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Abstract— A technique for rapid speaker adaptation,
called eigenvoices, was introduced recently. The key
idea is to confine models in a very low-dimensional lin-
ear vector space. This space summarizespriori knowl-
edge that we have about speaker models. In many prac-
tical systems, however, there is a mismatch between the
conditions in which the training data were collected and
test conditions: prior knowledge becomes improper.
Furthermore, prior statistics or models of this mismatch
may not be available. We expose two key results: first,
we use a maximume-likelihood estimator of prior infor-
mation in matched conditions, called MLES, leading to
an improvement of adaptation by a relative 14%, and
second, we show how we can apply a blind scheme for
learning noise, MLLR, achieving an additional 7.7%
relative improvement in noisy conditions.

I. INTRODUCTION
This paper aims at addressing one very frequent objec
tion to eigenvoices [1]: we either do not have enough speak
ers, or not enough data for each speaker to build reasonab
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train prior parameters. However, the latter becomes almost
completely useless as we move to our target task. We need
fast speaker adaptation for user convenience, but it cannot
be deployed in the new environment.

B. General idea

To solve this problem, we record a small database in real
conditions. We model the transformation to the new envi-
ronment as an affine transformation. We must be careful
not to include information that is specific to the speakers in
the small database into the transformation. Once we have
our mapping from training to test conditions, we apply it to
our prior knowledge, which can now be readily used for fast
speaker adaptation with new speakers in real conditions.

Il. ADAPTATION METHODS

We present two adaptation methods in this section:
eigenvoices and MLLR. We only introduce matter that is
useful for further purposes in our paper and the reader is
“assumed to have had prior exposure to the methods.

l&\. Eigenvoices

speaker-dependent (SD) models, or both. While we suc- | this section, we briefly describeigenvoices. We
cessfully applied eigenvoices in a framework where data merely provide the reader with basic definitions, and fur-
was reduced [2], these preliminary results might not apply ey information can be found in [1]. The basic idea is that
to all cases. Our work here brings a viable solution by de- \ya can infer strong priori knowledge about a speaker's
scriping a methodology for initializing eigenvoices in an Jocation in the space of its HMM parameters. We ob-
environment where one has enough data and transposing ikeryer training speakers and given their distribution in the
to _aI}hne}NI[I:)roblem where _datda are §qarc;le. inder of th D—dimensional space of their HMM parameters, we find
1€ following 1S organized as IS. |n_t € remaincer o the the E—dimensional linear vector space that minimizes the
section, we define the problem and give an overview of the Euclidean out-of-space distance usprincipal component

so!utlon. The next section is dedicated to deflnl_ng eigen- analysis (PCA [3]). We call the latter theigenspace. We
voices and MLLR. Then we devote the next section to the .
only perform adaptation of the mean vectors.

normalization of the eigenspace to a new environment. Ex-

periments complement our theory. A.1 Optimal location of speaker (MLED)

We now describe how to find the maximume-likelihood
eigendecomposition (MLED), that is the location in the
eigenspace that maximize the likelihood of an utterance
given the model. Let be the parameter vector of a speaker,
andi.,e = 1,..., E be the basis vectors of the eigenspace,
calledeigenvoices. Then we have

A. Problem definition

We find ourselves in the following context: we want to
perform very fast speaker adaptation in a noisy speech en
vironment. It has now become common belief that use of
prior information helps in deriving constraints that reduce
the number of parameters to be estimated. However, this
is incompatible with our other aim, namely, working in an
environment where it is hard to collect data. Building good
prior information requires a significant amount of data that
is not available for the noisy speech recognition task. Con-
sider the following example: we want to develop a car navi- wherew = [w1, ...,wg]? are thesigenvaluesthat represent
gation system. The system is trained with publicly available the characteristics of the speaker, aid= [u], ...,z 5]
databases such as TIMIT, which contains sufficient data tois the eigenspace. We use the EM-algorithm [4] to find the

E
= Zweﬁe = Muw
e=1



maximum-likelihoodZ(-) eigendecompositiow (MLED) 0@ of the speaketl., = L(OD|w{”)p(w'?). ym(t) is
for the observatio: the observed posterior probabilityﬁ.ge) is the current esti-

mate of the="" eigenvalue of speakert Finally, ﬂém) is the

w = argmaxlog L(O|p = Mw . .
s 08 (Ol ) complement of the estimated mean, ie

Findingw requires the inversion of all x E matrix. E
Specifying that the speaker is confined in the eigenspace ﬂgm) (e) = Z w{(lk)ﬁgcm), e=1,..E (3)
is a hard constraint. We can relax the constraint by assum- k=1, kte

ing a normal-Wishart density around the MLED estimate. h - lqorithm i i Ich
We can thus use MAP ([5], [6]) as a postprocessor with The training algorithm is very akin to a Baum-Welch pro-

- cedure, except for the fact that we kefpaccumulators
MLED as prior. . . .
instead of just one. Its seems that our algorithm converges
A.2 Maximum-Likelihood EigenSpace approximately two times slower than training of the sim-

We now derive a straightforward method to find a com- Ple SI model. Note that PCA gives the least-squares esti-
pact eigenspace. The method is called maximum-likelihood mate for the eigenspace and therefore is suboptimal in the
eigenspace (MLES). It serves several purposes. First, PCAlight of the ML-criterion. For consistency, we will now re-
requires heavy memory requirements that might be too de-fer to the space found by PCA as least-squares eigenspace
manding for large vocabulary continuous speech recogni- (LSES). Figure 1 compares the histograms for three ways
tion systems. Second, it is not based on a distribution- Of obtaining the eigenspace: LSES, MLES, and MAPES
to-distribution divergence measure that requires gaussiandMLES using prior information about the number of males
within a mixture gaussian to be aligned. Third, it lever- and females in the database). See section IV.B for more
ages the need to build speaker-dependent (SD) models fofletails.
each speaker: buil'ding SD quels apd then applying PCAp 3 Properties
corresponds to going from R-dimensional parameter es-
timation (SlI) to aT" x D problem (building SD models),
and then reducing dimension frolhx D to E x D. We
solve theE x D problem directly. MLES works on onl
times more degrees of freedom than training of the speaker
independent (SI) model. Lastly, MLES enables us to inte-

We now discuss the properties of interest of eigenvoices.
We have an explicit model of the variabilities of speakers.
These are formed individually by vectors call eigenvoices,
_each of which models a direction of variation. These eigen-
voices constitute prior knowledge we have about speakers

grate a certain form of prior knowledge by explicitly setting apd have been optlmlzed.gwen a set of speakers in some
eigenvalues. given homogeneous conditions. Hence, we are now able to

We just integrate eigenvalues as hidden data in the esti-make very strong assumptions about where a speaker model
mation problem, yielding can reside, and consequently achieve very fast adaptation,
but on the other hand our prior knowledge is very special-

ized to the training set.

T
M = arg max log L(O,w|M)Py(w,q)dw (1
B ;/ s L( M) Po(w, ) @) B. Maximum-Likelihood Linear Regression

B.1 Definition

Maximum-likelihood linear regression (MLLR) finds the
optimal affine transformation of a model [7]. Gaussian
mean parameters are pooled idtaegression classes. Let
19 be one of the7. mean vectors in regression class
Then

whereP,(w, ¢) contains prior information about speaker
(e.g. the probability of a person of a given dialect or sex
to appear). It is extensively used for unbalanced sets of
speakers. For instance, we may set for a given

1 if w, > 0 and d" speaker is male
Po(wy,q) = ¢ 1 if wy < 0and d" speaker is female A9 =Wep® +b., g=1,..,G;c=1,..,C

0 elsewhere andW, andb, are the transformation parameters of class

MLLR can also be applied in the observation features
space by simply inverting the transformation: this can be
Seed eigenvoices can be obtained through PCA or linearseen as a normalization of the features. In this paper, we
discriminant analysis (LDA). When no particular knowl-  only consider one global transformation. The very interest-
edge abouty; is known, we use MLED to replace the inte-  jng property of this technique is that no prior knowledge is
gration operator by a maximum operator. . required except that of the assignment of regression classes.
The reestimation formula is relatively easy to derive Therefore, MLLR seems very suitable as a constrained, in-
e —(m direct method to adapt to noise.
_(m) _ Zq qué ) 2t Ym (1) {Ot - Nt(z )(6)} 5 We apply MLLR in i?he feature space. Léf =), ;0
e = ()2 @ andA, = ), v+ be the accumulators. Then the normalized
24 Ly (wq ) 22 vm(t) accumulators become

where g, m, e represent a speaker, a distribution, and an A = Z%W*l (0 —b) = W1 [A] — Apb]
eigenvoice L, is the posterior probability of the utterances t
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(a) Least-squares eigenspace (LSES): this is the seed eigenspace. The eigenvalue does not represent sex perfectly. 2.82%
of speakers for which the sign of the eigenvalue is positive for a female or negative for a male.
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(b) Maxmimum-likelihood eigenspace (MLES): after 3 iterations of Baum-Welch training, differences between sexes are
blurred. 5.41% of speakers now bear a misleading sign of eigenvalue
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(c) Maximum-a-posteriori eigenspace (MAPES): after 3 iterations, there is now only 1.95% of speakers with wrong sign
of eigenvalue. Means of the male and female distributions are converging to the same absolute value.

Fig. 1. Sex and first eigenvalue: histograms. Male and female speakers are shown in grey and black respectively.
B.2 Properties 2. Compute transformation modelling the environment.

MLLR is a transformation-based adaptation method. No Now we work with an environment-dependent Sl.
prior knowledge except SI models and the regression class3: For each speaker ifl;, perform MLED in the reference
topology are required. It uses a small set of indirect param- SPace, then rescale estimate (apply MLLR).
eters and therefrom reliable adaptation can be improved.
Also, it works equivalently with environment and speaker

adaptation. IV. EXPERIMENTS

A. Configuration
I11. N ORMALIZING THE EIGENSPACE WITH RESPECT Configuratio
TO AN UNKNOWN ENVIRONMENT The experiments were conducted on tiveIT database,

This section explains into more details about how we nor- uUsing the standard train/test partition. There are 462 speak-
malize the eigenspace for use with a new environment. We€rs in the training set (325 males) and 169 in the test set.
assume the following: (1) we trained an eigenspace on aEach speaker pronounces 8 sentences of a length of about
large databas®,, (2) we have collected a small amount of 2-7 sec each. Speech was sampled at 16 kHz and param-
data in real-life conditions i, and (3) we have test data €terized using PLP cepstral features without cepstral filter-
recorded inD,, in the same conditions d3; . ing. There are 9 static coefficients (including energy of the

The algorithm can be decomposed in three steps: residual) and 9 delta, totalling 18 features. We use 48
1. For each speaker iD,, perform MLED. MLED context-independent HMM models, with 3 emitting states
projects the speaker in the reference space. MLLR will and 16 gaussians per mixture, resulting in 2240 distribu-
compute a transofrmation between the data from the refer-tions. Adaptation is supervised. Noise of a car running at
ence space and the noisy space for all speakers, making th60 mph was added artificially to the utterances. No noise re-
transformation to focus on environmental variations only. duction processing was applied and a bigram grammar was
Compute the contribution of the speaker’s utterances in theused. In the following, we report results in unit accuracy.
MLLR system. The SNR for clean TIMIT is about 70 dB.



|Method ||E:5|E:10|E:20|E:50| Size / SNR:|| oo 40dB | 30dB | 20dB
LSES 60.67 | 60.58 | 61.29 | 61.56 30 x 8 64.25| 62.53 | 52.08 | 34.54
MLES(E = 10) || 62.53 | 65.10 - _ 10 x 8 64.46| 61.65| 51.37 | 33.78
MLES(E = 20) || 63.06 | 65.01 65.37 R 10x4 63.59| 60.83 | 53.28 | 33.08
MLES(E = 50) || 61.74 | 63.77 | 64.84 | 66.96 20 x 2 63.52| 60.35| 50.74 | 32.91

TABLE Ill: R EDUCING DATA FOR ENVIRONMENT NORMALIZATION
V. CONCLUSION

TABLE I: M AXIMUM -LIKELIHOOD EIGENSPACE

[Method/SNR || oo | 40dB | 304dB | 20 4B | o N
n this paper, we have showed how eigenvoices can be
SI (Do) 60.94)| 50.13 | 31.09 | 10.63 used in practical real-life environments. The contribution
MLLR(D;) 59.79| 56.86 | 44.82 | 30.82 of this work is twofold: first, we demonstrate that the
LR (D») 53.141 52.44 1 42.78 | 25.07 eigenspace can be trained in an optimal way without re-
EV (D») 65.05| 57.13 | 43.14 | 19.31 quiring enough data per speaker to build SD models, and
normevV (D1, D») || 64.25] 62.53 | 52.08 | 34.54 second, we lay out a method to transpose the eigenspace

from a clean to a noisy environment.
We have illustrated why the use of prior densities is use-

fulto guide the training of the eigenspace, and observed sig-

Table | evidences the performance of the maximum- nificant performance improvements of MLES versus LSES.
likelihood criterion vs least-squares. MLES was applied Also, MLES has very low memory requirements (ody
for different values ofE (first column) and tested the times those required for Sl training). Additionally, MLES
eigenspaces with other valuesfoffirst row). LSES served  does not require sufficient data per speaker to build SD
as the seed eigenspace for MLES. Due to memory limi- models: we only need abofttimes more data than needed
tations, LSES was estimated on a set of only 100 speak-to build SI models. Convergence of the EM-algorithm is
ers, but balanced with respect to sex. MLES used all 462not E times slower but takes approximately twice as much
speakers. Obviously, MLES performs best when with more iterations as embedded reestimation of SI models.
dimensions and when we test with the same number of We have also unveiled a practical method that allows
dimensions with which we trained the eigenspace. This reuse of the eigenspace in unmatched conditions using a
means that we have to know in advance how many dimen-Vvery small pool of re-training data. We have specifically

sions we want to use in our System when bu||d|ng prior in- Separated environment variabilities from Speaker variabili-
formation. ties. The eigenspace that was trained on clean speech was

normalized and subsequently produced accurate constraints
for speakers in the noisy environment. Thereby, we could
again achieve fast speaker adaptation (about 2-7 sec per

TABLE II: RESULTS FOR DIFFERENTSNRS
B. MLESvsLSES

C. Normalization

We expose results in table 11.D; comprised 30 speak-
ers, each pronouncing 8 sentencd3, was made up by
30 speakers, each pronouncing 1 sentence (about 2-7 sec gf]
speech) for adaptatioﬁé“) and the rest for decodin@éb).

All results reported are om)gb). S| (Dy) represents the
S| model, estimated on the full training set of the TIMIT

database. MLLRD;) can be interpreted as the Sl normal- (3

(2]

ized by the environment learned fraby . MLLR(D,) and [4]
MLED(D,) correspond to MLLR and MLED applied nor-
mally, without any use oD;. Finally, normEV(QD;, D) [5]

symbolizes MLED applied oiDé“) with priors transformed
using an estimation of the environment based)an These

sets were sliced randomly (non-overlapping) from the test [6]
set of TIMIT. For all testsF was set to 10.

(7]
D. Further experiments: reducing amount of data

In a further experiment, we examine how the algorithm [8]
reacts when we reduce the size of the re-training database,
D;. Table Ill summarizes the results. The first column de-
scribes the size of the database by the product of the numbel®]
of speakers times the number of utterances per speaker. We
see thatitis better to have less speakers, but each pronoungzoj
ing more utterances, than more speaker with less utterances.

speaker) in an unmatched environment.
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