
Hierarchical Codes: How to Make Erasure Codes Attractive

for Peer-to-Peer Storage Systems

Alessandro Duminuco and Ernst Biersack
EURECOM

Sophia Antipolis, France
{duminuco,biersack}@eurecom.fr

Abstract

Redundancy is the basic technique to provide reliability

in storage systems consisting of multiple components. A re-

dundancy scheme defines how the redundant data are pro-

duced and maintained. The simplest redundancy scheme

is replication, which however suffers from storage ineffi-

ciency. Another approach is erasure coding, which provides

the same level of reliability as replication using a signifi-

cantly smaller amount of storage.

When redundant data are lost, they need to be replaced.

While replacing replicated data consists in a simple copy, it

becomes a complex operation with erasure codes: new data

are produced performing a coding over some other avail-

able data. The amount of data to be read and coded is d
times larger than the amount of data produced. This im-

plies that coding has a larger computational and I/O cost,

which, for distributed storage systems, translates into in-

creased network traffic.

Participants of Peer-to-Peer systems have ample storage

and CPU power, but their network bandwidth may be lim-

ited. For these reasons existing coding techniques are not

suitable for P2P storage.

This work explores the design space between replication

and the existing erasure codes. We propose and evaluate

a new class of erasure codes, called Hierarchical Codes,

which aims at finding a flexible trade-off that allows the re-

duction of the network traffic due to maintenance without

losing the benefits given by traditional codes.

1 Introduction

P2P(Peer-to-Peer) systems have received a lot of atten-

tion in recent years. In particular, the research community

has shown an increasing interest in the use of P2P systems

for file storage [2, 4, 7, 12]. This application can be very

attractive for two main reasons: (i) centralized solutions

are expensive (ii) common PCs are equipped with high-

capacity local disks, often underutilized.

The main challenge in designing storage systems is to

guarantee the persistence of the stored data. This is non-

trivial because storage devices are not totally reliable: they

may face failures, data corruption or accidental data losses.

The proposed solutions move in two complementary direc-

tions: increasing the device reliability and adding redun-

dancy to data.

In a peer-based approach, the first direction is not feasi-

ble since existing hardware is used and a proper redundancy

scheme is the only tool in the hands of the system designer.

The simplest approach to redundancy is replication. The

drawback of such scheme is its inefficiency in terms of stor-

age. Another approach is erasure coding, which is able to

provide the same level of reliability with much lower stor-

age requirements [10, 13]. The price to pay for this is a

higher maintenance cost as we explain below.

When data are lost, a maintenance operation, called re-

pair, is needed to replace them. The replacement of repli-

cated data is trivially a copy. For erasure codes, instead,

every bit of new data is the result of a coding operation over

several other bits of data. This introduces additional com-

putational cost, to perform the coding, and I/O cost needed

to retrieve the bits to be coded, which in distributed systems

translates into network traffic.

Traditional storage systems can easily handle this ad-

ditional costs. RAID systems, for example, need a very

small amount of repair operations and in any case they are

equipped with dedicated processing and network resources,

which are dimensioned according to their needs.

In a P2P storage system, the number of repairs can be

very high and, while such a system can rely on large storage

and processing resources provided by participating peers,

the system must cope with limited network resources. This

makes coding unattractive for P2P storage, since it has been

conceived with a different cost model in mind.

While the coding schemes proposed in literature strive to

reduce the storage efficiency, ignoring the other costs, we

propose a new class of codes, called Hierarchical Codes,

which take into account the cost metrics that are important

for a P2P storage system. They introduce a flexible trade-

1

off between replication and traditional erasure codes, which

reduces the maintenance costs without scarifying storage ef-

ficiency.

In section 3.1 we formalize the efficiency metrics we are

interested in. In section 3.2 a cost analysis is performed

for the main existing redundancy schemes and in particular

for linear erasure code. Thanks to this analysis we present

our Hierarchical Codes in section 4. Finally in section 5

we evaluate our codes by means of experiments, which run

a simulated P2P storage system using trace-based peer be-

haviors obtained by synthetic and real traces.

2 Related Works

Many works in literature discuss about the use of differ-

ent redundancy schemes in P2P storage systems. The main

point of the discussion has been the comparison between

replication and coding. In [13] it is shown how erasure

codes can give big improvements in terms of data durability

as compared to replication, consuming the same amount of

storage space. In [10] the authors perform the same com-

parison and, taking into account the peer behavior and the

maintenance process, they conclude that in some cases the

advantage of coding may be not worth its disadvantages.

The work in [10] is the first one to point out the repair cost

required by coding. To cope with this problem, the authors

propose to adopt an hybrid scheme that uses both, coding

and replication. This reduces the cost but, on one hand it in-

creases the complexity and on the other hand, it loses most

of the storage efficiency given by coding. This point has

been well explained by [5], where authors propose a new

class of codes, called Regenerating Codes, which are able to

reduce the repair cost, consuming more storage space. Our

work takes inspiration from that and proposes an alternative

solution that does not sacrifice the storage efficiency. Both

works, Regenerating codes and our proposal, adopt some of

the concepts and the tools presented in the early literature

about Linear Network Coding [3, 8].

3 Redundancy schemes for P2P storage

3.1 Efficiency Metrics

The measure of the efficiency consists in comparing the

benefits provided with the costs required.

In the domain of redundant storage, the benefit is the re-

liability of the data storage in spite of failures of the storage

components. In the P2P storage systems, failures are rep-

resented by temporary disconnections, abandons, device er-

rors etc. The ability of a redundancy scheme to be resilient

to such failures is usually measured as the probability of

a correct reconstruction of a stored object. Note that this

measure is not absolute, but it is conditioned by the peer be-

havior: one of the most important factors is the probability

of having concurrent failures. For this reason, the reliabil-

ity of a redundancy scheme is measured as the number of

concurrent losses that it can sustain without compromising

the data. More formally, one can express this property as

the probability of data loss (failure) given that l concurrent
losses occurred: P (failure|l).
The description of the costs is more complex. To per-

form a complete analysis, we need to consider separately

the two main activities involved in a storage system:

Storage The core activity of a storage system consists in

the initial insertion of the data along with its redundancy.

The cost of the redundancy scheme, in this phase, is merely

the absolute amount of storage space consumed. To abstract

from the amount of data, it is measured as the ratio between

the size of the stored data |S| and the size of the original
data |O|. This cost can be referred to as Redundancy Factor
and denoted as β = |S|/|O|.

Maintenance During the lifetime of a P2P storage sys-

tem, permanent failures occur. Whenever this happens part

of the redundant data is lost and the chances of losing the

original data increase. If nothing is done to compensate

these losses, sooner or later the durability will be not guar-

anteed anymore. The maintenance consists in refurbishing

the redundant data when they are lost. This operation is per-

formed reading the available data and producing new one.

The reading operation has a cost, which in a distributed stor-

age system translates into network traffic, whose volume

depends on the redundancy scheme adopted but also on lots

of other factors, such as the peer behavior, the repair policy,

the coordination algorithms etc. To evaluate only the contri-

bution of the redundancy scheme, we measure the amount

of data read with respect of the amount of new redundant

data created. In other words, once the system has decided

that a new redundant bit needs to be created, we measure

how many available bits the scheme has to read. This cost

can be referred to as Repair Degree and denoted as d.

3.2 Efficiency Analysis

In this section we describe some of the most represen-

tative examples of redundancy schemes and illustrate their

efficiency in terms of the metrics described in the previous

section.

Replication Replication is the most straightforward way

to add redundancy. Its basic version consists in creating

multiple copies of the object to store. The analysis of such

a scheme is very simple. Let us assume that R replicas of
the original object are stored on different peers. The number

of losses that the system can support is R − 1. In a formal
way the probability of losing the object conditioned by the

probability of having a given number of concurrent losses

is:

P (failure|l) =

{

0 l < R
1 l = R

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20 24

P
(f

a
ilu

re
|l
o

s
s
e

s
)

Number of Losses

block replication
erasure coding

Figure 1. Block replication scheme compared
to erasure codes with k = 8 and R = 3.
P (failure|l) as function of the number of con-
current losses l.

The redundancy factor is β=R, while the repair degree is
d=1, since the reconstruction of a new element corresponds
to a simple copy of one replica.

Block Replication In a P2P system, a key strategy to

make data survive failures is to spread them across different

locations, exploiting the diversity of peers. For this reason

there is a more complex way to do replicaion.

Consider an object O and split it in k fragments, then
create R replicas for every fragment and place every sin-
gle replica on a different peer. Now the number of peers

involved is k × R, the redundancy factor is still β=R and
the repair degree is still d=1. The analysis of the reliability
of this scheme is more complex, since there is not a single

number that says howmany peers we can lose without com-

promising the object as the survival of the object depends on

which particular peers fail. In a very fortunate case we can

lose all the redundancy, i.e. k × (R − 1) blocks, and still
be able to retrieve the original object, in the opposite case if

all the replicas of a single block disappear, the object is lost

when as few as R blocks are lost. The probabilistic expres-
sion of the reliability is very helpful in this case. Exploring

exhaustively all the possible combinations of losses for the

case k=8 and R=3, we obtain the solid curve in Fig. 1.

Erasure Codes A generic erasure (k,h)-code can be de-

scribed as follows. Consider an object O and split it in k
fragments, then process these fragments producing k + h
redundant blocks such that any k of them are sufficient to
reconstruct the original fragments. The number of losses

that this scheme can sustain is h, while the redundancy fac-
tor is β=(k + h)/k. If, for example, we use k=8 and h=16
we will obtain β=3. This configuration is comparable with
the example proposed for block replication, since k and β
are the same. The starred curve in Fig. 1 shows that the re-

liability provided by coding is much higher: it can sustain

always until 16 losses, while replication is able to do that
only in a very small percentage of the cases. The price to

pay for this increased storage efficiency resides in the re-

pair cost. As we will show in the next section, the existing

coding schemes (with the characteristics described) require

a repair degree of d=k.
As already mentioned, in P2P storage systems, a low re-

pair degree d is crucial. Today, the high repair degree is the
reason why most of the P2P storage systems use replica-

tion, preferring to pay an increased storage cost rather than

an increased communication cost.

We aim at developing a new class of codes, which find

a place between erasure codes and replication, offering a

flexible trade-off in terms of storage requirements, average

repair degree, and reliability.

3.3 Efficiency of Linear Codes

In this section we detail the basic concepts behind the

functioning of linear codes, which are a specific implemen-

tation of erasure codes. We present also a formal tool to

analyze their reliability and repair cost. These concepts will

be used when we introduce our Hierarchical Codes.

Consider a Galois Field GF(2q), where the elements of

such a field can be expressed by q-bit words. This means

that every original fragment and every block can be inter-

preted as a sequence of words in GF(2q). Let us denote as

fi and bi the words belonging respectively to the ith frag-
ment and the ith redundant block. A linear code can be built
using the following linear operations in GF(2q):

bi =

{

fi i ≤ k
∑k

j=1
ci,jfj k < i ≤ k + h, ci,j ∈ GF(2q)

(E1)

Assuming for simplicity that all the fragments are com-

posed by a single word, we can introduce the following vec-

tors and matrices, all composed by elements in GF(2q):

Fk,1 Vector of original fragments.

Bk+h,1 Vector of redundant blocks.

Ik,k Identity matrix.

Ch,k Coefficient matrix.

Using these matrices we can give an alternative expres-

sion of the code:

B =

[

I
C

]

F = C′F

If the matrix C is such that any sub-matrix S built using
k rows from C′ is invertible, then the original fragments

can be always reconstructed by F=S−1BS , where BS is

the k-long subvector ofB, corresponding to the coefficients
chosen in S. If this property is satisfied, the code obtained
is a (k,h)-code.

Multiple choices of the coefficient matrix are possible,

and consequently there exist multiple implementations of

this class of codes. One of the most common is the Reed-

Solomon codes [9], which define the matrix C as a h × k
Vandermonde matrix, i.e. ci,j=j

i−1. In Reed-Solomon,

3

and in all the codes that fix a specific matrix for the co-

efficients, the repair of a lost block needs the reconstruction

of all the original fragments and possibly their recombina-

tion accordingly to the coefficient row that corresponds to

the lost block. This explains why the repair degree d=k.
Another approach is to build the matrixC′ choosing ran-

domly the coefficient in the Galois Field1. This class of

codes are called Random Linear Codes. In [1] is shown

that a k × k random matrix S in GF(2q) is invertible with

a probability which depends only on the field size and can

pushed arbitrarily high increasing this size. A usual choice

for the parameter q is q ≥ 16, in which case the proba-
bility can be considered practically 1. This means that any
k × k sub-matrix of C′ is invertible and that the property of

a (k,h)-code is provided.

The repair of a lost block can be done like in Reed-

Solomon codes, i.e. reconstructing the original blocks and

combining them again. In this case the repair degree would

be again d=k. A property of random linear codes is that
the reconstruction of original blocks is an unnecessary step,

the result is indeed equivalent as to when the k redundant
blocks are combined directly with random coefficients. One

can be tempted, in this case, to use less than k blocks, re-
ducing in this way the repair degree. However only d=k is
able to preserve the properties of the code, in particular if

d < k, there will be choices of k redundant blocks that are
not sufficient to reconstruct the original k fragments.
This result can be derived from the fundamental works

about network coding [8, 3] and from their application in

distributed storage systems in [5]. We reformulate here

some of the results in a slightly different but equivalent way.

This formulation will help us in introducing our contribu-

tion.

Let us introduce an Information Flow Graph, which rep-

resents the evolution of the stored data through time. In

particular each node represents a block of data in a specific

point in time t. The time evolves at discrete steps and ev-
ery step corresponds to one ore more losses and repairs. At

the time t = 0 the graph is populated only by k source
nodes representing the k original fragments and denoted as
F = f1, f2, . . . , fk. At t = 1 the graph is augmented with
additional k+h nodes, which represent the k+h redundant
blocks initially inserted in the storage system and denoted

as B1 = b1,1, b2,1, . . . , bk+h,1. The graph at time step 1 is
referred to as the code graph. At t > 1 the graph is aug-
mented with additional k + h nodes, which represent the
k + h redundant blocks present in the system at time step
t and denoted as Bt = b1,t, . . . , bk+h,t. Connections be-

tween nodes are possible only among nodes of consecutive

time steps, oriented from t to t − 1. The possible connec-
tions and the corresponding semantic in the storage system

are listed below:

1. A generic node b1,1 at time step 1 is connected to

1Note that replacing the identity matrix with random coefficients trans-

forms the code from a systematic to an unsystematic one

Figure 2. Example of one step of an Informa-
tion Flow Graph. Blocks b2 and b3 have sur-
vived at time t − 1. Block b1 has been lost
at time t − 1 and has been repaired at time t
combining the blocks b2 and b3.

one or more original fragments, denoted as R(b1,1).
These connections are determined by the equations of

the code used and for this reason the graph obtained is

called code graph. In particular R(b1,1) is the set of
fragments linearly combined to produce b1,1.

2. A generic block bi,t−1 inBt−1 can be connected to the

node bi,t. In this case node bi,t must not be connected

to any other nodes in Bt−1. This means that the block

bi has survived at time t − 1.

3. Alternatively, a generic block bi,t−1 is not connected to

any node in the following step. In this case node bi,t is

connected to d nodes bj,t−1 in Bt−1, with j 6= i. This
means that block bi has been lost at time t − 1 and it
has been repaired combining linearly the d (survived2)
blocks bj .

See the example in Fig. 2.

The Information Flow Graph we presented is a variant

of the one proposed in [5]. This allows us to formulate the

following lemma, which derives from Proposition 1 in [5]:

Lemma 1. A selection of k nodes Bk
t ⊆ Bt, is sufficient to

reconstruct the original fragments (with a probability that

depends only on the size of the Galois Field in which the

random coefficients are drawn), only if it is possible to find

k disjoint paths from the k nodes inBk
t to the k source nodes

in F .

The disjoint paths condition is obviously related to the

choice of the repair degree d. The following proposition
holds:

Proposition 1. At any time t, any of all the possible selec-
tions of k nodes Bk

t is sufficient to reconstruct the original

fragments only if the disjoint paths condition is provided at

time step t = 1 (by the code graph) and the repair degree
d ≥ k.

2The fact that a node associated with a lost block is not connected to
any node in the following step implies that a node in the step t can be

connected only to survived blocks.

4

See the proof A.2 in the appendix . The Proposition 1

requires that the disjoint paths condition be provided by the

code graph. In that case this condition can be interpreted as

the existence of a perfect matching between any selection

Bk
1 and the k source nodes in F . A Random linear code
clearly provides this condition, since by design any node in

B1 is connected to all the source nodes in F .

4 Hierarchical Codes

The previous section showed as in a traditional linear

erasure code the repair degree d cannot be lower than k.
Indeed, if d < k, there will be selections of k redundant
blocks not sufficient to reconstruct the original fragments.

From this point of view, the block replication scheme pre-

sented in section 3.2 can be considered as a limit case of a

(k,(R-1)k)-code in which the repair degree is chosen to be

d = 1. In this case only a small part of the possible choices
of k redundant blocks (replicated fragments) is able to re-
construct the original object and this property is reflected in

the reliability of the scheme, depicted in Fig. 1.

Our intuition is that d = 1, which corresponds to block
replication, and d = k, which corresponds to a traditional
erasure code, are two limit cases. We believe that there is

an interesting design space between these two limits that

can be explored to find a better trade-off between storage

efficiency and repair degree.

The naı̈ve approach of using d < k in random linear
codes poses two main difficulties: (i) there is not an easy

way to analyze the final reliability of the code, as we did in

block replication; (ii) there is not a trivial policy for choos-

ing the d blocks (to be combined) that are able to prevent a
degradation of the reliability of the code through the main-

tenance process. Note that in block replication there is such

a way: replace a lost replica with a copy of an identical one.

We propose a new coding scheme to overcome these dif-

ficulties, which we call Hierarchical Codes. A general in-

stance of such a code can be generated through its code

graph built according to the following procedure:

1. Choose two parameters k0 and h0 and build a (k0, h0)-
code using the eq. E1 with the coefficients ci,j chosen

randomly in GF (2q). If we set k0=2 and h0=1 we
obtain the code graph in Fig. 3(a).

The generated blocks constitute a group denoted as

Gd0,1, where d0=k0 is the degree used to generate the

blocks and it is called combination degree. In Fig. 3(a),

d0=2.

2. Choose two parameters g1 and h1. Replicate the group

structure Gd0,1 for g1 times to obtain g1 groups de-

noted as Gd0,1 . . .Gd0,g1
. Then add other h1 redun-

dant blocks, obtained combining (with random coeffi-

cients) all the existing g1k0 original fragmentsF . This

(a) Hierarchical (2,1)-

code

(b) Hierarchical (4,3)-code

Figure 3. Samples of Code Graphs for Hierar-
chical Codes.

corresponds to a combination degree d1=g1k0=g1d0.

If we set g1=2 and h1=1 we obtain the code graph in
Fig. 3(b).

All the blocks constitute a group denoted as Gd1,1,

which corresponds to a hierarchical (d1, H1)-code,
where H1=g1h0+h1. The example in Fig. 3(b) is a hi-

erarchical (4, 3)-code.

3. The previous step can be repeated several times,

adding levels to the code. In the generic step s, choose
two parameters gs and hs. Replicate the structure of

the group Gds−1,1 for gs times. Then add other hs

redundant blocks, obtained combining all the exist-

ing original fragments, which corresponds to a degree

ds=gsds−1. All the blocks constitute a group denoted

asGds,1, which corresponds to a hierarchical (ds, Hs)-
code, whereHs = gsHs−1+hs.

The redundancy factor of a generic hierarchical (k, h)-
code does not change with respect of a traditional erasure

code: β = (k + h)/(k). The other metrics are more com-
plex.

Reliability The analysis of the reliability consists, as

usual, in computing the probabilitiesP (failure|l). They can
be computed if we understand what are the sets of k redun-
dant blocks that are able to reconstruct the original frag-

ments. Using Lemma 1 applied to the code graph we can

formulate the following:

Proposition 2. Consider Bk, a set of k blocks in the code
graph of a hierarchical (k,h)-code.

If the nodes inBk are chosen fulfilling the following con-

dition:

|Gd,i ∩ Bk| ≤ d ∀Gd,i belonging to the code (C2)

which means that inBk there can be a maximum of d blocks
chosen from any group Gd,i,

5

Then the nodes in Bk are sufficient to reconstruct the

original fragments.

See the proof A.3 in the appendix. In the hierarchical

(4,3)-code in Fig. 3(b), the condition (C2) means that no

more than 2 blocks can be chosen from G2,1, no more than

2 blocks can be chosen fromG2,2 and nomore than 4 blocks
can be chosen fromG4,1

3 .

Using Proposition 2 we can compute the generic proba-

bility P (failure|l), exploring all the possible configurations
of the losses and check in each case if there is still a possible

choice of blocks that allows reconstruction.

Repair Degree In the case of Hierarchical Codes, as in

the block replication, there does not exist a specific number

that expresses the repair degree required. In particular, the

repair degree required changes accordingly to which block

needs to be repaired and which blocks are still alive. For

each situation we would like to know which is the right

choice to prevent the code from degrading, i.e. preserve

the guarantees provided by the code before maintenance, as

described in the previous paragraph.

We can use again the Lemma 1 to formulate:

Proposition 3. Consider an Information Flow Graph of a

hierarchical code at time step t. Consider a node b repaired
at time step t. Denote as G(b) the hierarchy of groups that
contains b and as R(b) the set of nodes in Bt−1 that have

been combined to repair b.
If ∀t and ∀b, R(b) fulfills the following conditions:

|Gd,i ∩ R(b)| ≤ d ∀Gd,i belonging to the code (C3)

and

∃ Gd,i ∈ G(b) : R(b) ⊆ Gd,i, |R(b)| = d (C4)

where, (i) condition (C3) means that in the set of blocks

combined R(b) there can be a maximum of d blocks cho-
sen from any group Gd,i and (ii) condition (C4) means that

there must exist a group in the hierarchyG(b) that contains
all the combined blocks and that their quantity has to be

equal to the combination degree used in that group.

Then the code does not degrade, i.e. preserve the prop-

erties of the code graph expressed in Proposition 2.

See the proof A.4 in the appendix. In the hierarchical

(4,3)-code in Fig. 3(b), this means that block b1 can be re-

paired either combining blocks b2 and b3 either combining

any 4 blocks among all the others; while blocks b7 can be

repaired only combining any 4 blocks among the others.
When a repair is performed, according to the block that

needs to be repaired, multiple repair degrees are allowed.

The repair degree that is actually used will depend on the

blocks that are available on the moment of the repair4.

3This last constraint is unnecessary, since G4,1 represents in this case

the whole code.
4In the example of Fig. 3(b), if b1 needs to be repaired and one between

b2 and b3 is not available, the repair degree must be d = 4

Using the Proposition 3 and exploring all the possi-

ble combination of losses, we can compute the probability

P (d|l). P (d|l) indicates what is the probability that, if we
have l concurrent losses, the repair of a block, in the worst
case, requires a degree d. Note that worst case means that
among the l blocks that we could repair, we decided to re-
pair the one that requires the highest repair degree.

Note that the worst case formulation of P (d|l) is quite
pessimistic. In the reality, the particular repair performed

depends on the repair policy and its repair degree can be

lower than d.
We collected the results obtained for the hierarchical

(4,3)-code in Fig. 3(b) in the following table:

l (losses)

1 2 3

P (d = 2|l) 0.86 0.42 0

P (d = 4|l) 0.14 0.58 0.77

P (failure|l) 0 0 0.23

The first two rows show the repair degree probability, while

the last row shows P (failure|l). This last row represents
the cases in which the original fragments cannot be recon-

structed. Note that these cases correspond also to the cases

in which there is at least one block that cannot be repaired.

For these last cases, thus, the failure probability replaces the

probability P (d|l), since the repair in the worst case cannot
be performed. This is also the reason for which the values

in each column sum up to 1. The table covers up to 3 losses,
because for a higher number of losses it is clear that repairs

are never possible and the failure probability is 1.

In Fig. 4(a), the same probabilities are graphically rep-

resented for a hierarchical code (64,64)-code, built using 6
levels and setting k0=2, gs=2 and hs=1 for all the levels,
except for the last level where h5=2. Every bar in the plot
corresponds to a column in the table, while the height of the

sections in a bar represent the probabilities of repair degree

or failure given the corresponding number of losses.

This figure nicely shows the properties of Hierarchical

Codes. They are able to reduce the repair cost significantly:

in a traditional (64,64)-code the repair degree is always 64,
while in this hierarchical (64,64)-code, it varies from 2 to
64. At a first look, the price to pay for this advantage seems
to be the reliability, indeed a traditional (64,64)-code does

never fail for less than 64 losses, while the hierarchical code
has chances of failure even for 32 losses, increasing for
higher number of losses. However by adjusting the repair

policy, as explained in next section, we can achieve the same

reliability.

We believe that Hierarchical Codes give a new possibil-

ity to system designers to find the right trade-off between

costs and benefits with respect to the characteristics of the

environment in which the system is going to work. Note that

different choices of the parameters {k0, gs, hs} produce dif-
ferent codes with the same level of redundancy, but with a

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

P
(*

|l
o

s
s
e

s
)

losses

2
4
8

16
32
64

failure

(a) First example.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

P
(*

|l
o

s
s
e

s
)

losses

8
16
32
64

failure

(b) Second example.

Figure 4. Examples of Hierarchical (64,64)-
codes. P (d|l) and P(failure|l) as function of
the number of concurrent losses l.

different balance between reliability and repair degree. An

example is given in Fig. 4(b), which shows the results for an

alternative hierarchical (64,64)-code: note how the reliabil-

ity is increased along with the repair degree. In this paper

we do not explore the tuning of the parameters and we leave

it as future work.

5 Experiments

The experiments are based on an event-driven simulator,

which simulates a storage system on a set of peers whose

behavior is described by availability traces it receives as in-

put.

Our objective is to compare the reliability and the costs

in terms of storage and network communication when the

system adopts alternatively traditional erasure codes and

our Hierarchical Codes.

In both cases we chose (64,64)-codes, in particular the

traditional code is a Reed-Solomon code, while the hierar-

chical code corresponds to the one presented in Fig. 4. This

choice allows us to have the same storage consumption,

given by β=2, which means that every object consumes a
space that is twice its size.

The reliability provided depends on the repair policy

adopted. We consider a hybrid timer/threshold policy. It

assumes the presence of an entity able to monitor the avail-

ability of the participating peers and trigger a repair opera-

tion according to the following rules:

1. When a peer disconnects and the number of available

peers n is smaller or equal to TH: n ≤ TH→ perform
immediately the repair of the block stored on that peer.

2. When a peer disconnects and n > TH → wait for a
time T and then if the disconnected peer is still un-
available perform a repair of the block stored on that

peer.

The timer T is used to distinguish between transient and
permanent failures. In the ideal case in which T is cho-
sen as the maximum possible disconnection time of a peer,

whenever a disconnected peer does not reconnect within T ,
we are sure that it has abandoned the system for ever. In

the real world, disconnection times may be bigger than T .
In such a case, the blocks stored on a reconnecting peer are

discarded, because they have already been repaired5. This is

a waste of resources that suggests to increase T . However,
when T is increased, a higher number of peers is allowed
to stay offline, in which case the set of online peers is not

able to reconstruct the original fragments or is not able to

perform repairs. To be quite insensitive to the choice of T ,
we introduced also the threshold, which has to be such that

availability is provided, i.e. reconstruction is always possi-

ble.

In the case of Reed-Solomon codes, availability is pro-

vided if n ≥ k, which requires that TH > k. We fix
TH = k + a, which means that in the moment of mini-
mum availability, i.e. in the moment of maximum risk, the

system can still support a more losses. In the case of Hier-
archical Codes, there is no a fixed threshold that guarantees

availability. As shown in Fig. 4, the minimum number of

online fragments that provides availability depends on the

particular losses that occur in the system and varies, in the

case of Fig. 4(a), from 64 to about 96. To be compara-
ble with Reed-Solomon codes, our approach is the follow-

ing: whenever a loss occurs we recompute the probabilities

P (failure|l), which indicate what is the probability of fail-
ure if other l losses occur, taking into account the specific
losses that already occurred. If we want that, in the mo-

ment of maximum risk, the system can still support other a
losses, we apply the following rule: a repair is performed

whenever P (failure|a) > 0.
Two notable facts are that (i) the repair policy, in the case

of Hierarchical Codes, needs to keep a bigger number of

5For Hierarchical Codes, reintegration of this block is in some cases
possible and would increase significantly our efficiency. However, identi-

fying such cases is not trivial and it is left as future work.

7

available blocks and tends to perform more repairs; (ii) the

guarantees in terms of availability in the case of Hierarchi-

cal Codes are stronger: for Reed-Solomon codes, in the

moment of maximum risk, if other a losses occur, the ob-
ject is certainly unavailable, while in Hierarchical Codes,

the object is unavailable with a probability that can be very

small.

In the experiments we measure the number of block

transfers needed to maintain the code with different peer

behaviors. We chose a = 10 and T three times bigger than
the average disconnection time. In any case we performed

other experiments that showed that changing these parame-

ters do not influence significantly the results.

5.1 Experiments with synthetic traces

In this set of experiments the peer behavior is syntheti-

cally generated. In particular every peer behaves following

a very simple Markovian model: a peer is available for an

exponentially distributed time ton, then upon disconnection
it can abandon the system with probability P or can stay
temporarily offline with probability 1 − P for an exponen-
tially distributed time toff, after which it comes back online.
We tested our hierarchical (64,64)-codes and Reed-

Solomon (64,64)-code, using different combination of the

three parameters. The results suggest that, while P does not
give a strong influence, ton and toff play an important role.
Note that the ratio up = ton/(ton + toff) represents the per-
centage of time that a peer spends on line, or alternatively

the ratio of peers that in average are on line. It is clear that

this has an influence on the number of repairs needed. This

influence is different in Reed-Solomon codes and in Hier-

archical Codes, since Hierarchical Codes need in average

more peers on line.

We run the simulation for 10000 time units, setting the

disconnection time ton = 10, the abandon probability P =
0.001 and selecting multiple values for toff to test different
values of the up ratio. In Fig. 5(a) we show the number

of repairs needed by the two redundancy schemes, while

in Fig. 5(b) we show the total amount of block transfers

needed by those repairs. The plots in Fig. 5(a) clearly show,

as expected, that Hierarchical Codes require a bigger num-

ber of repairs. Moreover we can notice that the number of

repairs decrease when the up ratio is increased. This is due

to the fact that a higher up ratio corresponds to a higher

percentage of peers on line, which in turn requires less re-

pairs. The advantages of Hierarchical Codes are shown in

Fig. 5(b): in most cases the number of block transfers is

far less with respect to the one required by Reed-Solomon

codes. In other words Hierarchical Codes require more re-

pairs, but most of the repairs are very cheap in terms of

block transfers reducing the global communication costs.

Note that the advantage of Hierarchical Codes is reduced

when the up ratio is increased (in some cases, the commu-

nication cost for Hierarchical Codes is even higher than the

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

to
ta

l
n

u
m

b
e

r
o

f
re

p
a

ir
s

up ratio

Reed-Solomon
Hierarchical

(a) Total number of repairs.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

to
ta

l
n
u
m

b
e
r

o
f
b
lo

c
k
 t
ra

n
s
fe

rs

up ratio

Reed-Solomon
Hierarchical

(b) Total number of block transfers.

Figure 5. Cost of maintenance for Reed-
Solomon and Hierarchical (64,64)-codes as
function of the up ratio up = ton/(ton + toff).
a = 10, T = 3toff.

one for Reed-Solomon). This can be understood consider-

ing that in this high availability region, most of the peers

are online and the system needs, with both codes, very few

repairs. Note that this happens in a very fortunate and unre-

alistic case, in which the machines used are very stable and

the repair policies becomes almost useless. In such cases a

proper choice of the redundancy factor β is able to reduce
almost to zero the number of repairs.

In real life, peers are less stable, their behavior changes

in time and burst losses may occur. For this reason we tested

our scheme, using real traces, as illustrated in the next sec-

tion.

5.2 Experiments with real traces

To test our scheme using real availability data of real dis-

tributed systems, we fed our simulator with two different

traces:

1. KAD traces: obtained crawling a KAD network.

These traces [11] give the availability of about 6500

peers in the KAD network, sampling their status every

5 minutes for about 5 months.

2. PlanetLab traces: obtained monitoring the connec-

tivity of PlanetLab nodes. These traces [6] consist in

8

the availability status of 669 nodes and were obtained

by means of pings sent every 15 minutes between all

pairs of the concerned PlanetLab nodes, starting from

January 2004 for about 500 days.

The following table collects the results for the two traces

comparing the total number of repairs and the total num-

ber of block transfers for both, the Reed-Solomon and the

Hierarchical Code.

Repairs Transfers

PlanetLab
Reed-Solomon 472 30208

Hierarchical 637 4624

KAD
Reed-Solomon 765 48960

Hierarchical 3888 39710

The results confirm the trend shown in the previous sub-

section: Hierarchical Codes require a higher number of re-

pairs but a lower communication cost.

6 Conclusion

We presented a new class of codes, called Hierarchical

Codes, which represent a new flexible scheme to add redun-

dancy in distributed storage systems. Their flexibility con-

sists in offering a trade-off between the low-communication

requirements of replication and the robustness of coding.

We believe that this represents a new perspective for system

designers, who have the possibility to consider coding as a

practical alternative to replication in P2P storage systems.

Experiments validated our claims, showing that for a

given level of availability, a higher number number of re-

pairs needed by Hierarchical Codes results in most cases in

a smaller communication cost. The experiments, obviously,

are not able to give an exhaustive analysis of the perfor-

mance of Hierarchical Codes, but they give a clear intuition

of this behavior.

Moreover, this work does not explore the flexibility of-

fered by the different instances of Hierarchical Codes. As

mentioned at the end of section 4, a hierarchical code with

a given redundancy factor, can mix in many ways reliability

and repair cost. It is quite intuitive that different configura-

tions of the code may give different results. Future develop-

ments will focus on how to build an optimal configuration

of the codes, given a particular environment in which these

codes are going to be used.

Acknowledgments The first author is supported by a PhD

Scholarship from Microsoft Research.

A Proofs

A.1 Preliminary Proofs

Lemma 2. Consider an Information Flow Graph for a

generic (k,h)-code at time step T . Consider a selection of

k blocks Bk
1 . Assume that there exists a condition C on this

selection that guarantees that the original fragments can be

reconstructed.

If for any time step t ≤ T , any selection of Bk
t that

fulfills the condition C can be perfectly matched with a se-

lection of k blocksBk
t−1 in time step t−1 that in turn fulfills

the condition C,

Then any selection Bk
T that fulfills the condition C al-

lows the reconstruction of the original fragments.

Proof. We proceed by steps:

step 1 Consider a selection Bk
1 that fulfills the condition

C. By assumption we know that the selection allows the re-

construction of the original fragments. This means, thanks

to Lemma 1, that nodes in Bk
1 have k distinct paths towards

the original fragments F .
step 2 Consider a selection Bk

2 that fulfills the condition

C. By assumption we know that the nodes in this selection

can be perfectly matched with a selection Bk
1 that in turn

fulfills the condition C. Thanks to previous step, we know

that nodes in Bk
1 have k distinct paths towards the original

fragments F . This means that we can concatenate the per-
fect matching between Bk

2 and Bk
1 and the k distinct paths

between Bk
1 and F , obtaining k distinct paths between Bk

2

and F.

The last step can be repeated until the time step T , where
thanks to Lemma 1, the lemma is proved.

Lemma 3. Consider a code graph of a Hierarchical Code.

Consider a group Gds,i and denote as Fds,i the subset of

original fragments that are connected with nodes in this

group Gds,i. Consider a selection of nodes Bk
1 and con-

sider the subset of this selection that belongs to the group

considered: Ads,i = Bk
1 ∩ Gds,i.

If |Ads,i| ≤ ds and ∀j : Gds−1,j
⊆ Gs,i, the nodes in

Ads−1,j have already been perfectly matched with |Ads−1,j |
nodes in Fds−1,j ,

Then it is possible to find a perfect matching between the

nodes in Ads,i and the nodes in Fds,i.

Proof. Consider the nodes in Ads,i that do not belong to

the subgroupsGds−1,j ⊆ Gds,i and denote them as Â. Con-
sider the fragments in Fds,i that have not been matched with

the nodes in the subgroups Gds−1,j ⊆ Gds,i and denote

them as F̂ . The nodes in Â are connected with all the nodes
in Fds,i and can be thus all matched with nodes in the subset

F̂ , as long as |Â| ≤ |F̂ |. Since nodes in the subgroups have

already been matched, then |Ads,i| − |Â| = |Fds,i| − |F̂ |,
where |Fds,i| = ds. This implies that whenever |Ads,i| ≤

ds, |Â| ≤ |F̂ | and the perfect matching is possible.

Lemma 4. Consider an Information Flow Graph of a hier-

archical code at time step t. Consider a selection Bk
t that

fulfills the condition (C2). Assume that a subset of α nodes
Bα

t ⊂ Bk
t has already been perfectly matched with nodes in

the previous stepBα
t−1 that in turn fulfill the condition (C2).

9

Consider a node b ∈ Bk
t \ Bα

t , i.e. that belongs to the se-

lection but has not yet been matched.

If all the repairs in the graph are done fullfilling condi-

tion (C3) and condition (C4), and all the blocks bi ∈ Bα
t

are such that |R(bi)| ≤ |R(b)|,

Then it is possible to augment Bα
t−1 with another node

that is matched with b, without violating the the condi-
tion (C2) on the augmented set Bα+1

t−1

Proof. Let us use the following notation: Ad,i = Bα
t−1 ∩

Gd,i and Rd,i = R(b) ∩ Gd,i. Assume that Gds,1 is the

group in which condition (C3) is fulfilled. This condition

requires that |Rds,1| = |ds|. Note that all the nodes in Bα
t

have a repair degree d ≤ ds, which implies that all the nodes

in Ads,i are necessary matched with nodes in Bα
t ∩ Gds,1

6.

Since b ∈ Gds,1, thanks to condition (C2), |B
α
t ∩ Gds,1| <

ds, which in turn implies |Ads,i| < |ds|.

Consider two alternative cases:

case 1: ∃j : 1 ≤ j ≤ gs, |Rds−1,j| > |Ads−1,j |: This
means that there is a subgroup of the group Gds,1 (that be-

longs to G(b)) that has at least one free node that can be
matched with the block b. Since |Rds−1,j | ≤ |ds−1|, this
node can be added without violating condition (C2) and the

lemma is proved.

case 2: ∀j : 1 ≤ j ≤ gs, |Rds−1,j| ≤ |Ads−1,j |: This
means that there are no free nodes in the subgroups. This

implies that:
∑gs

j=1
|Rds−1,j| ≤

∑gs

j=1
|Ads−1,j |. Consider

the nodes in Ads,1 that do not belong to the subgroups

and denote them as Â (they are among the hs additional

nodes), then consider the nodes in Rds,1 that do not be-

long to the subgroups and denote them as R̂. We can write
∑gs

j=1
|Ads−1,j | = |Ads,i| − |Â| and

∑gs

j=1
|Rds−1,j | =

|Rds,i| − |R̂|. Since |Rds,1| = |ds| and |Ads,i| < |ds|, we

have that |R̂| > |Â|. This means that there is at least one

free node in R̂ that can be matched with the blocks bwithout
violating condition (C2) and the lemma is proved.

A.2 Proof of Proposition 1

Proof. Thanks to Lemma 2, proving Proposition 1 corre-

sponds to prove that in a generic time step t, only if repairs
are done with a repair degree d ≥ k, then any selection of
nodesBk

t can be perfectly matched with a selection Bk
t−1.

Consider a repaired node b ∈ Bk
t . All the other k − 1

nodes in Bk
t can be matched at most with k − 1 nodes in

Bt−1. If b has been repaired with a degree d < k, it is pos-
sible that all the nodes in R(b) have already been matched
with the k − 1 nodes in Bk

t , preventing the matching of b.
If d ≥ k there is at least one free node that can be matched
with b. This can be repeated for all the repaired blocks prov-
ing, thanks to Lemma 2, the proposition.

6To be matched with a node bo outside Gds,1, the repair degree of bo

must be bigger than ds, which would violate the condition of the lemma

A.3 Proof of Proposition 2
Proof. Thanks to Lemma 2, proving Proposition 2 corre-

sponds to prove that if a selection Bk
1 is done fulfilling con-

dition (C2), then it is possible to find a perfect matching be-

tween the nodes inBk
1 and the original fragments in F . This

can be proved using iteratively the Lemma 3 from the innest

group that nodes in Bk
1 belong to, to the outest one.

A.4 Proof of Proposition 3
Proof. Thanks to Lemma 2, proving Proposition 3 corre-

sponds to prove that in a generic time step t, where repairs
are done fulfilling the condition (C3) and condition (C4),

any selection of nodes Bk
t that fulfills the condition (C2)

can be perfectly matched with a selection Bk
t−1 that in turn

fullfills the condition (C2).

Thanks to Lemma 4, Bk
t−1 can be found matching one

by one the nodes in Bk
t proceeding from the nodes with the

lowest repair degree to the nodes with the highest one.

References

[1] S. Acedacnski, S. Deb, M. Medard, and R. Koetter. How

good is random linear coding based distributed networked

storage? In NETCOD, 2005.
[2] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,

J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Watten-

hofer. Farsite: Federated, available and reliable storage for

an incompletely trusted environment. In 5th Symposium on

OSDI 2002, 2002.
[3] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Net-

work information flow. IEEE Transactions on Information

Theory, 46(4), July 2000.
[4] F. Dabek et al. Wide-area cooperative storage with CFS. In

Proc. SOSP 2001, Oct. 2001.
[5] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and

K. Ramchandran. Network coding for distributed storage

systems. In Infocom, 2007.
[6] B. Godfrey. Repository of availability traces. http://

www.cs.berkeley.edu/∼pbg/availability/,

2006.
[7] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly

durable, decentralized storage despite massive correlated

failures. In NSDI05, 2005.
[8] S.-Y. R. Li, R.W. Yeung, and N. Cai. Linear network coding.

IEEE Transactions on Information Theory, 49(2), February

2003.
[9] J. S. Plank. A tutorial on Reed-Solomon coding for fault-

tolerance in RAID-like systems. Software – Practice & Ex-

perience, 27(9):995–1012, September 1997.
[10] R. Rodrigues and B. Liskov. High availability in DHTs: Era-

sure coding vs.replication. In IPTPS05, 2005.
[11] M. Steiner. Kad traces. http://www.eurecom.fr/

∼btroup/kadtraces/, 2007.
[12] H. Weatherspoon. Design and Evaluation of

DistributedWide-Area On-line Archival Storage Sys-

tems. PhD thesis, University of California, Berkeley,

2006.
[13] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs.

replication: A quantitative comparison. In Proceedings of

IPTPS’02, Cambridge, MA, Mar. 2002.

10

