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Abstract

The recent explosion of multimedia applications has called for an increasing demand of ad-
vanced search and indexing of multimedia information. Among them, digital video content
is certainly one of the most complex to analyze and represent. From this point of view,
video objects are considered as essential elements for handling video contents, as they pro-
vide accurate and flexible representation for numerous applications such as semantic content
analysis or video coding.

Automated object extraction from videos is a difficult task that has been widely ad-
dressed in the past years in the context of MPEG-4 video coding. Methods developed so far
mostly rely on motion estimation to define the object model and adapt this models frame
to frame. However there is an agreement that robustness of motion and the accuracy of the
support are dependent to each other.

In this thesis, we first introduce a framework for video object modeling based on a
spatiotemporal representation with graphs. The model describes both the internal structure
of object regions and their spatiotemporal relationships inside the shot. This approach is
fully supported by the MPEG-7 multimedia standard, where the information is structured
hierarchically in scenes, shots, objects and regions.

As the next step, we propose a 2D+T scheme for the extraction of spatiotemporal
volumes. The method we developed uses local and global properties of the volumes to
propagate them coherently in space and time. At this point we investigate grouping of
spatiotemporal regions into complex objects using motion models. To address the difficulty
of building motion models, we propose a method to propagate and match moving objects
to areas where motion information is less relevant.

In a third step, we investigate the benefit of semantic knowledge for spatiotemporal
segmentation and labeling of video shots. For this purpose we extend a knowledge-based
system providing fuzzy semantic labeling of image regions to video shots. The shot is
split into smaller block units and, for each block, volumes are sampled temporally into
frame regions that receive semantic labels. The semantic labels are then propagated within
volumes and a consistent labeling of the shot is finally obtained by joint propagation and
re-estimation of the semantic labels between the temporal segments.

Finally, we explore the capabilities of the representation for indexing and retrieval tasks.
We first consider the context of a region-based indexing framework called the Vector Space
Model. We present a study of the model properties and show that the spatiotemporal
representation gives more robustness to the visual signatures compared to the traditional
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keyframe representation. This dissertation concludes by proposing a strategy to compare
efficiently object graphs. To this aim we introduce a similarity measure between graphs
that we further use to search for a given object.



Résumé

L’explosion récente des applications multimédia génere une demande croissante d’in-
dexation et de recherche de I'information multimédia. Parmi les différents types de contenu,
I'information présente dans les vidéos est certainement 1'une des plus complexes a analy-
ser et a représenter. De ce point de vue, les objets vidéo apparaissent comme essentiels a
une bonne gestion des contenus vidéo, car ils constituent une représentation souple et pré-
cise pour de nombreuses applications comme ’analyse du contenu sémantique ou le codage
vidéo.

L’extraction automatique d’objets dans les vidéos est une tache difficile sur laquelle on
s’est penché ces dernieres années dans le cadre du codage MPEG-4. Les méthodes dévelop-
pées a ce jour repose sur I’estimation de mouvement afin de définir un modele et de ’adapter
ensuite image par image. Cependant on s’accorde a dire que la robustesse du mouvement
et la précision du support sont interdépendantes.

Nous présentons dans cette these un cadre pour la modélisation des objets vidéo et
basée sur une représentation spatiotemporelle par graphes. Le modele décrit a la fois la
structure interne des régions de 'objet et leurs relations spatiotemporelle a I'intérieur du
plan vidéo. Cette approche peut étre entierement intégrée dans le standard de description
multimédia MPEG-7, ou I'information est structurée hiérarchiquement en scenes, plans,
objets et régions.

Dans un deuxieme temps, nous proposons un schéma de type 2D+T pour 'extraction des
volumes spatiotemporels. La méthode développée utilise les propriétés locales et globales des
volumes pour les propager de maniere cohérente dans ’espace et le temps. Nous examinons
alors le groupement de volumes spatiotemporels en objets plus complexes a partir de modeles
de mouvement. La construction de modeles de mouvement pouvant s’avérer délicate dans
certaines zones, nous proposons une méthode pour propager et mettre en correspondance les
objets en mouvement dans les zones ou I'information de mouvement n’est pas suffisamment
significative.

Dans un troisieme temps, nous étudions I’apport d’'une connaissance sémantique supplé-
mentaire pour la segmentation spatiotemporelle et 'annotation des plans vidéo. A cette fin
nous étendons un systéme a base de connaissances permettant I’étiquetage de régions dans
une image a la totalité du plan vidéo. Le plan est découpé en un ensemble de blocs d’images
et les volumes a l'intérieur de chaque bloc sont échantillonnés temporellement en régions
spatiales, lesquelles sont alors interprétées par le systeme. L’information sémantique est pro-
pagée a travers les volumes et I’étiquetage final est obtenu par propagation et ré-estimation
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des étiquettes sémantiques entre les segments temporels.

Finalement nous examinons les aptitudes de la représentation proposée vis a vis des
taches d’'indexation et de recherche. Nous considérons d’abord un cadre d’indexation région
basé sur le modele vectoriel. Nous étudions les propriétés de ce modele et montrons que la
segmentation spatiotemporelle permet d’améliorer la robustesse des signatures visuelles par
rapport a une représentation traditionnelle par image clé. Ce mémoire s’achéve en proposant
une stratégie pour comparer efficacement des graphes objet. Dans ce but nous introduisons
une mesure de similarité que nous utilisons pour la recherche d’objets.
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Introduction

Motivation

Nowadays, the average person is confronted to an impressive amount of digital videos and
TV programs, which are in turn stored in constantly growing video databases. How do
we efficiently structure raw video content, this tremendous group of pixels, when context
knowledge is not available? This is definitely a complex task, that even the human brain
cannot cope with as soon as the database become large.

Computer vision scientists usually distinguish low-level descriptions that can be ex-
tracted automatically by a computer program from high-level descriptions that are the one
achieved by our visual system, or that require its intervention. In order to simplify the
interpretation problem, computer vision considers a segmentation which divides the scene
in well distinct visual entities. Automatic segmentation is typically a low-level process as it
outputs coherent segments with respect to a set of visual attributes.

Examples of automatic segmentation processes in video analysis are shot (also known as
temporal) segmentation which groups frames representing a continuous action in space and
time, or image segmentation which groups similar pixels into coherent regions. The main
challenge remaining is object segmentation, where we would like that the extracted segments
correspond to the semantic interpretation of the human brain. This is, as we already said,
a very difficult task without prior knowledge on the objects that should be recognized in
the scene. Fortunately, objects of interest can be decomposed into a set of coherent regions.
The problem is then to find a decomposition which remain robust to spatial and temporal
variations affecting the object. Compared to object detection in still images, a precious gain
is given by considering spatiotemporal representation of objects. Interesting objects own
consequent temporal span and motion. As we will see, taking under account the temporal
dimension facilitates the extraction of objects as well as their comparison.

As it brings together low-level and high-level descriptions of video content, extraction
of video objects is therefore a major point for applications providing content-based func-
tionalities such as manipulations of objects, video browsing or object retrieval in databases.
A flexible and widely adopted content-based representation for indexing video objects has
been defined by the MPEG-7 standard. Among the possible representation, objects can be
described hierarchically by spatiotemporal volumes which are in turn decomposed of frame
regions. Each of these levels can be described by a graph with visual or semantic attributes
expressing exhaustively the external and internal relationships between objects.
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In this dissertation, we will use graph representation and algorithms for building, com-
paring and indexing video segments at different level of interaction, from raw pixels to
complex objects. Benefits are both the powerfulness of the approach and a construction of
a visual description that can be directly used by multimedia applications.

Background

Segmentation of video objects is a delicate issue in video analysis. An indispensable prereg-
uisite is to subdivide first the sequence into shots, where one shot represents a continuous
action in space and time.

Compared to other domains, for instance speech segmentation into phonemes, the math-
ematical model required for the extraction of a video object is difficult to define. The most
accurate methods which have been developed until now necessitates user interaction to se-
lect the objects [76]. As manual segmentation becomes impossible when the duration of the
shot is important, semi-automatic methods have been proposed to alleviate the user’s task.
In a first approach, the user delimits the object area with respect to the background area,
which enables to initialize an object model. This initialization stage is followed by track-
ing in the following frames, the update of the model and the localization being performed
simultaneously. In a second approach, the user interferes to validate or edit the segment
boundaries provided by an automatic segmentation algorithm. In this way, the precision of
the object boundaries is maintained during the sequence. The semi-automatic approach is
highly suitable for extracting a particular object from a shot and gives nowadays excellent
results.

In this thesis we address the case where the user does not supervise the segmentation. For
that, automatic approaches have been proposed. With the recent development of MPEG-4
coding standard, focus have been put on extracting moving objects on the scene, resulting
in a wvideo object plane (VOP) decomposition. Current techniques developed are based
on spatial segmentation (for an image) associated to motion tracking. Motion estimation
is then either performed based on spatial regions or inversely motion vectors are used to
extract the support of the objects [129, 85].

According to Gestalt theory on the perceptual organization of objects, the recogni-
tion would be performed conjointly in spatial and temporal domains [85], assembling and
interpreting spatiotemporal structures. Following these organization principles, spatiotem-
poral methods process the whole set of frames in the shot, requiring to store and process
a considerable amount of data. Thanks to huge progress in computational resources, these
approaches have nevertheless gained in interest from the past few years. Primitive proposed
include video blobs or moving patches. The assembling of extracted structures defining the
objects and organization of the shot. Besides these 3D methods, we focus in this dissertation
on the spatiotemporal approach and investigate efficient procedures to create spatiotemporal
structures.

In the process of automatic video analysis, segmentation and extraction of objects does
not always constitute the main target, but rather an intermediary step towards scene un-
derstanding and indexation of video shots. Unfortunately, the problems of creation of
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spatiotemporal objects and indexing have been treated separately until now. In this thesis
we try to fill this gap and propose a framework for segmentation of spatiotemporal segmen-
tation and indexing of video shots and objects. We will see in the next section how this
framework is designed and our contributions.

Contributions and Outline

The material in this thesis is organized into 4 chapters. First, the modeling of video shot
and the overall framework is introduced. Then, the procedure for extracting objects using
spatiotemporal segmentation is detailed. Applications to semantic annotation, and indexing
of video shots are described afterwards. Experimental results are presented all along the
thesis for the spatiotemporal segmentation and each application.

Following this introduction, the thesis outline is as follows :

Chapter 1 describes a representation of video shot content based on the MPEG-7 stan-
dard. In this context, we define a model for the spatiotemporal representation of video
objects. The chapter ends by a short introduction of the applications in semantic annota-
tion and video indexing.

Chapter 2 addresses the problem of segmentation into objects. It begins with a state of
the art of the existing methods, comparing motion-based and spatiotemporal approaches.
Afterwards, the basics of a spatiotemporal segmentation algorithm is introduced and its
properties are explained on real video sequences. The construction of high-level moving
objects from spatiotemporal regions using motion models is investigated and experimental
results are presented.

In chapter 3, we take advantage of spatiotemporal segmentation to elaborate an applica-
tion targeting semantic annotation of video shots. For this purpose we exploit a multimedia
knowledge base developed by ITI [11] which enables semantic labeling of image regions.
Spatiotemporal regions allows to propagate semantic information within short video seg-
ments. Semantic annotation of the shot is then performed by matching iteratively video
segments while reevaluating semantic and visual properties of spatiotemporal regions.

Chapter 4 is dedicated to the problem of video shot retrieval and indexing from the
spatiotemporal approach. We show the advantages of spatiotemporal descriptions in shot
analysis using an indexing method based on visual signatures. Then we introduce new tech-
niques for search of video objects based on the matching of visual and structural properties
of spatiotemporal regions.

Finally, concluding remarks and perspectives are presented in chapter 5.






Chapter 1

Modeling video content

The growth of multimedia applications has led to the increased need to develop tools to
access and search information. In particular, video data is among the most complex to
represent, because of the diversity of the content. Nowadays the MPEG-7 standard provides
great flexibility for the description of multimedia content. This format enables to organize
hierarchically video content into scene, shots, objects and regions. Objects are a key element
of the representation, linking low-level descriptions to high-level semantic interpretations.
MPEG-7 is valuable as well for low-level applications such as edition and manipulation,
and for specialized applications, such as event detection in medical or sports domains. The
former will require a visual description of objects, while the latter will focus on the visual
and semantic relationships between the different objects composing the scene.

MPEG-7 defines a norm of representation of these relationships in form of a graph.
Graph-based representations are in the core of the extraction process and a magjor tool to
describe the relationships between video entities inside the shots. A noticeable advantage of
these representations is that they enable to analyze relationships independently of the type
of properties considered for the object.

In this chapter, we first introduce a description of video shots and objects based on
the MPEG-7 standard. Then we propose a framework based on adjacency and attributed
graphs for the spatiotemporal representation of video objects and the organization of video
shots. Finally, we will mention different possible applications and introduce those we have
developed in the thesis.

1.1  Hierarchical modeling in the context of MPEG-7

The number of audiovisual documents available in a digital form has grown exponentially
during the last decade. Meanwhile, managing and searching content provided from multiple
sources has become more difficult, since each broadcasting organism has its own proprietary
way to describe and index the content.

MPEG-T7 standard has emerged as a potential solution to this problem, defining a flexible
framework to organize multimedia content. In this section, we describe the guiding princi-
ples of the standard and show an object representation can be decomposed and exploited
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using the tools provided by the standard. We then illustrate the assets of the MPEG-7
framework by constructing a complete description for a given example, dealing with both
semantic and structural aspects of the content.

1.1.1 The MPEG-7 framework
Goal and Scope of the Standard

MPEG-T7 is a specification of “Multimedia Content Description Interface”. This standard
for representation of multimedia metadata has been first released in 2001. The first ob-
jective of MPEG-T7 is to provide interoperability between different multimedia systems and
applications, so that different systems can exchange content description. The second target
is to help users and applications to search and filter content thanks to a set of standardized
tools and hierarchical description of the content [25].

Fig.1.1 shows the scope of the MPEG-7. The standard does not specify the means for
content extraction, but defines structures and tools for describing and managing audiovisual
(AV) content for a wide range of applications. Main application types are filtering of
broadcast media, personalization and interactive television, search in multimedia databases
and over the Internet. Application domains are even wider, including biomedical imaging,
distant education, e-commerce and many more. For instance, MPEG-7 can provide the
descriptions for playing a few notes for the instrument and retrieving the tune, define a
set of objects with particular relations, retrieve examples from a library and select those
the user is interest in, or simply select and navigate within audiovisual programs from user

preferences.
Feature —
Extraction

MPEG-7 Standard

Search/Filtering
Application

Figure 1.1: Scope of the MPEG-7 standard.

The MPEG-7 conceptual model

To fulfill the requirements of all different applications and scenarios, MPEG-7 has to man-
age many aspects of the AV content description. One of the main challenge of MPEG-7 was
to gather research communities, each one following its own beliefs and technical insights.
Indeed, database researchers argue that only a standardized structure and linking mech-
anisms for high-level descriptions is necessary, whereas signal processing community aims
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to define standardized features as for describing and exchanging the representation of AV
content [95].
Aspects covered by the standard includes :

e Creation and Production (Title, creator, classification of production).
e Usage (Access, publication rights, ...).
e Media (Storage format, encoding).

e Structural aspects (spatial, temporal or spatiotemporal components of the content
with audiovisual and semantic descriptors.)

e Conceptual aspects (objects, events, interaction among objects).
e Collections (sets of related objects).
e User Interaction (register user action and preferences).

Conceptual modeling [117] is in charge of building a high-level model of the audio-
visual domain based on content description requirements. This approach uses notion from
both Entity-Relationships (ER) and Object-Oriented (O-O) modeling, two methodologies
leading an important role for both database and software design. The preliminary step
in conceptual modeling is to identify the different elements of the domain, or principal
concepts. The principal concepts results from the decomposition of audiovisual content
into different levels of description, such as structure, semantics, features and meta-data.
Examples of concepts from these levels are regions, segments, spatiotemporal organization,
objects, events, color, texture, shape, motion, title, author. Figure 1.2 lists the available
concepts in function of these categories and their type.

Following E-R modeling, principal concepts are further classified into modeling con-
structs as follows :

e Entities: A principal object in the AV domain. Shot, objects, events are example of
entities.

e Relationships: An association among one or several entities. There are three main
relationships:

— Generalization specifies an is-a relationship that partitions a class of entities into
mutually exclusive subclasses. For instance, a key-frame is a frame, and a shot
1S a segment.

— Aggregation specifies an specifies a has-A assembly-component relationship of
entities. As an example, a video has multiple shots, and a frame is composed of
regIoNns.

— Association specifies a relates two or more entities which do not exhibit existence
dependency. For instance, a segment depicts an event, and regions are associated
to other regions in an image.
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Complete
Description

Content
Management
Ancillary
Bandwidth, Camera, Instrument, Media information, Medium, Person,
Recorder, Terminal, Usage, Usage history, User, User preference
Meta Annotation, Archive, Associated Information , Audio domain, Author,
Classification, Contract, Date, Description IPMP, Financial, Format,
I IPMP, Language, Locality, Market, Meta information, Order key,
Organization, Owner, Place, Rating, Rights, Technical staff, Text,
Title, Translation, Unique identifer, Visual domain
Process
Acquisition, Coding, Creation, Delivery, Editing, Manipulation,
Presentation, Publication, Storage, Streaming, Transcoding
Content
Description

AV data

Audio, Abstraction level, Aggregation, Composition, Data, Database,
Edition, Edition, Image, Mix, Music, Program, Promotion, Rush,

Sound effect, Speech, Summary, Symbolic audio, Trademark image,
‘

Variation, Version, Video, View, Visual data

Audio features, Color, Deformation, Feature, Motion, Noisiness,
Shape, Sketch, Texture, Timbre, Visual features, Volume

Animation, Audio spectrum, Background, Component, Composition
Structure Effect, Connectivity, Cut, Duration, Edit, Embedded text, Frame,
Image type, Internal Transition Effect, Key frame, Key item, Key
[N region, Locator, Region, Registration, Relationship, Segment,
Sequence, Shot, Sonic sketch, Space, Spatial geometry, Spatial
relationship, Structure, Synchronization, Synthetic Key Fame,
Temporal relationship, Time, Transition Effect
Model
Analytic model, Classifier, Mesh, Model, Probability model, State-
transition model, Synthetic model
Semantics Action, Audio object, Category, Character, Conversation, Descriptive
Structure, Episode, Event, Face, Frame, Functor, Graph, Knowledge

| model, Mental Space, Morphism, Natural Transformation, Object,

Pose, Relationship, Scene, Script, Semantics, Source, State, Story,
Visual object

Basic Elements

Description

Coded Description, Confidence, Description, Descriptor, Descriptor
Value, Hierarchy, Priority, Reliability, Scalability

Language

Composite data type, Description Definition Language, Identifier,
Primitive data type

Figure 1.2: Classification of MPEG-7 concepts. Content management regroup information
on creation, media coding and storing, and content usage. Content Description describes
the structure of the AV content at different levels: AV data, Features, Structure, Model and
Semantics. Basic elements covers modeling and construction of MPEG-7 descriptions.
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e Attributes: Descriptive information about an entity or relationship. As an example,
color, texture or motion are properties of the entity object.

An example of these constructs illustrating the decomposition of video into segments is
shown fig.1.3.

1 o+ KeyFrame
ideo @
Video 1 = Shot ‘T L Frame
: 1
1 1.*
Region
1..%
‘e
Segment <} Image
1..*

Figure 1.3: Conceptual modeling diagram for the description of video into segments.

Construction of MPEG-7 descriptions

Once established, conceptual models are transformed automatically into appropriate struc-
tures for content description, called Description Schemes (DSs). The construction of a
basic MPEG-7 description is illustrated by the conceptual (UML) diagram of fig.1.4. In
MPEG-7 terminology elements of raw audiovisual content are referred as Data, regardless
of the support or technology. It is sufficiently broad to encompass a large set of media
types such as graphic, images, video, music, text, or multimedia source on the web. Data is
characterized by distinctive Features that signifies something to the end user or the system.
Each feature is described by one or several Descriptors (Ds) that defines the syntax and
the semantics of the feature representation, and enables to compare AV content from their
descriptor value. For instance, possible descriptors for the color feature are the histogram
of the r,g,b components or more simply their mean.

The description of the content is structured from description schemes. A description
scheme specifies the structure and the semantics of relationships between its components,
which may be both descriptors and description schemes. A descriptor contains only a basic
data type, whereas a description scheme can include another DS. Finally, a description
scheme and its set of descriptors values forms a description of the data.

The Description Definition Language (DDL) provides means to structure descriptors
into description schemes. It expresses both spatial, temporal, and conceptual relationships
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between objects and provides a rich model for links of references between the descriptions
and the described data. XML Schema Language as been selected by the MPEG consortium
as the MPEG-7 DDL, adding a few specific extensions. The language naturally describes
nested structure and allows interoperability. By authorizing modifications and creation of
new DSs, DDL ensures extensibility of the standard for different application domains.

In practice MPEG-7 descriptions are in general stored and transported in a binary coded
representation (Bim). MPEG-7 Systems specify the functionalities to store, transport the
description and its synchronization with the data stream.

Description
Definition
Language
defines
0.* Description AV Content 1.*
Scheme Item
¢ ¢

1..% 1..%

— describes signifies
Descriptor M

1.* 1.*
to

User or
System

Figure 1.4: UML diagram describing the hierarchy of the MPEG-7 description.

MPEG-7 Description Tools

A large set of predefined descriptors and description schemes using the MPEG-7 DDL have
been included in the standard, referred as Description Tools. The standardized description
tools make up three of the six parts of the MPEG-7 standard, namely part 3 (Visual)[89],
part 4 (Audio)[90], and part 5 (Multimedia Description Schemes)[91].

Description tools use generic basic elements extending the XML Schema Language.
Schema Tools assists in the packaging and annotation of MPEG-7 descriptions. The tools
include numerical and string data types (values, ...), links and locators (time, ... ), refer-
ences to avoid duplicating the description, and textual annotations. These annotations are
either flexible (FreeText) or structured (useTerms) by including fields corresponding to a
set of questions (Who?, What Object?, What Action?, Where?, When?, Why?, How?). It is
further possible to define controlled terms with Classification Schemes (CS), which enables
to standardize vocabularies for different application domains.
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Audio and Visual description tools are used to describe audiovisual content. The visual
descriptors allow to search and filter image and videos based on features like Color, Texture,
Object Shape, Object Motion and Camera Motion or Location. Similarly, audio tools enables
to search and filter spoken and music content based on features like spectrum, harmony,
timbre and melody.

The structure of an audiovisual document itself is described by Multimedia Descrip-
tion Schemes (MDS) tools which define metadata structures for describing and annotating
audio-visual (AV) content. An MPEG-7 description can cover both content description
and content management aspects. Complex descriptions can be split into different descrip-
tion units. For instance a description unit can describe a particular descriptor, object or
abstraction.

The core element that describes structural aspects of content is the Segment DS. This
description scheme is an abstract base type representing an arbitrary physical or logical
section of audiovisual content like audio segments, video segments, audio-visual segments,
moving regions, and still regions. Common information to all types of segment relates to
creation information, usage information, media information and textual annotation.

—+—+—+—+—+—+—++++++++++++»
Time

AudioVisualSegment | |
Segment
Decomposition

AudioSegment [N I

VideoSegment I | |
Segment
Decomposition
MovingRegion StillRegion
(Spatiotemporal) (Spatial)
Segment
Decomposition
—_—

Figure 1.5: Hierarchy of mpeg-7 segment DSs.

A segment may include both spatial and temporal properties. A temporal segment may
be a set of samples in an audio sequence, represented by an AudioSegment DS, a set of
frames in a video sequence, represented by a VideoSegment DS or a combination of both
audio and visual information described by an AudioVisualSegment DS. A spatial segment
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may be a region in an image or a frame in a video sequence, represented by a StillRegion
DS for 2D regions and a StillRegion3D DS for 3D regions. A spatiotemporal segment can
correspond to a moving region in a video sequence, represented by a MovingRegion DS or
to a more complex combination of visual and audio content for example represented by an
AudioVisualRegion DS.

Segments are not necessarily connected, in both spatial and temporal domains. A tem-
poral segment (VideoSegment, AudioSegment or AudioVisualSegment) is said to be tempo-
rally connected if it represents a sequence of continuous video frames or audio samples. A
spatial segment (StillRegion) is said spatially connected if it is composed of a group of con-
nected pixels. A spatiotemporal segment (MovingRegion) is said spatially and temporally
connected if the temporal segment is temporally connected and if each one of its temporal
instantiations in frames is spatially connected.

A recursive or hierarchical decomposition of the AV content into segments that form a
segment tree can be described through the SegmentDecomposition DS. The SegmentRelation
DS describes additional spatiotemporal relationships among segments. This decomposition
of AV content into segments is illustrated fig.1.5.

Besides the description of the content structure, the Segment DS enables to represent
conceptual aspects. The Semantic DS provides a description of the narrative world in terms
on Events, Objects, Concepts, Places, Time in narrative worlds. Figure 1.6 shows the
conceptual modeling for the description of a narrative world.

AbstractionLevel

4' Object M—'AgentObject
.
Segment S,

-

Semantic
Relation

Q
/\

Semantic

describes

captures [ Ec—
AV Content P Narrative world

Figure 1.6: Conceptual modeling for the description of semantic aspects captured by the
AV content.

Semantics depicts information relating to the underlying meaning or understanding of
the audio-visual content. Each segment structuring the AV content can depict semantics.
Object, Event, Place and Time are the available semantics. The conceptual aspect of the
AV content can be further structured as a graph by specifying the relationships between
the notions.

The core description scheme associated to semantics is the SemanticBase DS, a generic
abstract type to describe the aforementioned semantic notions. It can be instantiated into
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Object, Event, SemanticPlace and SemanticTime DSs. An object which performs an action,
like a person, organization, animal, is extended to an AgentObject DS. Finally, SemanticPlace
and SemanticTime DSs describe, respectively, a place and a time in a narrative world.

The Semantic DS contains all the semantic descriptions of an audiovisual item. As for
segments, semantics are organized in a graph or tree. The SemanticRelation DSs describes
the edges between semantics.

Other forms of content organization is provided by collections and models. A collection
groups AV of the same type, including segments, descriptor, or semantics. Relationships
between collections are expressed with the CollectionStructure DS. An example of collection
is given fig.1.7. To link features and content to semantic, the audiovisual content, descriptors
and collection are described by a model. ProbabilityModel DS describes different statistical
functions and probabilistic structures to describe the AV content data. The AnalyticModel
DS is a collection of examples of AV content or clusters of descriptors used to provide a
model for a particular semantic class. The Classifier DS describes different types of classifiers
that are used to assign the semantic labels to AV content or collections.

AV content

/\

DescriptorCollection SegmentCollection
v
Model

— v

AnalyticModel ProbabilityModel Classifier

Figure 1.7: The Collection DS enables to organize various types of collections. Here we illus-
trate collection of descriptors (DescriptorCollection DS) and images (SegmentCollection DS).
Relationships within an between collections can also be expressed, for instance a similarity
measure between two descriptors or two collections.

The last set of tools are related to the end-user interaction with a multimedia system.The
User Interaction DSs describe user preferences and usage history pertaining to the consump-
tion of the AV content. This allows, for example, matching between user preferences and
MPEG-T7 content descriptions in order to facilitate personalization of audio-visual content
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access, presentation and consumption.

1.1.2 Description of video shots
Temporal decomposition of video

In our context, we consider movie or TV program as the audiovisual content. Video is
usually decomposed temporally in scenes, shots and keyframes. A shot depicts a continuous
action in time and keyframes are representative frames within the shots. Shots can be
further grouped into a scene when their semantic content is related. Shots within a scene
may or not be visually close to each other. For instance a scene may be composed of
a sequence of shots where the action of the character is taken successively from different
views.

It should be noticed that MPEG-7 description tools offers a large degree of freedom for
structuring AV content, which increases the complexity of understanding and interoperabil-
ity between applications. To simplify the problem, the MPEG-7 schema has been extended
to several profiles, which imposes constraints on the elements of the description. The profile
with the largest scope for AV content is the Detailed AudioVisual Profile (DAVP) [12]. The
top-level structure for AV content description within this profile is shown fig.1.8.

MPEG-7 I:l MPEG-7 description

[[] optional in MPEG-7 description
|:| AV description

Description Description Description
Metadata || “SemanticDescription” [ “Content Entity” I:l Optional in AV description

I:l Audio description
Multimedia Content |:| Visual description

I:l Optional in visual description

Scene Structure

MediaSource Media Creation
Decomposition | | Information | | Information

o

| VideoSegment

AW

MediaTime Temporal
Decomposition

Global Transition

MediaTime

Text annotation

Temporal Semantic

Decomposition

v

AudioVisual

AudioSegment

MediaTime

Semantic

CreationInformation

1
1
1
1
1
1
1
1
1
1
i
Segment H
1
1
1
1
1
1
1
1
1
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Figure 1.8: Simplified top-level structure for describing AV content.

At a first level, the description includes information about its identification and creation
(DescriptionMetadata). Various types of descriptions my be used in MPEG-7. SemanticDe-



1.1. Hierarchical modeling in the context of MPEG-7 15

Principal | Definition Type Description Related concepts

Concept

Scene An episode or sequence | Semantics | Segment DS Segment, location,
of events representing event, dialog, shot,
continuous action in one story, character,
location mosaic, camera

motion

Shot The temporal unit of | Structure Segment DS Cut, segment, acqui-

video between cuts sition, scene, Bridg-

ing shot, long shot,
close-up, take

Frame A single image from a | Structure VideoSegment DS Image, shot, segment
video sequence Key frame
Region A connected group of | Structure Object Bound- | Segment, image, ob-
pixels in visual data ing Box, Spatio- | ject. Partition
temporal Region,
StillRegion DS,
MovingRegion DS
Object Descriptions of real ob- | Semantics | Object DS, Concept | object behavior,
jects, composites or ab- DS, ConceptObject | semantics, region,
stractions of these ob- DS source, audio object
jects
Semantics | Information relating to | Semantics | Semantic DS Knowledge  model,
the underlying meaning object, event, char-
or understanding of au- acter, story, source

diovisual content

Table 1.1: Elements of MPEG-7 audiovisual principal concepts list intervening in a video
shot.

scription is used to describe conceptual aspects appearing (or captured) by the AV content.
As several description may share common semantic entities, semanticDescription stands as
a separate description that can be referenced in other description of contents. ContentEntity
describe the structure of AV content. The media can then decomposed temporally accord-
ing to audio and visual modalities. The visual content is described by a recursive structure
of VideoSegment and TemporalDecomposition DSs. Each video segment is decomposed tem-
porally into shots and optionally transitions. Structures containing both audio and video
information, such as a scene structure are described by an AudioVisualSegment DS. Each
segment of the temporal decomposition (Audio/Video, AudioVisual, Shot) is localized by a
timing structure MediaTime describing its start time and duration, and can be optionally
annotated with the TextAnnotation DS or described by its semantics.

Structure of a video shot

A video shot is characterized at different level of understanding. At the semantic level, a
shot represents objects in a real world scene, performing some action. At the syntactic level,
the shot is composed of AV data structured into segments (spatiotemporal regions, moving
regions) and described by some features.

In the MPEG-7 conceptual model, principal concepts include Scene, Shot, Frame, Re-
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gion, Object and Semantics. The description of these concepts and their corresponding DS
is listed in table 1.1.

|:| Visual description

|:| Optional in visual description

Semantic

TextAnnotation |
CreationInformation
1

1 Moving regions (objects)

:

Camera
Visual Motion
Descriptor

MediaTime

SpatioTemporal
Decomposition

\ 4

Moving |
Region

| Visual
Descriptor
TextAnnotation | —— |

SpatioTemporal Temporal
Mask/Locator || Decomposition

CreationInformation

Figure 1.9: Simplified structure for video shot description.

Figure 1.9 illustrates the description of a video shot. The Shot DS extends the Segment
DS, conveying TemporalLocation (MediaTime), Creationlnformation, TextualAnnotation or Se-
mantics. It can be also depicted by global elements such as camera motion, image or group
of pictures (GoP) visual descriptors. The SpatioTemporalDecomposition DS, which imple-
ments the abstract SegmentDecomposition DS, decomposes the shot into moving regions.
The MovingRegion DS describes a spatiotemporal region of a video and enables to represent
visual objects that are detected in the sequence (object, person, face, ...). One moving
region is located by a SpatioTemporalLocator DS describing its trajectory and its location
(bounding box, polygon). Spatiotemporal decomposition may be recursive, complex objects
being further decomposed into several moving region elements. It should also be noticed
that a moving region is not necessarily connected in space or time. Objects are described
naturally on a per-shot basis. The association between appearances of the same object in
different shots can be managed by referencing the entity being represented with a Semantic
DS. Inversely, appearances of one object within the video can be referenced within the se-
mantic description with the MediaOccurrence DS, containing location and visual features of
the objects at one moment of the sequence. Video segment description includes visual and
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Feature Video Still Moving
Segment | Region | Region

Color X X X

Texture X

Shape X X

Motion X X

Camera Motion X

Time X X

Table 1.2: MPEG-7 visual features for the description of video segments.

semantic aspects. These descriptions are explained in the following sections.

Visual description

Numerous descriptors have been proposed in the past to describe the video content. The
selection of descriptors has been for long based on the targeted application and domain
[80, 108]. MPEG-7 standard has benefited from this effort to propose a set of basic visual
descriptors which can serve for a wide range of applications. Although these descriptors are
not necessarily optimum as verified in[37] they have been shown to be reasonably efficient
and robust for content analysis tasks [81, 99, 101, 61, 26].

To describe a video segment, MPEG-7 MDS reports 6 feature types, widely used in the
context of image/video indexing and retrieval. Table 1.2 lists these features according to
the specific segment they apply to. A shot segment can be globally described by the camera
motion, and color (GoF/GoP color descriptor). Shape, color and texture features describe
(spatiotemporal) regions; and the motion feature is specific to the MovingRegion DS. A
brief description of the visual descriptor and their use in context of the thesis is presented
below.

Color descriptors

Color is one of the most used features in image and video retrieval systems. The MPEG-7
visual part defines four descriptors to capture color distribution, spatial layout and spatial
structure of the color in natural images and videos [81]. The histogram-based descriptors
(ScalableColor, ColorStructure) captures global distribution of the colors. DominantColor
gives the distribution of the salient colors in the image. ColorLayout captures the spatial
layout of the colors in a compact representation. To ensure inter-operability, the descriptors
are defined for one or a limited number of color spaces. MPEG-7 supports four color spaces,
namely RGB, YCbCr, HSV, HMMD, or Monochrome. The HMMD space is composed of
the Hue (H), the maximum (max) and the minimum (min) of RGB values, and the difference
between the max and min values. Descriptors are preferentially defined in non-linear spaces
(HSV, HMMD) closely related to human perception of color. We focus on the histogram-
based descriptors which have been widely used for image and retrieval applications. All
descriptors are valuable as they have been extensively selected to have good recall rates,
but they are highly redundant [37], and therefore statistically dependent of each other.
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Figure 1.10: Computation of the Color Structure Descriptor. Bin values are incremented
by visiting a 8x8 structuring element. Extracted from [91].

ScalableColor Descriptor (SCD) performs color histogram in HSV color space at different
level of quantization. The Haar transform is used to reduce the number of bins of the original
histograms with 256 bins to 16, 32 or 64 bins. The distance between two descriptors can
be very efficiently computed in the Haar Coefficient domain by counting the number of
bit positions where the coefficient signs are different (Hamming distance). This reduce the
computational cost of similarity matching while maintaining a marginal loss precision.

ColorStructure descriptor (CSD) describes both the spatial structure of the colors in
an image or region as well as their frequency of occurrence. The descriptor is represented
as a 256 bin histogram in a special color space (HMMD) and is calculated by visiting a
structuring element (usually a 8x8 square) at each location : the bins corresponding to
the colors that appears in the structuring element are incremented. It is finally normalized
by the number of positions occupied by the structuring element, which depends of the
image/region size, and non-uniformly quantized. The accumulation process is illustrated
fig.1.10.

Texture descriptors

Texture is another important feature in image analysis and retrieval which is particularly
suited to describe region properties.We have retained two MPEG-7 texture descriptors.
The first one, the homogeneous texture descriptor (HTD) provides a quantitative charac-
terization of homogeneous texture regions for similarity retrieval. The second one, the local
edge histogram descriptor (EHD) is useful when the region is not homogeneous in texture
properties.

HomogeneousTexture is based on the local spatial frequency statistics of the texture.

HTD = [cwg,std, €1, 76307d17”' 7d30] (11)

The descriptor is composed on the mean avg and deviation std of the region pixel intensities,
followed by the mean energy e; and energy deviation d; computed by filtering the image
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with a bank of 30 Gabor filters (6 frequency times 5 orientation channels). A distance
function is also defined by a normalized weighted L1 norm over the frequency channels :

Npr=62

Dpr(HTy, HTy) = >
=1

HTy(i) — HTy(i)

o

(1.2)

o, is a normalization value for the i*" component of the descriptor, which can be computed
by the standard deviation of HT'(i) over the complete database [81].

Edge histogram describes the spatial distribution of 4 directional edges (vertical, hor-
izontal, diagonal with direction 45 and 135 degrees) and one non-directional edge. The
image is partitioned into 16 sub-images. The number of blocks in each sub-image is kept
constant by adapting the block size for the sub-image. For each block and each type of
edge, an edge strength is computed by applying a 2x2 edge filter on the average intensity
values in 4 sub-blocks. A block is considered to contain a type of edge if the edge strength
exceed a minimum threshold value. In total, a local histogram of 80 bins B' is formed from
the edge decomposition of the sub-images (16 sub-images, 5 types of edges). This descriptor
can be improved for retrieval tasks by adding global and semi-global levels of localization
of an image [101]. The global edge histogram BY summarizes the distribution of the edges
in the whole image and is computed by cumulating the local histogram for each type of
edge (5 bins). The semi-global edge histogram B*Y is obtained by cumulating the local
histogram on 13 subsets of sub-images : rows (4), columns (4), corners (4) and center (1).
Bin counts are further normalized by the total number of image blocks in the sub-image
and non-linearly quantized. The resulting vector with 150 coefficients can be used after
reconstruction for similarity retrieval with the following distance measure.

Dgnp(Bi, By) = Z|B1 — By |+5><Z|Bg = BY(@)|+)_ B (i) - By (i)] (1.3)
i=0 ]

Since the number of bins of the global histogram is relatively smaller than that of local and
semi-global histograms, a weighting factor of 5 is applied in eq.1.3.

Shape descriptors

Shape as played an important role in searching for image objects. However, shape features
are less developed than their color and texture counterparts because of the inherent com-
plexity of representing shapes and depends on the quality of the shape extraction process.
MPEG-T7 supports both region-based and contour-based shape descriptors. Here, we retain
the RegionShape descriptor, which has been demonstrated to perform well on many type
of media content [37]. This descriptor expresses the pixel distribution of the shape of a
region or a complex object using the Angular Radial Transform (ART) [89]. A set of 36
basis function is used with various angular and radial frequencies. The feature vector is
made of the ART coefficients, normalized by the magnitude of the largest coefficient and
non-uniformly quantized to 4 bits. The descriptor can be applied to any arbitrary region,
is compact (35 bins) and has been shown robust to noise. Examples of shapes that the
descriptor can distinguish are given in fig 1.11.
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55 s

Figure 1.11: Examples of shapes that can be described with the RegionShape descriptor.
Extracted from [91].

(@) (b) (c)

Motion descriptors

Four descriptors characterize various aspects of motion: camera motion, motion trajectory,
parametric motion, and motion activity in MPEG-7, which characterize 3D camera motion
parameters, temporal evolution of key points, the motion of regions, and the intensity or
pace of motion, respectively.

The CameraMotion descriptor characterizes 3-D camera motion parameters within a
temporal segment. The camera operation described includes Panning, Tilting, Rolling,
Zooming and Static.

The ParametricMotion descriptor depicts the motion of objects in video sequences, as
well as global motion, with a parametric motion model. A powerful and simple model is
given by the affine motion model.

-zl e
vy(z,y) as ay as Y

The 2D apparent motion is obtained by orthographic projection of a 3D planar surface
undergoing an affine motion. Compared to more complex parametric models, the affine
parametric model achieved a low motion estimation error (on the total region area) in most
situations, notably when the region area is small [68]. To estimate global motion in a frame,
a robust method based on iterative dominant motion estimation is used [98]. Concerning
motion models of regions, we use the method of [120], which has been used in the MPEG-7
XM experiments. The approach consists in estimating roughly the global displacement of
the region (ap,a3), and then compute a local optimum for the remaining rotation parameters
(a1, az, a4, as). In chapter 2, global motion is estimated to compensate camera motion in a
sequence of frames. We prefer using ParametricMotion descriptor instead of CameraMotion
descriptor as the compensation can be done directly from the parametric motion model.

Localization

Locating efficiently a region or object in also important in search and retrieval. The Re-
gionLocator descriptor gives a brief description of the localization of a spatial region with
a bounding box or a scalable polygon. SpatioTemporalLocator extends this descriptor to
moving regions in multiple frames by one or several sets of a reference region and its mo-
tion (fig.1.12). Rigid moving regions are in general described by the ParameterTrajectory
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descriptor referencing a set of reference regions and their motion model parameter along
time. When the motion is non-rigid, FigureTrajectory is used, describing the trajectories
of a set of points (e.g. a polygon) of the region. These descriptors are particularly efficient
for hypermedia applications.

\ 4

Reference Region Reference Region Reference Region

Motion Motion Motion

Figure 1.12: The SpatiotemporalLocator descriptor localizes a moving region with a set of
reference regions and their motion. FEztracted from [91].

A very useful and concise information on the localization and geometry of a spatiotem-
poral region is given by the Center Of Mass descriptor (CM)

CM = {p,cz,cy,ct} (1.5)

where p is the percentage of occupation of the region in the shot, (cz, ¢y, ¢;) its coordinates
relative to the frame size and shot duration.

Finally, the description of the complete region mask is not included in the standard, but
a reference to a labeled image can be added in the StillRegion description [12].

Structural relations

The structural description of a video segment can be characterized in a hierarchical struc-
ture with SpatialDecomposition and TemporalDecomposition DS, as we mentioned previously
in the section on the overview of the description tools. However, a tree does not depict the
spatiotemporal relationships between the different objects. The Graph DS and SegmentRe-
lation DS are used to describe a graph structure between segments. Nodes correspond to
segments (e.g. MovingRegion) and the edges to relationships between segments. A relation
is either quantitative, using a specific vocabulary or qualitative by specifying the strength of
the relation (a value between 0 and 1). Two classification schemes are included in the stan-
dard, describing temporal and spatial relations, the TemporalRelation and SpatialRelation
CS, respectively.
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Temporal relations describe the relationship between two multimedia objects with re-
spect to time. The topic of relations between temporal intervals has been first addressed in
[5], which contains a definition of a complete set of temporal relations between two actions.
These relations are: before, during, overlaps, starts, ends, equal and their inverses (except
for equal). Some of these relations are illustrated in fig.1.13 (a).

When defining a spatial relation between regions, each argument is represented by the
minimum bounding rectangle (MBR) of the region, as shown fig.1.13(b). Spatial relation
can be grouped into: a directional relation (south,
relnorth, west, or east), a mixed directional relation (northwest, northeast, southwest, or
southeast), or a positional relation: left, right, above, below, or under. The above relations
are obtained by combining Allen’s interval temporal logic on (x,y) spatial coordinates.
MPEG-T7 defines the very basic spatial relations; a refined vocabulary for spatial relation
between objects has been proposed in [70], defining overlap, contains, touch, disjoint for
spatial intervals.

In the general case, when the relations are insufficient to describe the interaction between
two objects in the application domain, specific relations are created in a new classification
scheme.

AAA BBBB AAA AAA AAA
BBBBB BB BBBBBB
A precedes B A starts B A meets B A during B
(a)
A A A
A
B B B B
Aleft B A east B A above B A northeast B

(b)

B B A A
B | B

A contains B A touches B A overlaps B A disjoint B

(c)

Figure 1.13: Examples of structural relations between segments. a) Temporal relations. b)
Spatial Relations. ¢) Other possible spatial relations not defined in the SpatialRelation CS.
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Semantic description

In some applications, the graph structure is of no real use, and the user can be more inter-
esting in the semantic meaning of the content. In multimedia databases, a conventional way
to model domain knowledge is given by ontologies. An ontology is a data model formal-
izing the concepts within the domain and their relationships. Expressing domain-specific
ontologies in MPEG-7 has been early reported as a problematic issue for two main reasons
[94]. Firstly, the MPEG-7 schemata have been inspired by the domain of broadcasting and
audiovisual-based entertainment, and have been shown not efficient for describing highly
structured domain such as medicine or sports [136]. The second problem was the integration
of current semantic descriptions, such as the RDF (language) or ontology-based technolo-
gies (DAML+OWL) into the MDS (based on XML syntactic data schemes). Among the
solution proposed, Tsinaraki et al. in [130, 131] express the MDS as an ontology with OWL,
and defines domain-specific ontologies by extending the MDS core ontology. Garcia et al. in
[7] follow in this direction and provides a complete description of the standard in OWL.
Domain specific concepts are then mapped to the one provided by the MPEG-7. To have
a better description of semantic aspects, [128] proposes to reserve MPEG-7 XML schemata
for describing the structural relations of AV content, and use OWL to model the seman-
tic aspects using domain-specific vocabulary. Vembu et al [136] go further and express a
new approach to design multimedia ontology based on the MPEG-7 standard, replacing the
Semantic Tools.

However, MPEG-7 defines structure for describing graph of relations based on a triplet
(source relation target) as in the RDF. Basic ontologies can be constructed using the se-
mantic part of MPEG-7, with the use of classification schemes (CS) to define a controlled
vocabulary and its relationships. MPEG-7 has a predefined set of semantic relation, ex-
pressed by the SemanticRelation CS. SemanticRelation can depict the interaction between
entities in the narrative world. For instance, New York is part of Manhattan, a cat is a
specialization of animal, or banana property concept ripeness.

MPEG-7 distinguishes two main levels of semantic entities, individual instances of AV
content (object A in shot B) and formal abstractions representing a generic class of entities
(“Person” “Football game”,...). Fig.1.14 illustrates the segment-semantics relation and the
abstraction procedure. At the top level, a formal abstraction is filled with a concrete
instance using the relation exemplifies. Semantic entities perceivable in the AV content can
be located in the media stream with the MediaOccurrence element and inversely a segment
can reference any semantic description with the semanticRef element.

Most of time segment-semantic relations cannot be assigned with certainty to a video
segment, when the relation has been machine-generated using a content analysis proce-
dure. The strength of the relation can be specified between the formal abstraction and
its instantiation (object A exemplifies “Person” with degree 0.8) or directly in the segment
description (shot B shows “Person” with degree 0.8). Semantic relationships can be also
weighted: comparison of two objects with the similarTo relation, or causality between two
events with the resultOf relation. Finally, two objects representing the same entity in the
real world are related with the identify relation e.g. “Person A” identifies “Person B” means
that A and B represent the same person. Such weights can be assigned through the content
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extraction procedure to segment-semantics relations, or assigned manually by a domain
expert(e.g. object-event and object-concepts relations).

Content Entity _ Semantic Description

| |

o MovingRegion | Object Object |

] el mr A V A 1 “Person” |

- v o ’ v v exemplifies :
S — | Semantic (Ref) | | MediaOccurence SemanticRelation |~ !
1 1

Figure 1.14: Construction of a formal abstraction.

1.1.3 Example of representation with the MPEG-7
Definition of a content model

The flexibility and genericity of the MPEG-7 standard can lead to generate quite complex
and intricate descriptions, even for describing a simple scene. Thus, the covered aspect and
the expression of the relations between them must be defined with attention. Attempts to
formalize models for content description with the MPEG-7 have been proposed in [2, §].
[2] proposes a generic “hanging basket model” to organize mpeg-7 metadata and apply this
model on user preference metadata. [8] address the problem of organizing the low-level
feature and high-level semantic aspects of multimedia content within a single framework.
In the same spirit, we describe here content description model to organize the content of
video shots. This model is illustrated fig.1.15.

Visual description and spatiotemporal relationships are grouped within contentEntity
descriptions. Visual objects within a shot are described using the spatioTemporalDecom-
position and movingRegion DS (fig.1.15(a)). The movingRegion DS defines location, visual
descriptors, motion of the object and can reference its semantics. Recursive decomposition
is permitted for describing complex objects or reflect object changes within the shot.

The TemporalDecomposition DS is used to group and reference events occurring in the
shot (fig.1.15(b)). Each level of the decomposition (shot, object, region) can reference
semantics perceived in the shot. Global semantics (narrative worlds, abstraction) related
to the shot are referenced within the shot segment(not shown in the figure). The objects
intervening in each event along with their spatiotemporal relationships are indicated within
the related event segment.

Semantic entities referenced in the visual description and their semantic relationships
are defined with a semanticDescription DS (fig.1.15(c)). Objects, events and narrative worlds
are grouped in distinctive descriptions. To relate occurrences of semantic entities into spe-
cific temporal segments, the MediaOccurrence elements together with TemporalMask is used.
Events are related to object’s description and inversely with the agentOf and agent relations.
Similarly semantic entities are related to a narrative world with the partOf relation. Ob-
jects are related to each other using the graph and semanticRelation DSs. More specifically,
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Figure 1.15: Content model for MPEG-7 descriptions.

the hierarchy between objects is represented with the specializes or generalizes relation.

Formal abstraction of semantic descriptions are defined separately, representing a variety
of multimedia content. For instance an abstraction for a narrative world is specified in a par-
ticular semantic description. To avoid dispersion and duplication of the elements composing
different narrative world and enable interoperability with other applications, semantic terms
depicting the narrative worlds are defined and structured with the ClassificationScheme DSs.
With this scheme, a particular object in a concrete semantic description can be linked to
real-world semantic terms by the means of instantiating a formal abstraction.

In the following section we represent a scene with the guidance of this model.

Example of video shot content description

To illustrate the construction of AV content description with the MPEG-7, we propose
the example of fig.1.16 showing two consecutive and semantically related shots of a video
sequernce.

The semantics of the sequence can be described as follows:

A truck is driving on the road. the truck stops at a military roadblock. A
military walks in direction of the truck and verify the interior.

A simplified classification scheme that encompasses the semantics of the sequence is shown
in appendix A.1. The CS enables experts to define the vocabulary needed for modeling a
particular domain and the hierarchy between terms. The scene can be decomposed as part
of two narrative worlds : “Road Driving” and “Military Roadblock”. A formal abstraction
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Shot S,

t=0s

Temporal Decomposition

SpatioTemporal
Decomposition

mr; mrs;

Figure 1.16: Proposed example. Temporal decomposition is based on events and spatiotem-
poral decomposition on objects.

modeling the semantics of the sequence is depicted fig.1.17. The corresponding MPEG-7
description is given in appendix A.2. In this abstraction, the “Road Driving” narrative
world is composed of three entities : object “Vehicle”, the Semantic Place “Road”, and the
event “Drive”. The narrative world is limited to a single statement : “A vehicle is driving
on the road”. Similarly, the “Military Roadblock” narrative world encompasses the event
sequence “Stop”-“Walk”-“Verify”, the objects “Vehicle” and “Military” and the SemanticPlace
“RoadBlock”. Narrative world is composed of the statements “A vehicle stops at a military
roadblock. A military walks in direction of this vehicle and verify the interior.” Additionally,
the context of the “Military Roadblock” is interpreted with concept “war”.

A video sequence can be temporally decomposed into visual shots by searching for
transitions and cuts. In general, a video shot shows a semantically related sequence of
actions involving one or several objects. Thus shot semantics can be fit into a single narrative
world. In the example fig.1.16, the shot has been automatically cut into two shots 57 and
So. The shots are related to the “Road Driving” and “Military Roadblock” semantics. The
temporal decomposition describes multimedia content in terms of events. The three events
composing the “Military Roadblock” semantic are depicted at times t = 2s, t = 4s, t = 8s.

The complementary spatiotemporal decomposition describes the visual objects in the
shots : truck mry for Sy, truck mry and military mrs for So. The temporal decomposition
and the interaction between events an objects is detailed in fig.1.18. As the military object
mrs and moving object mro overlaps different events, these segments are further decomposed
temporally into sub-objects related to a single event.

Structural relations between the different video segments are expressed within the tem-
poral decomposition. These relations are illustrated fig.1.19. At the shot level, temporal
relations consist of S containing mr; and So containing mre and mrs. A spatiotemporal



1.1.

Hierarchical modeling in the context of MPEG-7

partOf | Road driving | P9"1Of
"1 (Semantic)
Road pathOf Drives (Event) agentOf Vehicule _exemplifies
(SemanticPlace) rives (Even (Agent Object)
Truck O,
(AgentObject)
War (Concept) A
|
contextFor . identifies
1
partOf Military Roadblock .
(Semantic) !
Military O, locationOf Truck O,
(AgentObject) (AgentObject)
| RoadBlock (SemanticPlace) |
exemplifi Military agentOf Wait (Bvent) agentOf Vehicu!e exemplifies
(Agent Object) patientOf patientOf (AgentObject)
Stop (Event)
P agentOf
‘Walk (Event)
agentOf destinationOf

Verify(Event)
agentOf patientOf

Figure 1.17: Semantic descriptions of the narrative worlds for the example.
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Figure 1.18: Temporal decomposition into events.




28 Chapter 1. Modeling video content

VideoSegment MovingRegion
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Figure 1.19: Spatiotemporal relationships within the temporal decomposition.

relation mowves toward can be established between mry and mrs in shot Sy. At the event
level, the spatiotemporal relation can be specified more accurately. For instance in the
second event of Sy (stop) mrs is right of mry. Temporal and spatial decomposition, along
with visual descriptors and structural relations are grouped in a single content description
which can be found in appendix A.3.

Multimedia entities in the visual description are related to the real-world semantics by
a semantic description, reported in appendix A.2. Each spatiotemporal segment mr;, i =
1---3 is associated to a media object O; which exemplify a class of objects. O exemplifies
“truck” and “vehicle”, Oy “vehicle” and Og “military”. O, and Os are reported as identical
(relation identifies). Similarly the temporal segments are associated chronologically in the
semantic description to events (Fj to Fy).

We have seen in this example how to handle various aspect of video content description
with the MPEG-7, in particular for object representation. A method for the construction
of a low-level visual description of video shot will be exposed in chap.2 and the integration
of semantic information from domain knowledge will be further introduced in chap.3. Of
course, every system will have its own description model, but the descriptions can be read
and understood easily by other applications if the specific schemata are provided. Among
emerging systems that are based on MPEG-7 content description, we can cite tools aiming
at authoring and video editing such as COSMOS [8], Ricoh Movie tool [106], Frameline 47
[47] or CBVR systems such as Vizir [38], IBM Marve[6], SVAT [105], ifinder [78]. Generic
applications never covers all aspects of the description. Authoring tools will try to complete
the semantic description, whereas CBVR tools will focus on search and retrieval of video
segments (shots, objects) using audiovisual description and textual semantic annotation of
the multimedia content.

Recognition of object semantics and event detection requires deep domain knowledge or
user interaction and depends of the application. Attempts to build complete descriptions
of the scene with the MPEG-7 have been proposed in specific domains. These efforts have
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been mostly related to sports and medicine [132], and motivate to enlarge the use of the
standard.

1.2 Spatiotemporal representation of video objects

MPEG-7 defines the structure for exhaustive description of visual content, and can adapt
to many environments. We have seen that objects are an essential aspect of the description
that links the low-level visual descriptions to the understanding of semantics and events of
the shot. However, extraction of content will never be part of the standard. Thus, efficient
models for object representation and extraction procedure are still needed. In this section
we introduce graph-based representation for describing a video shot, structuring pixels into
complex objects.

1.2.1 Visual processing

A video sequence contains huge amount of data that consist in a 3-dimensional array of pixel
color intensity. A single frame in an MPEG-1 video will contain around 100000 data points,
a sequence of a few seconds millions of points. Making sense of the world represented from
this volume of data is very difficult to achieve. A major target of video analysis consists in
the detection and interpretation of the physical objects that are projected on the sequence
of frames. The most advanced system known so far is the human vision; a person can locate
and catalog all objects interfering in its field of view in a fraction of a second.

Understanding the mechanism of perception has been widely studied by cognitive sci-
ences. Among the different approaches, Gestalt theory, early introduced by psychologists
[143, 65] states that our vision is based on successive groupings, in a cognitive process lying
both on inborn characteristics and experience. The main problematic was to describe the
global nature of perceptual experience.

Whereas digital computer solve problems by isolating simple steps and assembling their
results, Gestalt theorists state that for understanding the perceived world, its elements must
not be taken isolated but together as a global construct. This suggests that the understand-
ing of an object depends both on its content and of its environment [75]. The theory was
comforted by the neuroscience research [65] which shows that biological mechanism of hu-
man perception was found fundamentally different of those known so far. A “gestalt” or
(“whole”) is a structured form which has a meaning for us. Every elements of a gestalt
influences each other, and the gestalt itself depends of its surrounding environment.

The equilibrium of Gestalt systems are governed dynamically by the properties of emer-
gence, reification, multistability and invariance. Emergence refers to the fact that a phe-
nomenon is not interpreted by just assembling of its components but by seeing it at a
whole. Reification is the capacity of perceiving a complete whole even when the actual
sensory stimuli are ambiguous or uncomplete. One example is that perception can fill the
missing parts of an object with the pattern in the visible parts. Multistability refers to
the fact that our perception can alternate between multiple interpretations (optical illu-
sions). Finally, invariance property states that objects can be recognized independently of
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geometrical transformations and deformations.

These properties describe how we perceive a scene, but does not explain the underlying
mechanisms. According to Gestalt theorists, the fundamental principles of perception are
based on figure-background distinction and “natural” laws of grouping. Perception groups
sensory stimuli into "good forms”, which are either simple geometric and regular structures,
or a known pattern which is significant for us. As instance a "good form” may be a head,
and arm or a hand constituting a person. A "good form” can be also associated to a par-
ticular visual primitive as a blue color suggests sky or sea and the red color blood. In this
way the stimuli are grouped into elements that can be distinguished from the background,
which is perceived more irregular and less structured. This distinction enables us to focus
on different elements on the scene, for instance a particular face in a crowd. Several group-
ing mechanisms interferes to unify partial perceptions into a whole (the gestalt) and are
referenced as the laws of Gestalt (also known as laws of perceptual organization):

e Prorimity : First elements grouped are spatially or temporally closest to each other.

e Similarity: Elements that appear similar to us (in form, color, brightness, ...) are
grouped into collective entities.

Closure : A closed form is more easily identified as a figure than an open form.

Continuity: Close points are linked together when they can be prolongated the ones
to each other.

o Common fate. Moving parts with similar trajectories are perceived as a single form.

According to these laws, stimuli are strongly encouraged to be organized into a gestalt
system with strong, regular or known forms, or secondly to a structure as closed as possible
of a gestalt. All that can be unified is unified, the only elements separated are those
presenting features incompatible with fusion.

Gestalt theory have been criticized on the fact that it does not translate abilities of
human perception into models and algorithms, i.e. explain how the biological information is
transformed into an interpretation. The computational approach (also referred as computer
or cognitive vision), initiated by the work of [82] aims to tackle this difficult task. First
developments were to understand the geometry and physics involved in vision, then to apply
to more complex problems. Complete computational models of vision have been proposed
by [133], but restricted to the application domain. Most recent considered approach, or
connexionism, models the cognitive process as a result of a parallel computation operated
by a neural network structure, by analogy to the processing of information in the human
brain. Although criticized for its complexity and opacity [133], it has been successful for
some pattern recognition problems and other imaging applications. Therefore problems of
vision and video processing is an open area, and the frontiers between different approaches
are not fixed.

Gestalt scientists believed that one of the fundamental problem in vision was to dis-
tinguish objects and background, characters and their environment. This belief has been
translated in the computational approach, leading research on segmentation methods that
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decompose the scene into regions with semantic meaning. Image and video segmentation
and object recognition have made wide use of grouping techniques. Generic grouping al-
gorithm can be based on some probabilistic framework. Gestalt rules of organization have
played important role in the domain of generic grouping algorithms. Most important and
widely used ones are based on proximity and similarity. Region Adjacency Graphs (RAG)
encompass these two notions, grouping connected pixels based on their similarity. Adjacent
regions can be further grouped with other principles of the Gestalt. In [149], a distance
is computed that takes into account the closure, similarity and continuity. Continuity and
closure constraints have been also modeled using Markov Random Fields [83]. In the case of
video, motion grouping are used in conjunction with these rules [129]. Besides these generic
algorithms, [149] argued that grouping process must be controlled by the domain knowl-
edge about objects composing the scene. Semantic objects are organized at different levels,
grouping being performed at each level. Scene composition leads to the idea that grouping
should be processed in an iterative way, involving different mechanisms and properties to
be considered according to the level of grouping.

Grouping techniques can reach high complexity in function of the level of semantic inter-
pretation to be reached. Computational cost is driven by the complexity of the model and
the range and structure of interaction between visual aggregates. In global techniques that
considers data information at once (graph-cut, or MRF for labeled graphs), the solution-
space is large and the problem generally belongs to the class of NP-hard problems, thus
approximations and costly optimization procedure are required [115], though progress have
been achieved recently in [18].

In this thesis, we focus on efficient techniques for grouping of video regions. To this aim
we propose to follow an approach based on adjacency graphs. We explore structural prop-
erties and constraints to be modeled in the graph in order to represent different structural
and semantic levels of the video.

1.2.2 Basic graph terminology

As we make extensive use of graph terminology and algorithms for building a structured
representation of the video content, we introduce in this section the required basic notions
of graph theory.

A graph is a pair G = (V, E) of disjoint sets, such that £ C V x V. V is the set of
vertices (also called nodes) and E is the set of edges. By convention the vertex set of a
graph G will be noted V(G) and its edge set E(G). A common abuse will be to declare a
vertex v in G instead of V(G) and an edge e € G instead of E(G).

The number of nodes of a graph G is denoted by |G| and is called the order of the graph;
the number of edges is written as ||G||. Therefore, we have |G| = |V| and ||G|| = | E|.

Two vertices a,b of G connected by an edge e € E are adjacent or neighbors. This is
denoted by e = (a,b). a and b are said to be incident to e and e is an edge at a and b.
Two edges are said to be adjacent if they have a common endpoint. Pairwise non-adjacent
vertices or edges are also called independent; a set of vertex (or edges) is then independent if
none of its elements are adjacent. When edges (a,b) and (b, a) should not be distinguished,
the graph is called undirected. Otherwise the graph is directed and (a, b) is said to be and
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Figure 1.20: a) Graph. b-c) Example of induced subgraph. d) Example of spanning sub-
graph.

outcoming edge for a and an incoming edge for b. In the case of a directed graph, the term
arc is preferably used instead of edge. The number of edges incident to a vertex a in G
is the degree of a and is denoted deg(a). If the graph is directed the indegree deg™(a) is
number of incoming edges and the outdegree deg™(a) the number of outcoming edges.

Considering two sets A, B of V, (a,b) is an A — B edge if a € A and b € B. The set
of all A — B edges is denoted E(A, B). When A is limited to a singleton a, E(a) is the set
of all edges at vertex a. In addition, the set of neighbors in G for vertex a is denoted by
N%(a) or more simply N(a) when no confusion is possible. By extension the neighbors in
V/A for the vertex set A are called neighbors of A; the set is denoted by N(A).

Considering two graph G = (V, E) and G’ = (V', E’), G’ is a subgraph of G if V' € V
and £ € E'. When V =V’ &’ is said to be a spanning subgraph of G. If all edges in E with
both ends in V’ are in E’, G’ is an induced subgraph of G : G’ = G[V’]. An illustration of
these subgraph properties is shown fig.1.20.

To impose constraints on the graph structure, many specialized types of graphs can
be defined and are particularly useful for visiting a graph or defining a subgraph on a
graph. A path between any two vertices a, b € V' is a subgraph P = (V, E) C G such that
V = {ap,a1, -+ ,ar} is a non-empty sequence of vertices where all {a;};—1.1, are distinct
and F = {(ag,a1),-- -, (ag—1,ar)} connects each vertex to the next one in the sequence.

A cycle is a path where the first and last vertex are the same, and a graph with no cycle
is said to be acyclic. A connected graph is a graph where any two vertices are connected by
a path. A connected subgraph of a graph G with a maximal edge set is a component of G.
A tree is an acyclic connected graph, i.e. there is a unique path between every two vertices.
A forest is a graph whose components are trees. Thus a connected forest is also a tree.

Another example of connected graph is the grid. A M xN gridisa graphon {1,--- , M} x
{1,---, N} with an edge set E defined as:

E={(i.j), (@ 5): [i' =il + 1" = jl = 1} (1.6)

Another mean to express connectivity in graph is given by the notion of r-partite graphs.
An r-partite graph partitions its vertex V into r classes such that all vertices of the same
class are independent. A 2-partite graph is called bipartite.
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Figure 1.21: Example of forest. Each component is a tree.

A set of independent edges M in a graph G is called a matching. A vertex a € G is
matched by M if it is incident to an edge in M. Otherwise the vertex is unmatched. When
every vertex in (G is incident to M the matching is said to be complete or perfect. The
matching problem is often related to bipartite graphs, trying to find one to one correspon-
dences between two vertex sets, with maximum edge cardinality or weight (fig.1.22(a)). In
general, it can be extended to any pair of graph by considering graph homomorphisms.
A graph homomorphism f from graph Gp = (Vp,Ep) to Gg = (V, Eq) is a mapping
f:Vp — Vg such that (a,b) € Ep if (f(a), f(b)) € Eg. When Vp = Vg and f is bijective
f is a graph isomorphism and the problem of finding f is referred as ezact graph matching
(fig.1.22(b)). When the two graphs Gp and G¢g do not have the same number of edges or
vertices, the problem is referred as inexact graph matching (fig.1.22(c)). Letting |Vp| > |Vg|
the class of subgraph matching problems consists in finding a subgraph |V}| isomorphic to
V. More specifically, the maximum common subgraph problem searches an induced sub-
graph |V}| which order is maximal. Most difficult inexact graph matching problems allows
multiple correspondences (fig.1.22(d)) and can be expressed as finding an homomorphism
f:Vp — W C P(Vg) where P(Vgy) is the set of all parts of V. The search space for
the solution is gigantic and its resolution is highly dependent of the particular problem
considered.

A graph can also conveys information on its nodes and edges. When this information
consist in a simple label added to the nodes, the graph is called labeled graph. Otherwise
an edge e often relates to a numerical value w(e) indicating a distance or a flow between
between nodes; this graph is called a weighted graph. In the general case, a graph which
contains both vertex and edges attributes is called an attributed graph. An attributed graph
is therefore a tuple G = (V, E, v, &) where :

e v:V — Ay is the set of functions generating node attributes.
e £: ' — Ap is the set of functions generating edge attributes.

Attributed graphs have been particularly useful for a large set of visions problems.
Indeed many real world entities can be modeled as an ARG. An entity can represent an
object in a visual scene, such as a face or a character, a landmark in a remote sensing image,
a segment of character symbol, and any set of pixels that shows a certain visual cohesion in
general. In our study, the elementary entities are defined as spatiotemporal volumes that
compose the video shot. We defined this decomposition in the following section.
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Figure 1.22: Matching between graphs. The matching is shown in red, and matched sub-
graphs with thick lines. a) Bipartite matching. b) Exact graph matching. c) Inexact graph
matching with Vp > |Vg|. d) Matching with multiple correspondences.

1.2.3 Spatiotemporal volumes

At the raw level of information, a video shot is a sequence of frames that can be represented
by a 3D grid of pixels, as shown fig.1.23. Each node in the graph G = (V, E) corresponds
to a pixel in one frame (or voxel in the shot), and the edges E connects neighboring pixels
of the grid. We consider a traditional rectangular grid where each pixel is connected to 6
neighbors (4 spatially and 2 temporally).

The problem of extracting objects in the shot can be formally represented as achieving
a set of disjoint subsets (or partition) S of the vertex set V :

i€[|1,N]]

S is said to be a segmentation of the video shot. For a subset V; to represent an object, a
reasonable constraint is that V; corresponds to a component C; in the 3D grid, i.e. that all
vertices of V; are connected by at least one edge in E. The segmentation S is then called
spatiotemporal and subsets V; are referred as volumes. This representation is illustrated in
fig.1.24.

A complementary view of the partitioning problem is expressed by the notion of cuts. A
cut separates two disjoint vertex sets V; and V5 (and their respective components, as we are
considering volumes). Formally the cut between Vi and V3 is defined as E(V7, V2) i.e. the
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Figure 1.24: The grid is decomposed into volumes (colored areas). Components associated
to volumes are shown with dots (vertex) and lines (edges) of the same color.

set of all V1 — V5 edges :

cut(Vi,Va) = {(p1,p2) € (Vi x Vo) N E} (1.8)

The segmentation S is then obtained by removing all cuts in the graph. These different
representations leads to two approaches for the partitioning problem. The first approach
(bottom-up) groups pixels into grid components, the second one removes edges present in
the cuts to delimit the partition.

To group pixels into volumes, visual properties are considered. The grid edges are
weighted by a local visual similarity measure between pixels. In that sense, a volume can be
constructed by gathering locally edges with high visual similarity, representing a connected
homogeneous area in the sequence.
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1.2.4 Adjacency graphs

The grid graph only depicts local structure and organization of the volumes. The rela-
tionships between volumes provide a very flexible representation for the global perceptual
organization of a shot. Indeed, the relational structure of objects has been a powerful tool
in computer vision and pattern recognition. Within the pattern recognition domain, the
relational paradigm states that patterns are formed not only by the nature of the objects
which make the pattern, but also by their relationships to each other [13].

The most basic relational graph is the Adjacency Graph. Region Adjacency Graphs
(RAG) are usually considered for describing the neighboring relationships between compo-
nents (regions) of an image. Each node in the graph corresponds to a region, and an edge
corresponds to two spatially connected regions. The concept of RAG can be easily applied
to video shots, volumes replacing regions and edges connected volume that are spatiotem-
porally connected. Two volumes A and B are spatiotemporally adjacent if there exists at
least an A — B edge in the 3D grid. The resulting graph, representing the spatiotemporal
structure is called a Volume Adjacency Graph. As volumes reach a significant size and
meaning, more significant properties can be extracted from the volume. The structure of
objects along with their properties are represented by an ARG. When only adjacency rela-
tions to be considered, the object structure is represented by a VAG. The link between an

ARG G = (V,E,v,&) and its VAG G, is expressed as G, = (V, E).

Figure 1.25: a) Frame sequence. b) Attributed relational graph between volumes. Volume
properties are modeled with disks indicating their mean color and size.

1.2.5 Hierarchical representation

We have seen how to to depict volumes and their organization with different graph struc-
tures. Segmentation as a single step is difficult to handle as not enough relevant information
can be found with small structures. Solutions for global partitioning have been proposed
in context of spectral graph theory [115], but the solutions for an unknown number of
objects and approximation effects are not well understood. In contrast, a bottom-up ap-
proach enables to group different type of information in function of the considered level of
description.
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The content of a video shot is modeled hierarchically at several levels from the following
principles:

e Volumes are constructed by grouping components of a grid graph.
e Relationships between volumes are analyzed within an ARG to form objects.
e Objects subgraphs can be compared for matching and recognition purposes.

These different levels forms a pyramidal decomposition (fig.1.26). When considering small
structures in the beginning, only little relevant information is noticeable at the pixel level.
Adjacent points in the spatiotemporal domain are grouped by criterion of visual similarity
to form volumes. These volumes are considered as elementary objects which attributes are
composed of visual descriptors mentioned in section 1.1.2 and potentially of semantics when
domain knowledge is available. At the next level, the organization of the shot into volumes
is represented by an ARG. Relationships in the ARG can include proximity, visual and
semantic similarity. The decomposition of the scene into ARG enables different shots to
be compared (graph matching problem) or finding similar structures (patterns) in the shot.
At the highest level the ARG is partitioned into object subgraphs. An object is described
both by its volume properties and their structure, i.e. the organization of its subparts in
the shot. Different objects can be compared both with their global properties (semantic,
visual) and with their subgraph structure.

This representation is conform to the MPEG-7 approach and can be fully mapped with
the visual description tools and the content model we detailed in section 1.1. In this way,
raw video data can be transformed into an understandable structural description.

Node Properties Edge Properties
Structural
Object Semantic Structural relations
Visual » Semantic relations

Visual similarity

Visual

A Semantic
Volume Visual similarity

Semantic similarity

Pixel L el el AT :I Visual similarity

s N
A

Figure 1.26: Hierarchical modeling of video shot with graphs. The complexity of the de-
scription and the graph attributes are function of the structural level : pixel, volumes or
objects.
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1.2.6 Merging and grouping

When considering a large graph, the interpretation of its intrinsic structure is often hindered
by the huge number of vertices and relations. Two principal mechanisms are employed to
extract the structure of graph, merging and grouping. Let G = (V, E,v,£) an ARG with
vertices a,b € V joined by an edge, (a,b) € E. A merge M(a,b,G) is an operator that
constructs a new graph G’ = (V’/, E’) such that G’ is similar to G except that nodes (a, b)
have been collapsed to obtain a new vertex a Vb, so that edges (a, c), (b,c) € E are mapped
into one edge (a V b,c) € E'. A merge is also referred as vertex contraction in graph
theory. The resulting vertex attribute, is computed by a merging function that combines
local information from vertex a and b, v(a V b) = f,(a,b). Considering that v is a function
generating numerical attributes in RY, common merging functions are chosen between:

e Average operator. The contribution of each attribute is weighted by a factor w:

w(a)v(a) + w(b)v(b)
w(a) + w(b)

v (a,b) =

(1.9)

e min and maz operators.
e Median operator can also be considered when merging several nodes.

The affected edges are also updated by combining local information of the edges at a or b,
ie. £(aVvb,c) = fe(a,b,c,&(a,b),&(a,c),&(b,c)). In practice, edge attributes often represents
a certain similarity between vertices. In such case £(a Vb, ¢) is reevaluated from computation
of the new vertex attributes of a V b and attributes of ¢, i.e. £(a V b,¢) = f(a V b, ¢).

The second mechanism refers to grouping. In graph theoretic formulation, the grouping
problem is to decompose the set of vertices V of a graph into a partition S = {V;,Va,--- , Vy}.
A set of attributed vertices is called a group. Thus for V; € V, the group associated to V;
is a tuple H(V;) = (V;, /). Group attributes v/ represent global properties; they may be
different from the ones of the related graph as further information can be deduced from
a group than of a single node. When the considered attributes remains the same, afore-
mentioned aggregation operators can be used to compute the group properties. Structural
properties are from their part represented by the subgraphs spanned by the groups, i.e. the
components C; = (V;, E;).

Fig.1.27 illustrates these notions. The initial graph G is given in fig.1.27(a). Fig.1.27(b)
shows the graph obtained from different merges. On the contrary, fig.1.27(c) cannot be
obtained from G by merging, as there isno a —b, a — f or a — g edge in G . The grouping
resulting from the merge operations of fig.1.27(b) is shown in fig.1.27(d).

The set of groups associated to a partition S € P(V) , H(S) = {HW),--- ,H(VN)}
forms the set of attributed vertices of a new graph G’ = (V/, E',//,¢’') with V' = S and
E' = S x S. Edge attributes £ are reconsidered from the vertex properties v/ and subgraph
structure related to each group. In this way grouping mechanism enables to go through the
different levels of representation mentioned in section 1.2.5.
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Figure 1.27: Example of merging and grouping. a) The initial graph G. b) The graph after
merge operations. c¢) This graph cannot be obtained by merging of G. d) The partition of
G resulting from the merging. Groups are composed of the nodes V; and their properties.
Associated subgraphs components (V;, F;) are marked with the same color.

1.3 Applications of the proposed representation

Applications involving content-based video manipulation and information retrieval have
been widely increasing for the past years. Development of e-services has driven the develop-
ment of video databases, among with transmission and delivery technologies. Consequently
we have to support large amount of data. Good representations are needed for analyzing
video content. Examples include browsing through main video parts, searching for a par-
ticular scene, indexing and retrieval with different modalities ...In this context, we detail
the domains for which our spatiotemporal representation is of interest.

1.3.1 Context

Object-based representation plays a central role in video analysis, as illustrated fig.1.28. A
general architecture for leading video applications is depicted. At the lowest level, the sys-
tem stores the raw-video data. The extraction process provides description of the scene with
objects and features. This is core of the model as it should support several services. Possible
functionalities include compression and coding (generating MPEG-4 VOP or MPEG-7 con-
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tent description), broadcasting according to the content. Another important service is the
retrieval. The query could be textual, depicting semantics of the shot in term of events and
objects, visual (an object or a video shot), or interactive where user sketches the behavior
of objects composing the scene.

Ul | Mobile device | PC || Server |

' ¢ '

MPEG-4 compression
MPEG-7 description
Video Adaptation

Real Time transmission
Multicast streaming
Scalable Coding

Text query
Visual query
Sketch Drawing

Slides show
Keyframes
Objects/Events

A A A A
L | |

Content Extraction

Spatiotemporal
Representation

~

Storage Server

Video Input

Features
Objects p
Events
Metadata

Raw Video Data

Figure 1.28: Architecture of multimedia system, beyond the aspects covered in the thesis.
Spatiotemporal representation is the core of many content-based functionalities.

1.3.2 Proposed applications

The developed ARG representation can be adapted to different types of applications. Figure
1.29 shows the different content-based functionalities we investigated. The first targeted task
concerns the construction of a spatiotemporal segmentation and the use of motion models
for the extraction and indexation of moving objects (chap.2).

When domain knowledge is available, semantics can be inferred from the proposed rep-
resentation. We use knowledge database to label object regions semantically. The semantic
information is propagated between shots by matching objects based on both visual and
semantic properties (chap:semantic).

The last functionality studied in the thesis concerns automatic indexing of video shots.
We first investigate an indexing model based on the construction of a dictionary of visual
words. A compact and efficient index of the shot is generated from volume visual fea-
tures. Secondly we construct a structural and visual similarity measures to match ARG
representation of video objects and a strategy for searching objects is proposed (chap.4).

These three problems attests that spatiotemporal segmentation and model of represen-
tation appears crucial for main applications. In the next chapter we will investigate the
extraction of video objects and show how the graph representation is used in practice.
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Figure 1.29: Framework of the thesis. The targeted applications are based on spatiotem-
poral representation of video shots.

1.4 Conclusions

This first chapter was dedicated to introduce video shot representation in video analysis
systems. The MPEG-7 standard provides a global framework for building representations
for multimedia applications. We detailed the use of MPEG-7 multimedia tools for content
description of video shots, both in terms of visual and semantic structure. From this study
we deduced a possible content model for MPEG-7 shot descriptions emphasizing the de-
scription of visual objects and their relation to high-level semantics of the shot. In particular
we have seen a small real-world example with a full description that illustrates the difficulty
of the content analysis task, a simple scene is represented with a complex description. We
propose a spatiotemporal representation of the visual content of video shots. Attributed
Graphs enables to represent efficiently the information at different levels : pixel, volume,
object. Finally, we show the context of applications of our representation in a large view
and introduced the ones we will examine in this thesis.






Chapter 2

Video object extraction

In the previous chapter, we have detailed the organization of a video shot in the context
of the MPEG-7 standard. However, the standard only defines the structure, but does not
provide methods to extract video content. Nowadays, there is no basic methods which builds
high-level descriptions in general, since the process is highly dependent of the application
domain. However, it remains possible to organize video content to facilitate the set up
of high-level applications requiring search or indexing. Automatic segmentation methods
have been widely investigated for the last 20 years. Most techniques are based on image
segmentation followed by a tracking based on motion estimation. The issue is that their
initialization remains difficult to manage and handling of dynamic objects is rarely taken
into account.

On the contrary, we propose to investigate a spatiotemporal approach for the automatic
extraction of objects. The target is to enhance temporal consistency of the regions by de-
composing the video sequence into volumes and to reconstitute the structures directly within
the shot.

In this chapter, we first establish a state of the art and a classification of the methods
for automatic segmentation of video objects. Then, we propose an efficient algorithm for
spatiotemporal segmentation in our graph framework. Finally we investigate grouping spa-
tiotemporal regions using motion models and deduce a method for building complex objects
within the shot.

2.1 State of the art

The human visual system decomposes a scene into distinct entities. These entities corre-
sponds to semantic objects that are recognized by the person. Due to its subjectivity, the
decomposition of a scene into objects may differ from one person to another. Moreover, the
appearance of objects may vary considerably in function of the object but also in function of
is projection in the image. The segmentation of video objects is therefore an ill-posed prob-
lem, whose solution depends on the user requirements or is defined for a particular domain.
First, we will introduce the different existing schemes for the video object segmentation
problem. Then, we will detail the spatiotemporal methods and the approach developed in

43
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this thesis.

2.1.1 Classification of existing methods

Video is naturally decomposed into objects. Human vision is able to detect the different
objects in a scene automatically and effortlessly. However, this is not the case for a seg-
mentation method which should be defined cautiously. Research developments on video
object segmentation has driven the emergence of semi-automatic and automatic methods.
The former utilizes the user input to overcome the difficulty of extracting objects at the se-
mantic level. For instance, semantic information is given at the beginning by specifying the
location, contours or motion of the objects. In the second case, automatic methods restrict
the object type to a specific domain: face, human, vehicle, ... The criteria for detection and
localization of the objects are then established from a specific model.

In a more global context, methods are based on low-level features that can be extracted
automatically, such as color, texture, contours, ... These features are generally insufficient
to define a full semantic object, the partitioning into homogeneous regions does not usually
reaches the granularity desired by the end-user. Considering a video sequence enables to add
the temporal dimension and the motion information, which have been mainly considered
for grouping regions into objects. These developments have given rise to the so-called
spatiotemporal methods. It is possible to build a classification of these methods according
to the type of information they use preferentially.

Two main families of approaches can be distinguished. Spatiotemporal approaches refer
to:

e In a large sense, approaches which perform spatial segmentation of the frame, followed
by tracking of frame regions, which we qualify as motion-based approaches. Methods
favoring temporal information first segment the image into homogeneous region with
respect to the optical flow, the ones favoring spatial information exploit different
spatial features such as color or motion. Then, the motion between two images is used
to link temporally frame regions, ensuring the coherence between the segmentation of
each image. The obtained moving regions are considered as objects.

e In a more limited sense, approaches that use the temporal and spatial information
simultaneously to build spatiotemporal structures [85], which we refer simply as spa-
tiotemporal or 3D methods. Within this family, we can distinguish “pure” approaches
which considers a video sequence as single volume. Spatiotemporal structures are ex-
tracted directly from a block of frames, spatial and temporal grouping are performed
at the same time. This approach is in direct relation with human vision and the
Gestalt theory. The eye has been shown as interpreting structures dynamically in
space and time [52]. A second type of approach constructs volumes considering a
2D + T space: spatial structures temporally connected are grouped using spatial and
temporal information conjointly. Main techniques following this approach are based
on RAG labeling and matching.

Figure 2.1 shows in a simplified view the aforementioned approaches. Our approach rely on
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the 2D+T framework. This perspective turned out to be simpler and efficient with respect
to the computational complexity.

Video Object Segmentation

]
Motion-based | Spatiotemporal |
Spatial 3D (block)
l l A 4 A
Efficient RAG | Model | | Similari |
graph-based | | Labeling/Matching ode imilarity

Figure 2.1: Classification of spatiotemporal segmentation methods.

2.1.2 Motion-based methods

Motion based segmentation consists in decomposing the objects undergoing different mo-
tions. Objects are supposed to have coherent motions that are distinct from the background.
Motion is then a leading source of information in a video sequence. To model motion, cam-
era parameters and the displacement of objects should ideally be known to compute the
transformation between the scene and the acquired image. Unfortunately, this information
is rarely known, so that both camera and object motion must be evaluated. Estimating
the 2D projected motion, called apparent motion or optical flow is a difficult and ill-posed
problem as itself [59]. To represent the apparent motion from the 3D scene, a common as-
sumption concerns the rigidity of objects. If a rigid object is also constrained to move on a
plane, the apparent motion of the object can be described by an affine model (6 parameters).
Affine model estimation has been widely used in practice [141, 42, 88, 135].

Motion information can be treated in two ways. The first approach is to estimate a
dense motion field in the image ; each pixel is assigned to a motion vector. Block matching
methods are often preferred for their simplicity. In the second approach, a region undergoing
coherent motion is depicted by a parametric model. The support of motion is determined
either from the estimation of the motion field or on the basis of homogeneous regions with
respect to the spatial features. The methods related to the first approach are referred to as
favoring temporal information. Otherwise, methods favoring spatial information start from
segmented regions to estimate the motion between frames. Finally, most advanced methods
performs joint estimation of motion and support. Once the spatial segmentation is achieved
the resulting segmentation or object model is tracked over the sequence. The basic scheme
for motion-based method is shown fig.2.2.
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Figure 2.2: General scheme for motion-based segmentation. (a) Methods favoring temporal
information. (b) Methods favoring spatial information.

Segmentation favoring temporal information

A traditional approach in motion segmentation is to estimate first a dense motion field,
followed by a segmentation based on motion vectors. We distinguish in this section three
characteristic types of approaches: segmentation by dominant motion estimation, Bayesian
motion segmentation and multiple robust motion estimation.

Segmentation by dominant motion estimation

A reference method for motion estimation and segmentation is the work of Wang and
Adelson [141]. The iterative scheme for motion estimation and classification is typical of
motion-based segmentation methods. The principle is to extract an object with dominant
motion once at a time. The decomposition of remaining objects is then performed on the
image parts that are not associated to the dominant motion. In this method, each motion
is associated to a layer related to the plan of an object in the real 3D scene. Starting
from local motion estimation, an affine model is computed for every block of the image. For
this purpose, motion segmentation consists in finding planes in the motion model parameter
space. A clustering of affine models enables to group regions in the image by minimizing the
distortion between the locally estimated motion and the predicted motion model, while still
maintaining a low number of clusters. The support for each motion is therefore obtained
by classification of blocks. In order to obtain coherent regions, the groups that contains
disjoint supports are split. Similarly, regions below a certain size are pruned. This procedure
is reiterated until new assignments occurs. For the following frames, the procedure restarts
at the region classification stage.

The difficult part in this procedure remains the construction of the support of motion
from the blocks. This can fail if there is no dominant motion in the image. For instance
the objects may be small or undergo non-rigid motion. A second problem lies in the use of
motion parameter space for clustering. Indeed these parameters do not have the same di-
mensionality. Zero order parameters have uniform sensibility to spatial coordinates whereas
first order parameters are most sensitive a the border’s area i.e. while moving away from the
motion model origin. Moreover, a given optical flow may be described by several different



2.1. State of the art 47

parametric representations [1]. This implies that two regions with similar motion may turn
out to have very different motion parameters and, thus, may end up in different clusters.
More recently, Ke et al. [62] proposes to reduce the disparity of the clustering by projecting
the motion parameter space in a subspace. The reason was that motion of rigid objects lies
in a 3-dimensional space.

An improvement to this technique was to consider pyramidal decomposition of the mo-
tion field. Irani, in [60], segments each level of the pyramid into foreground or stationary
regions, starting from the lowest resolution. The segmentation of the current level is based
on the labels (class) of the previous level and a local motion measure defined for each pixel.
This type of approach can improve the classification of regions [60]. These top-down ap-
proaches are characterized by simplicity and low computational complexity. However, the
process of successively determining the characteristics of the remaining dominant motion
imposes an artificial hierarchy among the objects in the scene.

Bayesian motion segmentation

Other techniques have also been developed to enhance coherence of the extracted regions.
Bayesian estimation methods provide an elegant framework, modeling the statistical dis-
tribution of motion or intensity of the image. They have been widely used in practice for
solving the segmentation problem. The general idea is to estimate a segmentation S, con-
sidered as a label field, given some set of observations O. In this context, Markov Random
Fields (MRF) models have been widely adopted. The general idea is to maximize both
likelihood of the observations given the labeling while maintaining spatial coherence with a
prior model on the distribution of the labels. This prior model is given by a Gibbs prob-
ability distribution function defined by a neighborhood system and a potential function
reflecting prior knowledge and constraints on the segmentation process. Thus, the seg-
mentation problem is transformed into an optimization problem: finding the segmentation
which maximizes the MAP (maximum a posteriori) of the label field, given the observations.

Chang and Tekalp [23] take into account both intensity and motion field as observations.
The potential function of their MRF is composed of a spatial coherence term and a temporal
term which encourages spatiotemporal connectivity of the regions. For the conditional
probability, the difference between a pixel intensity value and the mean value for the region
as well as the difference between the motion vector and the displacement obtained from
the motion model are Gaussian distributions. The influence of these two terms is locally
related to the displaced frame difference (DFD): the motion term is dominant when the
motion vector is reliable (low DFD value), and the intensity term is used in areas with
unreliable flow (high DFD values). Iterative Conditional Modes (ICM) algorithm is used to
solve the optimization problem.

This type of technique partitions the scene into small region homogeneous in terms
of spatial and motion features. For the semantic foreground/background segmentation
problem, a single object should be obtained. In this case, observations are often given by
change detection masks. Change detection algorithms starts by computing the gray value
difference image between two consecutive frames, followed by post processing operations
and a decision rule to classify pixels as foreground or background. In the work of Paragios
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and Tziritas [100], the likelihoods are modeled with a zero-mean Gaussian distribution, and
the prior consists both of a spatial and temporal continuity term. The labeling problem
is then solved by using ICM algorithm over multiple scales. Change masks are easy to
compute, but the interior of the object will be not detected if the object is insufficiently
textured.

Robust estimation of multiple motion

More recently, Xu et al. [144] tackle the problem of multiple and complex motions. The
principle is to perform estimation of multiple models in competition to each other. Their
method aims to overcome the deficiencies of those estimating recursively the dominant
motion, in particular due to the imperfect detection of the outliers. For this purpose,
they use a robust estimation technique, the Mean Square Robust Estimator (MSRE) and
propose an adaptation for multiple motions. Moving regions are represented by a quad-tree.
This particular structure decomposes hierarchically the images into blocs. The root node
represent the image, and each node can be divided into 4 equal-sized blocs in the next level.
Each block is associated to a parametric motion model. A criterion for motion coherence is
defined by the squared difference between the dense motion field and the model-generated
motion vector. A block is decomposed until it verifies the coherence criterion. When
the quad-tree is completed, adjacent blocks are grouped if they undergo similar motion.
A statistical test based on the distribution of the residuals of motion estimation error is
performed. The Kolmogorov-Smirnov hypothesis test is used to check the correspondences
between the two distributions. After this step, the number of motions in the image is
known. The likelihood of the observed motion field given the parameters of the models
and supports is maximized using a M-estimator. This family of robust estimators enables
to limit the influence from important errors. Iterative Recursive Least Squares (IRLS)
is used to simulate the robust norm with a weighted least square estimation method. The
residual error over all regions is computed adding the residual error on each region, selecting
the most coherent model that has the lowest residual error for this region. The weights
are recomputed from the residual error and the least square problem is solved to provide
new motion parameters. The procedure is reiterated until there is no more change in the
assignments.

Segmentation favoring spatial information

The main problems related to the estimation of the optical flow are occlusion and aperture.
The occlusion problem arises when the motion is estimated in covered or uncovered areas
where no correspondence between the two images exists. The aperture problem is that an
area can be considered locally as stationary whereas motion is actually present. This arises
in flat or untextured regions, where the intensity gradient is low. Because of the limited
accuracy of the optical flow, spatial features such as color, texture and edges have been also
introduced for segmentation. Considering spatial regions reduces noticeably the complexity
of motion estimation and is shown more robust than the pixel level [122].

Methods based on spatial segmentation intend to subdivide the image into homogeneous
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regions. In general, coherent moving regions occupies a larger scale than color regions.
When this assumption is not respected, an oversegmentation of the image is produced.
The watershed technique became very popular for this purpose [140]. This morphological
approach combines region growing and edge detection. The magnitude of the image intensity
can be considered as a topological surface. Local minima (or seeds) are represented as holes
punctured in the surface. The surface is then immersed in a lake. Water progressively forms
catchment basins. When the water floods over two basins a dam is erected, separating
two minima. At the end of the flooding process, each minima is surrounded by dams,
forming a partition of the image. A practical implementation of watershed is given by the
immersion process of Vincent and Soille [138]. The number of regions obtained at the end
of the algorithm (granularity of the segmentation) can be monitored by a region grouping
criterion. Haris [58] proposes a criterion favoring the grouping of small-sized regions with
similar colors.

In [36], spatial partition is obtained using a open-close per reconstruction morphological
operator, enabling the to produce flat zones while preserving contour information. A K-
means clustering on luminance values complete the procedure. Affine motion models are
computed from these affine regions. In order to take into account a possible failure of
segmentation, a robust estimation is performed. Regions that do not have coherent motions
are split using a K-means on their luminance values, while regions with similar motions are
grouped by clustering in the parameter space. K-medoid is preferred for this task, being
less sensitive to outliers.

Chang et al. [24] use a comparable technique for initializing spatial segmentation in the
first image. Color quantification is performed in the perceptually uniform HSV color space,
followed by median filtering to prune insignificant details in the image while preserving
contours in the image. In their grouping technique, edge map is used in order not to merge
regions that are clearly separated by a contour.

Deng and Manjunath, in [33], uncouples color quantization and spatial segmentation.
Pixels values are replaced by their color class labels, forming a class-map of the image.
Then, they define a cost function J which indicates the proximity of region pixels to their
contours. A criterion for “good” segmentation is therefore obtained by minimizing J over
the image. In practice, a region growing technique is implemented, considering the local
minima of J as seeds in the image. The method also enables to compute motion explicitly, by
expanding the regions on a spatiotemporal neighborhood. For this purpose, the J measure
is then employed to detect reliable areas for propagating regions, and avoid confusion at
the neighborhood of region borders.

Region and object tracking

Once the motion models and support regions are found in the first images, the temporal
correspondence between images should be established.
Adopted tracking strategies fall in different categories:

e Matching of spatial segmentations at time ¢ and ¢ + 1.

e Temporal projection of the spatial segmentation from frame at ¢ to ¢ + 1.
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e Tracking of an object model.

Region matching

When the spatial segmentation of two images is run independently, temporal tracking is
done by matching the partition in consecutive images. In the method of Deng et al. [33]
mentioned before, seeds in the first frame are assigned as the initial objects. Then, seeds
in the current image are projected in the previous image. The temporal matching is based
on a simple overlap measure. Seeds that falls in one object of the previous frame are
assigned to this object. If more than one object intersect, these objects are grouped. Then,
stable objects that have a minimum life span are retained. Del Bimbo [30] searches for
similar regions in terms of location and color. Location similarity combines position, size
and overlap of the regions. Color similarity is done with a customized distance in C'IFE
LUV space. Regions are tracked by finding the match that maximizes the overall similarity
between image regions. A minimum search path technique is employed to solve the problem.

When a region is segmented at a fine scale, variations between successive images may
occur frequently. To overcome the temporal stability problem, Gomila et al. [53] proposes
to construct a hierarchy of nested partitions. The decomposition of each image is obtained
from a morphological technique. To establish the correspondences between two images,
they first compute the intersection between partitions. The regions that do not find any
satisfying correspondences are further divided according to the hierarchy, until similar parts
are found. The partitions of the two images are therefore modified so that they are closer
to each other.

Temporal projection

Segmenting each image remains costfull and increase computation time, especially when
requiring both spatial region growing or accurate motion estimation. Methods by temporal
projection initially segment the first image. Spatial segmentation techniques mentioned in
the previous section can be used for this purpose. This approach assumes that a motion
model is available for every region of the image. Next image is then roughly segmented by
compensating the motion of each region of the previous image. Areas that are uncovered
or covered by several regions are then resegmented locally. The method of Wang [140] fits
in this framework. Starting from spatial segmentation into moving objects, a projected
partition is obtained by displacing each object following a linear motion model. To take
into account projection errors and superposition, reliable parts of the object obtained by
morphological erosion are extracted as markers. A modified watershed procedure enables
to track the previous regions while authorizing the creation of new objects. To this aim,
the marker’s area are imposed as initial catchment basins. The flooding procedure starts
by extending the initial basins to a predefined level. At this stage the basins that have
not been labeled are considered as new regions. Indeed, new objects are likely to be flat
zones surrounded with high watersheds (gradient value). Finally, the flooding terminates
by extending both types of basin.
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In [24], interframe projection or regions is also followed by a local intra-frame segmen-
tation. They use an iterative clustering algorithm to merge regions with the smallest color
distance inside the uncertain areas. These new small regions are then merged to their neigh-
bors by morphologic open-close algorithm. In this way, existing homogeneous color regions
are tracked frame to frame.

Bonnaud [17] introduces a method for tracking multiple objects based on boundary ad-
justment. A boundary-based structure is used to represent the segmentation. In this struc-
ture, a node connects three or more neighboring regions and an open boundary connects
each couple of nodes. The partition is created in the first image using a spatial segmenta-
tion technique based on a Minimum Description Length (MDL) criterion. The boundaries
are compensated and adjusted during the sequence in several steps. First, motion model
is estimated for each region and its boundaries are motion compensated. The displaced
boundaries are then connected with geometrical criteria, and new nodes are created for the
image. Then, they are correctly placed in the current frame by minimizing an energy func-
tion that measures the deformation along the boundary area. The approach shows good
localization and temporal coherence for significant boundaries but can be hampered with
block artifacts in case of low-contrasted boundaries and too small regions.

In [45], the partition is projected using a block-matching approach. Blocks that belongs
to the partition borders are used to determine uncertainty areas. The segmentation of these
local uncertainty area is facilitated by the use of a spatial irregular pyramid. At the first
level, existing regions and pixels in the uncertainty area are gathered to form an adjacency
graph. A decimation procedure is performed in the graph to attach progressively uncertain
pixels to existing regions using color similarity.

Model tracking

In the case of object segmentation, region tracking is generally improved (more accurate
boundaries) with matching of object models instead of regions. Complete object masks
for an image can be obtained by merging regions obtained from spatial segmentation. A
technique for merging moving regions is to define a similarity measure based on motion
compensation error or increment of motion compensation error. In the first case, the crite-
rion is governed by a global threshold. In the second case adjacent regions are merged if the
compensation error using the motion model computed from the union of the two regions is
significantly lower than the compensation error on each region [140].

In the work of Moscheni [88], a spatiotemporal similarity measure between regions is
constructed from spatial and temporal similarities. Two distinct hypothesis tests are per-
formed: the spatial test verifies if the luminance in the neighborhood of the border of the
two regions is similar, i.e. if their contrast is sufficiently low. The temporal test checks if
the distribution of the residuals obtained from compensated motion-models are similar. A
modified Kolmogorov-Smirnov (KS) test is used for this purpose, reducing the influence of
outliers when comparing distributions. Quasi similar measures are used by Xu et al. [144]
but moving regions are first grouped before using the KS test and the spatial test which
groups low-contrasted regions is performed afterwards.

Besides region merging techniques, object mask can be obtained from other techniques.
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The most common one is to compute a change detection mask. After compensation of
camera motion, object mask is constructed by pixel or block classification into foreground or
background. A technique based on morphological operations is proposed by Meier et al. [86].
They apply a morphological motion filter on the flow field, keeping only components that are
not following the dominant motion. The object masks, or independently moving components
(IMC), are obtained by the residue of the difference between the original and motion filtered
image.

Once the partition into objects is obtained of the first frame, an object model is com-
puted. In the method of Meier et al. [86], object is represented by a binary edge model.
Tracking is based on matching the model edges with the edges of the next image. The com-
parison is performed efficiently using the generalized Hausdorff distance. To handle rotation
or changes of shape of the object, the model is updated in two steps. First, the rigid part
of the object (slow motion) is represented by selecting directly the edges in the new image
that matches the previous model. Second, edges that belong to the non-rigid part (fast
motion) of the object are selected in the new image from the IMC mask. Finally, accurate
video object plane (VOP) and boundaries are obtained from filling-in and line processing
techniques. However, the selection of the edge model must be done carefully, being sensitive
to clutter and altered in occlusion areas.

Xu et al. [144] use a similar binary edge model to track the object. However, the
model update procedure is different and can reduce the tracking errors substantially. After
detection of moving objects in the first frame, a change detection mask is computed for each
object, the image difference being compensated with the object motion (translation). This
enables to place object and background markers on the image, along with an uncertainty
area. The object contours are finally obtained with the watershed transform, which is
applied on the morphological gradient of the image within the uncertain area.

The advantage of these object tracking methods is the efficiency and good accuracy
of object boundaries, thanks to the efficient matching and dynamic update mechanism.
However, if part of the background is included in the model in one frame, it will be also
retained for all successive frames of the sequence.

2.1.3 Spatiotemporal methods
2D+T Segmentation

Previously we reviewed motion-based methods that predict segmentation of the current im-
age by projection of the previous segmentation [110, 119, 140]. However, the segmentation
may move away from the optimal solution as new frames are being segmented, errors being
incorporated in the model. Segmentation in 2D+T space consists in extracting elementary
regions on frames, and group them into spatiotemporal volumes according to a given cri-
terion. In this way 2D+T methods aim to enforce temporal constraints on the long-term
to maintain consistency of the labeling between frames and to enhance coherence of the
segmentation.

As mentioned before, region information helps to the robustness of the motion estimation
and to reduce the complexity. At the region level, adjacency graphs are used to represent
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various relationships between regions. In this context, methods have benefited from MRF
framework for temporal consistency of the segmentations. The MRF neighborhood system is
naturally represented by the region graph, each region being a single site. Patras et al. [102]
the labeling of a new image regions is based both on motion hypotheses, image intensity
and the estimate of the labeled field of the previous frame. An explicit term in the Gibbs
potential indicates the correspondence of the label field of the previous frame, the motion
hypotheses and the current labels. This term can be simply expressed by counting the
number of pixels whose label is different from their projected counterpart. MAP estimation
of the label field and motion models is performed with a Expectation-Maximization (EM)
procedure. In a first stage the region labeling is optimized given the motion parameters. In a
second stage, motion estimation is performed considering the labeling of regions. Extensions
of the method will be to relax the temporal constraint to handle partial occlusion. The
method offers several advantages compared to other region-based methods.

In the work of Fablet et al. [40], a region is considered as an object if its motion is not
conform to the dominant motion. The approach is therefore dependent of the estimation
of dominant motion. When multiple independent motion patterns are present in the scene
(as noticed before), outliers of the model may not belong to a real object [88]. Second
limitation is that static part may be not compensated [42]. To handle this problem, they
have to further separate the static parts which is not embraced by the dominant motion
from moving objects [42].

In the method of [51] the terms of the energy potential express similarity between motion
models, number of regions and degree of adjacency between regions. In contrast, motion
models are estimated separately on each initial region, assuming that each region has suffi-
cient texture. This is not crucial in [102], as the motion models are estimated globally. A
second difference is that in [51], the MRF model is used to initialize the prediction of a new
label field, and not during the whole procedure as in [102].

To overcome the problem of static/moving regions, region labeling methods have also
used memory that register the previous states of the pixels or the regions. In the fore-
ground /background segmentation method of Tsaig [129], the segmentation is initialized by
watershed regions, followed by a spatiotemporal merging stage which merges adjacent re-
gions with similar color or motion. Segmentation is followed by an initial classification
stage based on the change detection mask and a dynamic memory. As a simple memory
that counts how long a pixel has been moving is prone to label erroneously background as
foreground in case of fast motion, they propose a dynamic tracking memory whose values
are updated according to the displacement of the regions. As a consequence, the memory
is incremented in areas that are detected as moving regions, based on the previous tracking
score. On the contrary, the memory slowly diminishes the detected background area. The
classification of regions is then seen as a MRF labeling problem. In the Gibbs potential, the
memory is used as temporal continuity term, preventing moving regions to be labeled as
background even if they stop for a long period. In this way, the effect of incorrect labeling
at one time is attenuated, achieving better temporal coherence.

Another type of methods exploits spatiotemporal neighborhood to maintain consistency
of the segmentation. An early approach was the work of Deng [32] design of object-based
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retrieval system. The approach is related to the MPEG-2 coding. A basic temporal unit is
composed of a group of one intra (I) frame and 6 surrounding predicted (P) frames. The I
frame spatially segmented using color and texture information, and the regions of P frames
are obtained by affine motion estimation. Long-term spatiotemporal region segmentation is
then achieved by region tracking between central I frames, as they are segmented accurately.
Spatial layout, affine motion compensation and local features are used to perform one to
one match of these regions. A region is not matched if the distance between one type of
feature exceeds a predefined threshold.

Tao [126] formulates explicitly temporal constraints on motion, shape and appearance
of the objects. Motion layers [141] are used to represent independently moving objects and
are tracked over time. A layer is defined at each time by a a shape prior, a motion model
and its appearance. The shape prior represents a global constraint used to regularize the
estimated object shape. An affine motion model is used and the appearance model governs
the distribution of pixel intensity in the shape prior referential. Temporal changes are
reflected by introducing uncertainty in the motion and appearance models, in the form of
a Gaussian noise. The layer model is updated for each frame by EM estimation procedure
taking into account the aforementioned constraints that penalizes changes in the object
motion, location and shape between frames. A major advantage of the method is that the
ground layer and the objects compete with each other in the layer estimation using motion
cues. This improves the robustness of the tracker against the background clutter and makes
the tracking more resilient to distraction from other nearby objects.

A larger spatiotemporal neighborhood is defined in [146]. In their object extraction
scheme, they first divide the video sequence into temporal non-overlapping sections. Each
frame of the section is segmented and a RAG is constructed for each frame. A whole 2D+T
graph is constructed based on the spatiotemporal adjacency between frame regions. Each
graph is then partitioned into objects by minimizing a global cost function derived from
the normalized cut, considering an unknown number of objects. As one graph contains few
nodes (about 100), a genetic algorithm is used to find a solution to the partitioning problem.
Finally, the section graphs are merged temporally considering the trajectory of the merged
subgraphs: the region in the last frame of one subgraph is projected in the region in front
of a subgraph of the next section; merging occurs when the two regions coincide.

Segmentation of the 3D pixel block (pure methods)

Methods that requires exact object motions suffer from different problems. In traditional
approaches based on motion estimation, the motion vector field is often erroneous due to
camera noise and single affine model is often insufficient to depict big objects. Concerning
region-based methods, occlusion and disocclusion areas can also introduce errors in the
estimation. Furthermore, the interdependence of the motion model and its support make
the optimization procedure complex. For scenes containing multiple objects or objects with
non-rigid motion, these problems become very difficult to overcome in practice.

Pure spatiotemporal approaches stands as an alternative to the motion estimation prob-
lems by considering the video frames as a single 3D pixel volume. This category of methods
extract visual structures simultaneously in space and time, forming continuous volumes
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that represent meaningful objects of the sequence. In consequence, no tracking is needed
to achieve temporal consistency. Viewing the scene as a whole has been inspired by Gestalt
psychology (section 1.2.1). Taking as input the whole video volume and extract spatial and
temporal descriptors for every pixel generates important needs in computational power and
memory. As a consequence, these methods have only raised interest recently. However, it
still remains difficult to apply them to large video databases. The techniques developed
until now can be grouped into 3 categories. Morphological approaches extends 2D image
morphological segmentation to the spatiotemporal domain [39]. Another approach is to
associate pixel structures with space-time models obtained from clustering of spatiotem-
poral features [31, 55]. Finally, global approaches using graph-based segmentation in the
spatiotemporal domain have been developed. A global partitioning criterion is defined to
decompose the video into coherent volumes [112, 46, 76].

Morphologic segmentation

The first category relies on 3D morphological operations and aims to detect object edges
in the spatiotemporal domain. Object boundaries form a spatiotemporal surface in the
xyt space. Instead of using complex mathematical functions, Korimilli [71] depicts these
surfaces, called temporal envelopes, with a collection of planar patches. To construct these
planar patches, edge detection is first performed by extending Canny detector to xyt space.
Each edge point is represented as a planar surface with the Hough transform ; planar
patches corresponds to local maxima in Hough space. The envelopes are then detected
by grouping similar planes using Gestalt principles. With this framework they achieve
good motion segmentation in presence of noise, illumination changes and occlusion from
perceptual organization principles without computing motion estimation.

In the work of Saban et al. [39], objects are constructed inversely by watersheds of a
spatiotemporal edge gradient function. To avoid oversegmentation of the sequence, flooding
is performed starting from a set of markers manually placed in the initial frame of the
sequence. However, the method is sensitive to the location of these markers, which need
to be approximately known. Main work remains to deal with long sequences, including
occlusions, entry of new objects and fast motion.

Space-time models

A second type of approach aims to simplify the description of the video sequence by fitting
a global space-time model applicable to the video block. At the most general level, objects
are represented by a set of spatiotemporally connected pixels (volumes). Kompatsiaris
et al. [67] modified the k-means clustering technique to impose spatiotemporal connectivity
and adapted it for the extraction of spatiotemporal volumes. An object is characterized by
its mean intensity over the sequence among with its mean differential motion and position
in each frame. The distance from one pixel to an object is defined by combining these three
features. K-means is then used to minimize the total distance between pixels and the object
clusters. The algorithm includes a connected component labeling to ensure spatiotemporal
connectivity and limits automatically the number of objects. A different clustering approach
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is presented in [31]. Objects are locally represented as color patches with linear motion,
forming a video tube or strand in the zyt space. A tube can be represented as a single point
in a 7D feature space. These space-time features based on color, position and optical flow
are extracted for each pixel. A global and compact model for the video sequence is then
obtained by a mean-shift algorithm that performs hierarchical clustering of the pixels. This
type of representation is useful for comparing efficiently the shots and give cues on the type
of activity the shot may refer to.

Global models are rarely valid along a whole frame sequence. Greenspan et al. [55] uses
a probabilistic model for video content representation. Each pixel is assumed to be drawn
from a Gaussian distribution in the Labxyt feature space. Thus, homogeneous volumes are
represented as blobs and the whole set of volumes as a GMM in this feature space. They
further extend the spatiotemporal representation for long-term sequences. To handle com-
plex motion patterns, a succession of spatial GMMs are estimated in overlapping temporal
segments (BoF). GMMs are initialized in the first frame via an EM clustering algorithm,
then are updated in subsequent frames. The initial number of classes can be determined
from the Minimum Description Length (MDL) principle, but requires the estimation for
different number of models. Appearance of new objects is handled by projecting the blobs
in the image and grouping pixels that do not fit to existing blobs. Long-term Temporal
coherence is ensured by matching the blobs in the common frames of two successive BoF's.
Such representation is interesting for event modeling and detection.

Spatiotemporal graph segmentation

It is difficult to prove the superiority of one space-time model to another, the choice of
the model depending on the initial hypothesis on the underlying structure of the objects
and on the application domain. Graph-based segmentation does not make hypothesis of
a particular representation and avoids the computation of space time models. Pairwise
similarity between pixels is used as the cue for grouping.

Graph-partitioning techniques have been employed for segmenting video stack. In graph-
cut approaches, the grouping is achieved by minimizing the energy to partition the graph, or
cut value. To balance the size of the groups and their homogeneity, [113] proposes the nor-
malized cut criterion (Ncuts) to search for cuts that maximize the similarity within groups
while minimizing the similarity between groups. To solve this partitioning problem in large
graphs, a spectral clustering approach is proposed. This consists in the resolution of a gen-
eralized eigenvector system involving a global affinity matrix which registers the similarity
between every couple of pixels. A bipartition is then obtained from the second smallest
eigenvector. Fach partition can then be further subdivided by running the algorithm in the
obtained parts. The procedure stops when an unstable eigenvector is obtained, i.e. no signif-
icant break can be made from the eigenvector. To overcome the problem of instability and
discretization of the continuous eigenvectors, [46] takes the largest eigenvectors and clusters
points by their respective components in these eigenvectors. A rigorous formalization of a
problem can be found in [145], deducing an iterative algorithm to transform eigenvectors
into binary indicators.

A drawback of these approaches is that considering the whole affinity matrix is not
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tractable for an image and even less video sequences, considering N x N nodes, N being
the total number of pixels. To reduce the complexity of the algorithm, Shi [112] restricts
the spatiotemporal neighborhood to a local area and diminishes the density of neighbors
by sub-sampling. However, increasing the sparsity of the affinity matrix affects the final
segmentation results, diverging from the solution provided by the optimal criterion. To
further consider long sequences, the affinity matrix is decomposed into blocks corresponding
to pairwise frame relationships inside a temporal sliding window. The eigenvector system
is then defined for each frame by updating partially the affinity matrix blocks involving
the new frame, and solved efficiently by utilizing the previous eigenvectors for initialization.
Fowlkes [46] overcomes the complexity problem by computing an approximate solution
for the eigenvalue problem. The numbers of points in the sequence is decreased by sub-
sampling, and the system is solved for the sampled points. The eigenvector components for
the remaining points are then estimated using the solution for the sampled points using the
Nystrom approximation.

Graph-based segmentation enables to handle different type of segmentations, using the
same generic procedure. Shi [112] performs motion segmentation by considering local dis-
tribution of the optical flow components (or motion profiles) over a spatial window centered
at the pixel location. Fowlkes [46] builds a spatiotemporal segmentation for various group-
ing cues, including color, texture, and optical flow within a Mahalanobis distance. As the
spectral clustering performs clustering in the similarity space, the resulting groups tolerates
smooth spatiotemporal variations, propagated through neighboring nodes of the graph.

More recently, graph-cuts have been used to solve more general graph labeling problems
involving the minimization of a global energy function composed of a prior term and a likeli-
hood term. Under certain restrictions of the energy potential, it is shown that the bipartite
labeling problem equivalent to the minimum cut problem on an particular graph [66]. This
framework has started to be employed for different computer vision problems, among which
object segmentation [73]. A graph labeling method for foreground/background segmen-
tation is introduced in [76]. The graph is constructed by watershed image segmentation
and connected regions within a spatiotemporal neighborhood. Color models for object and
background colors are represented with a GMM. The likelihood term corresponds to the
distance of a region to the color model (background or object) and the prior term penalizes
regions that are assigned different labels but shares the same color. A drawback of this ap-
proach is that it is not fully automatic and requires labeling of one or several keyframes to
build the color models. Graph segmentation errors are located by the user. A 2D graph-cut
is then used to refine the segmentation within the specified window.

Compared to methods based on explicit computation of a space time model, graph-based
segmentation only uses spatiotemporal proximity and a defined similarity measurement
to group regions. This avoid estimation of parametric models [55] and problems related
to model convergence (local minima and dependence of initialization). Motion is taken
into account implicitly considering edges within a spatiotemporal neighborhood, or directly
within the similarity measure [112]. In particular, the graph-cut formulation enables to
provide a global optimal solution for the segmentation problem, and is capable to handle
local spatiotemporal variations within objects, or at least the object parts. However, the
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partitioning problem is NP-hard and the estimated global solution for the whole sequence
does not ensure that segmentation is locally adapted in practice because of simplification
of the problem and complexity of the scene. Predicting the optimal number of cuts is also
difficult, and to our knowledge, no good criterion has been proposed. Recursive 2-way cut
is a potential solution to this problem but does not generally provide stable solutions [113].
Interest can be placed in pyramidal approaches, but only few work have been performed in
this direction until know [50]. Thus most reliable methods for graph-based segmentation
use a prior on the object model that constrain the solutions. Such type of models includes
simple color models [76] and pictorial structures. However, this type of approaches are
supervised and models are learned for specific objects.

The approach we present in this thesis is related to the graph-based spatiotemporal
segmentation and spatiotemporal region merging approaches [88]. Spatiotemporal meth-
ods generate an important complexity, which make their use difficult for video databases
and content indexing problems. We face this problem considering a bottom-up segmenta-
tion based on similarity between groups of pixels and regions. We also avoid considering
estimation of motion field for the construction of low-level spatiotemporal volumes by con-
sidering spatiotemporal neighborhood in a 2D+T graph. Temporal coherence is maintained
through the use of spatiotemporal contraints and a region matching process. To further
group volumes into objects, we estimate simple motion models for the volumes and find
volume patterns that undergo coherent motion, following the Gestalt principle of common
fate.

Compared to the spatiotemporal 3D graph segmentation and motion-based region la-
beling approaches, complexity of the approach is kept at a lower level through the use of
appropriate structures at different levels of representation. The complexity of grouping and
cues used for grouping increases when considering pixel, region and finally object structures.

2.2 Spatiotemporal representation based on graphs

In this section, we describe a method for spatiotemporal segmentation of video shots. The
shot is defined as a continuous actions in space and time. In order to construct the spa-
tiotemporal representation of a video sequence (section 1.2.4), it is necessary to take under
account different aspects simultaneously. The first aspect concerns the use of efficient struc-
tures for describing elements at each level of representation. The second aspect is to define
a scheme for organizing the grouping task. As far as the last aspect is concerned, we need
to elaborate appropriate algorithms for grouping and merging of coherent volumes.

With respect to these considerations, the main features of our approach are defined as
follows:

o Representation with adjacency graphs: Different adjacency graphs are used
according to the grouping level. At the pixel level, we consider local interactions with
a simple 3D grid graph, which is represented as a forest for fast merging operations.
At the region level, we can consider broader interaction using region adjacency graphs
of the last frame pair.
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e 2D+T domain: Instead of processing the entire video volume at once, we append
single frames to the video volume. The spatiotemporal grouping is updated using
pixel data from the last frame pair.

e Low-complexity graph algorithms: The complexity of the merging algorithms
is adapted to the grouping level. Pixel graph algorithms are derived from minimum
spanning tree algorithm. The complexity of region graph analysis is theoretically
higher, but far less region nodes have to be considered.

First, we give a short insight about the method strategy. Then we analyse the low-level rep-
resentation and explain a region growing algorithm and its extension to the 2D+T domain,
focusing on the necessary spatiotemporal merging constraints and matching techniques pro-
posed. The overall theoretical complexity of the approach is examined and finally the prop-
erties of the method are analyzed experimentally through different segmentation examples.

2.2.1 Overview of the proposed method

The method intents to various to segment various type of scenes, including both static
and dynamic contents that are commonly found within a video sequence. Unlike most of
space-time segmentation approaches, the proposed workflow does not need computationally
intensive clustering or global optimization algorithms. They are implicitly replaced by
decomposing and simplifying the segmentation process into several stages.

A global view of the method is shown fig.2.3. In the following, we denote by Sp_
the spatiotemporal segmentation from times 0 to t and S; the segmentation of a single
frame F;. The segmentation is first initialized on the first frame of the shot Fy. This
step sets approximately the level of spatial details for the final segmentation. An efficient
graph segmentation algorithm is introduced in section 2.2.3 and is used for this purpose.
Once initialized, the segmentation S; is obtained from the previous segmentation Sg_.;_1.
We create a set of over-segmented spatial regions for each new frame F; using an edge
constraint described in section 2.2.4. Ideally, they correspond to a partition of the final
regions S;, except some new regions induced by motion. The grouping between Sy_;—1
and S; is done in three steps. To take into account region motion, we create new temporal
edges linking regions in S;_; to S; by feature point tracking between frame pairs (section
2.2.5). Considering statistical properties of feature points within region couples, we can
group most of dynamic regions. The linkage of remaining static regions is done with the
spatiotemporal merging rules described in section 2.2.4. The merging is performed on a
pixel neighborhood, considering both local and global properties of the current segmentation
So—t. As the projected segmentations S;_1 and S; become close after this stage, we finally
compare their region adjacency graphs to check the validity of new regions. In this way,
we achieve incremental grouping of space-time regions by considering different levels of
interaction between pixels, frame regions and spatiotemporal regions.
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2.2.2 Tree and forest representation

At the lowest level the graph is composed of pixel grid, each pixel corresponding to a
node. When effecting groupings on the graph, there is usually two ways of representation.
The first one relates to merging of the graph, performing vertex contraction that changes
the graph structure. The second one consists in partitioning the graph into disjoint sets.
Disjoint set data structures have been introduced by [48] for keeping track dynamically of
the partitioning.

This structure has the following properties. Each set is identified by a representative,
which is a member of the set. Given two nodes x,y, three operations are available:

e Make-Set(x): makes a singleton set with x.

e Union(x, y): takes two disjoint sets with representatives x and y respectively and
creates their union. The representative is either x or y.

e Find-set(x): returns the representative of the unique set containing .

In practice disjoint set data structures are naturally represented as forests, as illustrated
fig.2.4.

® @
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Figure 2.4: Disjoint set data structures and related operations. (a) Initial forest. Each node
is a tree. (b) Forest after some grouping operations. (c) Union of sets represented by g and
e. (d) Path compression.

Considering a pixel graph structure, the find-set operation becomes less efficient as the
trees grow, visiting all parent nodes corresponding to successive groupings. The complex-
ity is reduced by attaching the visited nodes to the representative (root node), as shown
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fig.2.4(d). This mechanism is called path compression. Complexity for these structures will
be detailed in section 2.2.6.

Now let’s consider a bottom-up partitioning procedure. A grouping algorithm will start
by creating the elements as singletons with the make-set operation. Any two elements will
be compared by looking at their representative with the find-set operation. These elements
can represent an edge connecting two groups. Two sets are finally merged with the union
operation. The merging criterion can involve both edge or group attributes, represented as
map. This scheme is illustrated fig.2.5 for the segmentation of a local grid. The advantage
is that merging and accessibility of groups is fast. Properties resulting from the union
of two groups are calculated with common merging operators defined in section 1.2.6. If
properties have to be computed considering the support of the group, region representation
can be constructed by scanning all the nodes in the graph with the find-set operations. As
mentioned in section 1.2.4 this is only useful when the groups reach a consequent size.
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Figure 2.5: A bottom-up segmentation procedure for graph with a disjoint set data struc-
ture.

2.2.3 Region growing

A fast graph segmentation algorithm has been introduced in [43]. In opposition to spectral
global clustering methods or local single linkage methods, the algorithm groups region based
on both local and global properties. We consider the graph of pixel G(V, E) introduced in
section 1.2.4. Each edge e between pixel is attributed a weight w(e) that represents their
dissimilarity.

The algorithm aims to decompose G into a set of components Cq,Cs,...,Cy, where
each component Cj,i = 1...k is built from a minimum spanning tree (MST). A MST is
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a tree which connects every node of the graph and has minimum total edge weight. The
key of the method consists in single linkage and adaptive thresholding. The former aspect
enables fast processing with the disjoint data set structure while the latter considers both
local and global aspects of the components. Single linkage merges two adjacent components
by bridging them with one edge. A typical method for single linkage is to construct first
a minimum spanning tree of the graph considering all edges, and to form components
afterwards by pruning weakly connected edges. In contrast to other methods which assume
that the regions are piecewise constant (with respect to color or texture, for instance), or are
closed together in some feature space, the method is based on measuring the variability (or
dissimilarity) of a boundary between two components and the variability between adjacent
nodes within each component. The segmentation is obtained on the basis of the well-
known Kruskal algorithm [72]. At the beginning the components are disconnected, i.e. that
each component corresponds to a pixel. Similarly to the construction of the MST of the
graph, two components are connected by an edge, which are taken in increasing order of
their weight. Thus, the variability of each component grows little by little. To limit the
expansion of the components a merging criterion has to be defined. Each component C; is
described by the internal variability Int(C;), which represents a characteristic value of the
edges grouped in the MST. Two adjacent components C; and C; are compared by analyzing
their common boundary, which is described also by a representative value Ext(C;, Cj). A
schematic representation of the merging is shown fig.2.6.

Int(C,) Ext(C,, Cy) Int(C,)

C G,

Figure 2.6: Merging of components. Characteristic values for the decision are based on
their edge weights.

The decision to merge C; and Cj; is governed by the criterion M (C;, C;) which takes
into account both local and global properties of the components:

Ext(C;, C;) <min(Int(C;)+7(C;), Int(Cj)+ 7(Cj)) (2.1)

Equation 2.1 allows to merge components if the dissimilarity in the boundary of C; and C}
is lower than the dissimilarity within each component, plus a tolerance 7 which decreases
with the component size. Due to the tolerance, fewer merge are done when the region size
increases. With this adaptive rule, the segmentation is sensitive in areas of low variability
whereas it remains stable in areas of high variability. This criterion is computed very
efficiently by following the MST construction. The external and internal values are given
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Int(C;) =
nt(Ci) (@b eMST(CoE)

Ext(C;,C;) = min  w 2.3
(i C5) (acCibecy) (23)
The tolerance is adjusted with respect to the component size.

K

e

(2.4)

Each component can be characterized by the largest weight in the minimum spanning
tree, and the components are compared with the smallest edge weight linking the two
components. Components with a single element have value of Int(C;) = 0. Practically,
Int(C;) corresponds to the last edge added to C; and Ext(C;, Cj) is the weight of the
current edge being processed.

The main property of the algorithm is to respect a criterion of good segmentation. A
segmentation S is said to be too fine when the merging criterion M is false between a pair
of regions, or inversely too coarse if there exists a component that can be partitioned in a
segmentation which is not too fine. A good segmentation is then neither too coarse nor too
fine. A second advantage of the graph algorithm remains the genericity of the framework.
The algorithm is applied for fast image and spatiotemporal segmentation considering 2D
and 3D grid graphs. Frames are first preprocessed by smoothing with a Gaussian filter
of scale o, for noise reduction within the image. The edge weights are built using color
distance between pixels.

Intuitively, the Ext measure (eq.2.3) for two components could be enhanced by consid-
ering the distribution of the weights rather than the minimum weight in the cut between
C; and C;. A common measure in robust statistics is given by the p-quantile function,
which returns the value x such that the cumulative probability that the weight value is at
most = is p. However, the modification of the merging criterion with the quantile based
measure makes the segmentation an NP-hard problem. Indeed the minimum ratio-cut prob-
lem, which is known to be NP-hard, can be transformed to the problem of finding a good
segmentation [43].

2.2.4 Adaptation to the 2D+T domain

As mentioned in section 2.1.3, segmentation of the whole frame block generates impor-
tant computational cost and memory requirement. The region growing algorithm requires
that the data and graph structures (nodes and edges) are available. When the length of
the sequence grows, the efficiency is either hampered by the increasing access time to ele-
ments (list), or by the required memory which increases dramatically. A 2D + T procedure
constructing a segmentation Sp_,; from Sp_;_1 will have the following advantages:

e Reduce the memory load considering data at times ¢ and £ — 1, keeping the same order
of complexity.
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e The algorithm becomes causal, a new segmentation being rendered at each time t.

This adaptation is not straightforward. The property of “good segmentation” is lost if
the image F; is segmented without considering F;_1, or more generally if the segmentation
is built by parts. If the components at time ¢ — 1 and ¢ are built separately, we cannot
merge directly two spatial components C; and C; using the rule of eq.(2.1). Indeed, the rule
remains effective on the condition that the components remain minimum spanning trees.
The temporal edge weights may be lower than the internal values of each component. In
such case the merged components are no more minimum spanning trees. This problem is
illustrated in fig.2.7.

t-1 t t-1 t

O+ O+ Frames ' '

Figure 2.7: The 2D+T graph segmentation problem. (a) Input frames at times ¢ and ¢t — 1.
(b) 3D merging. (c¢) 2D+T merging. (d) End of the 2D+T merging.

In the example, frames F; and F;_; are composed of two regions: the biggest one in
dark blue, the smallest one in light blue (fig.2.7(a)). Corresponding segmentation is shown
(fig.2.7(b-c-d)), a local area at the boundary of the two regions being represented by the
grid at the right. The grid is composed of 4 connected nodes in each frame, and 2 temporal
edges are represented. The numbers further indicate the edge weights. In the 3D algorithm
(fig.2.7(b)), spatial and temporal are taken in increasing order, thus the edges with higher
weights that links the two regions are only considered at the end of the process. The size
of each region is then important, so that the internal value is low and the merging criterion
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is not verified. Thus two distinct regions are obtained. In fig.2.7(c), a 2D+T merging is
considered. Sp_;_1 is constructed from F;_; and then Sy_; from the spatial edges in F}
and temporal edges from F;_; to F}, i.e. that region growing in S; and temporal merging
between F; and F;_; are achieved simultaneously. When the merging between components
in Sy and Sp__1 is tested, the internal value of the latter will be higher than in the 3D case
(more spatial edges have been added to the group). As a consequence, an edge can separate
two regions in Sp_¢—; and group them in S; (components with green squares in fig.2.7(c)).
In other terms, the segmentation becomes too coarse. In fig.2.7(d), the two regions have
fusioned before the end of the merging process (the red component in Sp_;—; is merged
temporally with S; within the dark blue region as in the 3D case), so the structure found
in the 3D algorithm does not appear anymore.

As most bottom-up algorithm, the MST is a greedy algorithm ; once the decision to
merge two components is taken, it cannot be reconsidered later. From an other side, it
is the basis for simplicity and computational efficiency. To circumvent the problem of
temporal stability of the segmentation, between frames (segmentation variations in different
images), the linkage can be performed considering an over-segmentation of the new image,
i.e. imposing that S; is too fine. The fineness of .S; is then adapted considering that Sp_;_1
is a good segmentation.

Edge constrained segmentation

Instead of stopping arbitrarily the grouping process in the new image, we impose a boundary
constraint that limits the growth of the component in the new image. For this purpose, a
contour map %; obtained from Canny edge detection is used. For a graph edge e = (a,b),
this constraint L(a, b) is expressed as:

L(a,b) : Ve=(a,b), w(e)=occif aorbe % (2.5)

Thus, the propagation is done in areas of low-variability, resulting in more homogeneous
local components. This is particularly useful at the end of the procedure, adding only most
strongest edges to MST of the components. Another view of this heuristic is that we retain
only the lower part of the edge weight distribution in the computation of the internal value
of components. Edge-constrained segmentation and original image segmentation can be
compared in figure 2.8. We can see that the constrained method (c) results in a decompo-
sition, or over-segmentation of the unconstrained one (b). In addition, since we use Canny
detection, edges with local intensity variations are also pruned so that the components are
more homogeneous.

Spatiotemporal merging rules

With this boundary constraint, we adapt the merging criterion of eq.2.1 based on the
spatiotemporal continuity of the regions. Temporal edges between F; and F;_; are listed
to decide for the grouping of the components they belong to. The internal value of one
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(b)

Figure 2.8: (a) Input Image. (b) Unconstrained image segmentation used as initialisation.
(c) Edge-constrained initialization of the new regions.

component is represented by the mean value of the MST p;:
1

Hi = |C’|——1 Wab (2.6)

(a,b)eM ST (C;,E)

Ideally, it should represent a certain quantile of the distribution, but this would lead in
increasing considerably the complexity.

71, and 7g are local and global adaptive thresholds. The criterion first relies on a local
neighborhood Wy, (fig.2.9). The considered neighborhood is used to group common region
parts in F; and F;_; with sufficient overlap and similar features, when the distance between
connected node pairs is low. The global part of the criterion is also used to check if the
variability of the common regions is the same. This takes into account regions which has
slightly moved or whose illumination has locally changed. Given these considerations, the
space-time merging constraint is expressed as:

max(Wp) <7.(C;,C;) and |p; — pj|| < 76(Ci, C5) (2.7)

where
17¢(Cs,C;) = max(Tq, pe min(pu;, p15)) (2.8)
TL(Ci,Cj) = min(TL,,ui) (29)

71, and 7g are local and global adaptive thresholds that controls the degree of variations
authorized on the components and are thus defined on every couple of components (C;, Cj).
For local properties, we define a four edge neighborhood Wy, (fig.2.9(a)). The neighborhood
is considered as homogeneous if the maximum weight is weak compared to the variability
w; and T7, (fig.2.9(b)). Small values of 77, limit grouping in inhomogeneous areas. In this
way, we do not merge component from edges with high variability. For global properties,
we check if the components have similar homogeneity. For regions with strong homogeneity
(H.R in fig 2.9(c)), we consider directly the distance between p; and p;. For more variable
components, a tolerance p, is accepted on the relative error between p; and ;. Small values
of T and pg limit the temporal variation of the components. Thus, by combining these two
aspects, the merging occurs in space-time areas of low local variability on globally coherent
components.
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Figure 2.9: Space-time grid based merging. (a) Space-time local neighborhood Wr,. (b)
Local acceptance zone. (c) Global acceptance zone distinguishing between homogeneous
regions (H.R.) and variable regions.

2.2.5 Temporal region grouping and spatiotemporal consistency

In this section, we first describe the temporal grouping of regions based on dense feature
points and space-time constraints. Then, we show how RAGs are employed to check effi-
ciently the stability of the regions.

Creation of temporal dynamic edges

The fixed structure of the 3D graph can be problematic for the displacement of the regions,
the spatiotemporal tree formed may be not follow the actual color flow, seeing the volume
as a tube.

To tackle the issue of region matching, previous approaches have considered different
techniques: optimizing the fitness of the overall match [30], using a relaxation technique
[53], or performing one to one match after motion compensation [32] of the regions. The
regions obtained at the previous time S;_; are assumed to be of various shape, size and
with possible non-rigid motion. Therefore, motion compensation could not be used over
entire regions. In addition, regions might be partially occluded in the new frame, so that
one region can have several matches in the next frame. Given that the new regions are
oversegmented, our solution is to track partially these regions by spreading a population of
feature point trackers P. in this way, we extend the graph by creating dynamic temporal
edges, which enables a broader connectivity between segmented volumes and regions in
the new image. Regions linked with these dynamic edges are then temporally grouped
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considering space-time constraints. In this way, no hypothesis is made on motion models
and we avoid optical flow computation on full regions.

Feature point detection

Feature point trackers have been proposed by Tomasi et al. [114], in the aim to recover
structure from motion. Good feature points are extracted from corners or textured regions.
Given one image I and a local window B candidates points are found by analyzing a 2 by
2 matrix of intensity changes, given by:

2 I
M= > by [ I } (2.10)
(z.y)€B

where b(x,y) is the window mask, e.g. Gaussian-like for noise reduction. Good features
are then located by examining the eigenvalues A\; and Ag of M. In [114], corners, textured
regions are considered as most valuable to estimate their motion.

However, these points are likely to correspond to region borders, thus hampering the
matching between regions. Therefore, we rather consider flat points that we can expect to
lie reliably inside regions, at the expense of motion precision. The flat point detection is
given by:

min()\l, )\2) <A (211)

where ) is a predefined threshold. The threshold map is then reduced to a set of disjoint
points through non-maxima suppression. Feature points are then tracked using a simple
block matching algorithm. Figure 2.10 shows typical feature point detection and tracking.
We can see that feature points are concentrated in homogeneous areas (fig.2.10(a)).
Even if some tracked points are inaccurate (fig.2.10(b)), they can be considered as outliers
in the statistical distribution of the points.
We explain how we use these points for region grouping in the next section.

Construction of the matching graph

The feature point matches are considered as potential edges between components. For
grouping regions temporally, we consider the subgraph in the graph G that contains the
components present in frame F} and F;_1, and the dynamic edges linking the components.

At this stage, a region-based representation is more appropriate than the grid to handle
larger interactions. We construct a graph Gp = (Vp, E7) that corresponds to the compo-
nents between two consecutive frames. The node set Vp contains two subsets (V; and V;_1)
and the temporal edge set Ep is constructed from the feature points.

The vertex representing a region a is v, = (a, up(a)) where the attributes up(a) charac-
terize the population of feature points P, in a. A relationship between two regions a and b,
£p(a,b) contains the list of matched feature points between a and b, P, ;. The construction
of the graph is illustrated fig.2.11.

Each feature point is described by its velocity v = [v,, vy| where v, is the displacement
norm and vy is the motion orientation. In case there is substantial background or camera
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(b)

Figure 2.10: (a) Distribution of feature point matches. (b) Feature points inside the racket.
Arrows represent the estimated displacement.

Sk Sk+1

Figure 2.11: Temporal region grouping. Each region (circle) contains a set of feature point
samples. Feature point matches establish new temporal edges between components.
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Figure 2.12: The temporal region grouping scheme. Feature points are first detected and
matched. Then, the temporal merging of strongly connected regions is performed using a
hierarchy of tests. Ungrouped regions are processed using the grid graph and the spatiotem-
poral merging rules (section 2.2.4).

motion, the displacements are compensated with the mean velocity of the complete set of
points.

To describe a population P,, the vertex attributes vp(a) obtained by analyzing statistical
properties of the distribution:

e The population size |P,|, which is also the degree of vertex v,.
e The mean displacement of the population d(a) = [v,(a), vg(a)].

e The covariance matrix of velocity points of a ¥y (a), which indicates the coherence of
the motion.

Temporal grouping of regions is considered as a bipartite matching problem between
subsets V; and V;_;. Starting from the initial relationships established from the feature
points, we keep only relevant connections between regions. The rules for grouping dynamic
regions are explained in the following section.

Dynamic rules

The procedure for grouping regions temporally is illustrated fig.2.12. The graph Gr is
constructed from the regions in S;_; and S; and the matched feature points in P. Let
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a € V;_1 and b € V; denote two candidate regions for grouping that are connected in Gr.
The relationships between the two regions are analyzed by elaborating a sequence of tests.
First, the graph is simplified and weak edges between a and b are pruned with the Mong
test. Second and third tests (Mo, and M, p) verify if region couples undergo significant
and similar motion. This helps to detect potential splitting regions. These tests operate as
follows:

Mistrong: Two regions a and b are strongly connected if there is a significant proportion
of points linking a to b. The test is accepted if:

|Pab| |Pab|)
x (22l B2 s g (2.12)
( |Pa‘ |Pb|

Formally, eq.2.12 is analogous to the cut ratio between a and b, considering edges with unit
weight. In other words, if edges are given equal weights, the test is verified when a minimum
proportion of edges at a or b connects the two regions. Once all regions have been tested,
weak edges that do not satisfy the condition are pruned.

Mupov: From the displacement of feature points, we deduce information on region mo-
tion. The test separates moving regions from static regions. The moving condition is given
by:

vr(a) > Thov (2.13)

where T}, is @ minimum substantial displacement.

Mecon: If a and b are moving regions, they must undergo coherent motion to be grouped.
A simple measure is to compare the variance of the velocity distributions of a, b and a U b.
The test Mcon(a,b) is given by

tr(vau) < Y(W(Ca) + v(Cy)) (2.14)

where v, denotes the covariance matrix of the velocity points of a. The test encourages
grouping of regions with similar motion and favors splitting of segmented regions when
they are likely to have multiple motions. In this way, we handle apparition of new moving
regions.

At the end of the process, temporal grouping has been performed reliably on homoge-
neous moving regions. To group more textured areas on the sequence, the population of
seed points will be increased inside regions created in Sy, that have not been linked to S;_i.
In this way, the tracked points will focus progressively on the regions of interest.

New regions with no significant motion in S; are grouped with the 2D+T merging
criterion of eq.2.7 which checks if the regions are globally and locally coherent.

Subgraph matching

Among the regions in S¢, some may have received no correspondences. To valid the creation
of new regions, we analyze the neighborhoods through spatial adjacency graphs G;_; =
(Vi—1, Ei—1) from S;—1 and Gy = (V4, Ey) from S;. Graph matching is known to be difficult
and computationally intensive. In our method, the matching task is simplified through the
algorithms we detailed previously, and we can compare the RAGs of two consecutive frames
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more easily. In our graph matching stage, we check whether new segmented regions in V;
can be grouped with those in V;_1. The procedure is represented fig.2.13. For each node
v in Vi, we define its neighborhood subgraph N;(v) as the smallest subgraph containing
all its adjacent nodes v € V;. Search is done as follows. For one new region node v in
Sk+1, take one of its neighbors u € Ny(v) that is connected to a node u’ € V;_;. Candidate
nodes [ belong to the neighborhood of u in the previous frame, N;_1(u’). The condition for
grouping is that the distance between v and v’ is minimal with respect to the neighborhood
of the candidate:

div',v) < min d, z 2.15
()< _min da.) (215)

Figure 2.13: Neighborhood subgraphs for matching new nodes v,,. For each node u € N¢(v),
the neighborhood of u in V;_1, N;_1(v') is examined. Lost nodes [ are then retrieved by
comparing v to adjacent nodes of u’ in Ny_1(u’).

Equation 2.15 checks if an untracked node in V;_; can be matched with a new node in
V; in the proximate neighborhood. In this way, lost objects can be recovered in case of fast
motion or homogeneity changes. For the distance measure, the node attributes represent
dominant color (¢) and size (s) of the regions. For two nodes u and v, the distance is given
by

SuSv

utv 2.16
. (2.16)

d(u,v) = |cy — el
Thus, we favor the grouping of smaller regions with similar attributes.

An example of matching is shown fig.2.14 on the tennis sequence. Before matching
(fig.2.14(a)), untracked regions are located in the racket and the table left corner. The new
regions are located above the ball and inside the racket border. After matching (fig.2.14(b)),
the nodes at the racket border have been grouped as they have close similarity, whereas the
table left corner is not linked to any new node and thus cannot be reliably tracked.

2.2.6 Complexity study

The computational complexity of the method is relatively low compared to other spatiotem-
poral segmentation algorithms. As discussed above, the proposed algorithm consists of pixel
and region-based operations. First, we consider the segmentation of the pixel grid, repre-
sented by a forest of n elements, with N elements per frame. The grid contains m = O(n)
edges. The complexity of the algorithm is dominated by the sorting of edges of the graph,
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(b)

Figure 2.14: Subgraph matching. Untracked nodes are shown as green (clear) rounds,
tracked nodes as dark (blue) rounds and new nodes as (red) squares. (a) RAGs before
matching. (b) RAGs after matching.

with complexity in mlog(m). In the growing stage, initializing the forest with the make-
set operation is performed in O(n). Checking the representative of one component has
complexity of a(m) where a(m) is a very slowly growing function, and the merging of two
components is done in constant time. Thus, the growing stage takes O(na(n)) time.

The complexity order is reduced for the 2D+T adaptation. Sorting is performed in
O(N log(N)) for each image and therefore in O(nlog(N)) for the whole sequence. Consid-
ering the frame size as fixed, the complexity becomes O(n).

Region growing with the spatiotemporal rules keeps the same complexity of the original
growing stage, as merging operation is still performed in constant time. Low-level image
processing operations includes Canny edge detector and feature point detection. The op-
timal edge detector is approximated by computing the gradient of a smoothed image and
identifying local maxima of the gradient magnitude as edges. The gradient image is also
used for feature point detection, where a 5x5 window is used for the intensity change matrix.
All these operations are linear in time in O(N).

For operations on regions, let |P| the number of feature points, |V| the number of
regions, and |F| the number of spatiotemporal edges in the graph. The construction of the
matching graph G from a forest requires O(N log(|V|)) time for building subsets V;. The
construction of the list of feature points for all regions is negligible in O(p) time. Temporal
matching is then performed in O(]E|) time. For the subgraph matching procedure, spatial
adjacency graphs G; and Gy_; are constructed in O(N log(|V])) time, and the complexity
is higher in O(|V[|E|?). This may seem high but only a few nodes are processed, and the
out-edges for each region is usually far less than |E|.
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All considered, computational complexity is driven by the diverse operations at the
pixel level, whose complexity is in nlog(/N). This can be considered as low compared to the
graph-cut methods [113] of order O(n?), and comparable mean-shift clustering, which can
reach O(nlog(n)) using efficient range search algorithms [31].

2.2.7 Experimental results

In order to highlight the method properties, we have tested it for diverse video sequences.
Segmentation is in general context difficult to evaluate, depending much upon final applica-
tion. Objective criteria for evaluation of segmentation have been defined in [148], by defining
a reference segmentation. Two criteria evaluate spatial accuracy of the results, whereas the
third measures stability of the segmented form over time. However, such measures are
intended for foreground/background segmentation, and do not reflect the segmentation of
object parts. Direct observation of results, on various content still remain a relevant method
to analyze the segmentation quality and deduce strengths and weaknesses of our method.

Segmentation of various sequences

We analyze the segmentation results on test sequences of the MPEG standard. These
includes the tennis, foreman, akiyo and the walking sequence. In the tennis sequence,
the camera performs a strong zooming out motion, and the player progressively appears
in the sequence. In the foreman video, the camera motion is instable and the character
object shows important deformations and uncovered area across time. The akiyo sequence
also shows a character, where most deformations affect the anchorwoman’s face. Finally,
the walking sequence shows a walking man tracked by the camera in a corridor. The man
limbs shows deformations, and the background moves fast due to the camera. The shots
lasts a few seconds, about 100 frames each.

Properties of the initial algorithm (3D) are shown on the beginning of the foreman
and tennis sequence (fig.2.15). Firstly, main areas that are similar spatially and temporally
can be found in the same component, such as the foreman face, the background of the
tennis sequence. Secondly, spatiotemporal propagation of the components enables to extract
regions at a fine scale. This could be object parts, such as the pink collar (fig.2.15(a))
but also transitions in low contrast boundaries, for instance between the player arm and
the background (fig.2.15(b)). These parts persist throughout the sequence. Thirdly, the
segmentation is limited by connectivity of the pixel graph. Two regions without common
overlap are not grouped. This can happen for small objects moving fast, such as the ball
(fig.2.15(b)). Finally, two crossing objects can be grouped together if they show similar
characteristics, such as the hand and the table tennis border (fig.2.15(b)).

Our proposed 2D+T method result is shown on a longer sequence fig.2.16. The figures
show the final spatiotemporal segmentation, i.e. when all the frames have been processed.
In contrast to the direct segmentation of the video stack, segmentation is initialized on the
first frame, resulting in more proper region.

In the akiyo sequence (fig.2.16(a)), the video is composed of stationary background and
slow head motion. We see that the main regions are the woman and the TV screens which
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Figure 2.15: Segmentation results with the 3D algorithm. (a) foreman sequence. (b)
tennis sequence.

have smooth spatial variations whereas tiny varying components such as face elements are
not kept. In the next images, face moving elements are detected, but they are too tiny to
be extracted from the sequence. In consequence, these elements are incorporated into the
face.

The conclusions for the foreman sequence (fig.2.16(b)) are similar; the segmentation
following the deformations of the character. However, the sequence shows less contrast on
some object parts and the background. As a consequence, the helmet is attached to the
background when initializing the sequence.

For the tennis sequence (fig.2.16(c)), the video is composed of several motions. The
ball and the racket undergo rigid motion whereas the player undergoes non rigid-motion.
Besides theses motions, the camera is zooming out during the entire sequence. Large and
stable regions, such as the table, the racket and the hand are correctly segmented during the
whole sequence. Finally, we can see that a strong scale change happens gradually between
frame #31 and frame #60. While the player is appearing progressively at the left of the
image, the corresponding regions are split until fitting the body of the player. In this way,
the segmentation follows the temporal changes of the video. The ball region is more difficult
to tackle, with high speed motion and important shadow. It remains until it hits the racket
in frame #26 where a new region is created for the ball. The ball is tracked successfully
until frame #31. From this moment on, the camera quickly zooms out and the ball becomes
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Figure 2.16: Segmentation results with the 2D+T algorithm. a) akiyo sequence. b) foreman
sequence. c) tennis sequence. d) walking sequence.

smaller and less homogeneous. As a result, the ball sometimes does not appear after the
spatial merging stage.

In the walking sequence (fig.2.16(d)), the camera is tracking the walking man so that the
walls surrounding him are moving toward the foreground and exiting the frame progressively.
In the first frame #0, the regions are composed of the man, the tiled floor, the walls, the
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ceiling and the lamps. The man region remains consistent along the sequence, just as the
different parts of the walls and the lights until they exit the frame. We can further notice
that apparent static regions such as the floor and the ceiling are coherent in the entire
sequence.

These results illustrate the potential of the proposed method to extract coherent volumes
from video shots. Given a level of details, both moving and static elements can be tracked
thanks to our hierarchical matching stage. Besides, we handle dynamic temporal changes by
favoring the creation of new regions when some regions cannot be reliably matched between
frame pairs. In this way, we achieve good compromise between the span and the consistency
of the regions. Therefore, the method can help higher level grouping tasks considerably.

Computational ressources
Computing time

To show the low computational complexity of our method, we examined the computing time
required to segment the video stack. Computing times give an order of magnitude, as no
optimization were performed on the algorithms; the measures were achieved in a 2.8 GHz
Pentium.

Figures 2.18 and 2.17 show computing time analysis for different video sequences. We
compare the segmentation time with respect to the duration of the sequence fig.(2.17-
2.18)(a). The 3D method refers to the segmentation of the whole stack at once, and the
2D+T method implements the scheme depicted in fig.2.3. As they show different prop-
erties, the computing time is further decomposed in pixel (2D+T:pixel) and region-based
(2D+T:region) operations. Pixel-based operations include spatial segmentation and spa-
tiotemporal merging on the grid while region-based operations includes feature-point track-
ing and subgraph matching. Their respective times for processing frames are indicated in
fig.(2.17-2.18)(b).

Let observe the results for the foreman sequence (fig.2.17). The sequence is in the
QCIF format (176x144). The computing time for the 3D method is quasi-linear; it takes
about 0.22s per frame, which is twice as fast as the 2D+T method (fig.2.17(a)). Variations
of computing time (fig.2.17(b)) depend mostly of the region grouping stage. Factors inter-
vening are the population of feature points and the number of regions. In the beginning of
the sequence, population grows as new feature points are detected in the frames. At the end
of the sequence (t > 250) the character comes out the image at the left so the accompanying
points do not survive and computation time drops a little. In comparison the pixel-based
operations are done in constant time because of the fixed grid structure and the cost of
forest structure operations. These are also performed efficiently (less than 0.1s) which is at
least twice better than for the 3D method.

In the tennis sequence (fig.2.18), the image is in CIF format, so 4 times larger. As a
consequence, the computation times are higher: about 3 times for the 3D method (0.6s
per frame) and from 2 to 3 times for the 2D+T method (from 0.7 to 1s). We can notice
fig.2.18(b) that the computation time is more balanced between pixel and region-based
operations; pixel operations are performed in 0.3 s and region grouping takes 0.6s in the



2.2. Spatiotemporal representation based on graphs 79

J——
120 zgn o4y —— pixel
*

—— 2D+T:pixel Lo/ PRI 7K PRI —+— region

—+— 2D+Tiregion o 0.35 f* Y PR ¥ o ﬂf* %
100 P | \ A

A o3r | ¥
|

\
80 #

Computing time (s)
@
3
t@
tk*
*
4%‘(
45'*
%
%
+
Computing time (s)
o
2 e
o

i

40 #W
- " ,\,/\/\/\M\A/\/\vav\/

t
[ 50 100 150 200 250 300 0
Number of frames

. I I I I ,
0 50 100 150 200 250 300
Frame number

(a) (b)

Figure 2.17: Computing time for the foreman sequence. a) Comparison of the 3D and 2D+T
method. b) Comparison of pixel and region based operations in the 2D+T segmentation.
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Figure 2.18: Computing time for the tennis sequence. a) Comparison of the 3D and 2D+T
method. b) Comparison of pixel and region based operations in the 2D+T segmentation.

average, which is comparable to the 3D-method. Region computation follows the variations
of the content. Computation time is low at the beginning of the sequence, as there is only
a few regions (arm, racket, ball, table). While zooming out more regions are found. In
consequence, new points are also detected and more time is required for temporal grouping
of regions. Putting these observations aside with the theoretical complexity studied in
section 2.2.6, we deduce the following properties:

e The complexity of 2D+T method is comparable to the one of the 3D method.

e Grouping on the grid is significantly more efficient in the 2D+T scheme than on the
full 3D grid.

e Complexity of region grouping adapts to the granularity of the content (number of
regions and population of feature points).
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Computational requirements

Another advantage of the 2D+T framework is to consume far less memory than 3D methods.
Memory load curves are shown in figure 2.19. Both methods keeps a full forest for the whole
sequence, so that memory increases with the number of frames.

For the segmentation of the whole grid (3D), memory load is much more important since
grid edges are loaded from the full sequence, and there are four edges for one node. Memory
management also plays a role in the loss of performance of this method for long sequences
as the volume stack increases.

In the 2D+T method the memory slowly increases with the number of frames. Forest
allocation is the most important part of the memory load as we do not need the whole
edge grid set anymore. Furthermore region graph structures are defined for frame pairs and
do not vary much. As a consequence, for the full tennis sequence, twice less memory is
consumed for the 2D+T case than for the 3D case. For short term sequences, the memory
load of 2D+T and 3D approaches are nearly the same.

If the memory is required to be kept constant or severely limited, one efficient solution
is to allocate a forest corresponding for a Block of Frames (BOF) which number of frames
is fixed. Once these frames are processed, store the segmentation and make list of volume
representatives. Then, the last processed frame can be considered as the first frame for
the new BOF. Once the second BOF is processed, find the representative that corresponds
to the previous volumes and merge the previous and new BOF volume representative list.
This corresponds to achieve path compression within each BOF only and keep the merging
tree for the whole sequence. Once the full sequence is processed, the actual segmentation
can be obtained through the store pixel labels and the representative lists. However, these
limits have appeared unnecessary for the sequences we experimented with.

2.3 Objects of interest

Semantic objects are usually composed of several volumes. Spatiotemporal segmentation
results in volumes that can be grouped into complex objects. However, the problem is
different to traditional object detection and recognition as we do not focus on particular
object categories. In this context, motion remains the most appropriate common property
to objects. In this section we examine how we can group volumes into complex objects
from their motions. We split the problem in two steps. We first detect moving volumes
and associate these volumes together to propagate object. Secondly we try to propagate
detected objects through the sequence using a matching procedure taking into account
visual appearance and motion of the object’s volumes.

2.3.1 Joint use of spatiotemporal volumes and Motion information
Object graph

In our framework, a video shot is represented at highest level with an ARG G = (V, E,v,§)
depicting relationships between spatiotemporal volumes (section 1.2.5). An object subgraph
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Figure 2.19: Memory load for the tennis sequence.

OG = (V', E’) is defined as an induced subgraph of G: OG = G[V'], where V' is the set of
volumes composing the object. To build object subgraph, we consider two types of useful
volume attributes:

e Visual region features (vg).
e Motion features (v7).

Edge attributes { = {£s,&r} are built from associated distance measures between two
spatiotemporal volumes. Visual region features incorporate MPEG-7 region descriptors
(color, texture, location) described in section 1.1.2 and the motion features used will be
detailed in section 2.3.2.

The structure of the object can be complex, involving several spatiotemporal relation-
ships between volumes. This turns out to be particularly important in close-up shots involv-
ing large and complex objects. Fig.2.20 illustrates the problem of finding object subgraph
in such a scene. The different parts are composed of major parts (head, hair, chest, arm)
and segmentation details (small nodes).

Estimating Motion Models on volumes

Motion information can be extracted and represented in many different ways (section 2.1.2).
Motion of object parts can be complex, and the volume support can undergo deformations.
Rather than estimating a complex unique model for the volume in the sequence, we prefer
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Figure 2.20: Video shot and object representation. (a) Example of close-up sequence. (b)
Corresponding object graph.

decomposing simple models on a short-time period. Thus, we decide to use flexible repre-
sentation for motion, being adaptive to temporal changes. A volume a lying in the temporal
interval T, is described with a series of parametric models 0,(t),t € T,, which support is
defined on the intersected frame regions R,(t). As shown in the illustration fig.2.21, volume
motion models are available for each region. It can be identical to the one of the previous
frame or different if changes are important enough. Practically, the set of models can be
embedded within the MPEG-7 Parameter trajectory descriptor. Simple affine model is used
for simplicity and computational efficiency.

To estimate parametric motion models, we follow the technique proposed in the early
MPEG-7 XM [120]. The estimation is performed in two steps. A block matching technique
enables to estimate the rough displacement of the support. The model is refined afterwards
by performing local optimization of the rotation parameters of the model.

Frame t, Frame t,

R,(t). 0,(t) R(%). 0.,(ty)

Figure 2.21: Estimation of motion models. Each model is built based on a region support.
The resulting motion field for the image is superposed to the segmentation map.
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2.3.2 Motion-based grouping

We have already mentioned the difficulties linked to motion in section 2.1.2. Motion is usu-
ally hampered by aperture problems for low textured regions, small size of the support and
deformations. Fig.2.22 illustrates the problem. In frame #13 the object is nearly static and
only some parts are detected as moving whereas in frame #82 the whole body is turning and
shows reliable motion. Thus sophisticated methods are needed in general. We benefit from
the spatiotemporal volumes for good use of motion information. Once motion estimation
performed, it is possible to form primary objects from grouping of spatiotemporal volumes.
For this purpose, we consider grouping on volumes whose motion remains significant and
stable along time. To compare the motions of regions or bigger object several approaches
are possible: trajectories, statistical distributions, and parametric motion models [147]. We
select the last approach as it owns these suitable properties:

e Accuracy of the comparison of motion fields.

e Independence with respect to the type of model used.

However, comparing motion fields has an important computation cost as the operation is
performed on region masks.

Denote by v(p; #) the velocity for the pixel p using a motion model 6. Zaharia et al. [147]
expresses the distance between models #; and 6> with respective support Ry and Rs as:

dy(0r,62) = > d(v(p;61),v(p; 62)) (2.17)

pER1URY

where Ry’ is the alignment of support Ry to R;. For simplicity R can be obtained by
translating the center cs of Ry to the center c¢; of Ry. Several distances d have been
proposed; we select the L; distance for accurate comparison of the velocity vectors. The
distance can be easily extended to the spatiotemporal domain. For two volumes a, b the
distance is computed over their common temporal support:

0(60.00) = 7 >° DO, (1) (215)
teT,NTy

From the motion models and the defined velocity distance we derive measures to depict
volume motion features. The first measure is the motion activity over the volume, which
indicates strength of motion. The activity of a volume a is given by:

Act(a Z Y oov (2.19)

tGTa PERG(t)

A stability measure is based on the evolution of the motion model across time. Esti-
mation is assumed to be correct if the stability of the motion models is important. The
stability of volume a is defined as:

Stab(a T 3 exp( ea(t),ea(t—l))> (2.20)

g
¢ teT,
t—1€T,
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Figure 2.22: Motion activity maps. (a) Frame #13. (b) Frame #82.

R
’ R,U R,
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Figure 2.23: Velocity-based similarity is obtained by applying motion models on R; and
Ry in the compensated union of the two regions. Model origin of Ry and its support are
translated by ¢; — co.

Thus, the measure expresses the confidence on the correctness of the motion estimation for
the full volume. To group moving volumes into OGs with the proposed measures, we suggest
a bottom-up procedure. As far as the number of objects is unknown and the number of
graph nodes is not high (typically a hundred of nodes), global graph partitioning techniques
in the similarity domain are not appropriate. On the contrary, a merging procedure can
cope with an arbitrary number of objects.

Grouping is then performed on volumes constructing the spanning tree of the objects,
i.e. finding the minimum path linking all object volumes. The technique slightly differs
from the one in section 2.2.3 as we use activity and stability as strong cues to initialize
and guide the grouping. We first detect the background volumes along with those that are
static or where motion is uncorrectly estimated. A volume a is considered as background if
Stab(a) < Spin or Act(a) < Apmin. We denote BG the graph of background volumes.

Important objects are then partially localized looking at zones of high motion stability.
Stability is generally also better in region with large support [88]. In this sense, we assume
that the object undergoes coherent motion during a sufficient period, which is reasonable for
most sequences. In the beginning these volumes form markers for the OGs. Hopefully, each
object has received a marker (or cluster). We denote k£ the number of markers. Volumes
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are linked to markers using a merging procedure. We consider node attributes vr(a) =
{Stab(a), Act(a)} and edge attributes &r(a,b). Typical merging on the tree requires to set
a maximum edge distance. It is rather difficult to set such threshold automatically, and the
tolerance in adding edges to existing components depends on the object itself.

To estimate statistics of the different object parts corresponding to the OGs, we first
perform a simple k-clustering technique of the graph G/BG from the markers. In the
merging process, edges that bridge two OGs are not connected.

We then assume that each object part has smooth variations on the edge weight and
attribute distribution. For each cluster we detect breaks within the stability, activity and
edge weights distribution. OG vertices on both sides of each break are split, forming new
OGs that are homogeneous. In the second step of the procedure, merging is performed on
adjacent groups with close statistics. OG; and OGy are merged if:

| ) < mi 0G)), 0G
Bip er(e) win (| o €r(e) + 700G, max €n(ea) +7(0G2)) (2
2

7 is a function that penalizes grouping of an OG in function of its volume attributes. More
tolerance is accepted on the velocity distances as 7 increases. In this grouping criterion,
zones with important activity and good stability have to be privileged. Indeed, a fast moving
object is prone to have more variations between each volume, especially if its motion is non-
rigid. Stability indicates the accuracy of the motion model. In consequence the estimated
velocity distance between models &7 is more certain in zones of high stability. For these
zones the tolerance for a component can be solely based on its activity. For components
with lower stability the tolerance is reduced to take into account the possible errors in the
estimation of £7. Following these considerations we define the function 7 as:
H0G) = { dypin + {222=%212- Stab(OG) |Act(OG) = Apin|  if Apin < A(OG) < Apas
Admaz else
(2.22)

dmin is the minimum tolerance for every region and d,q, is the maximum tolerance allowed,
reached for Act(OG) = Apqar - The criterion is used to group only adjacent objects which
motion are strongly related, until all connections have been tested.

After the grouping stage, unmerged volumes either correspond to single objects where
motion estimation was not successful, object detail, or cluttered zones (mixed object and
background). We will see on the next section how to attach these volumes to the main OGs.

2.3.3 Object detection and matching

Once groups have been obtained, we search for salient objects through the sequence. Good
candidates are groups that shows strong connectivity and stable motion. For measuring
saliency of OGs, we choose a simple measure that finds the largest OG with important
activity and good stability:

Salog = Z |a|Stab(a)Act(a) (2.23)
acOG
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Detected objects can be then extended in the whole sequence by by establishing corre-
spondences with other OGs in the graph. Typically, visual appearance of objects changes
slightly during a sequence. As mentioned in the previous section, and illustrated in fig.2.22,
the whole object may be either moving coherently or some object parts remain nearly static
relatively to the other moving parts. Matching between OGs takes under consideration vi-
sual region-based properties. Thus we use visual features as the edge attributes £g between
volumes of two OGs.

We consider the graph G; and G2 that corresponds to the volumes in two different
temporal interval T} and Ty. Let P € G the graph of a detected object, OG% € Go denote
an object graph in Gy and BGY one of the remaining background nodes. We aim to find the
corresponding object for P in Gg, Q, by assembling the object graphs OG% and background
volumes BGY.

To reduce the complexity of the matching, the procedure is decomposed into two steps.
Firstly, we search for OGs in Gg that reliably match part of the detected object graph P.
Secondly the matched object @ is progressively completed with the background nodes BG’Q
by comparing the structure of the two OGs.

Let examine the matching between OG volumes, which is illustrated in fig.2.24(a). Given
a set A € G1, we note as M4 the subgraph of G2 that is matched by A; and M4[B] the
restriction of M4 to a set of volumes B € G3. An object OG% in G9 is matched to P if
a majority of its volumes are matched to P. To establish a match from a € P to G5 we
proceed as follows. We find the volume b in G2, which distance with a, {s(a,b) is minimal.
If b is also the closest volume to a and the distance does not exceed a predefined threshold,
the volumes are matched, i.e. b = M,.

In the example of fig.2.24(a), only OG2 and OG$ are matched to P. Remaining OGs in
P are not matched as no matches have been established.

After this first stage, some nodes in (G; are not matched, either due to low similarity
with nodes in G2 or ambiguities when the similarities with several nodes is comparable. For
the latter case, we rely on the neighborhood context to propose new matches. The idea is
that the strength of volume matches between two subgraphs reflects the similarity of the
object structures. Consider an unmatched volume a € P and its neighborhood N,. We
search volume b € GG, with neighborhood N, that maximizes:

me(a,b) = | My, [No]] (2.24)

which is the count of matches from N, to INy.

The completion of @ is illustrated fig.2.24(b-c-d). In fig.2.24(b) mc(a,b) = 3 and b is
added to Mp. In fig.2.24(b) there are two possible configurations of value me(a,b) = 2 for
matching the remaining node in P: one from the original matches (fig.2.24(c)), the other
with the new match (fig.2.24(d)).

Such example shows that several candidates may own same count values: the proportion
of matches will be low at the beginning of the procedure if the object undergoes important
changes from 77 to T». Thus we analyze the neighborhoods in detail. Edit distance have
been proposed for comparing two graph structures, expressing the cost of transforming
object nodes to another. Definition and computation is in general tricky; the cost for
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Figure 2.24: Object propagation. Matchings are represented as bold lines, and the volumes
in the match under test as bold circles. (a) Construction of volume matches between OGs.(b)
(¢) (d) Recursive completion of OG using the neighborhood context.

adding, deleting or transforming a node depends of the targeted application [21]. The
guidance of the count measure proposed above and the reduction of the graph to their
immediate neighborhoods greatly simplify the problem and the search for optimal solution
in state space. Consider a and b as roots for N, and N;. We adapt the edit distance
proposed by Shasha et al. [111] between unordered trees:

minuENa,ver ED <Na/ua Nb/v) + 55 (U, U)
ED(N,, Ny) = min { minyen, ED (Ny/u, Np) + (u,9) (2.25)
min’UENb ED (N(u Nb/U) + 7(¢7 U)

where v(u, ¢) and (¢, v) expresses the cost to delete and insertion of node u and v. Deletion
of u € N, occurs when a volume in N, has no match in IV, we consider that u is in fact
grouped with another node in its neighborhood:

v(u, @) = minven, (£s(u, v)) (2.26)

Insertion is defined identically.

Eq.2.25 is defined recursively and the problem of finding the best edit sequence is known
to be NP hard. Dynamic algorithms such as Ax have been proposed [96], but it is more
computationally efficient to constrain the problem. As best matches between A and B
have been already found, we only compute the edit distance for unmatched graphs NV =
No/My[Ny) and NY = N,/My[N,]. As the degrees of these graphs is low and the tree has
only one level, ED is equivalent to a string edit distance if an ordering is fixed for these
two graphs. The complexity of such operation is reduced to the product of the string sizes.
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Multiple orderings for the neighborhood with the smallest degree are considered for a robust
solution.

Adjacency graphs highlight the presence of relationships between parts but do not qualify
the relative deformation of the object structure. We limit search of volumes in G35, by
computation the location distances (center of mass) between object volumes P and (), which
gives information of the displacement of the object parts between the temporal intervals
Ty and T5. Proposed matches for which location distance does not fit their neighboring
counterparts are pruned. Alternatively, this could be further enhanced considering semantic
temporal spatiotemporal relationships (above, before,...) to depict the inherent structure
of the object.

We complete the OGs P and @ using the count of matches mc and edit distance FD
as follows. For each unmatched node a € P, we find among the possible matches the ones
which maximizes mec. Largest volumes are prone to have important match count values
as they are adjacent to many other volumes. We then select the match that minimizes
the edit distance. These two steps enable to find the matches efficiently, favoring similar
neighborhoods with a few unmatched nodes. Both structural similarity (here the degree of
a and b) and the overall visual similarity between N, and N, are considered.

The match from P to G with the best match count and edit distance is added to Mp
and Mg. Match count and edit distances are reevaluated in the neighborhood and a new
match is proposed. The procedure ends when no new matches are found, i.e. when all nodes
in P are matched or the visual distance for a match is below a threshold.

In comparison, finding directly the match with the minimum edit distance between their
neighborhoods is not appropriate for two reasons. First, it will favor matching from smallest
to biggest nodes of small nodes with low degrees, since only a few edit operations has to be
done. Secondly, it will demand an important and unnecessary computational cost.

2.3.4 Workflow for long-term sequences

We studied the different mechanisms for grouping and matching objects through a sequence.
For long sequences, we organize these tools with an efficient scheme. The method work-
flow is shown fig.2.25. First, we cut the sequence into short temporal interval or block of
frames (BOF) where the object motion does not vary much temporally. A spatiotempo-
ral segmentation is computed and the volume ARGs are obtained from each BOF (section
2.3.1). Motion models are then estimated for each volume, and the motion attributes of
the ARG are computed for the model. Grouping can then be performed within areas with
significant and stable motion. Once grouping is performed for the whole sequence, we detect
most important objects in the BOFs (section 2.3.2). The detected objects serve as object
graph models and are propagated by the object matching procedure (section 2.3.3) in the
surrounding BOFs.

2.3.5 Examples

We carried out experiments for real video sequences using the proposed framework. Most
salient objects are detected and the object graphs are propagated through the sequence.
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Figure 2.25: Moving object detection and propagation for long-term sequences.

The first example (fig.2.27) is the coastguard sequence from the MPEG standard, which
contains two moving rigid objects. Each BOF has a duration of 50 frames. A small boat
(OGq) crosses and sails in front of the speedboat (OGz) in BOF 1 and BOF 2. From BOF
2, the camera tilts up then approximately track the second object moving to the right.

The detection of objects is facilitated by the important rigid motion (fig.2.26). Water
areas can be also detected as moving because of the waves and of the slipstream left behind
the boat, but the motion in these areas is less important and stable so they could be filtered
out. OGy is composed of two volumes: the boat itself and the driver (BOF 1-2). The
object slightly differs from BOF 1 to BOF 2 as the segment of sea confined between the
two boats (BOF 2-1 and BOF 2-2) has been attached to the OG. The detected parts of
the second object (OG2) include homogeneous areas within the boat profile (notably in the
body) and the rod on the bridge, which is segmented as a sharp horizontal tip from BOF
2-1 to BOF 3-1. As the bottom body of the boat is often visually close to the sea parts and
the contrast between these two areas is low; some parts of the boat are not detected as they
were attached to the sea regions in the segmentation stage.

The second example shows a close-up shot where a man is speaking in front of a camera
fig.2.28. The BOF length is shorter (10 frames), as there are fast variations in camera and
object motion. The camera is tilting quite unstably all along the sequence, being probably
hand-held. In consequence it cannot be compensated entirely. In addition the man area is
subjected to important deformation. His head is turning fast from left to right (BOF 1 to
6), The body following partially the rotation of the head with a short delay.

In the end of the sequence (BOF 9 to 11), his arm abruptly moves up to point towards
something. In this context, object is detected in BOF 6 while all the parts revolve coherently
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Figure 2.26: Motion detection for the Coastguard sequence. a) Input image #50. b)
Corresponding motion activity map.
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Figure 2.27: Moving object grouping results for the coastguard sequence.

to the right. Both head and body part of the man are propagated before that point using
the visual matching. Missing details of the body correspond to background areas in the
spatiotemporal graph of which motion is not significant. The visual similarity for these
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Figure 2.28: Moving object grouping results for the close-up sequence.

unmatched volumes was not important enough to one of the object volumes and a better
match was likely to be found in the neighborhood of these areas. For the remaining sequence
after the detected object, most areas are detected as the visual similarity between object
parts is sufficiently high. In BOF 10 the appearing arm is correctly attached to the object
even if the corresponding volume includes some background area. However, in BOF 11 this
is not the case anymore as the motion is really different from the rest of the body and no
corresponding volumes are found in the model. In the previous BOF the arm and the right
part were part of the same volume. A potential solution for this problem is to propagate
the object temporally from one BOF to another, as BOF 11 is visually closer to BOF 10
than BOF 6. The drawback of such approach is that the matched object can progressively
drift from the actual object. Finally, the last BOF is correctly propagated, being close to
the original model.

These results illustrate that motion and visual information can be used for grouping of
spatiotemporal volumes in different contexts. An advantage of the spatiotemporal approach
is to propagate objects even if all parts cannot be retrieved at some points of the sequence,
alleviating the occlusion problems of causal methods which only consider the immediate
temporal neighborhood which is restricted to a pair of frames in general. A possible im-
provement for the presented approach would be to use both the detected and propagated
object graphs in the matching of a new BOF to handle hard deformations of the object
parts that are not part of the object originally detected.
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2.4 Conclusions

In this chapter, we have introduced a novel spatiotemporal approach for the segmentation of
the video stack, based on an adjacency graph representation. Direct segmentation of large
pixel graphs becomes inappropriate and generates important computational cost when the
size of the video increases. Using a restricted connectivity on a grid does not enable to
handle correctly the temporal evolution of the regions. To tackle this issue, we analyze
spatiotemporal relationships at different levels and limit the complexity with a 2D+T ap-
proach. Pixel-based graph enables for the construction of low-level stable volumes and
ARGs enforce consistency of dynamic regions. Moreover, we show that the 2D+T approach
keeps good performance in the both pixel and region-based representations. The proposed
spatiotemporal representation based on ARGs is shown valuable for the detection and prop-
agation of objects of interest. We develop a grouping procedure that considers motion of
volumes as the essential attribute for the formation of coherent objects. To handle the lack
of consistent motion information that occurs in real sequences, we further propose a scheme
that first detect and then propagate significant moving objects using graph matching with
visual attributes. First results show that this framework is promising for making object-
based description of visual shots even if progress can still be achieved in the segmentation
and object matching stage.



Chapter 3

Semantic interpretation of video
shots

Compared to image analysis, adding temporal dimension allows to solve partially the object
segmentation problem with the help of motion information. However, final users and search
engines are still more interested in the semantic content of the video, essential to the un-
derstanding of the scene. This semantic information is usually estimated by comparing the
visual information that was extracting from the scene to available models in a knowledge
base. FEwvery region or object does not lead to a unique semantic interpretation. Without
taking into account the general context of a scene, different concepts can be assigned. Then,
it is preferable to associate regions and concepts in a fuzzy manner, attributing a certain
degree of confidence for each concept.

A system able to achieve fuzzy semantic labeling of image regions has been made available
to us [11]. Semantic information is related to the material composing the regions and is
constructed from the matching of the wisual description to a knowledge base. This new
resource for representation of domain knowledge along with the spatiotemporal segmentation
are put to good use to develop a method to perform jointly segmentation and annotation of
video shots. From one side, semantic labeling brings additional information from domain
of knowledge and can be used to group visually different elements sharing the same concept.
From the other side, spatiotemporal segmentation propagates semantic labels inside the shot.

In this chapter, we first introduce the infrastructure of the knowledge base used to rep-
resent the semantic content. An internal ARG structure is adopted to describe both visual
and semantic properties of the regions. The structure is intended for labeling of the regions
and their semantic grouping. Secondly we address the problem of spatiotemporal semantic
segmentation, focusing on the complexity of semantic labeling and the visual quality of the
segmented regions. The proposed method is then based on two phases, the segmentation and
the semantic labeling of block of frames, or intra-BOF processing, followed by the grouping
of volumes from their semantic and visual characteristics, referred as inter-BOF processing.
Finally concrete examples are presented to show the suitability of this new approach.
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3.1 Contribution of multimedia knowledge base

The segmentation and annotation of semantic objects within a video sequence is becoming
increasingly important in multimedia applications. Indeed the MPEG-7 provides facilities
for manipulation of objects and its semantic metadata (section 1.1.2), but not for extracting
these descriptions. As the semantic attributes of an object usually depend on the targeted
application, semi-automatic methods have been mostly considered for this purpose [56].
However, this type of approach requires the intervention of the user to define the semantic
video objects in one or more frames within the video sequence. Comparatively, automatic
segmentation produces visual description at a lower level. In order to help structuring
the low-level content into human understandable semantics, a representation of knowledge
has to be considered. Traditionally, domain knowledge is incorporated only for semantic
annotation of regions after the segmentation stage. Extracted visual features are used as
input for classification techniques [10]. However, segmentation can suffer for the lack of
prior knowledge, and classification need accurate segmentation of regions to obtain good
results.

The framework of [11] tightly couples segmentation and labeling of multimedia con-
tent. An ontological infrastructure expresses multimedia content semantics and relation-
ships within the domain knowledge. Low-level features are linked to high-level semantics
through the use of the ontology, bridging the semantic gap. A multimedia Knowledge As-
sisted Analysis tool (KAA) is in charge of this task, by achieving fuzzy labeling of regions
and semantic region growing techniques.

First, we describe the adopted knowledge base and its associated framework for object
segmentation and labeling. Secondly, we explain in detail the semantic classification stage
that enables automatic annotation of regions.

3.1.1 Principle and organization

The segmentation and object labeling system utilizes a knowledge base that links low-level
features to semantics. It is composed of two main entities, an ontology which describes
the semantics of the domain in a formal representation and the KAA experimentation plat-
form that couples image analysis techniques and the ontological representation for semantic
interpretation of the content. In this section we first introduce the multimedia knowledge
infrastructure based on ontologies. Then, we describe the formal representation of multime-
dia content with ontologies for the creation of semantic descriptions. Once these two aspects
are covered, we provide a concise description of the existing experimentation platform.

Design of a knowledge base

Petridis et al. [103] have described the basic requirements for a knowledge infrastructure
to represent structural and semantic properties of multimedia content. The main issue is
to gather the media content representation, notably described by its structural and visual
properties, and the semantics contained in the media that are meaningful to the user.
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The first point in designing the knowledge base is to manage multimedia content itself.
The representation of low-level visual information necessitates:

e Low-level description representation to depict visual properties of concepts.

e Support for multiple visual descriptions, as a semantic object can appear in different
views and aspects.

e Spatiotemporal relations to describe the arrangement of objects in the scene, which
can be appropriate to characterize a particular domain.

e Structural representation adapted to the type of content, to capture content informa-
tion and relations at different levels.

These requirements for multimedia representation are covered through the MPEG-7 stan-
dard, of which we show all fullness in chapter 1. MPEG-7 content entity tools (section 1.1.2)
provide support for the visual descriptors and the hierarchical decomposition of the multi-
media content into segments. Structural relations between segments are usually expressed
with the SpatialRelation and TemporalRelation CS.

Besides these multimedia description aspects, the infrastructure has also to support
specification of the knowledge domain. Authoring of domain ontologies requires:

e A way to associate visual features with concept descriptions.

e Modularization of the knowledge infrastructure. It is important to separate the defi-
nition of the ontological concepts from the visual descriptors.

e An annotation framework to train domain ontologies. Correspondences between visual
features and semantic concepts has to be automatically generated.

The first and second point has been debated in the Semantic Web community. In MPEG-7,
this can be handled by the abstraction mechanism provided by the semantic description
tools. Concepts are defined in a separated formal abstraction of the semantic description
as we proposed in the example of representation (section 1.1.3). The visual features can
then be associated to any instance of the concept with the MediaOccurence DS in a semantic
description scheme (semanticBase DS). As we will see in the next section, the authors propose
a comparable mechanism with a prototype approach.

Ontology infrastructure

To manage these two different knowledge representation requirements, the authors define an
ontology infrastructure. The framework includes ontologies for the description of low-level
features (multimedia concepts) and for linking these descriptions to the domain knowledge
concepts, considering prototype instances of these concepts. As discussed in section 1.1.2,
expressing domain specific ontologies with the MPEG-7 is possible but not efficient in prac-
tice. The authors adopt instead the RDFS (Ressource Description Framework Scheme)
modeling language which is simple to use and offer good trade-off between the capability
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of the language and its complexity. Thus domain specific ontology are easily depicted with
the RDFS while necessary MPEG-7 entities have to be adapted with the representations
available in the RDFS.

The ontology infrastructure relies on a core ontology (DOLCE) that enables to represent
generic knowledge and functionalities. A specialized multimedia ontology is built over the
core ontology and implements MPEG-7 specifications. More precisely, a visual descriptor
ontology (VDO) handles MPEG-7 visual descriptors, and multimedia structure ontology
(MSO) represents multimedia entity and their relations. Last, domain ontology are added
to model semantic aspects of the real-word domain ; the concepts are in general meaningful
to the end-user. Concepts of the domain ontology are linked to the multimedia low-level
content by referring a set of prototypes or instances for the concept. Each prototype points
to its associated visual descriptors.

A user friendly annotation tool (M-OntoMat annotizer [11]) enables to import domain-
specific knowledge inside the ontology structure. Region descriptors are associated to seman-
tic concepts, instantiating domain concept prototype descriptors. Spatiotemporal relations
inside or between two concepts are obtained considering couple of adjacent regions.

DOLCE Core Ontology  + 4+

4 La &

Spatio-Temporal Exte nsions

« Multimedia Ontologies: Domain Ontologies
- - _ - L
{-Crrao hdat-A nnotize AT
-4 M-Cr 1_I ﬂr_ntl i [ -— . \‘; ‘g
WETIEEK Commarcial o=

Figure 3.1: The ontology architecture. Extracted from [11].

Knowledge representation with ontologies

Ontologies attempt to model the real world by describing entities and their relationships
in a formal machine processable representation. An ontology model O = {C, R} is usually
composed of a set of concepts C' and a set of semantic relations. Semantic relations are
functions that either relates to concepts or not :

R =Ry, (p,q) eCxC
where (3.1)
Ry,: C x C —{0,1}

Different type of relationships can be defined between concepts, thereof the MPEG-7
defines more than 40 relations. However only tazonomic relations are efficient in practice
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for the determination of the context [10]. Taxonomic relations enable to organize concepts
hierarchically thanks to their properties of transitivity and antisymmetry [4], i.e. :

Ryy=1 AN Ryp=1 = p=q antisymmetry (3.2)
Ry=1 N Ry =1 = R, =1 transitivity '
The considered semantic relations include specialization (Sp), part (P) and property (Pr)
from the MPEG-7 standard. As we notice in section 1.1.2, concept and semantic relation-
ships presence are governed by fuzzyness. Uncertainty comes either from the extraction
procedure or from the nature of the relationships in the real world domain. A detection
algorithm may give a confidence value for a detected object, e.g. “this is a person with a
confidence of 0.8”. Likewise, two semantically related concepts may not be instantiated
every time. Stating that “Sky is part of Beach scene” will imply that sky is always present
in a beach scene while this is not automatically the case.

Uncertainty in the semantic description of a video segment is then introduced by means
of a fuzzy set F over the set of concepts C:

IC]

F =Y ci/ur(c) (3.3)
i=1

pp: C — [0,1] is the membership function of F and ¢; € C. Along with the concepts,
semantic relations are fuzzified considering fuzzy relations ry,

rpg: C x C —[0,1] (3.4)

To simplify the relationships between concepts, a taxonomic relation 7' is built considering
relations Sp, P, Pr :

T = trans(SpU P~ U Pr 1) (3.5)

trans(R) denotes the transitive closure of R which is the smallest transitive relation on C'
that includes relation R. In consequence T is also a taxonomic relation. The value of the
relation T'(p, ¢) indicates how much the meaning of ¢ approaches the meaning of p. If ¢ is
detected, high values of T'(p, q) will indicate that p is likely to be present as well. In that
sense, the value can also be interpreted as conditional probability of p given ¢. For instance,
consider p=“Beach Scene” and g="“sky”. Thus P~!(p,q) means that sky is part of Beach
scene. Similarly if p=“Vegetation” and ¢g="tree”, relation Sp(p, q) that tree is specialization
of vegetation, i.e. the meaning of p include the one of ¢ (generalization), which is of relevant
semantic meaning.

The ontology proposed is rather generic and can be applied in different domains. The
ontology was constructed for different concepts for natural scene domain (beach, sand,
sky, sea, person, boat, ...). In general, concepts are defined by domain experts, whereas
the relationships values are trained using statistical properties obtained from the manual
annotation. To enrich the domain of knowledge, the annotation tool (OntoMat-annotizer)
can be used.
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Knowledge Assisted Analysis (KAA) system

We have explained the knowledge representation using an ontology infrastructure in the
previous section. Once the later is created, the KAA module enables to achieve semantic
annotation of images. A global view of the platform architecture is shown fig.3.2. Image
analysis begins with the segmentation of the image into regions based on a region merging
algorithm that makes use of color region similarities and shape regularity. These regions
are used to initialize an ARG which is the core of the architecture. The ARG stores both
low-level descriptors and the degree of memberships for each concept in the knowledge
base. The latter semantic information is obtained by matching each region to the sets
of concepts. Classification algorithms are used for this purpose, taking into account the
example prototypes in the knowledge base.

Region labeling is a difficult task and notably depends on the initial regions, along
with the accuracy of the concept description in the knowledge base. To improve both
segmentation and labeling, image segmentation algorithms that integrate domain knowledge
and uncertainty of the labeling are proposed. It has been shown that traditional region
merging algorithms such as Recursive Shortest Spanning Tree (RSST) or watershed can be
adapted to operate on the fuzzy label sets of the ARG regions [10]. Finally, the degrees
of memberships of the labels can be readjusted according to their overall relevance to the
domain, using contextual information stored in the ontology [93].
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Figure 3.2: The Knowledge Assisted Analysis system.
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3.1.2 Semantic labeling

The labeling of regions is an important step in the KAA system that links the low-level
description to the semantic level. As a consequence, it conditions the quality of the final
image annotation. Fuzzy sets are used to represent the couple of the label and its associated
degrees of confidence for a region. This provides solid theoretical background for reflecting
operations on the ARG structure on the semantic labels, with fuzzy operators such as
aggregations, t-conorms and so on.

ARG representation

Image and video data can represent a structured set of objects and is naturally described
by an ARG (section 1.2.4). We construct an ARG G = (V, E, v, ) from a segmentation S
as follows. A region a € S of the image is represented in the graph by vertex v, € V', where
ve = (a,vp(a),vr(a)). Vertex attributes vp(a) represent the ordered set D of MPEG-7
visual descriptors characterizing the regions in terms of low-level features, while

IC|

vi(a) = Zci/ua(ci), ¢ eC (3.6)

i=1
is the fuzzy set of labels for the region defined over the crisp set of labels C' and p, is the
membership function of the fuzzy set of region a.

The adjacency relation between two neighbor regions a,b € S is represented by the
graph edge eq, = ((vq, vp),Ep(a,b),&r(a,b)). Ep(a,b) is the visual similarity between a and
b, calculated from their set of MPEG-7 descriptors vp(a) and vp(b) respectively. These
descriptors come from different type of measurements, and several distance functions can
be used. We further calculate the maximum and the minimum for the distance function in
each descriptor and normalize with a linear scaling to unit range. Considering the set of
descriptors D, with normalized distance functions {ng: d € D} the final visual similarity of
eqp 18 computed by linear combination:

Ep(a,b) =1 =3 cp ang
where (3.7)

d—dy;
ng = g—min— Y pog =1

dmaz —dmin
where «y is the importance given to feature d and d,in, dmaes are minimum and maximum
of the two distance functions, respectively.
The second similarity £7,(a,b) is calculated based on the semantic similarity of the two
regions a and b described by their fuzzy sets of labels vy (a) and v (b):

¢r(a,b) = sgg (t(palci), pp(c))), a€S,be N, (3.8)

where N, is the set of neighbor regions of a. The above formula states that the similarity
of two regions is the least upper bound of all common concepts of the t-norm ¢ of the
degrees of confidence p,(c;) and py(c;) for the specific concept ¢; of the two regions a and b.
Intuitively, eq.3.8 states that the semantic similarity &7, (a, b) is the highest degree, implied
by our knowledge, that a pair of neighboring regions a and b share the same concept.



100 Chapter 3. Semantic interpretation of video shots

Creation of visual and semantic attributes

The construction of the ARG G requires that low-level attributes are extracted for every
segmented region a € G. Visual descriptors considered include Scalable Color (SCD),
ColorStructure (CSD), Homogeneous Texture (HTD), Edge Histogram(EHD), and Region
Shape which where previously described in section 1.1.2.

Region labeling is based on the matching of the region descriptor to the prototype
instances of all concepts in the ontological knowledge base [93]. Let P(c) denote the set of
prototypes for a concept ¢ € C. The matching of the region a to a prototype p € P(c) is
performed by computing the visual similarity sfp. Feature weights oy of eq.3.7 are adapted
to reflect prior knowledge on the concept c¢. To estimate the degree of membership of a
for the concept ¢, pq(c), exhaustive matching is performed from between region a and all
prototype instances. u(c) is calculated as :

fa(c) = max &Ep(a,p) (3.9)
pEP(c)
Repeating this procedure for all concepts ¢ € C gives the fuzzy labeling v, (a) of region a.

Efficiency of the matching depends directly of the size of the database, the ontology
domain, and the relevance of the domain concept prototype instances. Such matching
approach is related to nearest-neighbor classification, looking for the closest prototype for
each concept. As the number of training examples increases, the quality of labeling is more
robust but at the expense of computational cost.

To boost the efficiency of the labeling stage, region classifiers have been proposed.
Among existing classifiers, support vector machines (SVM) have been widely adopted as
they provide good efficiency for a large range of classification problems. They have par-
ticularly the ability for solving high-dimensionality problems and show good generalization
performance [63]. With concern of the extensibility of the knowledge domain, a binary
classifier is introduced for detecting each concept of the knowledge base. Then, each SVM
was trained independently using a “one against all” approach.

SVM classifier estimates the optimal separating hyperplane between two classes in a
certain feature space. For a sample z € RY, the binary decision function h(x) can be

written as :
h(z) = sign(f(z))
where (3.10)
flz) = Y ik (zi,) +b

{z;}i=1..1 is a set of samples called support vectors, K is a kernel function that transforms
the original feature space, and b is a constant factor. The function f(z) indicates the distance
to the hyperplane in the transformed space. When the classes are not separable, support
vector z; stands within a margin ¢; of the optimal hyperplane, imposing |f(z;) — 1| < €;.

The distance to the hyperplane f(z) can be used to return a degree of confidence in
[0, 1] for the binary decision h(x). A sigmoid function is employed for this purpose :

P(h(a) = 11f()) = g (3.11)
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This degree of confidence is used to estimate the membership functions pu4(c;) for every
region a € S and concept ¢; € C. The slope parameter is experimentally set but fixed for
all computations. However the estimation of this parameter can be done automatically by
considering the maximum likelihood estimator for probability distribution of the training
data [104].

Typically, a range of 500 images has been used to train each concept. Preliminary
evaluation results show that polynomial kernel was most appropriate. Potentially, many
descriptors can be considered in the training by use of the MPEG-7 XM software [92] or
the AceMedia Toolbox [97], but can lead to increase the dimensionality of the problem
worthlessly.

Material Membership

Person 0.50

Sailing-Boat 0.49

Building 0.63

Figure 3.3: Semantic labeling of image regions.

An example of labeling is shown fig.3.3. The image is segmented into regions. For
each region each concept classifier outputs a score that is interpreted as the degree of
membership for the concept. A score about 0.5 means that there is no indication for the
concept (f(xz) = 0), while high values indicates that the region is likely to belong to this
concept. Thanks to the fuzzy labeling no hard decision is made, and all possible concepts
are retained. Most robust classifiers are obtained from concepts associated to a certain
type of material that can be characterized well by the visual features. In the example the
building concept is predominant compared to the other concepts for the region at the center
of the image.
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3.2 Spatiotemporal semantic segmentation

We have introduced a knowledge representation infrastructure and a knowledge assisted
analysis platform for semantic segmentation and annotation of images. An asset of this
platform is to offer potential openings in both knowledge domain and different types of media
content. In particular, we believe that the presented knowledge representation can be united
with the spatiotemporal approach we developed previously in the frame of video content
analysis. In this section, we will examine how coupling of visual information extracted from
spatiotemporal segmentation with the knowledge analysis system helps the segmentation
and the interpretation of video shots.

3.2.1 Introduction

We have seen in section 2.2 that spatiotemporal segmentation extracts continuous volumes
from a video sequence. Algorithms developed until now consider that these volumes are
homogeneous with respect to a set of visual features [49, 55, 31]. Important visual variations
that can be found within a video sequence makes maintaining an object as a unique volume
difficult.

For its part, semantic information would be able to link different part and views of an
object, based on a set of prototypes that instantiated the object. More precisely, knowledge
base recognizes region materials characterized by the visual indexes: shape, color, tex-
ture. However, when considering large range of multimedia documents, especially videos,
it becomes a point where domain knowledge cannot cover all variations that may occur,
and cannot give accurate interpretation of video content. Even if we cannot match closely
part of real-world content to any concept prototypes, we can gain significant information
by comparing this content to other contents that instantiates known concepts within the
domain.

We believe that combining both knowledge-based representation and available visual
information can help semantic interpretation of video shots. The ARG representation con-
veys these two aspects, expressing visual and semantic relationships between object volumes
simultaneously. Grouping and matching procedures can bring visual and semantic informa-
tion closer together and make them benefit from each other. In other words, we would like
to appraise to which extent grouping and matching techniques can help for better semantic
interpretation.

To fulfill this idea, we propose a framework where spatiotemporal segmentation and ob-
ject labeling are coupled to achieve semantic annotation of video shots. On the one hand,
spatiotemporal segmentation utilizes region merging and matching techniques to group vi-
sual content. On the other hand, semantic labeling of regions is obtained by computing and
matching a set of visual descriptors to a set of concepts. The integration of semantic infor-
mation from the existing knowledge base within the spatiotemporal grouping process sets
two major challenges. Firstly, the cost of visual descriptor extraction and region labeling is
important. For this reason, we cannot reevaluate descriptors or labels at each merging step
unless only a few regions remain. Secondly, the relevance of the semantic description de-
pends on the accuracy of the region descriptors, which means that the regions should have
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Figure 3.4: Framework for semantic video segmentation.

at least a sufficient area. These considerations suggest that use of semantic information
during the early stages of the segmentation algorithm would be highly inefficient and inef-
fective if not misleading. Therefore, we add semantic information when the segmentation
has produced a relatively small number of volumes. Taking into account these factors, we
introduce a method to group semantically spatiotemporal regions within video shots.

3.2.2 Overview of the approach

We decompose the video shot into a sequence of Block of Frames (BOF). The advantage
of such piecewise representation is that it naturally covers the different aspects (views,
variation) of the semantic objects in the sequence.

Semantic video shot segmentation is achieved by an iterative procedure on the BOFs. It
operates in two steps, respectively the labeling of volumes within the BOF and the merging
with the previous BOF, which we will refer to as intra-BOF and inter-BOF processing.
The procedure scheme is depicted in fig.3.4.

In a first stage of intra-BOF processing, a spatiotemporal segmentation decomposes
each BOF into a set of volumes. The resulting frame segmentation maps are sampled
temporally to obtain frame regions. These regions are semantically labeled and the result
is propagated within the volumes. A semantic region growing algorithm is further applied
to group adjacent volumes with strong semantic similarity.
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In the second stage of inter-BOF processing, we perform joint propagation and re-
estimation of the semantic labels between video segments. The volumes within each BOF
are matched by means of the semantic labels and the visual features. This allow to extend
the volumes through the whole sequence and not just within a short BOF. The semantic
labels of the matched regions are re-evaluated and changes are propagated within each
segment. Finally both BOFs are merged and the process is repeated on the next BOF.

3.2.3 Video shot decomposition

In section 1.2.4, we have seen different structures to decompose the video shot in the spa-
tiotemporal domain (object, volume and pixel structures). In order to interact with the
knowledge analysis system (section 3.1.1) we need to precise the structure of video segment
in both spatial and temporal domain.

A shot is divided temporally into M Block of Frames B;,i € [1, M]. A block B; is
itself composed of a set of successive frames Fy,t € [1,|B;|]. Spatiotemporal segmentation
decomposes each block B; into a set of video regions (or volumes) Sp,. Each volume a € Sp,
is subdivided temporally into frame regions R,(t), F} € B;. Finally, the frame segmentation
at time t is defined as the union of frame regions of all volumes intersecting frame Fj:
Sy = UmFt#@ R, (t). Fig.3.5 illustrates the temporal and spatial decomposition of a BOF.

| SI B Spatiotemporal segmentation
S, S, S, Frame segmentation

1 2 3

F, F, F,
Frame regions
R (1)) R (1)) R (15) 8
a Volumes

t, t, t t

Figure 3.5: Spatial and temporal decomposition of a BOF.

3.2.4 Intra-BOF Processing

The most straightforward way to label one video segment would be to build volumes, extract
spatiotemporal visual descriptors and use a knowledge base to select most relevant concepts
for this region. Unfortunately, this is not directly possible for two reasons. Firstly, visual
descriptor extraction has an high computational cost when considering complex descriptors,
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and it will not be reasonable to apply it on all the frames of the video sequence. Secondly,
the semantic labeling module (section 3.1.2) only performs labeling of image regions using
spatial descriptors. In consequence, we exploit the spatiotemporal segmentation to build
visual and semantic description efficiently, using only a few frames. Both a criterion for
selecting these frames and semantic merging operations of volumes are presented below.

Selection of seed images

Once the segmentation masks are obtained for the whole BOF, region descriptor extraction
and labeling tasks are substantially reduced by selecting temporally a set of frames within
each video segment. This choice is important as it determines the span of the semantic
labels within the BOF. Choosing an important number of frames will lead to a complete
description of the BOF but will requires more time to process. On the contrary, using
a single frame will be very efficient but important volumes may receive no labels. One
possibility is to consider a set of frames T" and its corresponding segmentations Sy = {S;},
t € T and measure the total span of the intersected volume a. Given a fixed size for T we
choose the set Ty, that maximizes the span of the labeled volumes :

Tye; = argmax z |al (3.12)

The selection process is illustrated in fig.3.6. Estimation of the best set T; is performed
as follows. First frame selected (t2) is the one that intersects the biggest volumes in total.
The selection of the second frame (¢;) is performed identically, volumes found in t2 being
not taken into account anymore. The procedure is repeated for a fixed number of frames
or until the selected volumes occupy a sufficient proportion of the BOF.

b
"S‘g S

@ @ @ Selection order

t

Figure 3.6: Temporal selection of frames. The frames which intersect most important
volumes are selected.

The first advantage of this criterion is its independence to the descriptor type. Compared
to fixed sampling, a second benefit is that it offers scalability for the extracted descriptors
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in function of the desired total volume span for the shot. Indeed the span increases with
the number of frames selected.

Spatiotemporal Propagation on a block of frames

We use the semantic annotation module to perform the region labeling in the individual
frames selected in the previous step. Four visual descriptors, namely Region Shape, Scalable
Color, Edge Histogram and Homogeneous Texture that characterizes different modalities of
the regions are used to construct the SVM classifiers.

Similarly to frame regions, semantic attributes of volumes in BOF are described by a
fuzzy set of labels v over the set of concepts C. To compute the degree of memberships
o (c) of a volume a in a BOF for each concept ¢ € C, we gather the contributions from
the set of labeled frames. In case that we consider a single frame, the spatiotemporal
labeling is obvious as we just need to assign frame region labels to their corresponding
volumes. Otherwise, when the volume is labeled at different instants, a unique set of labels
is computed with fuzzy operators. Possible operators include :

e Default fuzzy union
) = 3.13
Ha(€) = maX fir, (1) (c) (3.13)

e Aggregation
. Ztene; A(Ra(t))MRa(t)(C)

[iR,(1)(€) = Sier,., A(Ra(t))

(3.14)

Fuzzy union operator states that the volume a is assigned the concepts with their best
confidence values. In other terms, detected concepts on frame regions are propagated on the
whole volume. Other fuzzy union operators can also be used, such a dombi co-norm which
softens the confidence degrees. The aggregation operator weights the confidence degrees
with the importance we place in the frame regions. A(R,(t)), are obtained by a measure of
temporal consistency of frame regions:

A(Ra(t)) = min (Ra(t)) (3.15)

where N; represents the neighboring frames at time ¢ in the BOF. These operators are
selected based on the temporal consistency measures. In case of high consistency values,
detected concept can be propagated reliably with the default fuzzy union operator. Oth-
erwise, the importance of frame regions can be taken into account with the aggregation
operator.

Besides its semantic labeling, volumes are also characterized by the set of visual de-
scriptors D which describes its low-level content. MPEG-7 visual descriptors are originally
considered for frame regions. However, we can extend some of them to volumes by consid-
ering aggregation operators, mentioned in section 1.2.6.

For histogram-based descriptors, MPEG-7 has proposed the GoF/GoP color for joining
multiple image frames of a video segment by computing the mean, median or intersection
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of histograms bins. As we consider homogeneous short-length volumes we prefer averaging
the spatial descriptors with the mean operator. This type of aggregation can be applied
for Edge Histogram, Color Structure, Color Layout, Region Shape and Scalable Color (after
reconstruction in the HSV domain).

On the other end, the Homogeneous Texture descriptor (HTD) is composed of the av-
erage and the standard deviation of the region intensities, followed by the average and the
standard deviation of the energy of 30 Gabor filters within the region (eq.1.1). Thus the
corresponding volume descriptor (HTD) can be obtained by computing the average inten-
sities and energies inside the volume, along with the standard deviations. Average energy
is given by :

~ 2ieny Ba(®)ler, )

S T [Rall)] (3.16)
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Average and standard intensity can be computed in a similar fashion. For other descriptors,
averaging is still possible with the median operator as long as a distance metric is defined.
However it is only meaningful with a large number of descriptors.

In addition to spatial descriptors, we also store the sizes and location of the volumes.
This last feature can be used to qualify spatiotemporal relationships. More precisely, each
volume is located by its center of mass (eq.1.5) and its spatiotemporal bounding box ex-
pressed within the RegionLocator descriptor.

Semantic Volume Growing

Spatiotemporal segmentation usually creates more volumes than the actual number of ob-
jects present in the BOF. We examine how a variation of a traditional segmentation tech-
nique, the Recursive Shortest Spanning Tree (RSST) can be used to create more coherent
volumes within a BOF.

RSST [87] is a bottom-up segmentation algorithm which iteratively merges similar neigh-
bor regions until certain termination criteria are satisfied. RSST is based on the ARG
representation of image regions, where each edge indicates the dissimilarity between two
adjacent regions, e.g. color dissimilarity using Euclidean distance of the color components.
In the beginning, all edges of the graph are sorted according to the edge weights. The edge
with the least weight is found and the two regions connected by that edge are merged. After
each step, the attributes of the merged regions (e.g. mean color) are re-calculated. Tradi-
tional RSST also re-calculate weights of related edges as well and sort them again, so that in
every step the edge with the least weight will be selected. This process goes on recursively
until termination criteria are met. Such criteria may vary, but usually these are either the
number of regions or a threshold on the distance. The method can be put in relation to the
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segmentation algorithm we describe in section 2.2.3, which is also based on the Minimum
Spanning Tree of the graph. However, the latter algorithm neither recomputes weight of
edges, nor re-sort edges, but use an internal difference criterion to evaluate if two regions
can be merged.

The idea behind using RSST for semantic segmentation is that neighbor volumes, sharing
the same concepts, as expressed by the labels assigned to them, should be merged, since
they define a single object. As the graph contains reasonable number of volumes and edges,
the cost of the ARG update operation is not a penalizing factor. The RSST is modified to
operate on the fuzzy sets of labels of the volumes in a similar way as if it worked on low-level
features (such as color, texture) [10]. Let G an ARG for a BOF. The modification of the
traditional algorithm to its semantic equivalent lies on the re-definition of the two criteria.
First the dissimilarity between two neighbor volumes a and b, v,, v, € G is expressed as :

w(eq) =1—&r(a,b) (3.18)

For one iteration of the semantic RSST, the process of volume merging decomposes in
the following steps: First the edge e, with the least weight is selected. Then, vertices v,
and vy are merged. Vertex vy, is removed completely from the ARG, whereas v, is updated
appropriately. This update procedure consists of the following two actions:

e (i) Re-evaluation of the degrees of membership of the labels in a weighted average
fashion from the union of the two volumes:

|alpa(c) + b|ps(c)

3.19
o[+ 10 (3.19)

fa(c)

e (ii) Re-adjustment of the ARG edges by removing edge ey, and re-evaluating the
weights of the affected edges, incident to a or b : e € E(a) U E(b).

This procedure terminates when the edge e* with minimum weight in the ARG is above
a threshold: w(e*) > T, which is calculated in the beginning of the algorithm, based on
the histogram of all weights of the set of all edges F.

The example of fig.3.7 illustrates the application of semantic volume growing. Semantic
segmentation (fig.3.7(c)) reduces the number of volumes from the spatiotemporal segmen-
tation (fig.3.7(b)), especially those with similar material type, the sea in occurrence for the
example. Semantic segmentation helps therefore to overcome the oversegmentation prob-
lem mainly from illumination variations and color variances of the volumes. The volumes
corresponding to the boat are partly merged. The “boat” concept prevails on its body where
the degree of membership pihoqs is estimated to 0.61 and “foliage” for the rear buckle where
boat Varies from 0.56 to 0.58. The rear buckle parts are merged together as they refer to
the same type of material. Semantic information of the body also includes the “foliage”
concept with degree of membership fifoliage = 0.58, which is comparable to the buckle la-
beling. This is due to the green color and the texture of the body, and the fact that the
basis of the buckle is included in the volume. In consequence these parts are merged to-
gether (in pink in fig.3.7), resulting in a volume where the “foliage” concept prevails ahead
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of the “boat” concept. At the front of the boat the buckle is unfortunately grouped with the
sea, as the volume includes mixed material where the “sea” concept prevails (psea = 0.56,
toliage = 0.54). Thus, this demonstrates that semantic segmentation incorporates compro-
mise about the common semantic information between volumes and the predominance of
concepts in each volume. Different interpretations can often be proposed for a volume, the
best one actually depending on the global context.

T (b) (©)

Figure 3.7: Semantic Volume Growing. (a) Input sequence. (b) Spatiotemporal segmenta-
tion. (c¢) Segmentation after semantic volume growing.

3.2.5 Inter-BOF processing

We have defined the procedure for labeling volumes within each single BOF. Now we ex-
amine techniques to extend volumes over consecutive BOFs and improve labeling of the
video segments processed individually. For this purpose we develop techniques for visual
and semantic volume matching. First, semantic grouping is performed on volumes with
strong concepts, then concepts are propagated temporally and spatially with the use of
both semantic and visual similarity.

Selection of matches

We consider the merging of two successive BOF's represented by their ARG G; and Ga. It
is not worth computing all volume matches between the two ARGs. As we consider con-
tinuous sequences, semantic objects are coherent spatially and temporally. In consequence,
numerous matches can be pruned by exploiting spatiotemporal location of the volumes.

We establish temporal connections between G; and Gy by selecting candidate matches
from G1 to Gy and Gs to G1. Let G the merged graph of G7 and G». At the beginning
G = G1 U Gy. Given volume a € G and b € G, a is connected to b in G if the bounding
box of b intersects a truncated pyramid that represents the possible locations of a as shown
fig.3.8. The pyramid top base is defined by the bounding box of a, the bottom base is
enlarged by a factor Ds; = UmazTmar Where v, is the maximum displacement between
two frames and T),,; is the height of the pyramid along the temporal axis. Thus the
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condition is expressed as :

ming(b) — maxi(a) < Thax
min,(b) — mazy,(a) <  Umaz(ming(b) — maxi(a)) u=uz,y (3.20)
ming(a) — mazy,(b) <  Umaae(ming(b) — max(a)) u=uz,y

where [min, max,], v = {z,y,t} denotes the bounding box coordinates along dimension
u. The connections are established in both forward and backward temporal directions. As a
result v, has a set of candidate matches ES = E,[G2] = {eqw: b € Go}. The list of candidate
volumes for b, EC = Ey[G1] is defined and created symmetrically.

BOF 1 BOF 2

Figure 3.8: Selection of matches is based on the spatiotemporal location of their bounding
boxes.

Matching of dominant volumes

After creating the list of candidate matches, we first consider the matching of volumes with
reliable or dominant concept. A concept ¢* € C'is considered dominant for a volume a € G

if :

(3.21)

Ma(c*) > Tiom
o (¢*) > Tsectia(c) Ve e C —{c*}

A dominant concept has a degree of memberships above Ty,,, and is more important than all
the other concepts, with minimum ratio of Tg... Practically, there is usually a few dominant
volumes after the labeling process in a given sequence. Therefore, values of Ty,,, may be
reconsidered in case that the selection is empty.
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The best match for one dominant volume may not be dominant because its visual ap-
pearance changes during the sequence. For this reason, we match either dominant volumes
that have sufficient visual similarity or one dominant volume to any volume in case they
have perfect visual matches. The criterion to match a dominant volume a to a volume b,
eab € Eg, is based on both semantic and visual attributes. Let ¢} and ¢ be the dominant
concepts of vy (a) and v (b). If b is dominant but ¢ # ¢ then no matching is done. In case
c¢; is empty, then ey, has to be the best visual match from a, otherwise we compute the
normalized rank of the visual similarity £p in decreasing order, which values do not depend
of the descriptors used. Formally the criterion is validated if:

rank ({p(a,b)) =1 if =0
Co =Gy . (3.22)
cl_ otherwise
|Eg | rgg/‘fgflja(a,b)) > T,

a

T, indicates the tolerance allowed on visual attributes. When T is close to 1, only the best
visual match is considered. If T is set to 0.5, half of the matches are kept.

The procedure is illustrated fig.3.9. In the example v, is linked to v, as it shares the
same concept “foliage” and the semantic similarity is the second best ({p(a,c) = 0.8). v, is
also linked to v since the similarity between a and b is the best one (p(a,b) = 0.9). vy is
not matched even if it shares the same dominant concept as they are visually different from
Vg Indeed only dominant matches with good similarity are kept.

&, =009, c*=0
&, = 0.8, c*="foliage”

&y =0.5, ¢"=“foliage”

¢y =03, c*=0

Figure 3.9: Matching of dominant volumes. Dominant volumes are represented with thick
circles.

Since region and volume labeling are processes with a certain degree of uncertainty, reli-
able semantic concepts do not emerge from every volume, either due to the limited domain
of the knowledge base, the imperfections of the segmentation or the material itself. We
introduce also volume matching considering low-level visual attributes, expecting semantic
of these volumes to be recognized with more certainty in a subsequent part of the sequence.
To avoid propagating matching errors and hamper the accuracy of the volumes, we only
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consider the matches with the strongest similarities and we are most confident in. We in-
troduce the notion of first best match for an edge ey, € G1 x Ga. We denote e, and e; the
edges in lists ES and EbC which have maximum visual weights. ey, is a first best match if
e; = e;. This is illustrated in fig.3.10. An arrow from v; to v; indicates that €yv; has been
selected in the list of edge candidates EUC; . In the example, couples (v1,v5) are matched as
€y s 1S the best match for both vy and vs.

BOF 1 BOF 2

0.8

Vi (ﬁ 0.2 v
5

0.5
Va O' 0.6 Ve

0.4

&

;
2

Figure 3.10: First best visual matches. Matched nodes are in green, and the numbers
indicate the visual weights.

Update and Propagation of labels

After the semantic and visual matching process, volumes are merged and their semantic
and visual properties are calculated using the aggregation operators we defined previously.

For this reason, new evidence for semantic similarity can be found in the merged graph
as new dominant volumes are likely to be found. We do not merge further these volumes
at this stage, to keep the accuracy of the visual description as they may correspond to
different materials belonging to the same concept. Instead of this, the concepts of dominant
volumes are propagated in the merged graph GG. Let a be a non-dominant volume, v, € G;
we define a set of candidate dominant concepts C, = {c € C|uqs(c) > T,}. For a concept
¢ € C, we compute the degrees of membership !, (¢) resulting from the aggregation of v,
and its neighbor vertices in G with dominant concept c:

1 (¢) = ZbeNg 101 (c)
2 peng [0l

where N¢ = a U {b € N,|cj = c} is the aforementioned neighborhood and |b| is the current
size of volume b. The concept ¢* € C,, maximizing u/(c), is selected and all degrees of
membership of v (a) and the size |a| are updated by the aggregation of volumes in N¢.
This propagation is performed in the whole graph G recursively. Let GP be the subgraph
of G containing only the dominant volumes of G and their incident edges. Once non-
dominant volumes in G are processed, new dominant volumes may emerge in the subgraph

(3.23)
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G' = G — GP. The update procedure is repeated considering G’ as the whole graph until
no more dominant volumes are found, i.e. GP = (). As a consequence, the degrees of
membership of non-dominant volumes tend to increase using the neighborhood context,
correcting the values from the initial labeling.

Fig.3.11 gives an example of the relationships before and after the merging. Only two
concepts ¢; and cy are considered for the sake of clarity. The ideal semantic segmentation
would be composed of two objects with dominant concepts c¢; and cy. Before merging
(fig.3.11(a)), a few dominant volumes are detected (v4, vy, v11) in the two BOFs. After
merging (fig.3.11(b)) the degrees of membership are re-evaluated according to eq. 3.19 and
semantic weights are computed on the new edges. New evidence for semantic similarity
is found between volumes (vs,v1) and (v3,v2), since vs has been matched with dominant
volume vg. Thus, due to propagation of concept ¢, v; and vy are linked to the dominant
volume v3 and their degrees of membership are increased according to eq. 3.23.

n(ey) | pley) p(ey) | pley)

v, [0.7 |05 v, [0.65 [0.5

v, |0.65 045 ve |06 |05

v, 107 |06 v, |0.85 |06

v, (055 (075 vio [0.5 |06

vs (05 |07 vy |06 [0.85

ve |05 |055
a)

Vi \E n(e) | p(e,) u(e) | pic,)
Vg v, 107 |05 v, 1074 |05

v, |0.65 |0.48 v, 072|048

v, (078 o6 | =) [v, |078 [06

v, |0.56 0.79 v, |0.56 [0.79

v Ve v, |05 058 ve |05 058
4 v, |06 |05 v, 06 |05

b)

Figure 3.11: Merging of two BOF's. a) Matching between two BOF. b) Merging of a BOF and
update of semantic labels. Ideal semantic segmentation is represented by the dashed boxes.
Matched volumes are marked with similar colors, and dominant volumes are indicated with
thick circles. Here, Ty, = 0.75 and Tge. = 1.25.

3.2.6 Results
Segmentation examples

We illustrate the potential of the method on a set of examples. The knowledge domain

” YOS

encompasses various elements encountered in a natural scene, such as “sea”, “sky”, “foliage”
or “people”.
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Figure 3.12: Video semantic segmentation. a) Frames in various BOFs. b) Spatiotemporal
segmentation. c¢) Merged segmentation. d) Concept “person”. e) Concept “sea”. f) Concept
“Sky”-
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Figure 3.13: Video semantic segmentation. a) Frames in various BOF. b) Spatiotemporal
segmentation. c¢) Semantic segmentation and inter-BOF matching. Volumes are extended
throughout the shot (note the consistency in coloring). d) Concept “person”. e) Concept
“sea”. f) Concept “sky”.

For each example (fig.3.12,3.13,3.14) we show the original frames (a), the output of
ST segmentation algorithm for the individual BOF (b), the merged segmentation for the
whole sequence (c¢) and the volumes corresponding to the detected concepts (d-e-f). In the
results shown, segmentation parameters are the same for all examples and give slightly over-
segmented low-level volumes, outputting volumes with homogeneous color. The proposed
example sequences of fig.3.12, 3.13 and 3.14 respectively lasts 7s, 26s and 4s. The BOF
duration in the first and third sequence is of |B| = 10 frames while for the second sequence
we increase the duration to |B| = 50 to show the behavior of the method at a larger scale
while maintaining reduced computational costs. For the temporal sampling of the BOF,
only two frames are selected for labeling using the criterion of eq.3.12.

The first example is a beach sequence where different persons are disembarking from a
small boat in the seashore (fig.3.12). During the labeling of the different BOF's, relevant
concept “people”; “sky”; “sea” have been detected, but only in a few volumes, as the woman
with a blue coat sea, the upper part of the sea, and the clouds. One difficulty in the sequence
is that the sky and sea regions are close visually and not well separated (BOF 6, 12, 17),
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BOF 1

BOF 2

BOF 3

BOF 4

BOF 5

BOF 6

BOF 8

Figure 3.14: Video semantic segmentation. a) Frames in various BOF. b) Spatiotemporal
segmentation. ¢) Merged segmentation. d) Concept “person”. e) Concept “foliage”.
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hampering the low-level spatiotemporal segmentation process. For the same reason, the
degrees of confidence for sea and sky concept are quite close in the concerned volumes in
these BOFs. When matches between dominant concepts are not found, visual matching
links regions which are visually close. This performed well on the person at the center,
whose coat is composed of a single volume through the sequence from BOF 1 to 17, and on
the girl on the right from BOF 1 to 4 as the layout changes smoothly. For the sea and sky
regions the matching is only partial. Indeed they are subdivided in volumes with the same
material, but with different layout. In such case these volumes should have been grouped
after the segmentation of each individual BOF, in the semantic volume merging process.
When no match is significantly good enough or stronger than the others, we prefer not to
merge the volumes. For instance most volumes are not matched from BOF 4 to 6 and BOF
6 to 8 since sea and sky areas have been grouped in a single volume in BOF 6. Thus the
error is kept within the BOF rather than being propagated subsequently in the sequence.

The second example shows two girls walking on the beach (fig.3.13). Firstly, the girls
are approaching the camera (BOF 1-5). Then, they are observed in a close-up view (BOF
6-10). Finally the camera rotates quickly by 180 degrees to shoot them backside. Relevant
concepts “people”, “sky” and “sea” are detected within the shot. First we can see that the
sky area is recognized all along the sequence. Although its aspect slightly changes at the
end, it is still detected as dominant in the labeling stage and thus merged as a single volume.
We can notice that isolated areas are also labeled “sky”; as their material is visually close
to this concept (BOF 5, 13). For the same reason, only part of the sea is identified at the
right. In contrast, the left part is not dominant but is correctly grouped with the visual
matching from BOF 3 to 10. After that point, the sea areas are easily detected as they
are viewed frontally. The detection of “people” is more challenging since the related object
includes different materials. In BOF 1 each silhouette is identified correctly standing as a
single volume. The left girl’s area is propagated from BOF 3 to 10. After that point she
is completely occluded by the other girl in BOF 11 and the concept is re-detected within a
new volume in BOF 13. For the girl on the right the labeling is more uncertain as part of
her suit and head have been confused with the background area (BOF 5, 7, 11). However,
the upper part is still detected and propagated from BOF 5 to 9 and from 10 to 12 while
the view is changing.

In the third example, a woman talking in front of her car (fig.3.14). The detected
concepts include “person”, and “foliage”. Concept “building” and “car” are also present in
the sequence, but are fragmented in too many volumes to be detected. The head and the
coat both belong to the same semantic concept and can be viewed as a single object, but are
still separated in the merged segmentation (c), which is an advantage as they are visually
different. In BOF 4 only the coat is recognized (d). The reason is that the head has been
partly confused with the background in the spatiotemporal segmentation. In such case the
volume is not matched, as its visual properties are different from the other volumes in the
previous and subsequent BOF. In the right part of the sequence, the upper branches are
well identified as “foliage” and are merged in a single volume from BOF 1 to 4 (c). From
BOF 6 to 8, the branches are occluded by the woman. In consequence the volumes are
more fragmented and less homogeneous, so they are not linked to the previous part of the
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sequence. In BOF 10, the volume material in this area is homogeneous and the branches
are correctly identified again.

Computing time

When considering a sequence of images, semantic labeling become very costly using the
KAA system for every image. The spatiotemporal scheme we proposed enables to reduce
significantly the complexity of semantic labeling by propagating the labels between regions.
We compare the respective computing time of the different modules. We decompose the
whole process in four steps:

1. The spatiotemporal segmentation stage.

2. Visual descriptor extraction and region labeling for the KAA system for the selected
frames.

3. The construction of the ARGs for each BOF, including the semantic RSST.
4. The inter-BOF processing stage that merges consecutive BOFs.

To show the impact of splitting the sequence into video blocks, we consider different
BOF lengths, from |B| =1 to |B| = 50 frames. The evaluation is performed on the beach
sequence of fig.3.13, which is composed of 650 frames. Fig.3.15(a) and 3.15(b) show the
repartition of the overall running time selecting respectively 1 frame per BOF and 20% of the
BOF length for labeling. The former configuration gives the minimum time for processing a
sequence, while the second one utilizes an important number of frames. Processing frames
independently (|B| = 1) leads to consider the KAA system alone. In this case, only the
segmentation (1), the region labeling (2) and the semantic region growing stage (3) are
included in the computation time.

Fig.3.15(a) clearly demonstrates that the complexity of processing individual images
is dominated by the descriptor extraction and region labeling stage (96% percent of total
time). When considering the spatiotemporal approach, these costly stages are reduced up
to 30% of the total time considering a BOF with 50 frames.

The remaining computing time is shared by the other modules. Spatiotemporal segmen-
tation on a large BOF does not imply a significant increase in the processing time. Even
if the segmentation of individual frames has a lower complexity, the increase in the com-
putational cost is very low compared to the region labeling stage. For the construction of
the BOF ARGs the ratio is inverted as constructing an ARG for each frame is less efficient
than processing a single ARG on a block. In the final BOF merging stage, the processing
time does not decrease significantly as the I/O processing required to load and update the
segmentation maps from the ARGs is more important than the merging of the ARGs it-
self. When the latter merging stage is considered solely, the complexity of the procedure is
directly linked to the number of blocks used for the sequence. Increasing the block length
from 2 to 50 frames results in reducing the required time by a factor of 15. All modules
considered, the gain with the spatiotemporal approach can reach a factor up to 12.
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Figure 3.15: Repartition of the running time for different BOF sizes. a) A single frame is
selected as input to the KAA system. b) 20% of the BOF frames are selected.

In fig.3.15(b) a minimum ratio of one to five frames is selected (only 1 frame is selected
for block sizes of 1 and 2 frames). The results corroborate the fact that the processing time
is led by the descriptor extraction and region labeling task. Indeed, the processing time
from block sizes of 5 to 50 are comparable and the relative importance of these two steps in
the total processing time is about 80%. The minor differences between each experiment are
due to the different sets of selected frames and the number of labeled regions. Compared to
fig.3.15(a) the cost for building the ARGs also increases with the number of selected frames
as the visual and semantic attributes from different frame regions are merged.

The gain in computing time for other sequences also complies to the example we have
described. Thus, running time analysis shows that the proposed framework enables to
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extend single image annotation to continuous sequences efficiently. The cost of labeling
is reduced to a level comparable to the other components of the system. Although the
presented results are already significant and the ARG matching and merging procedure are
efficient, the cost of the procedure can still be enhanced by reducing extra computation due
to the I/O processing between the different modules.

3.3 Conclusion

In this chapter, we have developed a method for semantic spatiotemporal segmentation
which makes use of a-priori knowledge to help for segmenting objects with semantic mean-
ing in a video sequence. To this aim we introduced a framework based on an existing
multimedia knowledge-assisted analysis system which enables semantic annotation of im-
age regions. The extension of this system to the spatiotemporal domain faces two major
challenges, respectively the temporal variations within a video sequence which affect image
segmentation and labeling, and the computational cost of region labeling. The method
we proposed propagates semantic labeling along low-level spatiotemporal volumes. In this
sense, we compensate semantic information with visual information when the former is
missing. In addition, propagation of semantic information is then extended to a broader
area thanks to a matching procedure between video segments. Our approach groups vol-
umes with relevant concepts together while providing a spatiotemporal segmentation for
the entire sequence. In this way, the volumes we segmented previously can still be linked
to a concept at any subsequent point in the sequence. Experiments on various sequences
show that the method is promising for semantic interpretation of video shots an can reduce
significantly the cost of region labeling in video sequences.

Further challenge will be to consider structured objects instead of simple individual
objects, exploiting ontological knowledge for proposing global interpretation of graph struc-
tures from their fuzzy labeling. Such approach will be a step forward to the detection of
complex events.



Chapter 4

Indexing and retrieval with the
spatiotemporal representation

In the preceding chapters, we structured the content of video shots with a decomposition
into segments. These fragments can either represent visual information under the form of
spatiotemporal volumes or a semantic information in the form of object and materials. Now,
we address the usage of spatiotemporal representation for the indexation of video shots.

The indexation of a document consists in the extraction of a structured information with
the aim to retrieve it within a collection of documents. This information has to be organized
and described concisely in order to make the search efficient and limit the cost of storage
and transport.

Until now numerous image indexing and retrieval systems have been developed, leaning
upon textual annotation, global or local visual features. Most operational indexing techniques
make usage of textual content of the document, as attested by the massive usage of Inter-
net search engines, facilitating the access and consultation of pertinent information among
billions of available documents.

Popular image and video databases are still indexed using textual terms, which is made
possible by user annotation. As a rule keyword-based indexing has proved to be insufficient in
context of visual databases, and is not able to represent the perceptual properties of the visual
data. Visual content is not adequately described by a few keywords and the annotation itself
depends on the user interest. Furthermore, manual interaction for annotating and querying
the database requires a huge effort. For these reasons, searching particular shots and objects
i an unknown document are problems which require to analyze and compare the visual
content of the documents.

Comparing with textual or global image features, indexing from spatiotemporal volumes
is more complex but enables to build an accurate representation of objects and their relation-
ships, operating in a similar way as the visual system. In addition, indexing and retrieval
experiments give a feedback on the representativity of the spatiotemporal description which
is difficult to evaluate by other means.

This chapter presents the indexing of the shot from spatiotemporal volumes. First section
reviews the problem of search in image and video databases. We draw up a state of the art
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of the indexation models and techniques for the description of the video content.Then, we
introduce the first approach that enables a compact representation for image and video shots,
called Vector Space Model (VSM) and discussed from its properties. Using this model, we
compare different image segmentation methods with spatiotemporal segmentation and show
the advantages of the latter. Finally, we address the problem of retrieving complex objects
using directly the graph representation introduced in chapter 1. To this aim we define a new
similarity measure using visual and structural properties to compare two ARGs. We discuss
the benefits of the measure from evaluation with o retrieval experiment.

4.1 Indexing and retrieval

The growth of visual information available in video has spurred the development of efficient
techniques to represent, organize and store the video data in a coherent way. Content-
based indexing address this problem, setting up a structured representation of the content
(the index) which makes access and comparison easier. The indexing process involves to
define a model for representing content, which will be exploited to identify the documents
readily in the search phase. Possible forms of representation encompass manifold aspects
of the document, according to the desired level of abstraction for the data. The index
keys can be based on the low-level description of the content at the signal level, e.g. the
characteristic colors or textures within an image. At a superior level, description of content
includes structured objects and their interaction within the scene. At the highest level, the
representation can include semantic properties of the objects and of the scene in general.
The higher the level of abstraction is, the more complex the extraction and reasoning process
becomes.

Comparatively, the problem of retrieval consists in returning a list of documents which
conforms to the request of a user. The query is constructed to represent the user needs,
and compared to the index that contains the representation of all documents. The retrieved
image and video are then presented to the user in order of their relevance to the query. A
request can be formulated into different forms, given the capabilities offered by the model
used in the indexing phase. Textual queries are the easiest to manage as the request is
usually limited to a defined set of keywords. On the contrary, image and video requests are
more difficult to manage as they cannot be formulated in the numerical form of represen-
tation that is stored by the index. An appropriate solution is to adopt a query by example
scheme. An example can include an image, a shot, an object, or a sketch drawn by the
user. Content properties featured in the indexing model are then evaluated to construct the
query and perform the search in the database.

4.1.1 System architecture

The problems of indexing a document and of the retrieval of a query are tightly coupled,
the choice of a content model leading to the design of an efficient search strategy. Gener-
ally speaking, it is referred to as content based indexing and retrieval system (CBIR). An
architecture for a generic CBIR is shown in fig.4.1. In the indexation phase, the structured
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Figure 4.1: Indexing and retrieval of video content. The indexing phase is highlighted in
green, the retrieval phase in red.

organization of the database is computed in several steps. The first step is to discover the
temporal structure of the video. The process of decompositing a raw video sequence (video
stream) into shots is called temporal decomposition. To achieve this task, efficient tech-
niques for the detection of shot transitions have been proposed, either in the uncompressed
or compressed domain [69].

Once the temporal decomposition of the sequence is appropriately achieved, features are
extracted from the shot or its subparts (regions, objects). Dynamic features that capture
temporal aspects of data are represented in the shot, while spatial features can be extracted
from one or more representative keyframes.

A model of video content is then constructed from the low-level feature representation.
The model can be directly described by the whole set of features, to which a structure
that depicts the spatiotemporal arrangement of the regions is added. This type of content
modeling scheme is well adapted in the query by example context, where a query is formu-
lated from visual data (image, video clip, sketch). Retrieval based on semantic properties
(keywords) requires in addition high-level indexing of semantic terms related to the content,
which impose to model the domain of knowledge. Inference is usually based on machine
learning systems trained from user annotations.

Content information is stored in a database that contains all representations of the
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extracted segments. Basically, the index is a table of couples (identifier, descriptor). The
identifier contains information such as temporal and physical location of the segment, which
enables to find and present the content easily. A descriptor contains the associated content,
according to the content model representation. This descriptor is used for comparison
of the documents. Extracted indices have to be organized to optimize the search in the
database. To reduce the cost of processing and storage, the descriptor can be compacted
into a single feature vector (signature). When the content model is composed of multiple
attributes, hierarchical structures such as R*-trees, quad-trees have been demonstrated to
be appropriate for multi-dimensional indexing [3].

4.1.2 State of the art

Efforts have been made into developing methods for content-based indexing and retrieval of
videos (CBVIR). Our interest is placed on CBVIR systems based on shot and object repre-
sentations. The sequences are supposed to be preliminarily parsed into smaller meaningful
temporal units (a.k.a. the shots). In these systems, an instance of the shot or of the object
is given as a query, and the similar objects need to be found. The problem of unsupervised
indexing system is difficult in itself, as objects and shot content can take different appear-
ance in different shots and different videos. In this section, we review the approaches for
indexing and retrieval that are based on the visual content description. Prominent issues
include indexing of high-dimensionality descriptors, definition of good similarity matching
measures for comparing accurately visual information from two units, or efficient techniques
for compact storage and search. In the following section, we review the approaches that
have been proposed through the literature to tackle them.

Video indexing methods have primarily used image-based methods, reducing the extrac-
tion of information in keyframes. Common approaches leans upon global properties of the
image, or local description provided by the segmentation into regions.

Global Description

Different features have been considered to depict the image content. Usually three categories
of features are considered : color, texture and shape. Color and texture have been widely
adopted for image retrieval, while shape descriptors have been most efficient for specialized
domains (e.g. object recognition problem). Typically the color of an image is represented
by an histogram in an existing color space. Histogram descriptors are then compared to
the one of a query image by means of similarity metric. Measures used for search are
histogram intersection [123], euclidean distance. To reduce the quantization effects involved
by histogram representation, Smith et al. [118] proposed to divide the color feature space
into color sets. Color sets are obtained from the quantization of the color space. Robust
comparison of histogram is then performed using weighted distance which computes the
cross-correlation between the color histograms [44]. Another solution to the binning problem
is to adapt the length of the descriptor according to the perceptual complexity of the content.
Rubner et al. [107] propose to use a similarity metric called Earth Mover’s Distance (EMD)
to compare signatures which are composed of a set of representative feature clusters of the
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image. However, the increase in complexity is important. Color histograms have been shown
to support invariance to common image transformations, such as translations, rotations,
scaling. However, remaining problems from the use of color similarities is that the feature
can be affected by global illumination variations, also known as the color constancy problem.

Texture is also an important feature to depict the patterns present in an image. In the
early work of Jain [134], an histogram of edge directions is added to color information for
retrieval of trademark images. Other statistical approaches have been developed. Among
them co-occurrences matrices and the derived Haralick indices [57], Tamura features that
characterize coarseness, contrast and directionality [125] are worth mentioning. The feature
is also effectively represented in the spectral domain, as patterns are composed of repetitive
basic elements. Fourier Transform is used to detect global periodicity of an image [54]. A
more precise decomposition in the spectral domain is introduced through the Gabor wavelet
decomposition on which is based the MPEG-7 Homogeneous Texture descriptor.

An early platform that integrates all features of CBIR systems is the IBM’s Query By
Image Content (QBIC) [44]. Images are described by multiple visual properties. Color
distribution is represented in a color space with 256 representative colors obtained from the
clustering of an RGB histogram. Texture is described using Tamura’s features and shape
is expressed by a combination of geometric features including area, eccentricity and major
axis orientation. The queries are based on one or several visual properties from an image
or object drawn by the user. A simple query may consist in identifying images that have a
similar color distribution from the example image. More complex queries can be formulated,
searching into different features in parallel or conducting a new search based on the result
of an initial search. In the retrieval phase, nearest neighbor search using multiple features
is performed in the feature space efficiently by storing the multidimensional indexes in a
R*-tree.

The QBIC components have been reused for newer CBVIR systems. The more advanced
IBM’s CueVideo system achieves indexing of multiple modalities (audio, video, text) in
target of video summarization and event recognition. The QBIC system is integrated to
perform image based search by computing the similarity between frames.

Other well-known image systems based on multiple features of an image includes Virage
Photobook, VisualSeek and Netra. These systems are reviewed in [137]. In these CBIR
engines, the use of multiple descriptors is let to the choice of the user. The weighting of
each feature is refined by the user itself or in function of the relevance of the displaced
results (relevance feedback).

To simplify the indexing process, these descriptors can be fused in a unique single vec-
tor. A static approach by concatenation is straightforward but leads to high dimensional
descriptors. The problem of increasing the feature space dimensionality is also known as the
“Curse of dimensionality problem” [15]. As the feature set increases the ability to describe
optimally the data diminishes. Dimensionality reduction is also suitable to enhance the
index structure performance and speed distance computations. Common techniques consist
in mapping the original data set into a lower representative space. The most known trans-
form is the KLT (Karhunen-Loeve transform) that performs an optimal linear mapping of
the data, in a way that the variance of the data in the low-dimensional representation is
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maximized. In practice, the problem is solved by computing the eigenvectors of the data
covariance matrix with the SVD decomposition. Other interesting transform includes trans-
form to the spectral domain, such as Discrete Fourier Transform (DFT), Discrete Cosine
Transform (DCT), and Discrete Wavelet Transform (DWT). In comparison to the SVD,
these techniques are highly computationally efficient, but the efficiency of representation is
not optimal and depends on the domain considered.

Region-based description

A human user naturally organizes the scene into objects, and would like to find similar
elements in other shots. To achieve this goal, the modeling of image and video demands, in
function of the application, that the content is analyzed locally at the region and object level.
Such representation is obtained by segmentation, that subdivides the scene into objects.

Blobworld, proposed by Carson et al. [22], is an example of a region-based indexing
system. Image regions are represented by the color, texture, shape and spatial characteristics
of the segment. These “blobs” are obtained by a segmentation technique that produces
coherent regions in texture and color space using an EM algorithm. Each blob is indexed
separately in the database, one entire image being constituted of a small number of blobs. In
the retrieval process, one or more blobs are selected in the query image and blob comparison
is achieved. The quality of the approach depends heavily on the ability of the segmentation
to cover meaningful objects.

Netra [79] is another retrieval system that uses color, texture, shape and spatial location
to perform region-based search. A major feature of the system is the image segmentation
algorithm that is shown to improve quality of image retrieval when the image is composed
of multiple complex objects. Other improvements reside in an efficient color representation
and in the indexing of color, texture, and shape features for fast search and retrieval. Thanks
to this internal representation, the system enables to elaborate more accurate queries that
specify both characteristics and spatial relationships. Characteristics can be also formulated
in terms of “texture keywords” to select and query, such as “blue sky”, “flower”, “mountains”,
while a number of pre-classified image categories of image collections are used, such as
“glacier and mountains”, “pacific coasts”, “autumn”. In the systems described above, regions
are retrieved independently of the scene they belong to.

Indexing and retrieval operations can also consider the whole set of regions at a glance.
In the SIMPLicity system [142], a measure for the overall similarity between images is
developed using a region matching scheme that integrates properties of all the regions in the
images. Image categorization into general purpose classes (Indoor/Outdoor, textured/non
textured) enables to adapt and reduce the range of search within the database. Compared
with systems that consider individual regions, using an overall similarity reduces the effect
of inaccurate segmentation and helps to clarify the semantics of a particular region.

Other representations have been proposed for-object oriented approaches. A segmented
image can be converted in a symbolic picture that depicts the relationships between the
objects in the image. 2D strings have been proved efficient for retrieval of symbolic and
pictorial images. The problem of retrieval consists in a 2D sequence matching. To represent
relationships in the image, each object is labeled and attributed a symbol. A 2D string is
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then constructed by projecting the symbolic pictures onto the x and y axis. A symbolic
projection is described by the relationships between objects, such as below-above or left-right.
Since the original 2D-string theory was developed by Chang et al. [27], diverse extensions
have been proposed to enhance the descriptions of spatial relationships. For instance, the
2D G string can be used to describe accurate relation between sub-objects, allowing a larger
set of relationships such as meets, overlap, contain. On the other hand, partitioning objects
increases significantly the storage requirements and the complexity of matching. 2D-strings
have been employed in the VisualSeek system [118] for performing search of a sketched query
composed of multiple regions. To reduce complexity of the matching, candidate regions in
the target image are first listed from the response to individual query region. Then, the
2D string of the target image is created and compared to the query to obtain an overall
matching score. Using spatial and color similarity is shown to perform both than a simple
color histogram approach. However, representing a complex image with the 2D-string can
lead to ambiguities, thus it should be used in conjunction with other attributes.

Representation of content can also take advantage of a dictionary of visual keywords.
In [77], these keywords are extracted from statistical learning techniques and depict typical
entities of the visual content domain. The image is then spatially described by referencing
the visual terms assigned to the regions. The polysemy of the visual words can be further
reduced by applying latent semantic indexing. For this purpose the vector is encoded via
singular value decomposition before similarity matching.

Finally, structural properties of content can be represented directly as a graph of regions
[84]. In [28], an object representation with Directed Acyclic Graphs (DAGs) is adopted.
These objects are roughly extracted on I-frames considering the motion vectors of the macro-
block in the compressed domain. As the structure of similar objects can differ at different
instants of the video (size, shape, viewpoint), inexact matching is considered to build sim-
ilarity between two DAGs. Each vertex is depicted by a set of metrics that depicts the
graph structure (degree of nodes, subgraph size, Strahler number measuring the complexity
of a tree). To find sub-matches in the DAGs, the nodes are classified so that nodes in the
two DAGs that have similar structure receive the same labels. Matching is completed by
comparing both topology of the DAG trees and extrinsic features of the nodes (mean color).
This structural object-oriented approach is shown to perform well for retrieval of small ob-
jects (protagonist) in different scenes of a video or in a collection of shots in general, and
the use of structure tends to improve the result of a region-based CBIR system. However,
the limitations of the object extraction method prevents its use for generic videos.

Integration of spatiotemporal cues

Extension of image retrieval systems to video has been firstly achieved using keyframe
representation. These methods that rely on the extraction of spatial features [124, 32]
only give limited description of the sequence since the temporal context is not considered.
Adding motion information enables to inform on the dynamic content of the scene and the
activity of its objects.
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Motion-based description

Most video retrieval systems are either based on the mentioned image-based approach or
provide good support for describing temporal structure of the video. Among the latter
category, camera motion has been used to bring semantic information such as panning,
tilting, zooming and so on. Motion indexing can be based also on an estimation of the
optical flow. A shot activity histogram is presented in [139], where the level of activity is
estimated in each frame from the optical flow. Ardizzone et al. [9] propose to index directly
the optical flow computing attributes from the optical flow distribution in four equally-sized
regions. Other representations of the optical flow are based on the Fourier Transform [19]
or on the Wavelet Transform [20]. Furthermore rough motion vectors are already provided
in MPEG-1 and MPEG-2 encoding, so that these features can be processed very efficiently.
Thus, the motion vectors from the macroblocks can be directly used for indexing [64].
Otherwise simple methods can be used [127], but the accuracy cannot be guaranteed in
complex situations.

To avoid the computation of dense optical flow fields which remains a difficult task in
general, Fablet et al. [41] proposes an original approach. They exploit spatiotemporal image
derivatives to build local motion measurements. Statistical modeling of motion activity
allows to a define similarity measure between two shots. The similarity is further used to
index shots hierarchically into a binary tree. The framework has the advantage to handle
both classification of motion activity and query by example using the similarity measure
between shots.

Trajectory-based description

Description of the dynamic content of the scene has been also based on trajectories. A
system for indexation and retrieval of object trajectories is VideoQ [24]. The indexing
is performed as follows. Objects are extracted and tracked with a motion segmentation
technique, and the trajectory is computed from the object centroids. Motion features such
as velocity acceleration, arc length are derived and indexed. Furthermore complex object
trajectories are segmented into sub-trajectories to recover partial motions. In the retrieval
phase the object trajectories are matched either by projection of the x-y plane for time
invariance or directly by computing the euclidean distance from the spatiotemporal domain.
Motion trails can be used in conjunction with spatial image features for retrieval with query
by sketch. The VideoQ system has been proved successful in retrieving video clips in the
sports domains, such as soccer players, high jumpers, and skiers, where the object trajectory
can be used directly for indexing.

Other trajectory-based approaches were designed without the use of an explicit object
segmentation. One of the first approach extracts trajectories from forward and backward
motion vectors of macroblocks in the MPEG stream [34]. The extracted trajectories are
then grouped to extract object motion, of which final trajectory is obtained by averaging the
trajectories of the macroblocks. Object trajectories can be also obtained considering a sparse
representation of the sequence. Different features have been considered. In [116], viewpoint
invariant regions are detected and represented with SIF'T descriptor to be matched through
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the frames of the sequence. Similarly, in [14], trajectories are built from SIFT interest
points. They further group motion coherent trajectories by a clustering technique that
takes into account both motion similarity and spatial proximity of the trajectories.

Comparison of trajectories faces from the problem of spatial and temporal invariance.
To solve this issue, efficient models and robust search techniques are proposed in [29].

Spatiotemporal modeling

Methods that segment the video shot in the spatiotemporal domain (as a single block) have
recently raised interest for indexing and retrieval. An advantage is that compact represen-
tations used in the segmentation phase can directly serve for indexing. A representation
with colors flows is adopted in [30], in particular for indexing TV advertisements in which
color dynamics are important. A related approach is presented in [31], in the context of
retrieval of near duplicates and action recognition for surveillance systems. In this frame-
work, linearly moving color patches are indexed in the database as a point in a 7D feature
space. Then, the retrieval of a video clip consists in finding the k-nearest neighbors for each
strand of the query and voting for the clip which maximizes the count.

In [55], color features and spatiotemporal locations within a shot are represented with a
GMM. Each component of GMM forms a blob corresponding to an elementary object of the
sequence. Velocity and direction of the blobs can be derived from their covariance matrix
and use in addition to color feature for efficient indexing and retrieval. This representation
has been shown useful in context of medical image and video, in particular for detecting
lesions in a sequence of radiographic images.

In the approach of [14], an hybrid representation of the volumes is used. First trajectories
of interest points are used to generate spatiotemporal volumes. The volume supports are
defined as the bounding boxes that encompass the trajectory groups. Each volume is
represented with sparse features that include motion direction and the SIFT descriptors
from the points within the volume. Complementary dense features such as color and texture
are also extracted from the volumes. To reduce the dimensionality for indexing, each feature
is represented with a small number of clusters. Similarity measure between volumes is then
derived from the EMD distance. This measure is employed for the retrieval of the video
shots. For the comparison of two volume sets, a minimum matching technique is adopted
(Hungarian algorithm). The approach for motion indexing of scenes with rigid moving
objects such as cars, planes, where the interest points of the object can be associated to the
object correctly. However, volume extraction from trajectories remains problematic in case
of deformable objects.

Indexing with graphs

Structural organization of objects within the scene has high potential for modeling seman-
tically rich and complicated multimedia data. Temporal and spatial relationships between
objects have rarely been considered simultaneously until recently. Typically the sequence
is represented as a series of Region Adjacency Graph (RAG) that describes the regions of
each frame. Video object is then defined on each frame as a subgraph of a RAG [146, 74].
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Lee et al. [74] uses a spatiotemporal indexing structure where the shot is decomposed
into object region graphs (ORG) and background graphs (BG). Temporally connected ORGs
are merged into object graphs (OG) that represents the object in the whole shot. Similarly,
overlapping BG nodes of each frame are merged since they are mostly redundant in the
segment. The indexing of object graphs is performed in two steps. A graph edit distance is
introduced to define the similarity between objects and is used to perform the clustering of
the OGs in the database. Secondly, the edit distance is extended to a metric for the indexing
of OGs. To manage efficiently these different structures, the index tree is decomposed in
three levels. The first level contains the BGs associated to a segment. The second level
stores the centroid objects obtains from the clustering and the leaf nodes are OGs which are
indexed with the distance to the cluster they belong to. Using the index structure, a query
object is processed by finding most similar cluster node and return the k-nearest neighbors
OGs within this cluster. The query can be also formulated at the shot level; the search is
then limited to the segment with most similar BG.

Summary

First, we have identified most representative image features for indexing and their use
in different contexts. Considering spatial information from region-based representations
offer several advantages for indexing and retrieval tasks. Locally, a decomposition into
regions allows to describe accurately parts of objects composing the scene. Thereby one
can search a particular object or region in an image. At a global level, the information
gathered from all regions or from their spatial organization can be used for interpreting
visual content or search for similar image content. In this way, such systems come close to
the visual system, which has the ability to analyze content at a variety of levels. Besides
spatial properties, dynamic content of the video is generally represented with the level
of motion activity and the motion models estimated in the video. For its part, the use
of trajectories appears useful for recognition of action features and event detection in a
controlled context, but is in not always discriminative for visual search. The extension of
region-based systems to video sequences also sets new challenges. In general the temporal
evolution of the video is lost and there is no consideration to link information from different
keyframes. Secondly the representativeness of the regions is sensitive to the quality of
image segmentation. Spatial variations of the segmented regions affect the ability of the
content model to represent and compare accurately related visual content. More solid
evidence for the region structure and motion can be obtained by considering information
from the whole video. Spatiotemporal primitives that decomposes the sequence into visually
coherent elements have revealed promising results for event detection and recognition, or
object manipulation. These primitives remain limited to a short term duration and are
associated essentially to homogeneous volumes or rigid moving objects. Considering the
graph structure of objects allows for fine indexing of complex objects in the sequence, but
indexing and matching procedures are more complex in return.
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4.2 Video shot analysis with spatiotemporal volumes

In this section, we examine how spatiotemporal representation can improve video shot
description for indexing and retrieval. We first introduce the Vector Space Model (VSM)
used in information retrieval and its adaptation for spatiotemporal representation of shots.
Then, we analyze experimentally the indexing properties of the model, and finally compare
the keyframe and spatiotemporal representations for video shot retrieval task.

4.2.1 Representing video shots with the Vector Space Model

A complete low-level description of a shot is given by the graph of spatiotemporal regions
and their descriptors. These descriptions represent huge amount of data, which is difficult to
index and compare efficiently. The Vector Space model [109] enables to gather and compact
this information to a single feature vector. This model was first introduced for text retrieval
systems. Statistical distribution of the keywords appearing in a text document is modeled
with a simple vector. Each term of the vector corresponds to a keyword and the term value
is related to the frequency of the keyword in the document. A keyword can be a single word,
or more complex phrases defined in a dictionary. The reason behind this representation is
that the distribution of visual terms gives information on the latent semantics of the shot.
Although simple, the model shows great efficiency for keyword-based search engines.
Formally, we consider a collection of documents D and the set of terms C' = {cy, ..., C|C‘}
representing the keywords. A document model d; € D is represented as a vector of terms :

di = {wdi,017 A awdi,c‘q} (41)

In the simplest scheme, the term weights wj; represent the number of term occurrences
in the document. Seldom terms can be given higher weights by considering in addition the
frequency of the term in the corpus, which is known as the tf-idf measure [109]. A graphical
representation of the VSM is given in fig.4.2. To compare two document models d; and d;,
an intuitive measure of similarity is given by the angle a between the two vectors, capturing
the relative proportion of common terms in the two models. Cosine measure is used for this
purpose:

d; - d;

simids, d;) = s

(4.2)

By analogy, visual content can be described with visual terms relative to the regions
features. Ideally, the dictionary should highlight visual entities of a particular content
domain [77]. In the general case visual terms can be obtained from unsupervised clustering
of the descriptors in the database [121].

A CBVIR system for video shot indexing and retrieval with the VSM model is described
fig.4.3. The system directly inherits of the generic CBIR architecture of fig.4.1. First, the
video database is organized as a collection of visual shots obtained by temporal segmentation
algorithms. These shots are further manually annotated. The next task is to build a visual
dictionary that is composed of representative elements of the shots (the keywords). Shots
are segmented into homogeneous volumes with the method we described in chapter 2. At
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Figure 4.2: Hlustration of the Vector Space Model.
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Figure 4.3: Video indexing and retrieval system using the Vector Space Model.

the same time, we store the low-level descriptors of the extracted regions. The overall
set of descriptors is then clustered to obtain the visual keywords. Within this framework,
indexing of a new shot is performed in two steps. The shot is segmented into regions and
region descriptors are extracted. Then, these descriptors are quantized to the nearest visual
terms to obtain compact shot signatures from the vector counts. Search and retrieval can
be performed as shot signatures can be compared very efficiently.
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Visual Dictionary Construction

Representation of visual keywords is based on the visual attributes of the spatiotemporal
volumes. Various attributes can be considered for this purpose, for instance among those
proposed in section 1.1.2. In a general context, it is preferable to separate different informa-
tion sources and construct a dictionary for each type of attributes. Fusion of information is
then achieved at the search stage, being potentially guided by the context or the feedback
of a end user.

Region-based descriptors can be extracted from spatiotemporal volumes in two ways:

e Compute a single descriptor for each spatiotemporal region. This can be seen as
averaging the descriptors through time (S-extraction).

e Compute a descriptor for each projected frame region, which depicts the evolution
and variations of the attributes but more storage is required. (F-extraction).

Once the descriptors have been extracted for the whole database, the visual keywords are
constructed through an automatic clustering algorithm. An efficient and simple method is
the K-mean algorithm. The visual keywords corresponds to a predefined number of cluster
centers. An advantage of the strategy is to consider an important number of regions, as
long as the number of clusters is kept reasonable (typically up to 2000 clusters).

Clustering gives a further reason to split modalities into different dictionaries, as the
algorithm can be more easily trapped in local minimum with high dimensional data. In
the case that the feature space is non-metric, algorithms such as K-medoids can be used.
A shortcoming of this approach is that all pairs of points have to be compared, increasing
notably computing time.

Shot Indexing and Retrieval

Based on the visual dictionary, indexing of a video shot can be processed very efficiently.
The principle of the indexing model is to alleviate the problem of the variations of the visual
content by considering its statistical structure. First spatiotemporal regions are extracted
for each shot using the spatiotemporal segmentation algorithm. Then, volumes are assigned
to visual keywords for each dictionary.

Fig.4.4 illustrates the indexing procedure for the two extraction methods. In case of
S-extraction, each volume descriptor is quantized to its nearest terms in the dictionary. For
the second case of F-extraction, quantization is performed for each frame region descriptor
and the result is accumulated in the count vector. The effect is similar to a voting process for
the volume representative keywords, more evidence on the clusters is found as the number
of votes (frames) increases.

For a given descriptor, the assigned number of neighbors depends on the quantization
error. If the descriptor is very close to its nearest term, only the nearest term is counted.
Otherwise, when the descriptor is approximately distant of several terms, all these terms
should be counted. Let f, the a region descriptor of one shot, and ( fc)i:ilh__i « the ordered

7
K nearest visual terms of f, in the dictionary. The set of counted terms nearest(f;) is :

nearest(f,) = {igld(fr, fS) < ad(fr, f5)} (4.3)
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Figure 4.4: Vector Space Model for shot indexing. (a) S-extraction with a single descriptor.
(b) F-extraction with multiple descriptors.

where d is the distance measure for comparing two descriptors. This soft quantization
enables to deal with spatial and temporal variations of the visual content. Firstly, the
closest visual term can change between different instants. Secondly, spatial parts of one
region may be better described with different terms. When mapping to multiple terms,
the maximum number of neighbors K should be kept small with respect to the dictionary
size, such that the count vectors still remain discriminative. In our observations, up to 10
clusters can be chosen for less than 2000 visual terms.

For the search phase, the Cosine similarity (eq.4.2) between the count vectors is em-
ployed. To obtain a unique similarity measure, similarities from different modalities are
fused with a weighted sum. For simplicity, each feature is given equal weight.

4.2.2 Evaluation settings
Experimental data

The studies in this chapter are conducted on two videos. The docon’s cartoon of the mpeg-
7 dataset and the lecture video “Senses” from the open video project'. Each video has
its own challenges for segmentation and indexing. The presence of homogeneous colors in
the cartoon video enables accurate segmentation, but different objects can share the same
environment or interact with each other (turtle, dolphin, shark), which complicates the
indexing task. In the second video, we can find scenes with static content (students, screen,
drawing). The lecturer is moving within the scene and is seen from close-up or wide-angle
shots (lectl and lect2). An illustration of typical annotated shots is shown fig.4.5. To obtain
enough occurrences of each element and variable visual content, each video is subsampled
into nearly 1000 shots. Table 4.1 show the number of occurrences for each type of visual
category.

"http://www.open-video.org/
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Screen Students

Figure 4.5: Examples of annotated shots. (a) Docon cartoon. (b) Senses video.

Docon

Girl 70 Senses
Pineapple | 67 Lectl 136
Turtle 116 Lect2 346
Shark 87 drawing 81
Dolphin 21 Screen-displays | 200
Dog 80 Students 69
Ball 74

Table 4.1: Visual categories. a) Video Docon. b) Video Senses.
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Evaluation measures

Many different measures for evaluating the performance of information retrieval systems
have been proposed. The system is evaluated from processing a query within a collection
of documents. A retrieved document is considered as correct (or relevant) if it responds to
the query. Let n the number of documents of the collection, n, the number or document
relevant to a query and n. the number of correctly retrieved documents. Basic performance
measure is given by precision (P) and recall (R) :

p="¢ R=1c (4.4)

n Ny

A usual way to represent the performance graphically is given by precision-recall curves.
This is achieved by computing precision and recall for different numbers of document re-
trieved. It is also useful to have a unique measure for comparing performances of different
systems. Average Precision considers the precision after each change in recall on average:

App = 2or=1 P(NA(r) (4.5)

Ny

where A(r) is a binary function which takes as values 1 if a new relevant document is
retrieved at rank r. The measure emphasizes the fact that relevant documents should be
returned earlier. To handle the variability of the queries in each category, each performance
measure is averaged on all queries of a category.

4.2.3 Analysis of the Vector Space Model

For a deep understanding of the VSM and achieve a pertinent evaluation of the model,
it is important to know the model properties and the different factors that impacts on it.
Numerous factors deserved to be studied in this model. Here, in this section we first focus
on the influence of the segmentation properties (granularity, homogeneity) among with the
number of visual keywords in the dictionary. Then, we analyze the behavior of the model
and its particularities with respect to the proposed different visual categories.

Measurements

Factors impacting the construction of the visual dictionary.

Segmentation and clustering quality are key elements of the Vector Space Model. Extracted
regions should be representative of the shot, while the signatures should be characteristic
of the visual categories. For this reason, we study the influence of these elements on the
VSM performance. More precisely, we consider two factors:

e The granularity and the homogeneity of the regions.

e The visual dictionary representativeness.
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The former factor rules the segmentation quality. Segmentation algorithms usually aim to
obtain homogeneous regions while limiting their number, but each method has its own way
to fuse different sources of information to obtain perceptually coherent regions. Then, it is
generally difficult to specify the degree of homogeneity of the regions and the granularity of
the segmentation at the same time. To have more control on this factor, we choose to fix the
segmentation layout utilizing a grid. In this way, we indirectly set the region homogeneity
with respect to each feature, as refining the grid will lead to more homogeneous content on
the average. In total, 7 scales, including 4 to 512 regions are considered.

Besides segmentation properties, visual dictionary can be depicted by the capacity of
visual terms to fit each visual category. To examine the underlying dictionary properties,
we propose different measurements:

e The distance of one region to its nearest clusters, which we denote as quantization
error. When indexing shots, the error depends on the distribution of the visual terms
and of the number of clusters.

e The proportion of occupied bins in the count vector, which we call as count density,
which summarizes the distribution of shot regions over visual terms.

These measures are computed on the whole video dataset and averaged on each semantic
category.

Fig.4.6-4.7 illustrate the overall analysis results considering different dictionary sizes.
Fig.4.6(b)-4.7(b) show that increasing the number of regions and the number of terms
diminish the quantization error. First, this is inherent to the clustering process : more
terms results in more compact clusters. Secondly, decreasing the grid scale leads to more
homogeneous regions and therefore accurate descriptors.
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Figure 4.6: Analysis of the VSM for the texture modality - Example of the video senses.
(a) Overall retrieval performance. (b) Overall quantization error. (¢) Overall count density.
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Figure 4.7: Analysis of the VSM for the color modality - Example of the video Docon. (a)
Overall retrieval performance. (b) Overall quantization error. (c) Overall count density.

Besides the quantization error, the analysis of count vector statistics gives an indication
about the usefulness of the information conveyed by the signatures. When each region is
randomly indexed to a term in the dictionary, count density value can be represented as a
stochastic process. Let X, a random variable that represents the number of occupied bins
after adding n counts. The filling procedure is modeled with a Markov Chain { Xy, -+, X, }
defined as follows. The set of possible states is S = 0, ..., |C|, where |C| is the dictionary
size. The Markov chain is initialized by its initial value Xy = 0 and its transition matrix P
is given by :

e if j =i
Pij = Pr(Xpq =jlXn=1) = 1—@ itj=i+1 (4.6)
0 else

The probability Pr(X,, = j) of populating j counts in n steps is then :

IC|
Pr(X, =j) =Y P Pr(Xy =) = B}’ (4.7)
1=0

To evaluate the relevance of the quantification process using a visual dictionary, we
compare the experimental density counts (fig.4.6(c)-4.7(c)) with those expected for the
random model (fig.4.8) as a reference. For the dictionary of fig.4.6(c), the count density is
at least 25 percent lower than for the random model up to 500 terms. On the contrary, when
the dictionary size is more than 1000 clusters, the curves are very close to each other. This
means that for small dictionary sizes, we obtain numerous spatial cooccurrences of the same
visual terms, so that the number of these cooccurrences become important when comparing
vector counts. For a large number of terms, regions are typically assigned to different
clusters. In consequence, the added counts are unrelated and the density is close to the one of
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Figure 4.8: Exact count density for the random model.

the Markov process. For the docon video fig.4.7(c), the population of filled counts increases
more slowly with the number of regions than for the random model for large dictionary sizes
(more than 500 terms). In fig.4.7(b), we can notice that the quantification error remains
stable between 32 and 256 regions, which shows that the color region descriptors does not
vary significantly when refining the grid. As a consequence, descriptors in a local area are
prone to be quantified to the same terms.

The impact of the granularity and the quantification process on the retrieval perfor-
mance is shown fig.4.6(a)-4.7(a). When considering few and inhomogeneous regions, the
quantization process is quite unstable leading to low and variable precision rates. Reducing
the quantization error by augmenting the number of clusters does not help in this case
as the count vector becomes very sparse, altering the comparison between shots. When
more regions are available, the performance is less sensitive to the dictionary size. If the
dictionary is small, the high number of cooccurrences gives dense but distinctive signatures.
Otherwise, the signatures remain discriminative in spite of the reduced cooccurrences as we
use accurate visual terms.

We can draw several lessons from this general analysis. Firstly, the clustering and in-
dexing tasks appear more robust when considering numerous and relevant regions, boosting
the accuracy of the visual terms in the quantization stage, and leading to more discrimina-
tive shot signatures thanks to the term redundancies. Secondly, the dictionary size can be
chosen to have intermediate count density values, balancing spatial redundancies and visual
term accuracy.

Behavior of the model on different categories

After studying of the general properties of the VSM, we now examine its behavior with
respect to different visual categories. Figures 4.9 and 4.10 show that the scenes with stable
and specific visual content, such as screens, drawings are easily integrated with the VSM.
Indeed, these categories have both small error rates (fig.4.9(b)-4.10(b)) and sparse vector
counts (fig.4.9(c)-4.10(c)). Good retrieval results are observed for both small and large
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dictionary sizes, which reveals that the shots are indexed efficiently with a few category-
specific terms in the dictionary. In some categories, such as students, the regions are
rather inhomogeneous. As shown by the high quantization error and density of their vector
counts, they are finally improperly represented in the visual dictionary. As noticed in fig.4.6,
augmenting the dictionary size does not lead to significant enhancement while requiring
more regions.

These observations are also verified in fig.4.11. The shark object is clearly described by a
few representative terms (fig.4.11(c)), thus obtaining good retrieval results. In the opposite,
ball and dog categories have poorer representation in the dictionary with the highest quan-
tization errors (fig.4.11(b)), resulting in weak performance, around 0.3 and 0.4 respectively.
For the other categories, the relation between the measures and the performances is not as
manifest. What should be taken under consideration is the interaction between categories
and the overlap of visual terms. Indeed, some categories can share the same visual environ-
ment such as the couples girl-pineapple or shark-turtle. The first one has large background
areas in common, which is manifested through low and similar quantization error. It is also
the case in the second couple, but the turtle can appear under different views and also other
environments. In consequence, a query featuring a turtle may retrieve shots featuring the
shark before some other shots where the turtle appears.

These considerations explain how the VSM enables to reduce the video content to a
small amount of visual terms. The construction and comparison of these terms depend
mostly of the segmentation properties. If the regions are described accurately, compact
and discriminative representation can be obtained from a large range of dictionary sizes.
Otherwise, the model is penalized when considering variable categories.
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4.2.4 Comparison between keyframe and spatiotemporal representation

In this section, we evaluate the contribution of the spatiotemporal approach to the VSM. For
this purpose, we compare the spatiotemporal representation with keyframe regions obtained
from well-known segmentation algorithms.

The first algorithm is watersheding [138], which is based on merging of homogeneous
color regions. For its part, the edgeflow algorithm, used in the Netra-V system [32], identifies
salient boundaries in the image from the orientation of color and texture flows, followed by
merging of regions based on color and texture.

We evaluate the algorithms on different number of frames, except for the edgeflow tech-
nique which is too computationally intensive to be used on multiple frames. Table 4.2
recapitulates the list of the algorithms used.

Method | Description

STG-F* | Spatiotemporal segmentation, F-extraction
STG-S* | Spatiotemporal segmentation, S-extraction
W Watersheds, regions cumulated over * frames
E* Edgeflow, regions cumulated over * frames

Table 4.2: Segmentation algorithms.

Results for the two videos are shown fig.4.12(a-b) respectively, with a dictionary size
containing 1000 visual terms. The spatiotemporal method performs globally well compared
to the edgeflow and the watershed algorithms. Regarding image segmentation methods,
good results are obtained with the watershed method for homogeneous color objects such
as shark, turtle and static rich colored scenes. However, the results can decrease dramat-
ically for scenes with variable spatial contrast and textured areas (screen, drawing). Not
surprisingly, the edgeflow method performs better on this type of scenes. Thus, watershed
outperforms the edgeflow method for the Docon video and edgeflow performs better for the
senses video.

Globally, we observe gains of 7% (fig.4.12(a)) and 12% (fig.4.12(b)) in the mean precision
between the best image segmentation and the best spatiotemporal method (STG-F5). The
difference in the retrieval performance can be explained by the fact that, in the senses
video, the edgeflow method can give reasonably good results for categories which contain
well-defined textured elements, such as the lecturer, drawing and screen. However, it fails
to describe accurately scenes with more spatial variations, such as students.

Considering multiple frames (W5) or spatiotemporal volumes contributes to the quality
of the shot indexes. In the first case, the density of the shot indexes is increased, so that
more common terms can be found. In comparison, in the spatiotemporal representation
(STG-S), spatial and temporal variations are attenuated by extracting descriptors on the
full volumes. The advantages of these two approaches can be combined by extracting frame
descriptors from the spatiotemporal regions (STG-F). In this way, we capture the temporal
evolution of the region descriptors. We observe that the extraction process slightly enhances
the retrieval performance, up to 6% with respect to STG-S methods with similar number of
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Figure 4.12: Retrieval results for different segmentations. The dictionary contains 1000
visual terms.

frames. More precisely, this improvement concerns categories whose visual content undergo
important variations between scenes, such as the ball, the dog and girl scenes. Actually, the
effect is to accumulate more confidence on the quantization process, as the visual terms are
selected using several descriptors from the same volume. This helps to distinguish common
terms that remain stable to scene changes from the others.

Another advantage of the spatiotemporal representation is that good results can be
achieved considering far less regions than the other methods, as shown in table 4.3. This is
noticeable and particularly interesting for processing large databases.

Method | E1 | W1 | W-5 | STG-S2 | STG-S5 | STG-S10 | STG-F2 | STG-F5
Nb. reg. | 90 | 135 | 672 52 88 140 90 254

Table 4.3: Average number of regions for the segmentation algorithms.

Finally, we can notice in fig.4.12 that the performance of spatiotemporal methods does
not depend much on the size of the visual dictionary. The results are averaged on all
objects for several dictionary sizes. They need between 100 and 1000 terms to reach their
best performance, whereas a smaller dictionary can be used for watershed and edgeflow
segmentation. This reveals that slightly more visual terms are needed to represent each
spatiotemporal region. As mentioned in section 4.2.1 this is not a disadvantage as it adds
robustness to the scene variations.
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Figure 4.13: Retrieval results for several dictionary sizes. (a) Docon video. (b) Senses video.

4.3 Video shot matching

The VSM indexing model enables to take into account statistical structure of the spa-
tiotemporal representation by reducing the variability of the region description with visual
keywords. However, this approach requires quantification from a visual dictionary, and
particular types of content can be insufficiently represented with the visual keywords. Fur-
thermore, spatiotemporal organization of the volumes is not considered in the signatures.

Comparing directly the ARG representations enables to take into account both visual
and structural similarities. In this section, we propose to construct a similarity between
graphs. A matching technique is developed to recognize visually close object structures
while tolerating a certain variability in the description.

4.3.1 Visual and structural similarities

When comparing object structures in different shots, an important point is that a volume
in one shot can appear as split into several volumes in another shot due to scene changes,
occlusion and several other factors. In order to address this problem and limit the complexity
of the matching, we develop a many-to-one technique. Each volume in the two graphs is
constrained to have at most one match, but it is tolerated that two volumes have the same
match. An example is given in fig.4.14(a). Let G1(Vi, E1,11,&1) and Go(Va, Eo, 19, £2)
two ARGs. The matching between Vi and V5 is represented as a directed bipartite graph
L(V,E,W). The arcs (v1,v2) and (vg,v1) in E represents respectively a match from V; to
Vo and V3 to Vi. We introduce also the weight of a match from Vi to Va, wy, 4,. For two
vertex sets @1 C V1 and Q2 C V3, we extend the notation wq, g, as the sum of the weights
from @7 to Q2. Figure 4.14(b) gives an example of the matching graph.

The constraints defined for the matching impose the following restrictions on the node
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Figure 4.14: (a) Example of matching between video volumes. (b) The corresponding
bipartite matching graph.

degrees. For the indegree of a node v;, we have deg™(v;) € [0,|L/V;|] and for its outdegree
deg~ (v;) € [0,1]. We set the weights of the matches incoming to a node in order that they
are distributed uniformly. This is defined as follows:

0 if degt(v9) =0
Wy vy = { g ( 2) (4.8)

1
degt () ©°

The weight w,, ,, is defined symmetrically. The idea is that when one node has been
matched, we do not consider furthermore its properties, but only its relationships in these
graphs. To establish the matches we will rely on the visual attributes of the ARG, but the
weights themselves do not depend of the visual similarity.

The basic similarity between two nodes takes into account both the structural and the
visual properties. For (vq,vs) € Vi x Vo, En(v1,v2) is defined as:

En(v1,02) = aép(vi,v2) + BEs(v1,v2) (4.9)

¢p is the overall similarity between the volume visual descriptors, as defined in eq.3.22.
The structural similarity £g between two nodes is defined from the matching graph L. For
(v1,v2) € G1 X Ga, the similarity is based on their neighborhoods Ny (v1) and Na(v2) in Gy
and G3. The principle is inspired by the normalized cuts [113] between two subgraphs. The
measure computes the ratio of total edge connection between two subgraphs to their total
connection to the whole graph. In the matching graph L, we compare the flow incoming
to Na(ve) from Ni(v1) to the total flow incoming to Na(v2). This gives the strength of the
match from Nj(v1) to No(vg). Moreover, when vy and one of its neighbors ny € Na(v2)
matches both vy, vy is excluded from Na(vg). Indeed in this case vy and ny are likely to
correspond to subparts of vy, i.e. they should be merged in a single node. The reasoning is
the same for the matches from Na(v2) to Ni(vi). We note Ma(v1) = {ng € Na(v2)|wy, v, #
0} and M;(v2) = {n1 € Ni(v1)|wy, v, 7 0} these excluded vertex sets in the neighborhood
of vy and vq, respectively. Thus, we consider restricted neighborhood of vy to Nj(v2) =
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Ni(va)/May(v1) and Ny (v1) = Ni(vi)/Mi(vz). Formally, the similarity is defined as :

1 w v *(v w v, (v
Es(v1,v9) = = N1(v1),N5 (va) n Na(v2),N{ (v1) (4.10)
2\ Wy Nj(e0) Wy, Ny (v1)

If there are no matched nodes in Nj(vy) or Na(v2), the similarity is set to zero, as there are
no common matches between the neighborhoods.
Finally, the total similarity between complete ARGs is obtained from the set of matched

pairs Fg C Vi x V5 :
1
§(G1,G2) = s > tn(vrv) (4.11)

(v1,v2)€Es

4.3.2 Matching algorithm

The selection of the matched pairs is based on the visual similarity. First we compute a
similarity matrix between V; and V5 and find the best matches Eg from V7 to V5 and Eg
from V5 to V4. When the best match for a volume v is not reliable, we further compare
Nip(v1) to the neighborhood of the possible candidates. For each node in Ny(v1), we find
the best match in the candidate neighborhood. Then, we compute the average distance on
the k-best matches, where k is the minimum cardinality of the neighborhoods. In this way
more visual information is considered to select the match.

When all matches have been established, the next step consists in pruning the matches
which are the most visually different. First, they are not likely to represent the same element,
and secondly computing the structural similarity will be not relevant. One method is to
consider the distribution of similarities and choose the number of matches |Eg| from the
x-percentile of the distribution. Given a fixed percentile, |Eg| is low when a few volume
matches clearly distinguish from the other, and high if all the distribution of matches is
uniform. Finally, the algorithm to compute the similarity measure is summarized below.

Compute all the visual similarities between V7 and V5.

Find the matches E{ from V; to V5 and EZ from V5 to Vj.

. Build the selection Eg from Eé and Eg

Build the matching graph L from Fg.

Compute the structural similarity for the matches in Fg.

Compute the total distance from visual and structural similarities in Eg.

e N

Table 4.4: Building of the similarity measure.

4.3.3 Experiments

To highlight the advantages of the proposed framework, we conducted experiments for the
task of video retrieval in the data set presented in section 4.2.2.

We compare different approaches for shot representation and matching. The first ap-
proach is based on keyframe segmentation based on the watersheding technique (W) and
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Figure 4.15: Retrieval performance. (a) Docon video. (b) Lecture video.

matching using the visual descriptors only (vis). For the second approach, we consider the
full similarity measure, including visual and structural parts (vis+struct). Third and fourth
approaches use the spatiotemporal representation (ST) instead of keyframe regions.

Mean average precision results are reported fig.4.15(a) and fig.4.15(b) using Color Struc-
ture and Edge Histogram as visual descriptors. Globally, the performance observed for
each category is function of the variability of the layout and of the extracted descriptors.
The best categories retrieved are depicted globally with discriminative visual descriptors
(screens, shark), whereas the other ones with more variable descriptors and less common
elements are more difficult to retrieve (girl, ball, students).

With respect to shot representation, our spatiotemporal approach outperforms the
keyframe approach, in particular in the lecture video where keyframe regions can be in-
accurate and do not reflect well visual elements in the shot. Using the graph structure
leverages the results for the categories with more variable descriptors, but when a common
structure still remains between shots. The improvement is noticeable for several categories
such as lecturer, girl and ball. This effect is also more remarkable on the spatiotemporal
representation, as the neighborhood is enlarged and more reliable matches can be found
between shots.

4.4 Conclusion

This chapter was dedicated to the use of spatiotemporal representation for video indexing
and retrieval. We have proposed to adapt the Vector Space Model for the description of
shots from video regions. The model enables to exploit spatial and temporal redundancies
provided by the spatiotemporal volumes for the construction of compact and representative
shot signatures.

In the second part of the chapter, we have evaluated the indexing and retrieval system
on various types of visual scenes. Experimental results reveal that the performance of the
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VSM tightly depends of the region extraction process, the use of accurate region descriptors
enhancing the specificity of the shot signatures. The comparison of the retrieval results with
different image segmentation methods used for region-based CBIR systems shows that the
new representation leverages retrieval performance. The use of spatiotemporal volumes
enforces the robustness of the indexing process, obtaining more consistent results between
different visual scenes.

Finally, we have introduced a second approach based for the comparison of shots directly
based on the spatiotemporal graph representation. Volumes are accurately described by a
set, of visual descriptors, and structural relations are described through the adjacency graph.
With an adapted graph matching technique, the proposed description enables to compute
shot similarities in an efficient way that is interesting for indexing applications.



Chapter 5

Conclusions and perspectives

In this thesis we addressed different problems linked to the extraction and exploitation of
objects in videos sequences. We adopted a logical plan for the understanding and solving
each of these issues, first proposing a global framework for the spatiotemporal modeling of the
video shot structure and associated algorithms to build this representation, and then exploit
it for applications such as semantic labeling and content-based video indexing and retrieval.

In this chapter, we will provide a short summary of the work achieved in the thesis, and
explore possible directions for future research.

5.1 Summary

Manipulation of video objects plays an important role nowadays for organizing and building
video databases. Efficient representation among with techniques for object extraction and
indexing are to be developed in this field. Among the possible approaches, the expressive-
ness of graph representation makes it a good candidate to describe the organization and
the internal structure of objects in the scene. Its use in the spatiotemporal domain is moti-
vated by perceptual grouping principles, which suggest that the interpretation of a scene is
achieved considering spatial and temporal cues simultaneously. Therefore a graph represen-
tation of the scene can be obtained from successive spatiotemporal groupings representing
different content entities.

The first chapter introduces the graph-based framework developed in the thesis. We
examined the description of a video sequence by exploiting the MPEG-7 description tools for
visual and semantic analysis. From this study, we deduced a spatiotemporal representation
with graphs to describe the content structure into objects, volumes, pixels along with the
properties of which they are composed.

In the second chapter, we interested in the issue of spatiotemporal segmentation. After
a reminder of the possible approaches, we proposed a new approach based on 2D+T scheme.
First we extended an efficient region growing technique based on minimum spanning tree
to the spatiotemporal domain. To this aim different grouping algorithms were proposed in
function of the level of representation. The benefits of the proposed method are 1) to reduce
significantly the complexity comparing with the approaches that segment the sequence as
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a single block and ii) to achieve good compromise between the span and the consistency
of the regions. Then we employed the spatiotemporal representation for the extraction of
objects of interest. To compensate lack of salient motion information that may occur in
some parts of a sequence, we proposed a scheme based on detection and propagation of
moving objects. To that end, motion models were built and used as a cue for grouping
volumes with significant motion. Then, a matching procedure enabled to propagate objects
in areas where motion information is not consistent. The advantage of this approach is that
the detection of objects does not depend on the initial frame of the sequence. Nevertheless
the cost of motion estimation for the volumes still remains important.

The third chapter emphasized the work on the spatiotemporal segmentation for the se-
mantic description of video objects. We introduced the exploited knowledge base and the
semantic labeling of objects in an image. Thanks to domain knowledge, semantic labeling
enables to group elements that belong to the same concept, whereas spatiotemporal seg-
mentation can propagate semantic information within the shot. These two aspects were
exploited to propose an efficient strategy for extending the labeling from images to video
shots. In this way, the cost of semantic labeling is considerably reduced while providing
a spatiotemporal segmentation for the whole sequence. This framework offers an interest-
ing perspective to bridge the gap between the low-level visual description and high-level
description of semantic objects, leading to a global interpretation of the shot.

The last chapter examined the application of the spatiotemporal representation for video
indexing and retrieval of video shots. We analyzed the benefits of the spatiotemporal ap-
proach into a region-based system where each shot is indexed with a compact signature.
The adopted content model (VSM) is based on the statistical structure of the description,
assigning a set of visual keywords to each volume. Evaluation of results from different
types of segmentation underlines that spatiotemporal segmentation can provide more more
robust and discriminant signatures which are less dependent of the type of content. Then,
we proposed to employed directly the graph representation for indexing and retrieval task.
This approach does not require the use of the dictionary which construction can be prob-
lematic for large database size and enables to describe the spatiotemporal organization of
the shot, a feature which was not used in the previous model. We proposed a similarity
measure between graphs that tolerates to a certain extent variability in the spatiotemporal
representation. Experiment shows that with these framework, spatiotemporal representa-
tion improves the shot description, while using the graph structure helps for the retrieval
of certain categories.

5.2 Perspectives

The scope of issues addressed in this thesis is rather large and several points still deserved to
be worked on. Concerning the problem of spatiotemporal segmentation, a multiresolution
approach that builds nested partitions would be advantageous. First, it would have the
ability to lift ambiguities while grouping spatiotemporal regions by looking through their
sub-regions. Secondly, the spatiotemporal representation will not be dependent on the fixed
granularity of the segmentation. Thus, efficient techniques to handle the complexity of this



5.2. Perspectives 151

type of approach are still needed.

In the adopted representation, the low-level description of the video content is based on
region descriptors, typically color or texture from the MPEG-7 standard. The descriptors
are accurate but remains to some extent sensitive to changes in illumination, image noise,
scaling, and changes in viewpoint. Completing the spatiotemporal description with local
interest point descriptors (such as SIFT) would help matching of objects when its color or
texture are not well-defined. The visual patches can be assigned to keywords for efficient
indexing [116].

We have introduced graph similarity measures for comparing visually shots and objects.
Matching a query graph with every graph in the database makes the search operation costly.
When the similarity is known to be a metric, efficient techniques based on indexing trees
can be employed [16]. However, most common similarity measures between graph are non-
metric. For instance, the number of matched nodes between two graphs is not a metric.
For unsupervised organization of object graph, the solution would then reside in clustering.
Recently pairwise clustering algorithms such as affine propagation [35] has been proposed
for the identification of good prototypes within a large set of a examples.
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A.1 Classification scheme (CS)

<?xml version="1.0" encoding="utf-8"?>
<Mpeg7>
<Description xsi:type="ClassificationSchemeDescriptionType">
<ClassificationScheme uri="urn:ex:cs:SemanticCS">
<Term termID="RoadDriving">
<Name xml:lang="en">RoadDriving</Name>
<Definition xml:lang="en">Depicts a vehicule driving along the road</Definition>
</Term>
<Term termID="Road">
<Name xml:lang="en">Road</Name>
<Definition xml:lang="en">Depicts a road</Definition>
</Term>
<Term termID="Vehicule">
<Name xml:lang="en">Vehicule</Name>
<Definition xml:lang="en">Any medium of transport</Definition>
<Term termID="Car">
<Name xml:lang="en">Car</Name>
</Term>
<Term termID="Trunk">
<Name xml:lang="en">Trunk</Name>
</Term>
<Term termID="Motorcycle">
<Name xml:lang="en">Motorcycle</Name>
</Term>
</Term>
<Term termID="War">
<Name xml:lang="en">War</Name>
<Definition xml:lang="en">Depicts military actions in period of war</Definition>
</Term>
<Term termID="Roadblock">
<Name xml:lang="en">Roadblock</Name>
<Definition xml:lang="en">barricades, blocking on a road</Definition>
<Term termID="MilitaryRoadblock">
<Name xml:lang="en">MilitaryRoadblock</Name>
<Definition xml:lang="en">Roadblock controlled by militaries</Definition>
</Term>
</Term>
<Term termID="Walk">
<Name xml:lang="en">Walk</Name>
<Definition xml:lang="en">Depicts a person walking</Definition>
</Term>
<Term termID="Stop">
<Name xml:lang="en">Stop</Name>
<Definition xml:lang="en">Depicts an objects wich stops moving.</Definition>
</Term>
<Term termID="Verify">
<Name xml:lang="en">Verify</Name>
<Definition xml:lang="en">Depicts someone searching an object or person
</Definition>
</Term>
</ClassificationScheme>
</Description>
</Mpeg7>

A possible classification scheme for the "RoadDriving” and "MilitaryRoadblock” narrative
worlds.
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A.2 Semantic Description

<Mpeg7>
<Description xsi:type="SemanticDescriptionType">
<Semantics id="RoadDriving-FA">

<Label>

<Name>Formal Abstraction of Road Driving</Name>

</Label>

<!-- Semantic entities -->

<SemanticBase xsi:type="SemanticType" id="RoadDriving">
<Label href="urn:ex:cs:SemanticCS:RoadDriving">
<Name>Road Driving</Name>

</Label>

<SemanticBase xsi:type="EventType" id="Drive">
<Label href="urn:ex:cs:SemanticCS:Drive">
<Name>Drive</Name>
</Label>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agentOf"

target="#Vehicule"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:pathOf"
target="#Road"/>
</SemanticBase>
<SemanticBase xsi:type="AgentObjectType" id="Vehicule">

<Label href=" urn:ex:cs:SemanticCS:Vehicule">
<Name>Vehicule</Name>
</Label>

<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:partOf"
target="#RoadDriving"/>

</SemanticBase>

<SemanticBase xsi:type="SemanticPlaceType" id="Road">

<Label href=" urn:ex:cs:SemanticCS:Road">
<Name>Road</Name>
</Label>

<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:partOf"
target="#RoadDriving"/>
</SemanticBase>
</SemanticBase>
</Semantics>
</Description>
</Mpeg7>

Formal abstraction of the "RoadDriving” narrative world using the Semantic DS.



156 Annexe A. Mpeg-7 Description Example

<Mpeg7>
<Description xsi:type="SemanticDescriptionType">
<Semantics id=" MilitaryRoadblock-FA" >

<Label>

<Name>Formal Abstraction of Military Roadblock</Name>
</Label>
<!-- Semantic entities -->

<SemanticBase xsi:type="SemanticType" id="MilitaryRoadblock">
<Label href="urn:ex:cs:SemanticCS:MilitaryRoadblock">
<Name>MilitaryRoadblock</Name>
</Label>
<!--Events-->
<SemanticBase xsi:type="EventType" id="Stop">
<Label href="urn:ex:cs:SemanticCS:Stop">
<Name>Stop</Name>
</Label>
</SemanticBase>
<SemanticBase xsi:type="EventType" id="Walk">
<Label href="urn:ex:cs:SemanticCS:Walk">
<Name>Walk</Name>
</Label>
</SemanticBase>
<SemanticBase xsi:type="EventType" id="Verify">
<Label href="urn:ex:cs:SemanticCS:Verify">
<Name>Verify</Name>
</Label>
</SemanticBase>
<SemanticBase xsi:type="AgentObjectType" id="Vehicule">

<Label href=" urn:ex:cs:SemanticCS:Vehicule">
<Name>Vehicule</Name>
</Label>

</SemanticBase>
<SemanticBase xsi:type="AgentObjectType" id="Military">

<Label href=" urn:ex:cs:SemanticCS:Military">
<Name>Military</Name>
</Label>

</SemanticBase>
<SemanticBase xsi:type="SemanticPlaceType" id="Roadblock">
<Label href="urn:ex:cs:SemanticCS:Roadblock">
<Name>Roadblock</Name>
</Label>
</SemanticBase>
<SemanticBase xsi:type="ContextType" id="War">
<Label href="urn:ex:cs:SemanticCS:War">
<Name>War</Name>
</Label>
</SemanticBase>
</SemanticBase>
<!-- graph of semantic relations -->
<Graph>
source="#Vehicule" target="#Wait"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agentOf"
source="#Vehicule" target="#Stop"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:locationOf"
source="#RoadBlock" target="#Stop"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agentOf"
source="#Military" target="#Walk"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:destinationOf"
source="#Vehicule" target="#Walk"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agentOf"
source="#Military" target="#Verify"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:patientOf"
source="#Vehicule" target="#Verify"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:partOf"
source="#Military" target="#MilitaryRoadblock"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:partOf"
source="#Roadblock" target="#Roadblock"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:contextFor"
source="#War" target="#MilitaryRoadblock"/>
</Graph>
</Semantics>
</Description>
</Mpeg7>

Formal abstraction of the "MilitaryRoadblock” narrative world using the Semantic DS.
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<Mpeg7>
<Description xsi:type="SemanticDescriptionType">
<!--narrative worlds -->
<Semantics id="worlds">
<Label>
<Name>Description of narrative worlds</Name>
</Label>

<SemanticBase xsi:type="SemanticType" id="W1l">
<Label href="urn:ex:cs:SemanticCS:RoadDriving">
<Name>RoadDriving</Name>
</Label>
<MediaOccurrence>
<MediaInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:00:0F25</MediaTimePoint>
<MediaDuration>PT00HOOMO2SON25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:examplifies"
target="#RoadDriving-FA"/>
<!--Semantic relations -->
<Graph>
<node 1d="Wl-nl" idref="E1"/>
<node 1d="Wl-n2" idref="01"/>
</Graph>
</SemanticBase>
<SemanticBase xsi:type="SemanticType" id="wW2">
<Label href="urn:ex:cs:SemanticCS:MilitaryRoadblock">
<Name>MilitaryRoadblock</Name>
</Label>
<MediaOccurrence>
<MediaInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:02:0F25</MediaTimePoint>
<MediaDuration>PT00HOOMO9SON25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:examplifies"
target="#MilitaryRoadBlock-FA"/>
<Graph>
<node 1d="W2-nl" idref="E2"/>
<node 1d="W2-n2" idref="E3"/>
<node id="W2-n3" idref="E4"/>
<node id="W2-n4" idref="02"/>
<node 1d="W2-n5" idref="03"/>
</Graph>
</SemanticBase>
</Semantics>
<!--Events-->
<Semantics id="Events">
<Label>
<Name>Description of events</Name>
</Label>
<SemanticBase xsi:type="EventType" id="E1">
<Label>
<Name>Truck drives on the road</Name>
</Label>
<MediaOccurrence>
<MediaInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:00:0F25</MediaTimePoint>
<MediaDuration>PT00HOOMO2SON25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:examplifies"
target="#Drive"/>
<!--Object links -->
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agent"
target="#01"/>
</SemanticBase>
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<SemanticBase xsi:type="EventType" id="E2">
<Label>
<Name>Military walks towards the truck</Name>
</Label>
<MediaOccurrence>
<MediaInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:03:0F25</MediaTimePoint>
<MediaDuration>PT00HOOMO3SON25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:examplifies"
target="#Walk"/>
<!--Object links -->
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agent"
target="#03"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:patient"
target="4#02"/>
</SemanticBase>
<SemanticBase xsi:type="EventType" id="E3">
<Label>
<Name>Truck stops</Name>
</Label>
<MediaOccurrence>
<MediaInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:03:12F25</MediaTimePoint>
<MediaDuration>PT00HOOMO1SO00N25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:examplifies"
target="#Stop"/>
<!--Object links -->
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agent"
target="4#02"/>
</SemanticBase>
<SemanticBase xsi:type="EventType" id="E4">
<Label>
<Name>Military verifies the truck</Name>
</Label>
<MediaOccurrence>
<MediaInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:06:00F25</MediaTimePoint>
<MediaDuration>PT00HOOMOS5SN25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:examplifies"
target="#Wait"/>
<!--Object links =-->
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agent"
target="#03"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:patient"
target="4#02"/>
</SemanticBase>
</Semantics>
<!--objects-->
<Semantics id="Objects">
<Label>
<Name>Description of objects</Name>
</Label>
<SemanticBase xsi:type="ObjectType" id="01">
<Label>
<Name>Truck 01l</Name>
</Label>
<MediaOccurrence>
<MediaInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:00:00F25</MediaTimePoint>
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<MediaDuration>PTO0HOOM02SN25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:examplifies"
target="#Vehicule"/>
<!--Object links -->
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agentOf"
target="4E1"/>
</SemanticBase>
<Label>
<Name>Description of objects</Name>
</Label>
<SemanticBase xsi:type="ObjectType" id="01">
<Label>
<Name>Truck 02</Name>
</Label>
<MediaOccurrence>
<MedialInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:03:12F25</MediaTimePoint>
<MediaDuration>PTO0HOOM07S13N25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:examplifies"
target="#Vehicule"/>
<!--Object links -->
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:identifies"
target="401"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agentOf"
target="4E3"/>
<Relation type="urn:mpeg:mpeg/:cs:SemanticRelationCS:2001:patientOf"
target="4#E4"/>
</SemanticBase>
<Label>
<Name>Description of objects</Name>
</Label>
<SemanticBase xsi:type="ObjectType" id="03">
<Label>
<Name>Military O03</Name>
</Label>
<MediaOccurrence>
<MedialInformationRef idref="video-1"/>
<Mask xsi:type="TemporalMaskType">
<SubInterval>
<MediaTimePoint>T00:00:02:0F25</MediaTimePoint>
<MediaDuration>PTO0HOOMO9SN25F</MediaDuration>
</SubInterval>
</Mask>
</MediaOccurrence>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001l:examplifies™"
target="#Military"/>
<!--Object links -->
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agentOf"
target="4#E2"/>
<Relation type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:agentOf"
target="4E4"/>
</SemanticBase>
</Semantics>
</Description>
</Mpeg7>

MPEG-7 Semantic Description for the audiovisual content of fig.1.16.

The description describes hierarchically the narrative worlds (W7, W3), the events occurring
in the video (E; to E4), and the different objects in the sequence. Objects and events
intervening in the description of a narrative world are referenced by a Graph DS. The Relation
DS is used to link events to their associated objects and vice-versa. The occurrences of each
semantic entity in the video are finally reported with the MediaOccurrence DS.
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A.3 Visual and Structural Description

<Mpeg7>
<Description xsi:type="ContentEntityType">
<MultimediaContent xsi:type="VideoType">
<Video id="video-1">
<MediaLocator>
<MediaUri>video-1.mpg</MediaUri>
</MediaLocator>
<MediaTime>
<MediaTimePoint>T00:00:00:0F25</MediaTimePoint>
<MediaDuration>PTO0HO06M39S24N25F</MediaDuration>
</MediaTime>
<TemporalDecomposition>
<!-- Shot S1 -->
<VideoSegment xsi:type="ShotType" id="S1" >
<MediaTime>
<MediaTimePoint>T00:00:00:0F25</MediaTimePoint>
<MediaDuration>PTO0HOOMO2SON25F</MediaDuration>

</MediaTime>

<!-- Semantic description of the shot-->
<SemanticRef idref="#W1"/>

<!-- Decomposition into moving regions-->

<SpatioTemporalDecomposition>
<MovingRegion id="mrl">
<MediaTime>
<MediaTimePoint>T00:00:00:0F25</MediaTimePoint>
<MediaDuration>PTO00HOOMO02SON25F</MediaDuration>

</MediaTime>
<SemanticRef idref="#01"/>
<!-- Localisation -->

<SpatioTemporalLocator>
<ParameterTrajectory motionModel="still">
<InitialRegion>
<Box mpeg7:dim="3 3">20 10 0 279 282 50</Box>
</InitialRegion>
</ParameterTrajectory>
<ParameterTrajectory motionModel="affine">
<InitialRegion>
<Box mpeg7:dim="2 2">20 10 277 275</Box>
</InitialRegion>
<Params keyPointNum="2">
<WholeInterval>
<MediaDuration>PTOOHOOM02SON25F</MediaDuration>
</WholeInterval>
<InterpolationFunctions>
<KeyValue type="startPoint">-2.5612</KeyValue>
<KeyValue type="startPoint">-2.3643</KeyValue>
</InterpolationFunctions>
<InterpolationFunctions>
<KeyValue type="startPoint">-2.4233</KeyValue>
<KeyValue type="startPoint">-2.2153</KeyValue>
</InterpolationFunctions>
<InterpolationFunctions>
<KeyValue type="startPoint">-0.0234</KeyValue>
<KeyValue type="startPoint">-0.0231</KeyValue>
</InterpolationFunctions>
<InterpolationFunctions>
<KeyValue type="startPoint">0.0021</KeyValue>
<KeyValue type="startPoint">0.0019</KeyValue>
</InterpolationFunctions>
<InterpolationFunctions>
<KeyValue type="startPoint">-0.0262</KeyValue>
<KeyValue type="startPoint">-0.0251</KeyValue>
</InterpolationFunctions>
<InterpolationFunctions>
<KeyValue type="startPoint">0.0019</KeyValue>
<KeyValue type="startPoint">0.0012</KeyValue>
</InterpolationFunctions>
</Params>
</ParameterTrajectory>
</SpatioTemporalLocator>
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<!-- visual descriptors -->
<VisualDescriptor xsi:type="ParametricMotion" motionModel="affine">
<Duration>
<MedialIncrDuration mediaTimeUnit="PTIN25F">50</MedialncrDuration>
</Duration>
<Parameters>-2.5612 -2.4233 -0.0234 0.0021 -0.0262 0.0012</Parameters>
</VisualDescriptor>
<VisualDescriptor xsi:type="ColorStructureType" colorQuant="1">
<Values>
0000010043002 501401984170530023320000
</Values>
</VisualDescriptor>
<VisualDescriptor xsi:type="EdgeHistogramType" >
<BinCounts>
53220332
60000500
32401411
</BinCounts>
</VisualDescriptor>
</MovingRegion>
</SpatioTemporalDecomposition>
<TemporalDecomposition overlap="true" gap="true">
<VideoSegment id="S1-1">
<MediaTime>
<MediaTimePoint>T00:00:00:0F25</MediaTimePoint>
<MediaDuration>PTO0HOOMO2SON25F</MediaDuration>
</MediaTime>
<semanticRef idref="E1"/>
<SpatioTemporalDecomposition>
<MovingRegionRef idref="mrl"/>
</SpatioTemporalDecomposition>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<!-- Shot 52 -->
<VideoSegment xsi:type="ShotType" id="S2" >
<MediaTime>
<MediaTimePoint>T00:00:02:0F25</MediaTimePoint>
<MediaDuration>PTO0HOOMO9SON25F</MediaDuration>
</MediaTime>
<SemanticRef idref="#W2"/>
<SpatioTemporalDecomposition>
<MovingRegion id="mr2">
<MediaTime>
<MediaTimePoint>T00:00:03:12F25</MediaTimePoint>
<MediaDuration>PTO0HOOMO1SON25F</MediaDuration>
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</MediaTime>

<!-- Semantic description-->
<SemanticRef idref="4#02"/>
<!-- Localisation -->

<SpatioTemporalLocator>
<!--bounding box only-->
<ParameterTrajectory motionModel="still">
<InitialRegion>
<Box mpeg7:dim="3 3">0 50 0 255 183 25</Box>
</InitialRegion>
</ParameterTrajectory>
</SpatioTemporalLocator>
<!-- visual descriptors -->
<VisualDescriptor xsi:type="ColorStructureType" colorQuant="1">...
</VisualDescriptor>
<VisualDescriptor xsi:type="EdgeHistogramType" >...
</VisualDescriptor>
<!-- Object Decomposition -->
<SpatioTemporalDecomposition>
<MovingRegion id="mr2-1">
<MediaTime>
<MediaTimePoint>T00:00:03:12F25</MediaTimePoint>
<MediaDuration>PTOO0HOOMO1SON25F</MediaDuration>

</MediaTime>

<!-- Semantic description-->
<SemanticRef idref="4#02"/>
<!-- Localisation -->

<SpatioTemporallLocator>
<ParameterTrajectory motionModel="affine">
<InitialRegion>

N
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<Box mpeg7:dim="2 2">0 50 120 159</Box>

</InitialRegion>
<Params keyPointNum="2">
<WholeInterval>

<MediaDuration>PTO0HOOMO1SON25F</MediaDuration>

</WholeInterval>

<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..

</Params>
ParameterTrajectory>
atioTemporalLocator>
Visual descriptors
motion model changes

-—>

<MedialIncrDuration
Duration>
arameters>3.253
Parameters>
sualDescriptor>

-0.005

<MediaIncrDuration
Duration>
arameters>0.85
Parameters>
sualDescriptor>

-0.002

<VisualDescriptor xsi:type="ColorStructureType"

sualDescriptor>

sualDescriptor>
ngRegion>
gRegion id="mr2-2">

<MediaTime>
<MediaTimePoint>T00:00:04:12F25</MediaTimePoint>
<MediaDuration>PT0O0HOO0MO6S13N25F</MediaDuration>

diaTime>
Semantic description-->

<SemanticRef idref="#02"/>

Localisation -->
tioTemporalLocator>

<InitialRegion>

-0.0002 0.0005

-0.0003 0.0007

.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>

(decelerate) -->
<VisualDescriptor xsi:type="ParametricMotion" motionModel="affine">

<Duration>
mediaTimeUnit="PTIN25F">12</MedialncrDuration>

-0.0012 0.0009

<VisualDescriptor xsi:type="ParametricMotion" motionModel="affine">
<Duration>
mediaTimeUnit="PTIN25F">13</MedialncrDuration>

-0.0008 0.0011

<VisualDescriptor xsi:type="EdgeHistogramType" >...

<ParameterTrajectory motionModel="affine">

<Box mpeg7:dim="2 2">0 50 120 159</Box>

</InitialRegion>
<Params keyPointNum="2">
<WholeInterval>

<MediaDuration>PTO00HOOMO1SON25F</MediaDuration>

</WholeInterval>

<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..

</Params>
ParameterTrajectory>
atioTemporalLocator>

Visual descriptors -->

<MediaIncrDuration
Duration>
arameters>3.253
Parameters>
sualDescriptor>

-0.005

<MediaIncrDuration
Duration>
arameters>0.85
Parameters>

-0.0002

-0.0002 0.0005

-0.0003 0.0007

.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>

<VisualDescriptor xsi:type="ParametricMotion" motionModel="affine">
<Duration>
mediaTimeUnit="PTIN25F">12</MedialncrDuration>

-0.0012 0.0009

<VisualDescriptor xsi:type="ParametricMotion" motionModel="affine">
<Duration>
mediaTimeUnit="PTIN25F">13</MedialncrDuration>

-0.0008 0.0011

colorQuant="1">...
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</VisualDescriptor>
<VisualDescriptor xsi:type="ColorStructureType" colorQuant="1">...
</VisualDescriptor>
<VisualDescriptor xsi:type="EdgeHistogramType" >...
</VisualDescriptor>
<TemporalDecomposition gap="true">
<MovingRegion id="mr2-2-E4">
<MediaTime>
<MediaTimePoint>T00:00:06:0F25</MediaTimePoint>
<MediaDuration>PTOOHOOMO5SON25F</MediaDuration>
</MediaTime>
</MovingRegion>
</TemporalDecomposition>
</MovingRegion>
</SpatioTemporalDecomposition>
</MovingRegion>
<MovingRegion id="mr3">
<MediaTime>
<MediaTimePoint>T00:00:02:00F25</MediaTimePoint>
<MediaDuration>PTOOHOOMO9SON25F</MediaDuration>

</MediaTime>

<!-- Semantic description-->
<SemanticRef idref="#03"/>
<!-- Localisation -->

<SpatioTemporalLocator>
<!--bounding box only-->
<ParameterTrajectory motionModel="still">
<InitialRegion>
<Box mpeg7:dim="3 3">175 58 0 106 195 225</Box>
</InitialRegion>
</ParameterTrajectory>
</SpatioTemporalLocator>
<!-- visual descriptors -->
<VisualDescriptor xsi:type="ColorStructureType" colorQuant="1">...
</VisualDescriptor>
<VisualDescriptor xsi:type="EdgeHistogramType" >...
</VisualDescriptor>
<!-- Object Decomposition -->
<SpatioTemporalDecomposition>
<MovingRegion id="mr3-1">
<MediaTime>
<MediaTimePoint>T00:00:02:00F25</MediaTimePoint>
<MediaDuration>PTOOHOOMO1SON25F</MediaDuration>

</MediaTime>

<!-- Semantic description-->
<SemanticRef idref="#03"/>
<!-- Localisation -->

<SpatioTemporalLocator>
<ParameterTrajectory motionModel="still">
<InitialRegion>
<Box mpeg7:dim="2 2">202 55 65 173</Box>
</InitialRegion>
</ParameterTrajectory>
</SpatioTemporalLocator>
<!-- Visual descriptors -->
<VisualDescriptor xsi:type="ColorStructureType" colorQuant="1">...
</VisualDescriptor>
<VisualDescriptor xsi:type="EdgeHistogramType" >...
</VisualDescriptor>
</MovingRegion>
<MovingRegion id="mr3-2">
<MediaTime>
<MediaTimePoint>T00:00:03:00F25</MediaTimePoint>
<MediaDuration>PTO0HOOMO3SON25F</MediaDuration>

</MediaTime>

<!-- Semantic description-->
<SemanticRef idref="#03"/>
<!-- Localisation -->

<SpatioTemporalLocator>
<ParameterTrajectory motionModel="affine">
<InitialRegion>
<Box mpeg7:dim="2 2">198 58 64 171</Box>
</InitialRegion>
<Params keyPointNum="2">
<WholeInterval>
<MediaDuration>PTO0HOOMO1SON25F</MediaDuration>
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</WholelInterval>

<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..

.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>

</Params>
</ParameterTrajectory>
</SpatioTemporalLocator>

<!-- Visual descriptors -->

<!--motion model north-west, then ouest -->

<VisualDescriptor xsi:type="ParametricMotion" motionModel="affine">
<Duration>

<MediaIncrDuration mediaTimeUnit="PTIN25F">45</MedialncrDuration>

</Duration>
<Parameters> -1.2534 -1.1745 -0.0042 0.0023 -0.0054 0.0048
</Parameters>

</VisualDescriptor>
<VisualDescriptor xsi:type="ParametricMotion" motionModel="affine">

<Duration>

<MediaIncrDuration mediaTimeUnit="PTIN25F">30</MedialncrDuration>
</Duration>
<Parameters>-0.9835 0.0123 0.0014 0.0021 -0.0007 0.0017
</Parameters>

</VisualDescriptor>
<VisualDescriptor xsi:type="ColorStructureType" colorQuant="1">...
</VisualDescriptor>
<VisualDescriptor xsi:type="EdgeHistogramType" >...
</VisualDescriptor>
</MovingRegion>
<MovingRegion id="mr3-3">
<MediaTime>
<MediaTimePoint>T00:00:06:00F25</MediaTimePoint>
<MediaDuration>PTO0HOOMO5SON25F</MediaDuration>
</MediaTime>

<!-- Semantic description-->
<SemanticRef idref="#03"/>
<!-- Localisation -->

<SpatioTemporallLocator>
<ParameterTrajectory motionModel="affine">

<InitialRegion>
<Box mpeg7:dim="2 2">183 55 26 156</Box>

</InitialRegion>

<Params keyPointNum="5">
<WholeInterval>

<MediaDuration>PTO0OHOOMO1SON25F</MediaDuration>

</WholelInterval>

<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..
<InterpolationFunctions>..

</Params>

.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>
.</InterpolationFunctions>

</ParameterTrajectory>
</SpatioTemporallocator>

<!-- Visual descriptors -->

<!--complex motion-->

<VisualDescriptor xsi:

</VisualDescriptor>

<VisualDescriptor =xsi:

</VisualDescriptor>

<VisualDescriptor xsi:

</VisualDescriptor>

<VisualDescriptor xsi:

</VisualDescriptor>

<VisualDescriptor =xsi:

</VisualDescriptor>

<VisualDescriptor xsi:

</VisualDescriptor>

<VisualDescriptor =xsi:

</VisualDescriptor>
</MovingRegion>

type="ParametricMotion"
type="ParametricMotion"
type="ParametricMotion"
type="ParametricMotion"

type="ParametricMotion"

motionModel="affine">...

motionModel="affine">...

motionModel="affine">...

motionModel="affine">...

motionModel="affine">...

type="ColorStructureType" colorQuant="1">...

type="EdgeHistogramType"

</SpatioTemporalDecomposition>

</MovingRegion>

>,
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</SpatioTemporalDecomposition>
<!--temporal decomposition into the events -->
<TemporalDecomposition overlap="true" gap="true">
<!--military walk-->
<VideoSegment id="S2-1">
<MediaTime>
<MediaTimePoint>T00:00:03:0F25</MediaTimePoint>
<MediaDuration>PTO0HOOM02SON25F</MediaDuration>
</MediaTime>
<semanticRef idref="E2"/>
<SpatioTemporalDecomposition>
<MovingRegionRef idref="mr2-1"/>
<MovingRegionRef idref="mr3-2"/>
<Graph>
<Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:rightOf"
source="mr3-2" target="mr2-1"/>
</Graph>
</SpatioTemporalDecomposition>
</VideoSegment>
<!-- truck stop-->
<VideoSegment id="S2-2">
<MediaTime>
<MediaTimePoint>T00:00:03:12F25</MediaTimePoint>
<MediaDuration>PTO0HOOMO1SON25F</MediaDuration>
</MediaTime>
<semanticRef idref="E3"/>
<SpatioTemporalDecomposition>
<MovingRegionRef idref="mr2-1"/>
</SpatioTemporalDecomposition>
</VideoSegment>
<VideoSegment id="S52-3">
<MediaTime>
<MediaTimePoint>T00:00:06:0F25</MediaTimePoint>
<MediaDuration>PT00HOOMO5S0N25F</MediaDuration>
</MediaTime>
<semanticRef idref="E4"/>
<SpatioTemporalDecomposition>
<MovingRegionRef idref="mr2-2-E4"/>
<MovingRegionRef idref="mr3-3"/>
<Graph>
<Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:overlaps"
source="#mr3-3" target="#mr2-2-E4"/>
</Graph>
</SpatioTemporalDecomposition>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
</TemporalDecomposition>
</Video>
</MultimediaContent>
</Description>
</Mpeg7>

MPEG-7 Content description for the example fig.1.16.

The video is decomposed hierarchically in shots and objects with the TemporalDecomposition
and SpatioTemporalDecomposition DSs, respectively. The shot is decomposed into objects
represented with the MovingRegion DS, and can be further decomposed spatiotemporally
into sub-objects. In the example each sub-object is related to corresponding event (drive,
stop, walk, verify). The shot can be also structured temporally with events. The objects
intervening in the event are referenced within a SpatioTemporalDecomposition DS. Object
segments that overlaps the event are aligned temporally with the event using a TemporalDe-
composition DS, as a parent segment should contain all its children segments.
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