The Quest for Multi-headed Worms

Van-Hau Pham, Marc Dacier, Guillaume Urvoy-Keller, and Ui#oEn-Najjary

Institut Eurecom, Sophia—Antipolis, France
pham daci er, urvoy, ennaj j ar @urecom fr

Abstract. In [6], Pouget et al. have conjectured the existence of deecenulti-
headed worms and found a couple of them on attack tracestmallen a single
honeypot. These worms take advantage of several distitaxtkatechniques to
propagate but they use only one of them against a given tdfgan a victim’s
viewpoint, they are therefore indistinguishable from thken classical worms
that always propagate using the same attack vector or saquersee of attack
vectors. This paper aims at confirming the existence of theses by studying
a very large dataset. The validation process led to threeiitapt contributions.
First, we establish the existence and assess the impouétioee distinct classes
of attacks seen in the wild. Second, we propose a new methoattelate attack
traces time series and apply it to search for multi-headeansoThird, we offer
and discuss results of the analysis of 15 months of data igatiover 28 different
platforms located all over the world.

1 Introduction

The concept of worm, as a programming paradigm, has beesdinted more than 25
years ago [8] and has been used to propagate malicious coaléaoge scale as early
as September 1988 with the first ADM worm targeting the DNSaistructure [3] and
with the so called Morris worm, also known as the Internetwohitting the Internet
in November 1988 [9, 2]. However, one had to wait more thanyesars to see worms
routinely used by hackers and various techniques used tmspgetheir propagation on
the Internet [10]. We refer the interested reader to thenaray of worms published
in [12]. The authors provide several examples of worms,sifiging them according
to various viewpoints, namely worm target discovery aneécsdn strategies, worm
carrier mechanisms, worm activation, possible payloadd,@ausible attackers who
would employ a worm. As indicated in [12], worm authors ar¢é smmuch interested
anymore in gaining faith for having created the fastest worrthe worm having com-
promised the largest amount of machines. Instead, wornadprg is how seen as a
preliminary phase to conduct other fraudulent activiteg&in money using various
techniques (spam relays, extortion with DDoS threats, payelick fraud, etc.). There-
fore, worms are now designed to make their propagationsattisy as possible.
Multi-headed worms, identified by Pouget et al. in [6], bg/do a new class of
worms designed with stealthiness in mind. These sophisticarograms can break
into target machines using several different techniqubss, by itself, is not new. The
Morris worm [9], in 1988, already had this feature. It was paigating using attacks
against three different services: rshd, fingerd and serdifla¢ Morris worm, after

having selected a target, was trying all three attacks, ttee@another, interrupting the
process only in the case of a successful intrusion. Sevtrat worms have, since then,
used the same strategy. They all are fairly easy to idertidypks to the known sets (or
sequences) of attacks they try against their targets. Mekided worms, as defined in
[6], use a very different strategy: they probe each targét whly one of the attacks
they are capable of. This strategy decreases their charsiecoéss but increases their
stealthiness. Indeed, there will be no trace left anywhéghlighting the fact that a
new worm has been created combining attacks X, Y and Z as tiegever be tried
together by a given attacker against a given attackee.

In [6], the authors had used traces left on a simple low ictéya honeypot to
highlight the existence of a couple of such multi-headedm@propagating in the
Internet. At that time, only one of them, Nachia, had beemaakedged by intrusion
detection and antivirus vendors. This seminal work had le=eried out on a single
platform and, therefore, was not able to assess the segssgi the threats posed by
this new class of worms.

In this paper, we carry out a systematic identification of tiruéaded worms in
attack traces collected thanks to 28 distinct low intetactioneypot platforms, located
in 15 different countries, over a 15 month period. In ordepésform this experiment,
we had to design a different method than the one originaliyppsed in [6] because of
algorithmic complexity issues. The application of thisidation process led to three
important contributions: i) we establish the existence asgkss the importance of three
distinct classes of attacks seen in the wild; ii) we offera generic method to correlate
attack traces time series that could be applied to otheskifidatasets; iii) we offer and
discuss results of the analysis of 15 months of data gatloeed?8 different platforms
located all over the world.

The paper is structured as follows. Section 2 reviews thie sththe art and de-
scribes the two main reasons why the solution provided irdf@s not scale. Section
3 presents the three distinct steps of the new method we peoiip Identification and
selection of attack classes (ii) Identification of correthplatforms (iii) Root causes
identification. Section 4 provides a summarized descripdiiod discussion of the most
interesting results obtained. Section 5 concludes therpape

2 Problem statement

In this section, we describe the original solution providefb] for the identification of
multi-headed worms and explain the two main reasons whystiiigion does not scale.
For the sake of completeness, we first start by briefly deisqyithe data collection en-
vironment considered in that work as well as some definitafisrms used throughout
this paper.

2.1 The Leurré.com environment

The Leurré.com environment is a distributed setup of loteriaction honeypots. As
of now, there are approximately 50 different partners thagtla so-calleglatform
All platforms are configured exactly the same way. Each ptatfemulates, thanks to

honeyd [7], three virtual machines: a Windows 98 machinejrddivs NT Server, and
a Linux RedHat 7.3. These platforms are located in 30 diffeceuntries covering the
five continents. They are hosted by different types of ingtns (academic, industrial,
government, defense, SME, etc.). Most platforms have betveafor more than 24
months; the oldest one has been running since January 2003.

Each platform captures tcpdump traces of all packets semtddrom it. These files
are uploaded, on a daily basis, in a centralized Oracle data#iccessible to all partners
to carry out various kinds of analysis. The entity relatiipsdiagram of the database is
fairly complex and its description lies outside the scopéhid paper. However, a few
key concepts must be precisely defined in order to avoid asymadierstandings.

— Platform: A physical machine, hosting three virtual machines, catetedirectly
to the Internet and collecting tcpdump traces in the cordéttie Leurré.com envi-
ronment.

— Source A source corresponds to an IP address that has sent at leagtacket
to, at least, one platform. It is important to understand ¢hgiven IP address can
correspond to several distinct sources. Indeed, a giveerniains associated to a
given source as long as there is no more than 25 hours betweack2ts received
from that IP. After such a delay, a new identifier will be assid to the IP. By
grouping packets by sources instead of by IPs, we minimieeittk of gathering
packets sent by distinct physical machines that have besgnasl the same IP
dynamically after 25 hours.

— Ports SequenceA ports sequence is a time ordered sequence of ports (withou
duplicates) a source has contacted on a given virtual mackior example, if an
attacker sends the following packets: icmp, 135 TCP, 135 TIG®TCP to a given
virtual machine, the associated ports sequence will beesgmted by the string
ICMP|135T|139T. Each source can have, at most, three distinct ports segsienc
associated to it, per platform. As of now, we have observedraa 40,000 distinct
unigue ports sequences on all Leurré.com platforms.

— Cluster: A cluster is made of a group of sources that have left higimhjlar traces
on all platforms they have been seen on. Clusters have beeisely defined in [5].
They aim at grouping together attackers that are likely ¢duimg attacks with the
very same attack tool. Traces present in a given cluster hésatures in common,
one of them being to have targeted the same ports sequeneérasdchere above.
As of now, we have observed more than 154,900 differentetast

— Cluster time series A Cluster time series represents the amount of sources, on a
daily basis, associated to a given cluster on a given platftm other words, there
are, for a given cluster, as many cluster time series asqpiatf.

— Global Cluster time series A global cluster time series represents the sum of all
cluster time series associated to a given cluster. In otleedsy there is a single
global cluster time series associated to a given cluster.

— Platform time series A platform time series represents the sum of all clusteetim
series associated to a given platform. In other words, tiseaesingle platform time
series associated to a given platform.

2.2 Seminal work on the identification of multi-headed worms

Pouget et al. have proposed in [6] a method to discover rhekided attack tools. In that
paper, the authors explain that sources compromised by @& hesided worm leave, by
definition, distinct traces on the honeypots depending oichvattack they choose to
launch against them. As a result, the sources will be clasksifito as many different
clusters as there are different possible attacks for thewblowever, the various cluster
time series associated to a given multi-headed worm sheoldeover time in a similar
way as they all are a function of the total amount of machirmapgromised by that
multi-headed worm at any point in time. Therefore, by idigirtig cluster time series
that are very similar to each other appears to be a simplefijeieat way to identify
multi-headed worms. In [6], the authors have used the SAKregie [4] to calculate
the distance between all pairs of cluster time series data.

The authors have shown, by means of data extracted from & gitefform, the
existence of a couple of interesting multi-headed wormgiitpa much larger dataset
at our disposal, we were interested in verifying their resah a worldwide scale. Un-
fortunately, we found out that the detection method in [6¢sl@ot scale to that level
for two main reasons. First, the most straightforward wagéeoeralize the approach
to data collected on several platforms, instead of one, imdasure the distance be-
tween different global cluster time series. Experiencengh@s discussed below, that
this approach does not work when a large number of platfoatastéd in many differ-
ent places in the world are considered. The reason lies ifiaittethat worms do not
spread in an uniform way across the IP space. Therefore, v&¢ measure distances
between cluster time series observed on distinct platfanstead of global cluster time
series. Second, the authors in [6] considered a fixed timdavirof 1 year to assess the
distance between time series. This approach works for somnenee cases but, as we
demonstrate hereatfter, is also likely to miss many interggthenomena, the existence
of which is only visible during a couple of weeks. Therefdresir fixed time window
must be replaced by a sliding window.

Measuring distance between cluster time series on manfopia by means of a
sliding window leads to an algorithmic complexity probleimthe next three sections,
we provide examples of the two problems described above #iedaoformal complex-
ity analysis of these issues. Section 3 proposes a newaolataddress these identified
drawbacks of the original method.

Fixed time window vs sliding time window The top plot in Figure 1 presents the
global cluster time series for two distinct clusters, ovepeaxiod of more than 450
days. The first (resp. second) one represents sources rdogluster number 15715
(resp. 60231) only. The corresponding ports sequence sfaald 5715 (resp. 60231) is
1433TCP (resp. 5900TCP). The SAX distance, computed asibleddn [6], i.e., over
the whole observation period, would lead us to considerttiege two cluster time se-
ries are not correlated. However, when looking at the bogohin Figure 1, it is clear
that these curves are highly correlated between day 60 an@if#reason why SAX
gives a low similitude is mostly due to the activities happgrbefore day 60 as well
as after day 200. It can well be that the existence of the rhellided worm can only
be detected during a limited period of time. This is espéciaie for multi-headed

Cluster time series of clusters 15611 and 68049
- = Vi A [~
= om 68049 \\
15611 \/
-

- N PO
KAt N R N NCILS \ s
== Vet ® FAG0AS

Global cluster time series of clusters 60231 and 15715
1000 ! :

o
S
S

/

—
5]
=)

o
S

Number of sources
-
S
S

Number of sources

0 ‘ ‘ ‘ ‘ ‘
0 0 75 8 & 0 % 10
Time(dzy). Time(day)
Zoom from cTa§$ o day 150 Global cluster time series of clusters 15611 and 68049

3000

15611
2000] | = = 68049

N

[\
N
VA VRN

500

1000

Number of sources

‘- ~ e B ! = LS
40 60 80 100 120 140 160
Time(day)

Number of sources

-
70 75 80 85 90 9% 100
Time(day)

Fig. 1. Fixed time window vs sliding time g o Global cluster time series vs. cluster
window time series

worms that are using attacks that were already frequentbeied when the multi-
headed worm got launched. As a consequence, one cannoy sehpbn the usage of a
large fixed time window, as proposed in [6] to detect thosemgUsing a sliding time
window is obviously the way to go in order to address thiséssu

Global cluster time series vs. cluster time seriesThe top plot in Figure 2, shows
two distinct cluster time series on platform 18 over a pend80 days. The first (resp.

second) one represents the evolution of cluster number1(&&dp. 68049). The bot-
tom plot in Figure 2 represents the corresponding globaitelutime series (over all

platforms) over the same period for these two clusters. &lfigsires highlight the fact

that, on platform 18, the two cluster time series are higliyrelated between day 70
until day 100 whereas the corresponding global cluster 8erees are not. This can be
explained by the fact that a multi-headed worm is not neci#gsdserved everywhere

in the world. If the multi-headed worm is reusing attack westhat are frequently ob-
served elsewhere, its existence will remain hidden if weglebal cluster time series
instead of carrying out the analysis on each platform indepatly.

Working with global cluster time series is thus not an opti@me of the contri-
bution of this paper will be to demonstrate that, unlike glbtusters, platform time
series carry enough information so as to uncover correlataimong cluster time se-
ries. This is an important finding as it enables us to redueetmputational cost of the
correlation search phase as shown in the next section.

2.3 Complexity Analysis

From the previous two examples, it comes out that, in ordateal with these two
issues, we should apply the method proposed in [6] betwéefuater time series, for
every platform, over a sliding time window. Intuitively,gheads to a very large amount
of computations that we detail hereafter.

LetS = {S;},i = 1..N, be the set of platforms and = {cl;},i = 1..K be the
set of distinct clusters observed on all the platforms dyarperiod of T consecutive
days. Our objective is to identify all clusters that targegesubset’ C S of platforms
over a period off” < T consecutive days in a similar way. By similar, we mean that
the selected cluster time series on any two platforms’afre highly correlated.

To do so, we compute the correlation over a sliding windowizé £. For a total of
M time series {4/ < K x N as not all clusters are observed on all platforms), the total
number of correlations to be computed is given by:

¢ = M=l (;M_l)(T—L)
Cy = O(M>T)

We postpone until Section 4 the details of the numericalltesitained from the
experiments but, for now, the reader should be aware Atiadmounts to more than
59,000 in the 15 months period considered. Clearly the sgtipheneralization of the
method described in [6] is too expensive.

Our solution to reduce the complexity is twofold. First, wedfan automated way to
select a subse¥’ from M such thatM’ < M. The reduction technique is presented
in Section 3.1. Experimentally, we found out that’ can be an order of magnitude
smaller thanM/. After such selection, the complexity comes dowrCtp= O(M’%T')
and(Cy < (. However, the cost’s remains prohibitive and this leads to the second
step of our method where we compute filtered platform timeeserorresponding to the
sum of activities corresponding to the&€ time series per platform. We then look for
similitude between these filtered platform time seriesdadtof between cluster time
series. The cost to pay for finding similar platform time ssrtomes down to

Oy = W(T)
C3 = O(N>T)

This leads us to the identification of a certain amaBrftvith P < T'— L) of periods in
which we have a group aF; (with < = 1..P and forVi|G;| < N) correlated platform
time series. For each period, we have to find the cluster resiple for the identified
similarity. In other words, for each period, we must comphe)’ cluster time series
with, at maximum,V filtered platform time series. This leads to the identificatof
the root causes of the similarity on each platform. If we defih= maxzG;|i = 1..P,
an upper bound of the cost of this operation can be give@by= P x G x M’.
Thus, the total cost of this method is equald® = Cs; + C4, and we havel; =
O(N?T + PGM'). In the general case, nothing ensugepriori, thatCs < Cy, < C;
but, as we expect the valuesdf P andG to be very small compared to M aidd’, this
justifies the choice of this solution. Experimental resphissented in Section 4 validate
this choice.

3 Methodology

We detail in this section the three steps of our methodologyhave eluded to in the
previous Section:

1. All attack traces can be grouped into three distinct fea®ilOnly one of them is
likely to contain traces due to multi-headed worms. Thexefthe method starts by
selecting in our dataset those traces that belong to thergekesting family.

2. Our platforms observe a limited number of hits per dayt d@me points in time
two platforms become the target of a multi-headed worm, wkentlae assumption
that this will significantly impact the overall platform temseries on that period.
Therefore, the method identifies groups of platform timeéesestrongly correlated
over different periods of time and identifies the root causeshose similitudes.
Similarly to the approach followed in [6], if a similitude t®used by many attack
tools, we believe this reveals the existence of a multi-bdagorm. Obviously, if
the intensity of the attack is not high enough that it imp#uotsplatform time series
of at least two platforms, our method will miss it. The vatydof the method is
further discussed while presenting the experimental tegulSection 4.

3. We search for the root causes, i.e. the clusters that apomnsible, if any, for the
similar shape of the filtered platform time series in eaclugt®nce we have found
them, we verify that they did not also existed on other platf®than the ones we
had in the group under study. This can happen if the influehtieese clusters on
the other filtered platform time series was not strong endaghclude them in the
group of similar platforms.

3.1 Construction of filtered platform time series

As explained before, the first step of our technique aims dticing the number of
cluster time series we need to focus on. Our method to redhecsize of the problem
is based on our experience with attack traces collectedandurré.com project. We
have observed that cluster time series can be categori®a tistinct families:

1. Peaked family. Time series in this family exhibit a significant peak of veduduring
a very small period of one or two days and almost no activiheowise. In most
cases, the corresponding cluster is observed on a sindfenpfeonly. We leave for
future work a more in depth study of this specific type of plreeoa and we thus
exclude those time series when building platform time serie

2. Stable family: Time series in this family have a roughly constant behasliging
the whole observation period. As we make assumption thaelkeded clusters due
to multi-headed worms exhibits time series having similaticeable variations
over time, stable clusters are meaningless in the contettti@fanalysis. We can
simply remove them from our dataset. Note that removing thkls ones has little
impact on the shape of the platform time series. However, asralarge num-
ber of time series falls into the stable family, removingrth&om our initial set
dramatically reduces the computational cost.

3. Strongly varying family : Time series in this family are characterized by wide am-
plitude variations over long periods of time. Our objecisé uncover phenomena

! There is no reason to believe that the findings describedaftereare not also applicable to
datasets collected by other projects. If that were the daemuld certainly be worth investi-
gating the reasons why.

that involve several cluster time series over periods oétlarger than a few days,
we restrict our attention to those time series in the remgjioif this paper.

We proceed as follows to classify each cluster time seri@sdne of the three fam-
ilies introduced above. We first compute the standard dieviaif the time series over
the whole observation period. If it is smaller than a thrédldo then we flag the time
series as belonging to the stable family. Otherwise, we fiite the outlier values from
the time series. Outliers are defined as the two greatestraatiest values of the time
series. Then we compute the standard deviation of newlyirsdaime series. If the
standard deviation is now smaller théywe declare the time series as being a peaked
time series. Otherwise, we declare the time series as bielgng the strongly varying
family and we thus keep it in our set of cluster time seriegshkabove procedure, we
used = 2, which is intended to be a conservative value, based on fuahinspection
of a lot of cluster time series.

)
=}

1000

N
a
-

= = Qriginal data
—— Peaks removed|
++ Clean data

0

N
=]

600

Number of sources
P
o

N
S}
Number of sources

a

L] =aa S S S \\/ el WA

o

20 L L L
100 102 104 106 108 110 112 114 116 118 120
Time(day)

0 5 10 15 20
Time(day)

Fig. 3. Example of the peaked family time

; Fig. 4. Data Pre-processing
series

Figure 3 illustrates the algorithm for a cluster time setlest spans over 20 days.
The standard deviation of the time series is 6.51. Sincajitgater than 2, our algorithm
can not declare this time series as a stable one upfront. Yidilter the extreme values
from this time series , which for the case of Figure 3 boils ddw cutting the peak
on day 12. The resulting time series is obviously smoothan the initial one and its
standard deviation is 0.46, which is smaller than the trolesR. Hence, our algorithm
eventually flags the time series of Figure 3 as belonginge@#aked family.

The cost of the above filtering process comes on top of the 1ityevaluated in
the previous Section but it is very small compared’tosince its complexity is linear
with respect to the number of clusters and the algorithmlirea for each cluster is
much cheaper to run than the evaluation of the correlatitwédxn two clusters (over
sliding windows), as discussed before.

Figure 4 illustrates our pre-processing technique. Wetplete platform time series
for platform 18.Original datais the platform time series obtained using all clusters.
It is made of 6162 clusters in this specific caBeaks remove obtained once the
peaked time series have been filtered out. It is made of 6138xk as 54 clusters were
peaks in this exampl€lean datais the platform time series data once the peaked and

stable time series have been removed. It is made of only 3%eckl This highlights the
usefulness of the preprocessing phase.

Figure 4 clearly shows thatriginal datais quite different fromclean datadue to
the two peaks at the same position (110). These peaks (dustenber 165249 and
165143) were created by 510 sources. This attack was neitiserved before or after
day 80, nor was it observed on any other platform. As we cantke@eaks removed
andclean datatime series have a very similar shape. They differ only wibpect
to their amplitude. However, we remind the reader thatgbaks removetime series
contain 6108 clusters and that only 39 (strongly varying)etiseries remain iglean
data

3.2 Groups of Correlated Filtered Platform Time Series

In this section, we explain how we identify correlated greuipe. groups of platforms
for which any two filtered platform time series are mutualtyrelated for a given pe-
riod of 7" days. Obviously, one wants to maximize the number of platfomvolved
and the duratiorf” over which each group exists. The proposed algorithm is nofide
three successive steps described in the following sulosecti) pairwise comparison of
filtered platform time series, ii) construction of groupsaofrrelated platforms within
a given time period and iii) reorganization of the time pdedo maximize them on a
group by group basis.

Pairwise correlation of filtered platform time series The first step of our algorithm
consists in computing the correlation of any two platformeiseries using a sliding
window of L days. Consider two time serigsand?. Let cor(A, B) be the coefficient
of correlation of two vectors A and B. The correlation veatbof ¢ and¥ is computed

as follows:

Clk] = cor(®[k, k + L], W[k, k+ L)), k=1,...T—L

@ and¥ are considered to be correlated in the intefvalt.] if C[k] is greater than
a given threshold for ever value in the intervalt;,t2 — L]. We use as a measure of
correlation the Pearson coefficient of correlation [11].

An important parameter of our procedure is the choice of kiieshold to declare
that two time series are correlated. Again, we rely on exgyee, i.e. visual inspection
of a lot of cases, to choose our threshold. We end up havingeahhbld of 0.75. We
note that this is a high, and thus safe, value as 0.4 is alreaafsidered as a significant
correlation value in the statistical literature.

Figure 5 illustrates the first step of our procedure. Thefptat time series for
platforms 2 and 15 are deemed correlated in the inteftyats] as their correlation
vector is greater than the threshold of 0.75 in the peffodts] = [t1,t35 — L].

Application of the above procedure to all the pairs of platidime series leads to
the identification of a set of correlated pairs of platformeidifferent periods of time.
Figure 6 illustrates the situation at the end of the first ph#tsshows that platform time
series 4 and 7 (curvé&:7) are correlated from day 1 to day 4, platform time series 1
and 8 (curve8&: 1) are correlated from day 1 to day 6, etc.

1000, 15
“““ platform 2 time series =~ correlation value

—platform 15 time series| | [threshold=0.75

500

Number of sources
Correlation value

Time(day)

Fig. 5. Example of correlated platform time series

Correlated groups extraction per time interval Based on this first result, our next
objective is to divide the time line from 0 {6 into a set of time intervals such that the
pairs of platforms associated to one interval are corrdlateer the whole duration of
this interval. Within each interval, we want to identify gims of platforms such that all
platforms in the group are correlated to all others. The @tigm we use to achieve this
task can be summarized as follow:

1. i=1,Tsart; = 1,Tena,; = 1, L is the sliding window parameter.

2. We defineS; as being the set of pairs of correlated platforms at tigg,: ;.

3. We exclude front' all pairs of correlated platforms that are not correlatetl Lt
least,Ttqrt,i + L.

4. We defin€l.,q,; as being the first end point of the pairwise correlationS.iinter-
val i is then defined as;qr1,i, Tend.i]; We proceed to the next interval- i + 1

5. We definely;q,+,; as being the first start point of a pairwise correlations rett y
presentinsS.

6. If Tsare,s < T — L, we reinitializeS to () and go back to step 2; if not the algorithm
terminates.

Applying this algorithm to the case described in Figure &dketo the identification
of the three periods defined in Table 1 when we chose L=3.

Table 1.Periods

Tl = Tstart,hTend,l — 174 Sl = (47 7)7 (871)7(172)7(278)}
1> = Tsta'rt,?, Tend,2 = 37 6 Sl = {(5 1), (1, 2), (2, 8), (9, 10)}
TB = Tsta'rt,?y, Tend,3 = 47 8 Sl = {() 1) (17 2)7 (23 5)}

i
S
S
z
©
S

®)

a) period T b) period T2 c) period T3

4 5
Time(day)
Fig. 7. Correlated groups extraction

Fig. 6. Correlated pairs of platform time series
over time

Having identified time intervals, we now need to group togetil platforms that
are correlated with each other. If we use a graph representat the correlated pairs
identified in the previous stage of our algorithm, the prablsorresponds to the iden-
tification of clique$ within the graph. We generate one graph per period. Nodes in a
graph represent platform time series and if two platformetiseries are correlated in
that period, their edges are connected. Figure 7 depictgridgghs we obtain for the
periodsTy, T» andT3 extracted from Figure 6. The clique extraction problem El&n
NP-complete one. In our case, this is not an issue as the mufibedes (platforms)
per period is very small, typically less than 20.

Reorganization of the time periods From the example given above, it is clear that our
algorithm generates overlapping time intervals and thatvéery same group of corre-
lated platforms can be found in these overlapping periodsiristance, the correlated
group consisting of platforms 1,2 and 8 appears in pefipa@nd also in periods in
Figure 7.

In the last step, we revisit the various groups obtained anda group by group
basis, merge time intervals whenever the same group is fouhslo consecutive or
overlapping periods. This eventually leads to the follogviitme periods (Table 2) and
groups for the preceding example.

Table 2. Groups

T, = [L4]] G = (4,7)
T> = [1,6]|G= = (1,2,8)
Ts = [3,6]] Gs = (9, 10)
Ty = [4,8]|Gs = (1,2,5)

2 A clique in an undirected graph G is a set of vertices V suchftiraevery two vertices in V,
there exists an edge connecting the two

3.3 Root Cause Analysis and Hidden Correlations

The most intuitive explanation behind the existence ofa@ated groups of platforms is
that those platforms are targeted by the same tool, laurfctwedh diverse set of sources
in a loosely coordinated way. In that case, the same clsjesisould be found on each
platform of the group as being the root cause of the coratadf the platform time
series. We could, therefore, simply search for the rootesios one platform per group.
However, as explained in [6], multi-headed worms could htfprm X with cluster 1
and platform Y with cluster 2. Therefore, we take the stanicead assuming a priori
that the traces left by a given attack tool are the same onl#teopms of a correlated
group. We thus look for the root causes behind a correlatidiependently for each
platform in a correlated group. This means that for a perib@’odays associated to a
correlated group, we look, for each platform, for the setlakter time series that are
correlated with the platform time series. Here too, we usiéang window as one can
imagine that the platform time series are correlated dusrdodistinct and consecutive,
or overlapping phenomena. Section 4.2 shows an examplechfssaituation found in
our dataset.

o
a
o

cluster 15238 t.s on platform 2
cluster 15715 t.s on platform 2

@
<}
]

r
cluster 15238 t.s on plaform 15 | |
cluster 15715 t.s on platform 15|
cluster 60231 t.s on platform 15/ |

N
a
=)

N
15}
S

Number of sources
BoNoN 0w
@ o o o a
S &8 6 58 ¢©

"
o
S

o
=]

)

40 50

!
S

60 70 80 90 100
Time(day)

Fig. 8. cluster time series for the clusters uncovered during tlo¢ cause analysis for platforms
2and 15

The correlated group in Figure 5 (between day 31 and day 3digkes an illus-
tration of when the attack tool leaves the same fingerprirdaxch platform of a corre-
lated group. Indeed, our root cause analysis techniqudifdsrthree clusters numbered
15238,15715 and 60231 on both platform 2 and platform 15asabt causes behind
the observed correlation. Figure 8 depicts the cluster 8erées over the correspond-
ing interval. Table 3 summarizes the correlation valuesioied between the different
cluster time series for each pair of platforms in the extelgl®up of platforms formed
by platforms{2,15}. As we can see, the correlation coefficients between thosterk
are extremely high (greater than 0.85) in this period.

We can observe the highly synchronized behavior of the iieitargeting the two
platforms.

Hidden Correlations The root cause analysis technique described above enables u
to find a set of candidate clusters associated to each cededaoup for each platform

in that group. However, since we initially identify corrétan based on the platform
time series, it is possible that a tool targeteglatforms but the effect of the tool is
only strongly influencing a subset gf< « platform time series (e.g due to the activity
of other local malwares) To uncover all possible hidden @ations, we check if all
clusters identified as root causes for a periodi¢fdays for a correlated group are
correlated with their siblings on the platforms that areindhe correlated group.

Table 3. Correlation coefficient between clusters

clustert.s 2 2 2 15 15 15

1523815715/ 60231| 15238 15715/ 60231
15238-2(1.00000.85210.84220.89160.86310.8550
15715-2(0.85211.00000.98630.92480.99380.9908
60231-2|0.84220.98631.00000.92600.98730.9873
15238-150.89160.92480.92601.00000.91540.9121
15715-150.86310.99380.98730.91541.00000.996¢
60231-1%0.85500.99080.98730.91210.99691.000d

4 Results

We experimented our algorithms for a period®f= 467 days (15 months) and for
28 platforms, whose up time rate was above 90% for the corexideeriod. Those 28
platforms are located in 15 different countries. We apptieeimethodology described
in Section3.2 to a large dataset. It enables us to confirmxisteace of multi-headed
attack tools, but it also leads to a better understandinge§pecific behavior of other
interesting classes of attack tools. A summary of theserfgglis presented hereafter.

4.1 Overview

For our specific dataset, we identified 28 groups involving dluister time series before
the hidden correlation identification phase and 130 clustee series after that. The
groups were found in 23 distinct periods, lasting betweeraB@® 117 days. Figure 9
provides the distribution of number of clusters per corediagroup. We observe from
Figure 9 that 18 out of 28 correlated groups (ie. 64%) have bssociated to more than
one root cause. Table 4 lists all the clusters related tcaat lene correlated group. The
first column contains the cluster id. The second column tis¢éscorresponding ports
sequences. If a cluster contacts two (resp. three) machiwidkhave two (resp. three)

ports sequences separated by a comma. The last columntesiiba number of groups
that the cluster is involved in. Figure 10 shows the distidiuof the size of correlated

groups. We observe from Figure 10 that most of the groups hamall size: 90% of

the groups have less than 7 platforms. This observatioteeta the fact that malware

attack processes are in general not uniform over the IP addngace. The observed
phenomena appear to be localized. This is confirmed by Figjlirehich shows that
most phenomena target a single /8 network. However, we vbseat 21 out of the 28
platforms are involved in at least one correlated group shguhat these phenomena
are visible all over the world. These 21 platforms are lodatel3 (resp 12) out of 15
countries (16 /8 networks).

Number of groups

O P N W N O 0 N ® ©

1 2 3 4 8 10
number of root causes

Fig. 9. Distribution of number of clusters

10 platforms
9 platforms 5 /B networks

7 platforms 1 /8 network 3 /8 networks
5 platforms

1 platform

3 platforms

2 /8 networks

Fig. 10. Platform size distribution Fig. 11./8 network distribution

4.2 Root causes analysis

Based on the nature of correlated groups, we classify théorfaur different families
as follows: single root cause, variant signature attaclstdimgerprint worm, and multi-
headed worm.

Table 4. Cluster description

Cluster Id Ports sequences Number
of group
15611 ICMP 7
15715 1433T
17466 135T
14647 445T
60231 5900T
60943 ICMP,ICMP
0 unclassified
17718 ICMP|445T
175309 2967T
15238 139T
15610 ICMP
54623 1025T
65710 1026U, 1026U, 1026U

75851 | ICM P[445T 1397 [445T[139T[445T
75853 | IC'M P[A45T 1397 [445T(139|T445T
136244 | 1C M P|445T |1397 [445T [139T [445T
136323 | 1C M P|445T |139T [445T 139 T 4457

17470 1026U
65662 10260, 10260
72377 1028U

76768 445T]50007 [445T50007
81280 59007, 59007

P RPIRPIRPRPIERINNNIDNNNINN W W W B Aoo

145554 |4457°|50007'|4457'|50007°|1357°'|5000T
1357°|50007°|1357°|50007°|135T

147436 ICM P[445T[80T 1
147476 ICMP[445T 80T 1
150691 29677, 2967T, 29671 1
164629 29677, 29671 1
168772 1027010280 [1026U 1
171073 1027010260 10280 1
174163 10260 (10280 [10270 1

Single root cause Table 5 presents all single root cause groups. They cornespm

phenomena where a single, and always the same, cluster isdheause of the cor-
relation of platform time series. They could have been gaigtected by computing
the correlation (still using a sliding window approach)weén all the cluster time se-
ries corresponding to the same cluster on each platforns iBhin contrast with the
multi-headed tools that require comparisons betweenaiusne series that do not
correspond to the same clusters.

As an example, the top plot of Figure 12 represents the attackresponding to
cluster number 170309 on two platforms 7 and 27 from day 13#$0290 (group 7 in
Table 5), targeting Symantec System Center Agent (SSC Agentice on port 2967
TCP. As we can see, its cluster time series on these two platfare almost the same.

— — — Cluster t.s 175309 on platform 7
Cluster t.s 175309 on platform 27
N

Number of sources

220 230 240 250 260 270 280 290
Time(day)

100
— — — Cluster t.s 60231 on platform 7
Cluster t.s 60231 on platform 27

40 I

oo RN

P A

2058 4~ NG N -
Sy N
A4 A

0

190 200 210 220 230 240 250 260 270 280 290

Time(day)

AY
WY

Number of sources

[
o

Fig. 12.Single root cause example

Table 5. Single root cause

group platforms root causestart,end dates

1 68222426 17466 13,116
2 24 26 0 2,119

3 215 17466 31,91

4 727 15715 194,290
5 727 54623 198,263
6 727 60231 194,290
7 727 175309 194,290
8 68172226 17515 241,286
9 |23891012152426 O 241,286
10 (238910121524 26 14647 412,452

The bottom plot represents the highly correlated attackbhesame two platforms and
also during the same period, but related to cluster 6028Jetiag Virtual Networking
Computing service on port 5900 TCP (group 6 in Table 5). Therésting thing is that
the attacks of these two clusters are totally dissimilais Bhows the usefulness of the
sliding window technique during the root cause identifmatphase. We can see other
groups related to these 2 platforms around the same periodore in-depth analysis
of these identified groups and clusters would reveal interg§indings, from a forensic
point of view, highlighting relationships between phenomevhich, otherwise, would
have been studied isolated from each other. Instead, owpgrg can help those in
charge of attributing attacks to malicious actors, on thedaf their modus operandi.

Variant signature attack tools Our clustering algorithm classifies sources into clusters
on a basis of a set of attributes such as the number of packetbythe sources to our
platforms, the ports sequences, the number of virtual lemsttacted,etc. Not all attack
tools have a deterministic behavior. Some may probe poesamdom order, a variable
number of times, etc. As a result, traces left by such todlsappear in distinct clusters

groug platforms root causes start,end dated/ulti- |Finger{ Var-
headed print | iant
11 513 15610 15611 17718 60943 52,119 Y |Y(1,2)
75851 75853 136244 136323
12 513 15611 17718 157,194 Y
13 27 014647 145554 316,364 Y
14 1021 14647 15611 76768 332,364 Y
15 927 72377 168772 171073 174163 371,408 Y(2)
16 24 26 15611 60943 419,452 Y(1)
17 727 175309 164629 73,119 Y(1)
18 811 17470 65862 156,202 Y(1)
19 727 60231 81280 316,364 Y(1)
20 123610 15611 60943 2,119 Y(1)
1215222426
21 681017 150691 175309 56,91 Y(1)
2224 26
22 923 15611 65710 405,448 Y
23 215 15238,15715,60231 31,91 Y
24 215 14647 15238 15715 17466 246,286 Y
25 | 68172226 15715 17466 253,286 Y
26 51328 15610 15611 17718 60943 120,156 Y Y |Y(1,2)
75851 75853 136244
136323 147436 147476
27 215 15715 17466 60231 163,194 Y
28 7827 54623 65710 214,245 Y

Table 6. Multiple root cause groups

that will appear in correlated groups. Table 6 lists thenmlie value "Y” in the column
labeled "Variant”. In this specific dataset, we found twosaas for which clusters can
be "splitted”.

The first one is that they have contacted a different numbgargets (marked Y(1)
in Table 6). One cluster contacts only 1 honeypot and theratluster contacts two
honeypots. By our observation, two-honeypot-contactastels have a smaller number
of sources than the one-honeypot-contacted clusters.yifam&xplained as follows: if
one source randomly chooses its target in a network, thegitity for it to hit only one
of our machines is much higher than to hit two (or even thré¢hem. As an example,
the left plot of Figure 13 represents the attacks of all dustne series related to group
26 in Table 6. The middle plot of Figure 13 represents onlyattacks of two clusters
15611 and 60943 on platform 5. Cluster 15611 contacts 1 hpmieynd cluster 60943
contacts two honeypots.

The other case is that the attack tool sends different amafupdickets each time
it attacks our platform. These groups are marked 'Y(2)' ia tWariant” column. The
right plot of Figure 13 represents the attacks of three elsstumbered 75851, 75853
and 136323 also on platform 5. The three clusters have the pants sequence:

Group 26 Clusters 15611 and 60943 Clusters 75851,75853 and 136323
250

— — —cluster 15611 — — — Cluster 75851
cluster 60943 ‘\ | Cluster 136323
= = = Cluster 75853

200 P

i
a
=}

10 I\ n)
AN

number of sources
[
(=3
S

number of sources

number of sources

o
=}

120 130 140 150 160 120 130 140 150 160

120 130 140 150 160 time(day) time(day)

time(day)

Fig. 13. Example variant worm

IC M P|445T|139T |445T|139T'|445T . The difference resides in the number of
packets sent by each source in these clusters.

Fingerprint worm OS fingerprint is a well-known attack tactic. The idea is thet
fore launching the attack, the attacker checks the typergétaystem it faces and then
launches, or not, the appropriate attack. We have found wdihat automatized this
idea. We call them "Fingerprint worm”. If a fingerprint worradrns that it is attacking
a non vulnerable host (w.r.t its attack model), it gives uipc& on our platforms, we
deploy two kinds of virtual machines: Windows and Linux, firgerprint worms will
leave different traces on these two platforms. In terms ofspeequences, fingerprint
worms may leave two different ports sequences on two kindgrtafal machines. One
ports sequence may be the prefix of the other. We have foundésaz fingerprint
worm in our dataset. They are presented in Table 6 with theeval” in the column
"fingerprint”. For instance, we plot 4 clusters numbered 5875853, 136323, and
17718 of platform 5 from, again, group 26 (in Table 6) on Fggar. The three clus-
ters numbered 75851,75853 and 136323 (resp. 17718) hawothesponding ports
sequencd CM P|445T|139T'|445T'|139T |445T (resp.IC M P|445T). Cluster 17718
is mostly observed on the Linux machine (296 sources). Taerenly 64 sources that
sent packets to the other two windows machines. The thres olhwsters however, are
only observed on the two windows machines (251 sources &l)tdthe explanation
is that since port 445TCP is closed on the Linux machine, tteelatool is "intelli-
gent enough” not to try port 139 TCP since it knows that thgdars not vulnerable
w.r.t its attacks. The fact that 64 sources have contactedwb Windows machines
but have given up can probably be explained by packet log$®r in the network
(e.g packet losses, firewall filters,etc..) or at the hogt g@ngestion while launching
too many scans in parallel). Here too, the identificatiornid tlass of attacks helps in
understanding the threats on the Internet.

Multi-headed attack tools As being mentioned before, attack tools belonging to the
multi-headed family have different attack techniques,dath time they use only one
of them against the victim. The services targeted are usd#ferent. Table 6 indicates

60

3 Cluster 17718
= — — — Cluster 75851
3 40 = = = Cluster 75853
k] Cluster 136323
220
£
=}
z o AN
120 125 130 135 140
Time(day)

Fig. 14. Example Fingerprint worm

all the multi-headed groups we found. They have the "Y” vdtuthe column labeled
"Multi-headed”. As an example, group 23 in Figure 8 considthree clusters targeting
Microsoft NetBios Service (port 139 TCP), Virtual Networlo@puting service (port
5900 TCP) and Microsoft SQL Server (port 1433 TCP). The coated attacks of
these three clusters spanned from day 31 to day 91. The topfgtagure 15 represents
group 24. It consists of four clusters numbered 14647 (ptBt ACP), 15238 (port 139
TCP), 15715 (port 1433 TCP) and 17466(135 TCP). Their timesen platforms 2
and 15 are highly correlated from day 246 to day 286. As a gatieck, we found
very low correlation coefficient between these cluster tsmees when computing their
correlation coefficients over the whole period. For insignice bottom plot of Figure 15
shows the dissimilitude of two cluster time series 17466 B@47 on platform 2 from
day 1 to day 245 (the interval just before the correlationg.aduld not have discovered
this group if we had applied the algorithm for the whole pdrio

cluster t.s 14647, 15238, 15715 and 17466 on platforms 2,15

I

=
@
S

o
o
s

@
S

Number of sources

245 250 255 260 265 270 275 280 285 290
Time(day)

100

cluster time series 17466 on platform 2
= = = Cluster time series 14647 on platform 2|

0
8 |
3 !
2 6or [
5
1
B 40f | ':.‘f R
€ oy
2% m ! ;]
o AN R R ORI, RTINS
0 50 100 150 200 250

Time(day)

Fig. 15.Example of multi-header worm

5 Conclusion

In this paper, we revisit the problem of discovering mukialded worms mentioned
in [6], but in the context of a larger dataset collected frowmlisiributed honeypot net-

work. Compared to the approach in [6] where correlation wagstigated over the
whole period of observation, our technique is able to loakcimrrelation over smaller
periods of time. To avoid comparing all possible clustertiseries over different time
windows, which is very costly, we worked around this issueubing filtered platform

time series. Our expectation was that the phenomena we wekinty for would be

enough spatially and timely localized so as to be visiblehia filtered platform time

series over some periods of time. Applying our technique fibanonth dataset, we
are not only able to confirm the existence of multi-headedmwg(on many places),
but also bring to the community insight knowledge about war@haviours. Besides
that, the results obtained can also be used to improve osteelng algorithm. How-

ever, work remains to take full advantage of the obtainedltés order to carry out a
systematic analysis of the identified phenomena and to heftudying the so called
attack attribution problem.

References

1. Coen Bron and Joep Kerbosch. Algorithm 457: finding atjudis of an undirected graph.
Commun. ACM16(9):575-577, 1973.

2. Mark W. Eichin and Jon A. A. Rochlis. With microscope andcézers: An analysis of
the internet virus of november 1988. Rroceedings of the 1989 IEEE Computer Society
Symposium on Security and Priva®akland, Ohio, 1989.

3. Greg Hoglund and Gary Mc Grawexploiting Software: How to Break CodeAddison-
Wesley Professional, 2004.

4. Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill CAilsymbolic representation of
time series, with implications for streaming algorithms.OMKD ’'03: Proceedings of the
8th ACM SIGMOD workshop on Research issues in data miningkaod/ledge discovery
pages 2-11, New York, NY, USA, 2003. ACM Press.

5. Fabien Pouget and Marc Dacier. Honeypot-based forensicAusCERT2004, AusCERT
Asia Pacific Information technology Security Conferenc@f@3rd - 27th May 2004, Bris-
bane, AustraliaMay 2004.

6. Fabien Pouget, Guillaume Urvoy Keller, and Marc Daciemd signatures to detect multi-
headed stealthy attack tools.18th Annual FIRST Conference, June 25-30, 2006, Baltimore,
USA Jun 2006.

. Niels Provos. Home page of honeyd. see http://www.hoioegd

8. J. Shoch and J. Hupp. The worm programs: Early experieitbeawdistributed computation.
Commun. ACM25(3):172-180, 1982.

9. Eugene H. Spafford. The internet worm program: an amaly8iGCOMM Comput. Com-
mun. Rev.19(1):17-57, 1989.

10. Stuart Staniford, Vern Paxson, and Nicholas Weaver. téoswn the internet in your spare
time. InProceedings of the 11th USENIX Security Sympospages 149-167, Berkeley,
CA, USA, 2002. USENIX Association.

11. William Trochim and James P. DonnellJhe Research Methods Knowledge Ba&tomic
Dog, December 2006.

12. Nicholas Weaver, Vern Paxson, Stuart Staniford, andeRdunningham. A taxonomy of
computer worms. IWORM '03: Proceedings of the 2003 ACM workshop on Rapid ndajco
pages 11-18, New York, NY, USA, 2003. ACM Press.

~

