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Abstract—We consider a MIMO broadcast channel where the optimal DPC scheme, for example), and still achievessrat
the channel state infqrmation at the transm!tter (CS|T), to be quite close to Capacity, especia”y in the |arge number efsis
used for user scheduling and beamforming, is gained througla case [7]. Under ZFBF, the fed-back CSI is used to design a
limited-rate feedback channel. In view of optimizing the owerall . T . R
spectral efficiency of the system, we propose an adaptive sahe zero-f_orcmg (ZF) precoding channel matnx, _ehmmatmgar-
in which the feedback rate is no longer constant but rather USEer interference when perfect CSI is available. With such
optimized as a function of the time-dependent channel qual§y a scheme, the same capacity scaling as the optimal one, in
seen at the user side. One key idea is that, under an averageterms of multiplexing and MUD gains, is possigpeovided
feedback rate constraint, a user ought to provide more feedick the feedback rate scales linearly with SNR in[8B [9], [10].

at moments when it is more likely to be scheduled. We providehie . . S
theoretical grounds for our approach then derive quasi-opimal The strategies for representing CSIT through a limited

feedback resource allocation schemes, the performance ohigh feedback channel are diverse [6]. In most previous work a

is illustrated through Monte Carlo simulations. time-constant rate is allocated to the feedback channel fhe
users to the base, where the number of bits used to represent
|. INTRODUCTION the CSIT is optimized as function of fixed parameters such as

Much recent research has focussed on the use of multigi€ number of users and the average SNR. In recent work [11]
antennas in wireless networks, and on the practical reimiza the constant feedback rate is split across two feedbackstag
of the associated capacity gains. In a system Wittantennas one stage for scheduling and another stage for beamforming,
at the transmitter (base station) and > N, single-antenna Where the number of CSIT bits is different for the two stages,
receivers (users), up t&, streams may be broadcast simulyet remains time-constant.
taneously over the chanfgthe attained rates may be further The key intuition behind this paper is that, if each user were
enhanced by appropriate selection of who to transmit to, igubject to anaveragefeedback rate constraint, rather than a
by profiting from multi-user diversity (MUD) [2]. peak constraint, then the resource allocated for feedback at

Given the complexity of the dirty paper coding schem@ach moment could be optimized as function of the instanta-
(DPC) required to attain any point within the capacity region€ous channel conditions. In particular, one expects that i
of the Gaussian MIMO Broadcast channel with full chann&lystem where the number of use¥sexceeds the number of
state information at the transmitter (CSIT) (establishefB]), antennas at the bas¥;, the accuracy with which the user
several sub-optimal schemes have been proposed that trgh@nnel must be described to the latter should be made a
approach important points in said capacity region, incigdi function of both (i) the user's channel qualitgnd (ii) the
the maximum sum-rate point [4], [5]. The importance of CSIProbability with which this user will be selected
in achieving capacity, and its cost in terms of overhead eged In @ way which is reminiscent of power allocation schemes
to feed back the CSI to the transmitter, has also instigat@¥er time-varying channels (e.g. [12]), we propose an agapt
many recent publications dealing with the limited feedbadRedback framework where the user self-optimizes his feed-
CSIT case (see [6] and references therein). The present wBf€k resource over time so as to match an average feedback
falls under this category of investigation. rate constraint. A 'rate-waterfilling’ allocation schenmsedb-

Most approaches to multiuser MIMO (MU-MIMO) trans-tained for certain conditions, and the result is specidlie
mission under partial CSI have centered on linear precodirige case ofV; = 2 antennas and an arbitrary number of users.
especially zero-forcing beamforming (ZFBF), which is much Interestingly, the proposed framework can be interpreted

simpler than nonlinear processing (required for implerimgnt 8 an extension of the on-off feedback scheme proposed in
[13] for SISO. In that work, feedback reduction is realized
LEffectively, for users with independent Rayleigh fadingwchels up taV? by silencing users for which the SINR estimate is below a
streams may be transmlttgd [1]. Howe\_/er_ the gain obtainah ﬁ'ansmlttl_ng certain threshold, while a constant feedback rate is used fo
to more thanN; users is normally limited. Moreover, for many linear hich he th hold. E . he MIMO
transmission schemes such as the zero-forcing scheme edduene, it is users which pass the threshold. Extensions to the case

in fact not possible to transmit to more thah users at a time. were given in [14], [15] whereby not only the channel quality
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but also the accuracy of the quantized channel direction As User Selection and Precoding Scheme

considered in the feedback decision process. This costrast;EgE with uniform power allocation is the adopted precod-

with our approach where the adaptive process tweaks ms scheme. Thus, the transmitted sigral given by:
guantization accuracy according to the channel quality see

by the user and, importantly, according to the probability o /P W
selection that the user estimates for itself. Another esitenof VN, S

this opportunistic approach is taken in [16], where a sdalab NyxN, i . , . .
feedback protocol is proposed, whereby several rounds ‘YpereW € €77 is a zero-forcing matrix having unit-norm

threshold-based feedback are done to determine the best GQ&Mn vectorss contains the symbols from; independently

set. The protocol is designed in such a way that the numl%nerated zero-mean unit-variance Gaussian codewords, an

of feedback slots is bounded. P is the average total transmit power. _The scheduling scheme
. . . . tries to maximize the sum rate achieved by ZFBF Np
Regarding the quantization scheme used in this paper, we o . .
. : . users, based on the fed-back CSI: in the optimal case, this
build on the line of work of [9], [10], [17] where the quanti-. . !
. o . . is done through exhaustive search over all group¥pfisers;
zation scheme focuses on the direction information whike th : .
L : a suboptimal scheme would use a greedy algorithm such as
channel quality indicator (CQI) (in our case the channehmor those of [7], [21], and may actually schedule fewer users
but often some estimate of the achievable SINR) is assuméd ' ' y y '
unquantized (or quantized with fixed, high accuracy). As oW cg| and Quantization

aim is to keep feedback bounded, one could consider extgndin

the work to incorporate the CQI quantization in the adaptati ) k - )
Rayleigh fading channels, and that CSI consists of feeding

rocess.
P . . back one scalar (the channel norm), and a quantized version
The performance gain of our adaptive feedback framewor A . .
the channel direction as was done previously in [9], [10],

over a non-adaptive one is illustrated with Monte Carl 17], where we usd to denote the true direction arfi to

simulations. . . :
W hat th h di . K ﬁlenote its quantized version.
e note that throughout our discussions we make therp, only assumption we make about the CDI quantization

common assumption of perfect c_hgnnel state informatiqn éac}debooks, is that some amount of (‘controlled’) randomiza
the receiver. We do not take training on the downlink intg. exists, so that one can claim that different users’ tjnad

consideration. These matters have been tackled in thetrec(ﬁpections are independent of each other, and that on averag

publication [18]. o _ the fed-back quantized directions are uniformly distrétalion
Notation: E denotes statistical expectatioBi’ represents the ynit sphere irC+, as are the actual channel directions.

the n-dimensional complex space. Boldface onvercas_e lettgs$indom vector guantization (RVQ) [19], used in the simu-

denote vectors, and boldface uppercase matritgs) gives |ations, satisfies this assumption, as each user has differe

the probability density function (pdf) of random variable anq independently generated codebooks, a codebook of size

andF,(.) its cumula_tive_density function (cdf). The probability,e consisting of2® unit-vectors independently sampled from

of an eventA occuring is denoted byr[A]. Thei-norm of e jsotropic distribution on said sphere. The correspuydi

vectorx is denoted aglx|,, andx £ X. Finally, log(.) is  quantization error is defined as? ¢, wheree 2 /(I, ), is

the natural logarithm. the angle between the true and quantized channel directions

and its cdf is upper-bounded by [20]:

Il. SYSTEM MODEL { Sl-Neghe=1 g < <§

)

For our derivations, we assume thé receivers have i.i.d.

Fsinze(x) = 1 z>6 (3)

We consider a multi-antenna Gaussian broadcast channeA, 2 o b/(Ne—1) o i ,

where a transmitter equipped wiffy antennas communicates” (_areé =2 - This distribution will be used in our
with N > N, single-antenna receivers. The latter are assumgﬁr'vat'ons below.
to have perfect channel knowledge. The received signaleat us

. I1l. ADAPTIVE FEEDBACK RATE ALLOCATION
k, denotedy;, € C can be written as:

As noted in the introduction, under an average feedback rate
constraint, it makes sense for a given user to quantize és-ch
nel more accurately?f(i) it is more likely to be scheduled, and
(ii) its channel quality is better, i.e. if the associateghested
rate is higher. In doing so, a user maximizes its expectey] rat

. . . . given its local knowledge (its instantaneous CSl, the ckann
noise at thekth user, rgspec_:tlvely. The noise vect_or CONSISkiate statistics of the other users, the number of usersein th
of i.i.d. zero mean unit variance complex Gaussian randqg

. stem and the transmit power at the base station).
variables (r.v.'s)CA (0, 1). Furthermore, we assume a bIock—év P )

fadmg channel and focus on the ergOd|C sum rate as SySteﬁNote that these conditions are interrelated, since the b@ti®n tries to
performance measure. maximize the sum rate.

Yr = hpx +ng, 1)

wherex € CN+x! is the transmitted signal vectoh, ¢
C'*N: and andny € C represent the channel vector and th
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Letting S denote the event of being scheduled, the expectethere) andv(a) > 0,a € [0, o) are the Lagrange multipliers
rate may be expressed as: associated with the average feedback rate and the pogsitivit
o b(a) constraints, respectively.
ER = / Pr[S|a = a]E[R|a = a] fu(a)da, 4) The corresponding Euler-Lagrange equation is given by:
0
dg(a,b(a)
wherea £ ||h||2, and possible dependencies on the channel fa(a)PS(a)% +v(a) = Afala) =0 (9)
direction were dismissed for the following reasons:
« In the considered channel model, channel norm and chanRewriting in terms ofv/(a) = ;;(—(‘2) this becomes:
nel direction have independent distributions, and channel
direction is isotropically distributed on the unit sphene i Ps(a) 9g(a, b(a)) F(a)—A=0 (10)
CNe, 9b(a)
« As users are independent and do not share state informaAssumption 2:9(a, b(a)) is an increasing function df(a).

tion, and channel directions and their quantized Versionsiis is quite natural, since quantizing more accurately ld/ou

are |sotrop|ca_lly d'Str'bUted_(Cf' section |I-B), th_e_ PED |ead to better interference cancelation, and consequieigther
bility of a particular user being scheduled conditioned Oé\/erage rate

its current channel state information will be a function of This implies thatA > 0. Moreover the concavity of

Ehg cf:_r?mnel norm atlr(])ned. Simi(ljar argu;ntints maytbfj usifa’b(a)) in b(a) means tha gézlz),l;(a)) is maximum ab(a) —
0 Justily removing the dependency of the expected raff Denoting by\*, v*(a) andb*(a) the values of the different

given current channel state. variables at the optimum, the following holds:
Thus, the objective is to maximize a user’s expected rates
as given in (4), subject to an average feedback rate comstrai
B per user (since users have i.i.d. distributed channeks,ighi Ps(a) 99(a, b(a))
the same as solving the problem for a system-wide average ob(a)
feedback rate ofVB): thenb*(a) = 0.
9g(a,b(a))

/oo b(a) f(a)da = B, ) Assumption 3:Pg(a) and T |pay—o are increasing

0 functions of a. Ps(a) being an increasing function is also
b(a), corresponding to the number of feedback bits as iatuitive since the higher the channel norm, the higherdast
function of channel norm squared Clearly our objective is under perfect CSIT) the probability of being scheduled.
to determine the best functidiia), which is done below. To  This implies that the left-hand side of the above equation
simplify notation, we define the following functions of clrasd  is an increasing function af, so that a threshold value aof

<\ (11)
b(a)=0

norma and associated feedback bit rate): which will be denotedipresn, €Xists, such thai*(a) = 0 for
N a < agnresn, Whereas otherwisg* (a) solves
9(a,b(a)) = E[R|a = a] (6) Sa(a, b(a)
gla, ola

Ps(a) =~ =\ (12)

and s
(@) |yay=pe(a)
Ps(a) £ Pr[S|a = d (7) It thus becomes possible to solve the problem numerically,

via the bisection method for example, providéd(a) and
g(a,b(a)) can be evaluated.

In order to tackle the above optimization problem, we begin
by relaxing the constraint oh(a) being an integer-valued B. Conditional Expected Rate

function. Moreover, we assume the following: I
log | 1+ 7l la, b(a)
1+ N%a SNt |hu, |2 ’

A. 'Water-filling’ Solution

Assumption 1:g(a,b(a)) is a concave function ob(a). g(a,b(a)) =E
This is not necessarily obvious but will turn out to be met

7j=1
by our estimate ofj(a, b(a)). (13)
This makes the problem a (functional) convex optimization -
problem, and guarantees an optimum solution. whereh is the channel direction vector,is the beamforming
The corresponding Lagrangian is given by: vector corresponding to the user’s datg,are the remaining

- - beamforming vectors, and conditioning is ovebeing equal
L =FER — \ (/ b(a) fu(a)da — B) +/ v(a)b(a)da to a, and the associated feedback rate being equa|dn
0 0 An upper bound on the above rate, which will be used to
approximate (13), is obtained by assuming perfectly orthog
nal (in their quantized channels, that is) users may be found
so that a user’s dedicated beamforming vector is aligneld wit
its quantized channel direction and interfering beamfagni

= [ aa[pstarsta.bian st
— A(b(a) = B)fa(a) + v(a)b(a)] (®)
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vectors are orthogonal to it (see [10] for example), andgisi "
the distribution in (3): ——rucor

18 | —©— Adaptive quantization, 2 bits per user B
guppe'r (a, b(a)) — © — Adaptive quantization, 4 bits per user

P 16 || —9— Uniform quantization, 2 bits per user
7 cos® e(b(a))
log | 1+ L

14

— $ — Uniform quantization, 2 bits per user
Pa .2
1+ & sin” e(b(a))

= Ecv(a)

N
N
T

=
S}
T

Pa (—1)Ne
:10g <1+E> — <1+W> 10g(1+17a)

a

©

sum rate (bits/sec/Hz)

g !

MDDy et 19
i=0 e
—b(a)/(N¢—1)

where for the sake of compactness, £ %

The derivative with respect tt(a) is given by:

Ne—l Ni—k 0

log 2 Nt 0 5 10 15 20 25 30

N [(—1)1“1 log(1+xa) = > (-1)F FF— k] (15) SR (@8)

Ta k=1 K Fig. 1. Achievable sum rate fav=5 users, and average feedback rates per
and can be shown to be nonnegative. user of 3 and 5 bits

One can also show that the second-order derivative is non-

ositive, thus proving concavity i . It can also be verified
P P 9 y ibla) IV. SIMULATION RESULTS

that%%w b is increasing iz, thus justifying the
a)=0 —
use of the solution presented in the previous section. The proposed scheme was tested. faWa= 2 system. As
results forp < 1 (n = 0.3, 0.4) were quite close to those of the
C. Conditional Scheduling Probability much simplem = 1 case, we only show results for the second

The probability of a user being scheduled given its irgnd third estimates of section IlI-C. Thus the feedback rate
stantaneous channel norm®s(a), has yet to be specified. adaptation algorithm was made to use these approximations,
The exact function will depend on the actual schedulirige water-filling solution determined, then numbers of bits
scheme used. Three possible estimates were considered¥&fie rounded down to ensure they are integers, while still
order of decreasing accuracy (and of decreasing compjexitigspecting the feedback rate constraint. Figure 1 shows the
they correspond to: achievable rates for average bits per user of 2 and 4 bith, bot

1) assuming the scheduler uses the Semiorthogonal Utrthe adaptive scheme) & 1) and for a constant feedback

Group (SUS) algorithm of [7]; this is a greedy usefate-

selection algorithm. At stage i < N, users which are The benefit of adaptive quantization is more poignant when
semiorthogonal to the already selected group are eligifléore users are in the system, as shown in figure 2, where with
for selection; among those, the one with the highest cha®? average of 4 feedback bits per user, the sum rate is almost
nel norm, after projection onto the null space of alread§Ple to keep up with the full CSIT case, whereas uniform
selected users’ channels, is chosen. Semiorthogonalitfli¢antization leads to the achievable sum rate gettingatatiir
defined as: two unit-norm column vectats andx, are as expected (see [8] for example). The figure also shows that
semiorthogonal ifx!x,|2 < 5, wheren < 1 needs to be USing a relatively inaccurate estimate for the schedulimdpp
specified to the algorithm. ability, which ignores semiorthogonality constraintsoyides

2) assuming users are selected according to the greedy (i8¢ improvements which are quite close to estimates that tr

selection scheme used in the greedy zero-forcing dirtiR take these constraints into consideration.
paper algorithm of [21]. The algorithm is equivalent to
the SUS algorithm with no semiorthogonality constraint
(n=1). An adaptive scheme in which the feedback rate is optimized
3) ignoring any orthogonality constraints in the schedulinas a function of the channel quality was proposed, and an
process (thereby creating a stronger bias towards higlagorithm to implement it was established for Rayleigh fiadi
channel norms), and approximatifity(a) by the proba- i.i.d. users in the system. Simulation results have ilatedl
bility of having a channel norm among thé, highest. the associated performance gains. Future work will aim at
No—1 extending the results to a more general channel model, and
Ps(a) ~ Z (‘7) (Fa(a))N 70 (1 — Fa(a))i (16) to more general quantization schemes.
=0
Given the complexity of the first two estimates, the corre-
sponding Ps(a) were obtained for theV, = 2 case only.  This work was supported in part by the RNRT ORMAC
Details may be found in the appendix. and the EU FP6 COOPCOM projects.
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and

22 T
—— Full CSIT
20| —©— Adaptive quantization (n = 1) il
—<— Adaptive quantization (norm-based)
— © — Uniform quantization
18
16
g
5 14
2
2
512
1]
£ 10
3
8 [2]
6
[3]
4
oL (4]
0 5 10 15 20 25 30
SNR (dB)
[5]
Fig. 2. Achievable sum rate faW=20 users, and average feedback rates per

user of 4 bits.

(6]

APPENDIX [7]
For any greedy scheduling algorith?s(a) can be written g
as:

[9]

Ny
Ps(a) = Z Pr[Si|a = a, a7)
i=1

where S; denotes the event of being the user selected at tﬁ?]

i*? stage of the scheduling algorithm.
From order statisticsPr[S1|a = a] = (F,(a))N~! for all

the estimates considered. On the other hand, finding closgg,

form solutions forPr[S;|a = al,i > 1 is much more tedious
when channel directions are incorporated in the analysis.
For N, = 2, for the SUS algorithmPr[Sz|a. = a] is the
probability of not having the best channel norm, of bein
semiorthogonal to the user who does, and of having, am

U(z,ay=n—e"

z < (1-n)d
otherwise

(1 - ne T
e [(1+ad)(1—n)—a]

B

Equation (18) may be evaluated numerically. Note that fer th
n = 1 case, the summation reduces to its last term.
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