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Abstract— We consider a MIMO broadcast channel where
the channel state information at the transmitter (CSIT), to be
used for user scheduling and beamforming, is gained througha
limited-rate feedback channel. In view of optimizing the overall
spectral efficiency of the system, we propose an adaptive scheme
in which the feedback rate is no longer constant but rather
optimized as a function of the time-dependent channel quality
seen at the user side. One key idea is that, under an average
feedback rate constraint, a user ought to provide more feedback
at moments when it is more likely to be scheduled. We provide the
theoretical grounds for our approach then derive quasi-optimal
feedback resource allocation schemes, the performance of which
is illustrated through Monte Carlo simulations.

I. I NTRODUCTION

Much recent research has focussed on the use of multiple
antennas in wireless networks, and on the practical realization
of the associated capacity gains. In a system withNt antennas
at the transmitter (base station) andN ≥ Nt single-antenna
receivers (users), up toNt streams may be broadcast simul-
taneously over the channel1; the attained rates may be further
enhanced by appropriate selection of who to transmit to, i.e.
by profiting from multi-user diversity (MUD) [2].

Given the complexity of the dirty paper coding scheme
(DPC) required to attain any point within the capacity region
of the Gaussian MIMO Broadcast channel with full channel
state information at the transmitter (CSIT) (established in [3]),
several sub-optimal schemes have been proposed that try to
approach important points in said capacity region, including
the maximum sum-rate point [4], [5]. The importance of CSIT
in achieving capacity, and its cost in terms of overhead needed
to feed back the CSI to the transmitter, has also instigated
many recent publications dealing with the limited feedback
CSIT case (see [6] and references therein). The present work
falls under this category of investigation.

Most approaches to multiuser MIMO (MU-MIMO) trans-
mission under partial CSI have centered on linear precoding,
especially zero-forcing beamforming (ZFBF), which is much
simpler than nonlinear processing (required for implementing

1Effectively, for users with independent Rayleigh fading channels up toN2

t

streams may be transmitted [1]. However the gain obtained from transmitting
to more thanNt users is normally limited. Moreover, for many linear
transmission schemes such as the zero-forcing scheme assumed here, it is
in fact not possible to transmit to more thanNt users at a time.

the optimal DPC scheme, for example), and still achieves rates
quite close to capacity, especially in the large number of users
case [7]. Under ZFBF, the fed-back CSI is used to design a
zero-forcing (ZF) precoding channel matrix, eliminating inter-
user interference when perfect CSI is available. With such
a scheme, the same capacity scaling as the optimal one, in
terms of multiplexing and MUD gains, is possibleprovided
the feedback rate scales linearly with SNR in dB[8], [9], [10].

The strategies for representing CSIT through a limited
feedback channel are diverse [6]. In most previous work a
time-constant rate is allocated to the feedback channel from the
users to the base, where the number of bits used to represent
the CSIT is optimized as function of fixed parameters such as
the number of users and the average SNR. In recent work [11]
the constant feedback rate is split across two feedback stages,
one stage for scheduling and another stage for beamforming,
where the number of CSIT bits is different for the two stages,
yet remains time-constant.

The key intuition behind this paper is that, if each user were
subject to anaveragefeedback rate constraint, rather than a
peak constraint, then the resource allocated for feedback at
each moment could be optimized as function of the instanta-
neous channel conditions. In particular, one expects that in a
system where the number of usersN exceeds the number of
antennas at the baseNt, the accuracy with which the user
channel must be described to the latter should be made a
function of both (i) the user’s channel qualityand (ii) the
probability with which this user will be selected.

In a way which is reminiscent of power allocation schemes
over time-varying channels (e.g. [12]), we propose an adaptive
feedback framework where the user self-optimizes his feed-
back resource over time so as to match an average feedback
rate constraint. A ’rate-waterfilling’ allocation scheme is ob-
tained for certain conditions, and the result is specialized to
the case ofNt = 2 antennas and an arbitrary number of users.

Interestingly, the proposed framework can be interpreted
as an extension of the on-off feedback scheme proposed in
[13] for SISO. In that work, feedback reduction is realized
by silencing users for which the SINR estimate is below a
certain threshold, while a constant feedback rate is used for
users which pass the threshold. Extensions to the MIMO case
were given in [14], [15] whereby not only the channel quality
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but also the accuracy of the quantized channel direction is
considered in the feedback decision process. This contrasts
with our approach where the adaptive process tweaks the
quantization accuracy according to the channel quality seen
by the user and, importantly, according to the probability of
selection that the user estimates for itself. Another extension of
this opportunistic approach is taken in [16], where a scalable
feedback protocol is proposed, whereby several rounds of
threshold-based feedback are done to determine the best user
set. The protocol is designed in such a way that the number
of feedback slots is bounded.

Regarding the quantization scheme used in this paper, we
build on the line of work of [9], [10], [17] where the quanti-
zation scheme focuses on the direction information while the
channel quality indicator (CQI) (in our case the channel norm,
but often some estimate of the achievable SINR) is assumed
unquantized (or quantized with fixed, high accuracy). As our
aim is to keep feedback bounded, one could consider extending
the work to incorporate the CQI quantization in the adaptation
process.

The performance gain of our adaptive feedback framework
over a non-adaptive one is illustrated with Monte Carlo
simulations.

We note that throughout our discussions we make the
common assumption of perfect channel state information at
the receiver. We do not take training on the downlink into
consideration. These matters have been tackled in the recent
publication [18].

Notation: E denotes statistical expectation.Cn represents
the n-dimensional complex space. Boldface lowercase letters
denote vectors, and boldface uppercase matrices.fx(.) gives
the probability density function (pdf) of random variablex,
andFx(.) its cumulative density function (cdf). The probability
of an eventA occuring is denoted byPr[A]. The l2-norm of
vector x is denoted as‖x‖, and x̃ , x

‖x‖ . Finally, log(.) is
the natural logarithm.

II. SYSTEM MODEL

We consider a multi-antenna Gaussian broadcast channel,
where a transmitter equipped withNt antennas communicates
with N ≥ Nt single-antenna receivers. The latter are assumed
to have perfect channel knowledge. The received signal at user
k, denotedyk ∈ C can be written as:

yk = hkx + nk (1)

where x ∈ CNt×1 is the transmitted signal vector,hk ∈
C1×Nt and andnk ∈ C represent the channel vector and the
noise at thekth user, respectively. The noise vector consists
of i.i.d. zero mean unit variance complex Gaussian random
variables (r.v.’s),CN (0, 1). Furthermore, we assume a block-
fading channel and focus on the ergodic sum rate as system
performance measure.

A. User Selection and Precoding Scheme

ZFBF with uniform power allocation is the adopted precod-
ing scheme. Thus, the transmitted signalx is given by:

x =

√

P

Nt
Ws (2)

whereW ∈ CNt×Nt is a zero-forcing matrix having unit-norm
column vectors,s contains the symbols fromNt independently
generated zero-mean unit-variance Gaussian codewords, and
P is the average total transmit power. The scheduling scheme
tries to maximize the sum rate achieved by ZFBF toNt

users, based on the fed-back CSI: in the optimal case, this
is done through exhaustive search over all groups ofNt users;
a suboptimal scheme would use a greedy algorithm such as
those of [7], [21], and may actually schedule fewer users.

B. CSI and Quantization

For our derivations, we assume theN receivers have i.i.d.
Rayleigh fading channels, and that CSI consists of feeding
back one scalar (the channel norm), and a quantized version
of the channel direction as was done previously in [9], [10],
[17], where we usẽh to denote the true direction and̂h to
denote its quantized version.

The only assumption we make about the CDI quantization
codebooks, is that some amount of (’controlled’) randomiza-
tion exists, so that one can claim that different users’ quantized
directions are independent of each other, and that on average
the fed-back quantized directions are uniformly distributed on
the unit sphere inCNt , as are the actual channel directions.
Random vector quantization (RVQ) [19], used in the simu-
lations, satisfies this assumption, as each user has different
and independently generated codebooks, a codebook of size
2b consisting of2b unit-vectors independently sampled from
the isotropic distribution on said sphere. The corresponding
quantization error is defined assin2 ǫ, whereǫ , ∠(h̃, ĥ), is
the angle between the true and quantized channel directions,
and its cdf is upper-bounded by [20]:

Fsin2 ǫ(x) =

{

δ1−NtxNt−1 0 ≤ x ≤ δ

1 x > δ
(3)

whereδ , 2−b/(Nt−1). This distribution will be used in our
derivations below.

III. A DAPTIVE FEEDBACK RATE ALLOCATION

As noted in the introduction, under an average feedback rate
constraint, it makes sense for a given user to quantize its chan-
nel more accurately if2 (i) it is more likely to be scheduled, and
(ii) its channel quality is better, i.e. if the associated expected
rate is higher. In doing so, a user maximizes its expected rate,
given its local knowledge (its instantaneous CSI, the channel
state statistics of the other users, the number of users in the
system and the transmit power at the base station).

2Note that these conditions are interrelated, since the basestation tries to
maximize the sum rate.
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Letting S denote the event of being scheduled, the expected
rate may be expressed as:

ER =

∫ ∞

0

Pr[S|α = a]E[R|α = a]fα(a)da, (4)

whereα , ‖h‖2, and possible dependencies on the channel
direction were dismissed for the following reasons:

• In the considered channel model, channel norm and chan-
nel direction have independent distributions, and channel
direction is isotropically distributed on the unit sphere in
CNt .

• As users are independent and do not share state informa-
tion, and channel directions and their quantized versions
are isotropically distributed (cf. section II-B), the proba-
bility of a particular user being scheduled conditioned on
its current channel state information will be a function of
the channel norm alone. Similar arguments may be used
to justify removing the dependency of the expected rate
given current channel state.

Thus, the objective is to maximize a user’s expected rate
as given in (4), subject to an average feedback rate constraint
B̄ per user (since users have i.i.d. distributed channels, this is
the same as solving the problem for a system-wide average
feedback rate ofNB̄):

∫ ∞

0

b(a)fα(a)da = B̄, (5)

b(a), corresponding to the number of feedback bits as a
function of channel norm squareda. Clearly our objective is
to determine the best functionb(a), which is done below. To
simplify notation, we define the following functions of channel
norm a and associated feedback bit rateb(a):

g(a, b(a)) , E[R|α = a] (6)

and

PS(a) , Pr[S|α = a] (7)

A. ’Water-filling’ Solution

In order to tackle the above optimization problem, we begin
by relaxing the constraint onb(a) being an integer-valued
function. Moreover, we assume the following:

Assumption 1:g(a, b(a)) is a concave function ofb(a).
This is not necessarily obvious but will turn out to be met
by our estimate ofg(a, b(a)).

This makes the problem a (functional) convex optimization
problem, and guarantees an optimum solution.

The corresponding Lagrangian is given by:

L = ER − λ

(
∫ ∞

0

b(a)fα(a)da − B̄

)

+

∫ ∞

0

ν(a)b(a)da

=

∫ ∞

0

da
[

PS(a)g(a, b(a))fα(a)

− λ(b(a) − B̄)fα(a) + ν(a)b(a)
]

(8)

whereλ andν(a) ≥ 0, a ∈ [0,∞) are the Lagrange multipliers
associated with the average feedback rate and the positivity of
b(a) constraints, respectively.

The corresponding Euler-Lagrange equation is given by:

fα(a)PS(a)
∂g(a, b(a))

∂b(a)
+ ν(a) − λfα(a) = 0 (9)

Rewriting in terms ofν′(a) = ν(a)
fα(a) , this becomes:

PS(a)
∂g(a, b(a))

∂b(a)
+ ν′(a) − λ = 0 (10)

Assumption 2:g(a, b(a)) is an increasing function ofb(a).
This is quite natural, since quantizing more accurately would
lead to better interference cancelation, and consequentlyhigher
average rate.

This implies that λ > 0. Moreover the concavity of
g(a, b(a)) in b(a) means that∂g(a,b(a))

∂b(a) is maximum atb(a) =

0. Denoting byλ∗, ν∗(a) andb∗(a) the values of the different
variables at the optimum, the following holds:

If

PS(a)
∂g(a, b(a))

∂b(a)

∣

∣

∣

∣

b(a)=0

< λ∗ (11)

thenb∗(a) = 0.

Assumption 3:PS(a) and ∂g(a,b(a))
∂b(a)

∣

∣

∣

b(a)=0
are increasing

functions of a. PS(a) being an increasing function is also
intuitive since the higher the channel norm, the higher (at least
under perfect CSIT) the probability of being scheduled.

This implies that the left-hand side of the above equation
is an increasing function ofa, so that a threshold value ofa,
which will be denotedathresh, exists, such thatb∗(a) = 0 for
a ≤ athresh whereas otherwiseb∗(a) solves

PS(a)
∂g(a, b(a))

∂b(a)

∣

∣

∣

∣

b(a)=b∗(a)

= λ∗ (12)

It thus becomes possible to solve the problem numerically,
via the bisection method for example, providedPS(a) and
g(a, b(a)) can be evaluated.

B. Conditional Expected Rate

g(a, b(a)) = E

[

log

(

1 +
P
Nt

a|h̃v|2

1 + P
Nt

a
∑Nt−1

j=1 |h̃uj |2

)

|a, b(a)

]

(13)

whereh̃ is the channel direction vector,v is the beamforming
vector corresponding to the user’s data,uj are the remaining
beamforming vectors, and conditioning is overα being equal
to a, and the associated feedback rate being equal tob(a).

An upper bound on the above rate, which will be used to
approximate (13), is obtained by assuming perfectly orthogo-
nal (in their quantized channels, that is) users may be found,
so that a user’s dedicated beamforming vector is aligned with
its quantized channel direction and interfering beamforming
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vectors are orthogonal to it (see [10] for example), and using
the distribution in (3):

gupper(a, b(a))

= Eǫ(b(a))

[

log

(

1 +
Pa
Nt

cos2 ǫ(b(a))

1 + Pa
Nt

sin2 ǫ(b(a))

)]

= log

(

1 +
Pa

Nt

)

−

(

1 +
(−1)Nt

xNt−1
a

)

log (1 + xa)

+

Nt−2
∑

i=0

(−1)i

xi
a

1

Nt − 1 − i
, (14)

where for the sake of compactness,xa , Pa2−b(a)/(Nt−1)

Nt
.

The derivative with respect tob(a) is given by:

log 2

xNt−1
a

[

(−1)Nt−1 log(1 + xa) −
Nt−1
∑

k=1

(−1)k xNt−k
a

Nt − k

]

(15)

and can be shown to be nonnegative.
One can also show that the second-order derivative is non-

positive, thus proving concavity inb(a). It can also be verified

that ∂gupper(a,b(a))
∂b(a)

∣

∣

∣

b(a)=0
is increasing ina, thus justifying the

use of the solution presented in the previous section.

C. Conditional Scheduling Probability

The probability of a user being scheduled given its in-
stantaneous channel norm,PS(a), has yet to be specified.
The exact function will depend on the actual scheduling
scheme used. Three possible estimates were considered; in
order of decreasing accuracy (and of decreasing complexity),
they correspond to:

1) assuming the scheduler uses the Semiorthogonal User
Group (SUS) algorithm of [7]; this is a greedy user
selection algorithm. At stagei, i ≤ Nt, users which are
semiorthogonal to the already selected group are eligible
for selection; among those, the one with the highest chan-
nel norm, after projection onto the null space of already
selected users’ channels, is chosen. Semiorthogonality is
defined as: two unit-norm column vectorsx1 andx2 are
semiorthogonal if|xH

1 x2|2 ≤ η, whereη < 1 needs to be
specified to the algorithm.

2) assuming users are selected according to the greedy user
selection scheme used in the greedy zero-forcing dirty-
paper algorithm of [21]. The algorithm is equivalent to
the SUS algorithm with no semiorthogonality constraint
(η = 1).

3) ignoring any orthogonality constraints in the scheduling
process (thereby creating a stronger bias towards higher
channel norms), and approximatingPS(a) by the proba-
bility of having a channel norm among theNt highest.

PS(a) ≈
Nt−1
∑

i=0

(

N

i

)

(Fα(a))N−i (1 − Fα(a))i (16)

Given the complexity of the first two estimates, the corre-
spondingPS(a) were obtained for theNt = 2 case only.
Details may be found in the appendix.
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Fig. 1. Achievable sum rate forN=5 users, and average feedback rates per
user of 3 and 5 bits

IV. SIMULATION RESULTS

The proposed scheme was tested for aNt = 2 system. As
results forη < 1 (η = 0.3, 0.4) were quite close to those of the
much simplerη = 1 case, we only show results for the second
and third estimates of section III-C. Thus the feedback rate
adaptation algorithm was made to use these approximations,
the water-filling solution determined, then numbers of bits
were rounded down to ensure they are integers, while still
respecting the feedback rate constraint. Figure 1 shows the
achievable rates for average bits per user of 2 and 4 bits, both
for the adaptive scheme (η = 1) and for a constant feedback
rate.

The benefit of adaptive quantization is more poignant when
more users are in the system, as shown in figure 2, where with
an average of 4 feedback bits per user, the sum rate is almost
able to keep up with the full CSIT case, whereas uniform
quantization leads to the achievable sum rate getting saturated
as expected (see [8] for example). The figure also shows that
using a relatively inaccurate estimate for the scheduling prob-
ability, which ignores semiorthogonality constraints, provides
rate improvements which are quite close to estimates that try
to take these constraints into consideration.

V. CONCLUSION

An adaptive scheme in which the feedback rate is optimized
as a function of the channel quality was proposed, and an
algorithm to implement it was established for Rayleigh fading
i.i.d. users in the system. Simulation results have illustrated
the associated performance gains. Future work will aim at
extending the results to a more general channel model, and
to more general quantization schemes.
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APPENDIX

For any greedy scheduling algorithm,PS(a) can be written
as:

PS(a) =

Nt
∑

i=1

Pr[Si|α = a], (17)

whereSi denotes the event of being the user selected at the
ith stage of the scheduling algorithm.

From order statistics,Pr[S1|α = a] = (Fα(a))N−1 for all
the estimates considered. On the other hand, finding closed-
form solutions forPr[Si|α = a], i > 1 is much more tedious
when channel directions are incorporated in the analysis.

For Nt = 2, for the SUS algorithm,Pr[S2|α = a] is the
probability of not having the best channel norm, of being
semiorthogonal to the user who does, and of having, among
all semiorthogonal users, the best channel norm projected on
that user’s channel. After some simplications, and plugging in
the expressions for the channel norm and quantization error
distributions forNt = 2, this probability may be expressed as:

Pr[S2|α = a]

= (N − 1)

N−2
∑

k=0

(

N − 2

k

)

(1 − η)N−2−k

.

[
∫ ∞

a

a′e−a′

[

1 − (1 + a′)e−a′

]N−2−k

Pk(a, a′)da′

]

(18)

where

Pk(a, a′) =
1

a

∫ a

(1−η)a

(U(x, a′))
k
dx (19)

and

U(x, a′) = η − e−x

+

{

(1 − η)e−
x

1−η x < (1 − η)a′

e−a′

[(1 + a′)(1 − η) − x] otherwise

Equation (18) may be evaluated numerically. Note that for the
η = 1 case, the summation reduces to its last term.
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