each node has just a share of the secret key, whereas the
public key is publicly known. An attacker that can compro-
mise up to t sensors out of n, cannot recover the secret cluster
key and therefore cannot access sensor data. Cluster head can
safely decrypt and aggregate the measures. This scheme pro-
tects against compromised nodes, however it does not protect
against compromised cluster heads. Nevertheless, in many
cases it may be reasonable to assume that cluster heads are
more powerful (possibly also tamper resistant) nodes, so it is
harder for an attacker to compromise them.

5.2 Integrity of aggregation
When sensor data is processed, in addition to confidentiality
an important goal is to ensure that the result of the process
is actually the intended computation and not a maliciously
crafted value. In (57), several techniques for certifying that
the outcome of the aggregation is actually based on sensor
data are surveyed: such techniques generally rely on shared
keys between sinks and the nodes. Each node produces a mes-
sage authentication code (MAC) based on a temporary key,
which is derived from the shared key. MACs are aggregated,
when data is processed, using a logical tree structure, rooted
in the sink. The sink can verify the final result of aggregation
and broadcast the used temporary keys, so that each node
can verify the intermediate aggregation results. Variations of
this scheme use Merkle hash trees as commitment structures
for the aggregated values.

One of the security goals of the technique proposed in (41)
is to ensure that cluster heads do not accept faulty readings
for an upperbound of t compromised sensors. The verifica-
tion of the latter uses threshold cryptography. The result of
the aggregation (i.e. average value) is checked against nodes’
own readings: each node checks whether the difference be-
tween the calculated average and its reading is within a given
threshold, in which case it generates a partial signature. A
valid signature can be generated by t + 1 nodes. In order to
limit the number of hash values, which need to be computed
and checked at the cluster head, a Merkle hash tree is built.

In (14), the authors propose a mechanism to check that
in-network aggregation in WSN is complete, i.e. that no con-
tribution from any node has been excluded from the final re-
sult. Completeness is enforced by creating a logical balanced
tree structure on top of the sensor mesh. The tree should
be balanced in order to reduce traffic overhead. Using this
structure, all the contributions are authenticated with a hash
function and propagated up toward the tree root. At the end
of this phase, the root sends - via an authenticated broadcast
(e.g. using TESLA) - the root of the hash tree; each node
sends the value of the commitment tree of its child to all the
other children and so forth, to make all the off-path nodes
available to everybody, in order to verify the consistency of
the hash tree. The commitment includes a lowerbound and an
upperbound on the value of the sum, so that a node can verify
that an attacker has not altered the valued. Once a node has
checked that its contribution was included, it sends a MAC
to the root with a key it shares with it. All the confirmations
are XORed to save space and produce a single confirmation
message.

5.3 Signature aggregation techniques
Signature aggregation techniques are the technical answer to
the need of creating a single signature for a single message out
of multiple signatures for multiple messages. In (4) two signa-
ture aggregation techniques are presented: (1) a general one,
where at any point, any number of signatures, can be aggre-
gated by any node into a single signature; and (2) a sequen-
tial one, where aggregation has to be performed sequentially
by signers during the process of signing. The first solution is
based on two well-known problems, the Computational Diffie-
Hellman (CDH) and the Decisional Diffie-Hellman (DDH).
For many choices of groups, both assumptions hold (i.e. both
problems are hard to be solved), but for some, CDH is hard
but DDH is not. The groups that have this property are called
Gap Diffie-Hellman groups (GDH). Based on this, the algo-
rithm (1) is introduced. The sequential one (2), instead, is
based on trapdoor homomorphic permutations (such as RSA).

5.4 Operations on sets
Often it can be interesting to perform set operations on en-
crypted data: in particular set membership queries, compari-
son queries, subset queries and arbitrary conjunctive queries.
This family of operations is important if WSN support event-
based paradigms: events can be seen as elements and sets can
be constructed according to events’ semantics and associated
to actions that must be taken accordingly.

In (45) the authors suggest a way of creating a secure
representation of sets. In the proposed solution, an entity is
able to check only whether or not it belongs to the set – it is
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impossible to check if another entity does. The set represen-
tation is constructed solving a system of linear Diophantine
equations using the Chinese Reminder Theorem.

In (6) the authors propose a mechanism based on Hidden
Vector Encryption (HVE). By using HVE a public key system
supporting queries on encrypted data can produce tokens for
testing any supported query predicate. The token lets any-
one test the predicate on a given ciphertext without learning
any other information about the plaintext. The proposed so-
lution allows for comparisons and subset queries as well as
conjunctive versions of these predicates.

6 Trusted in-network data aggregation
As explained in Section 3, compromised nodes represent a big
threat to the security of in-network data processing. The chal-
lenge arises from the fact that sensor nodes often need to be
low-cost to justify their deployment, which makes it very hard
to satisfy tamper-resistance requirements. An attacker could
gain control over a sensor node in a stealthy way in order to
generate faulty data or to alter the data processing. Thus,
once a node is compromised, the secret material contained
within is completely exposed and usable by the attacker. In
order to cope with such threat, a few trust frameworks have
been proposed in the literature to detect bogus sensor data.
This implies a trust evaluation of sensor data at acquisition
and aggregation time: trust refers to the reliability and accu-
racy of sensed information and it is related to the quality of
the delivered sensor data.

6.1 Sensor Node Failure Detection
Within a WSN, sensor nodes are prone to different kind of
failures, such as crash, omission, timing, value and arbitrary
failures (61). Crash and omission imply no response from the
sensor to the data query. Timing refers to timeout during
the processing a request. Value failure deals with delivering
incorrect value due to malfunctioning or compromised sen-
sor nodes. Finally, arbitrary failures include all the types of
failures that cannot be classified in previously described cat-
egories. For example, Byzantine failures (38, 35) describe a
type of arbitrary failures that are in general caused by a mali-
cious service that not only behaves erroneously, but also fails
to behave consistently when interacting with other services
and applications.

In sensor node failure detection, we identify self-diagnosis
(28) and group detection (36, 17, 25, 42) approaches. With
self-diagnosis, each nodes detect its own failure, e.g., based on
battery exhaustion. In group detection, each node in the same
area is supposed to deliver a similar information. A good ex-
ample is temperature measurement in a room. Let us assume
a WSN application to measure the temperature in a room:
taking the average value provided by different thermometers
in the same room makes it possible to resist attacks and to
produce sensor data which is potentially more trustworthy as
the number of contributors increases (37). Such a naive ap-
proach however raises the following issue: if the temperature
values collected are (10; 10; 11; 50), we get an average of over
20. It is obvious that the last value is a wrong one, and the
reported temperature should be 10. The usage of an appro-
priate statistical method, e.g., median, allows us to detect
that 50 is an outlier, and labels the sensor node delivering
this value as unreliable. Nevertheless, this approach requires

a large number of sensor nodes producing the same type of
measurements.

6.2 Reputation System

Trustworthiness is often described as the expectation of co-
operative behavior (22). Its evaluation is usually based on
previous experiences with the same party. Thus an entity
can establish trust in its communication partner based on the
latter’s reputation (58). The mathematical foundations for
reputation management are rooted in statistics and probabil-
ity (55). Reputation is defined as the perception that an
entity has of another’s intentions. Furthermore, reputation is
based on a collection of evidence of good and bad behavior
undertaken by other entities.

In (22), the authors integrate tools from different domains
such as economics, statistics, data analysis and cryptography
in order to establish trustworthiness of sensor nodes. This
approach capitalizes on Bayesian formulation of reputation
representation, updates, integration and trust evolution. The
authors propose a Reputation based Framework for Sensor
Network (RFSN), which can cope with bad mouthing and
ballot stuffing attacks. For the former, the authors ignore all
bad reputation information about others nodes, and keep only
the good reputation information. For the latter, the authors
propose to integrate the reputation on a node when updating
its own reputation information about the other nodes. Thus
in this approach, only good behaving nodes can get access to
others nodes information.

In (9), the authors also propose a reputation system based
on Bayesian approach. They clearly distinguish the reputa-
tion from trust in sensor nodes. The former represents the
opinion formed by a node on another node in a sensor net-
work. The latter represents the opinion formed by a node
about how honest another node is in the reputation system.
In this approach, each node is in charge of maintaining its
reputation and trust rating on the node of its interest (e.g.
the ones that it is interacting with). In addition, reputation
systems (8, 43), originally designed for ad-hoc networks, are
hardly applicable to WSN due to resource restriction on sen-
sor nodes.

In all those approaches, authentication of sensor nodes is
required. In order to bind a reputation to a sensor node,
each node has to authenticate itself. Moreover, this type of
approach does not propose any solution regarding the deter-
mination of reputation for the first interactions, when intro-
ducing a new node in the sensor network. Finally, approaches
based on reputation system are time-expensive, since they re-
quire a lot of interaction between sensor nodes before estab-
lishing a stable trust relationship.

6.3 Trust Based Framework

We distinguish between reputation and trust. Reputation is
based on past experiences with a given entity, whereas trust
is not restricted to this. Trust enables to encompass objective
and subjective characteristics on an entity. Reputation is part
of the subjective characteristics which permits to determine
trust, but not the only one. The goal of trust based framework
for wireless sensor networks is to establish trust in all sensor
nodes based on the expectation that they will deliver non-
compromised data.
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In (1), authors propose a trust framework for non-critical
sensor network. Their approach consists of distributing, in
clear text, cryptographic material for an node to another.
Any nodes broadcasts his key material by increasing smoothly
his communication signal strength. On contact, he nodes
forwards its key material in clear text to the another node.
The authors discuss the economic factors that would prevent
any attacker from capturing key material. The attacker thus
would have to deploy a lot of malicious nodes in order to
increase his chance to recover cryptographic material.

In (46), the authors propose a trust- and clustering-based
framework based on public key authentication for mobile ad
hoc wireless networks. They define a trust model where each
node monitors and rates each other with quantitative trust
values. This trust model is totally decentralised and does not
involve any trusted third party. In this approach, a chain
of trust, similar to PGP, is established between nodes (49).
Any node can sign another node’s public key with its own
private key. The authors developed a trust- and clustering-
based public key authentication mechanism supported by new
security operations on public key certification, update of a
trust table. The goal is thus to discover and isolate dishonest
nodes. Nevertheless those types of approach are still bounded
by resource constraints on sensor nodes.

In (63), the authors propose a trust based framework
for secure aggregation in wireless sensor network based on
Bayesian model and beta distribution probability. They first
evaluate trust in individual sensor nodes based on Kullback-
Leibler (KL) distance or relative entropy. The idea is to cal-
culate the distance between an ideal node behavior and the
actual node behavior. In this case, the KL distance is the
measure of the differences between two probability distribu-
tions: from a probability distribution P to an arbitrary prob-
ability distribution Q, with P is the real value and Q is the
acquired sensor data. The authors assign a confidence value
to aggregated sensor data. The opinion notion used in this
approach finds its roots in subjective logic theory (32), in or-
der to represent the uncertainty on the aggregation. Based on
sensor data confidence, the framework computes an opinion
which encompasses belief and uncertainty on the aggregation
of sensor data by means of the consensus operator (32). Nev-
ertheless, this approach is still time-consuming for establish-
ing a stable reputation on sensor nodes. The reputation on
a node, based the inverse square of its KL-distance, suffers
from severe oscillation for the first reputation evaluations.

7 Conclusions

In-network data processing can potentially bring important
benefits to wireless sensor networks. Computation is typi-
cally much less energy consuming than communication, so
the additional computational overhead can be well justified
by the reduced data transfer. The distributed processing,
and possibility of aggregation or even partial reasoning about
sensed data, could also enable WSNs to provide more com-
plex services to application layer, and not only data gathering
functionality. However before the concept of such intelligent
sensor network becomes the reality, many technical challenges
have to be addressed. In particular, we need to design and im-
plement secure, yet very efficient and cost-effective, data ag-
gregation mechanisms. Very promising results have been re-
cently achieved in this area based on advanced cryptographic

concepts, such as privacy homomorphisms, bilinear pairings,
and elliptic curve cryptography. Another important issue is
related to assessment of trustworthiness and reliability of the
data provided by WSNs, especially when this data is pre-
processed in the network and received by the application in
an aggregated form. Several different approaches have been
proposed to this problem, e.g. based on subjective logic.

Despite of potentially great importance and very interest-
ing theoretical and practical challenges, the topic of secure
in-network data processing in wireless sensor networks have
received until recently much less attention than, e.g., secure
routing or key management. Therefore, despite of many in-
teresting initial results, the security questions related to dis-
tributed data processing in WSN remain largely open, and in
our opinion constitute an interesting area for further research.
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