
The Quest for Multi-headed Worms

Van-Hau Pham, Marc Dacier, Guillaume Urvoy-Keller, and Taoufik En-Najjary

Institut Eurecom, Sophia–Antipolis, France
pham,dacier,urvoy,ennajjar@eurecom.fr

Abstract. In [6], Pouget et al. have conjectured the existence of so-called multi-
headed worms and found a couple of them on attack traces collected on a single
honeypot. These worms take advantage of several distinct attack techniques to
propagate but they use only one of them against a given target. From a victim’s
viewpoint, they are therefore indistinguishable from the other classical worms
that always propagate using the same attack vector or same sequence of attack
vectors. This paper aims at confirming the existence of theseworms by studying
a very large dataset. The validation process led to three important contributions.
First, we establish the existence and assess the importanceof three distinct classes
of attacks seen in the wild. Second, we propose a new method tocorrelate attack
traces time series and apply it to search for multi-headed worms. Third, we offer
and discuss results of the analysis of 15 months of data gathered over 28 different
platforms located all over the world.

1 Introduction

The concept of worm, as a programming paradigm, has been introduced more than 25
years ago [8] and has been used to propagate malicious code ona large scale as early
as September 1988 with the first ADM worm targeting the DNS infrastructure [3] and
with the so called Morris worm, also known as the Internet worm, hitting the Internet
in November 1988 [9, 2]. However, one had to wait more than tenyears to see worms
routinely used by hackers and various techniques used to speed up their propagation on
the Internet [10]. We refer the interested reader to the taxonomy of worms published
in [12]. The authors provide several examples of worms, classifying them according
to various viewpoints, namely worm target discovery and selection strategies, worm
carrier mechanisms, worm activation, possible payloads, and plausible attackers who
would employ a worm. As indicated in [12], worm authors are not so much interested
anymore in gaining faith for having created the fastest wormor the worm having com-
promised the largest amount of machines. Instead, worm spreading is now seen as a
preliminary phase to conduct other fraudulent activities to gain money using various
techniques (spam relays, extortion with DDoS threats, pay-per-click fraud, etc.). There-
fore, worms are now designed to make their propagations as stealthy as possible.

Multi-headed worms, identified by Pouget et al. in [6], belong to a new class of
worms designed with stealthiness in mind. These sophisticated programs can break
into target machines using several different techniques. This, by itself, is not new. The
Morris worm [9], in 1988, already had this feature. It was propagating using attacks
against three different services: rshd, fingerd and sendmail. The Morris worm, after

having selected a target, was trying all three attacks, one after another, interrupting the
process only in the case of a successful intrusion. Several other worms have, since then,
used the same strategy. They all are fairly easy to identify thanks to the known sets (or
sequences) of attacks they try against their targets. Multi-headed worms, as defined in
[6], use a very different strategy: they probe each target with only one of the attacks
they are capable of. This strategy decreases their chance ofsuccess but increases their
stealthiness. Indeed, there will be no trace left anywhere highlighting the fact that a
new worm has been created combining attacks X, Y and Z as they will never be tried
together by a given attacker against a given attackee.

In [6], the authors had used traces left on a simple low interaction honeypot to
highlight the existence of a couple of such multi-headed worms propagating in the
Internet. At that time, only one of them, Nachia, had been acknowledged by intrusion
detection and antivirus vendors. This seminal work had beencarried out on a single
platform and, therefore, was not able to assess the seriousness of the threats posed by
this new class of worms.

In this paper, we carry out a systematic identification of multi-headed worms in
attack traces collected thanks to 28 distinct low interaction honeypot platforms, located
in 15 different countries, over a 15 month period. In order toperform this experiment,
we had to design a different method than the one originally proposed in [6] because of
algorithmic complexity issues. The application of this validation process led to three
important contributions: i) we establish the existence andassess the importance of three
distinct classes of attacks seen in the wild; ii) we offer a new generic method to correlate
attack traces time series that could be applied to other kinds of datasets; iii) we offer and
discuss results of the analysis of 15 months of data gatheredover 28 different platforms
located all over the world.

The paper is structured as follows. Section 2 reviews the state of the art and de-
scribes the two main reasons why the solution provided in [6]does not scale. Section
3 presents the three distinct steps of the new method we propose: (i) Identification and
selection of attack classes (ii) Identification of correlated platforms (iii) Root causes
identification. Section 4 provides a summarized description and discussion of the most
interesting results obtained. Section 5 concludes the paper.

2 Problem statement

In this section, we describe the original solution providedin [6] for the identification of
multi-headed worms and explain the two main reasons why thissolution does not scale.
For the sake of completeness, we first start by briefly describing the data collection en-
vironment considered in that work as well as some definitionsof terms used throughout
this paper.

2.1 The Leurré.com environment

The Leurré.com environment is a distributed setup of low interaction honeypots. As
of now, there are approximately 50 different partners that host a so-calledplatform.
All platforms are configured exactly the same way. Each platform emulates, thanks to

honeyd [7], three virtual machines: a Windows 98 machine, a Windows NT Server, and
a Linux RedHat 7.3. These platforms are located in 30 different countries covering the
five continents. They are hosted by different types of institutions (academic, industrial,
government, defense, SME, etc.). Most platforms have been active for more than 24
months; the oldest one has been running since January 2003.

Each platform captures tcpdump traces of all packets sent toand from it. These files
are uploaded, on a daily basis, in a centralized Oracle database accessible to all partners
to carry out various kinds of analysis. The entity relationship diagram of the database is
fairly complex and its description lies outside the scope ofthis paper. However, a few
key concepts must be precisely defined in order to avoid any misunderstandings.

– Platform: A physical machine, hosting three virtual machines, connected directly
to the Internet and collecting tcpdump traces in the contextof the Leurré.com envi-
ronment.

– Source: A source corresponds to an IP address that has sent at least one packet
to, at least, one platform. It is important to understand that a given IP address can
correspond to several distinct sources. Indeed, a given IP remains associated to a
given source as long as there is no more than 25 hours between 2packets received
from that IP. After such a delay, a new identifier will be assigned to the IP. By
grouping packets by sources instead of by IPs, we minimize the risk of gathering
packets sent by distinct physical machines that have been assigned the same IP
dynamically after 25 hours.

– Ports Sequence: A ports sequence is a time ordered sequence of ports (without
duplicates) a source has contacted on a given virtual machine. For example, if an
attacker sends the following packets: icmp, 135 TCP, 135 TCP, 139 TCP to a given
virtual machine, the associated ports sequence will be represented by the string
ICMP |135T |139T . Each source can have, at most, three distinct ports sequences
associated to it, per platform. As of now, we have observed around 40,000 distinct
unique ports sequences on all Leurré.com platforms.

– Cluster: A cluster is made of a group of sources that have left highly similar traces
on all platforms they have been seen on. Clusters have been precisely defined in [5].
They aim at grouping together attackers that are likely launching attacks with the
very same attack tool. Traces present in a given cluster have7 features in common,
one of them being to have targeted the same ports sequence as defined here above.
As of now, we have observed more than 154,900 different clusters.

– Cluster time series: A Cluster time series represents the amount of sources, on a
daily basis, associated to a given cluster on a given platform. In other words, there
are, for a given cluster, as many cluster time series as platforms.

– Global Cluster time series: A global cluster time series represents the sum of all
cluster time series associated to a given cluster. In other words, there is a single
global cluster time series associated to a given cluster.

– Platform time series: A platform time series represents the sum of all cluster time
series associated to a given platform. In other words, thereis a single platform time
series associated to a given platform.

2.2 Seminal work on the identification of multi-headed worms

Pouget et al. have proposed in [6] a method to discover multi-headed attack tools. In that
paper, the authors explain that sources compromised by a multi-headed worm leave, by
definition, distinct traces on the honeypots depending on which attack they choose to
launch against them. As a result, the sources will be classified into as many different
clusters as there are different possible attacks for the worm. However, the various cluster
time series associated to a given multi-headed worm should evolve over time in a similar
way as they all are a function of the total amount of machines compromised by that
multi-headed worm at any point in time. Therefore, by identifying cluster time series
that are very similar to each other appears to be a simple yet efficient way to identify
multi-headed worms. In [6], the authors have used the SAX technique [4] to calculate
the distance between all pairs of cluster time series data.

The authors have shown, by means of data extracted from a single platform, the
existence of a couple of interesting multi-headed worms. Having a much larger dataset
at our disposal, we were interested in verifying their results on a worldwide scale. Un-
fortunately, we found out that the detection method in [6] does not scale to that level
for two main reasons. First, the most straightforward way togeneralize the approach
to data collected on several platforms, instead of one, is tomeasure the distance be-
tween different global cluster time series. Experience shows, as discussed below, that
this approach does not work when a large number of platforms located in many differ-
ent places in the world are considered. The reason lies in thefact that worms do not
spread in an uniform way across the IP space. Therefore, we must measure distances
between cluster time series observed on distinct platformsinstead of global cluster time
series. Second, the authors in [6] considered a fixed time window of 1 year to assess the
distance between time series. This approach works for some extreme cases but, as we
demonstrate hereafter, is also likely to miss many interesting phenomena, the existence
of which is only visible during a couple of weeks. Therefore,their fixed time window
must be replaced by a sliding window.

Measuring distance between cluster time series on many platforms by means of a
sliding window leads to an algorithmic complexity problem.In the next three sections,
we provide examples of the two problems described above and offer a formal complex-
ity analysis of these issues. Section 3 proposes a new solution to address these identified
drawbacks of the original method.

Fixed time window vs sliding time window The top plot in Figure 1 presents the
global cluster time series for two distinct clusters, over aperiod of more than 450
days. The first (resp. second) one represents sources belonging to cluster number 15715
(resp. 60231) only. The corresponding ports sequence of cluster 15715 (resp. 60231) is
1433TCP (resp. 5900TCP). The SAX distance, computed as described in [6], i.e., over
the whole observation period, would lead us to consider thatthese two cluster time se-
ries are not correlated. However, when looking at the bottomplot in Figure 1, it is clear
that these curves are highly correlated between day 60 and 90. The reason why SAX
gives a low similitude is mostly due to the activities happening before day 60 as well
as after day 200. It can well be that the existence of the multi-headed worm can only
be detected during a limited period of time. This is especially true for multi-headed

0 100 200 300 400 500
0

500

1000
Global cluster time series of clusters 60231 and 15715

Time(day)
N

u
m

b
e

r
o

f
s
o

u
rc

e
s

40 60 80 100 120 140 160
0

500

1000

Time(day)

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

Zoom from day 40 to day 150

Fig. 1. Fixed time window vs sliding time
window

70 75 80 85 90 95 100
0

50

100

150

200
Cluster time series of clusters 15611 and 68049

Time(day)

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

70 75 80 85 90 95 100
0

1000

2000

3000
Global cluster time series of clusters 15611 and 68049

Time(day)

N
u

m
b

e
r

o
f

s
o

u
rc

e
s

15611
68049

68049
15611

Fig. 2. Global cluster time series vs. cluster
time series

worms that are using attacks that were already frequently observed when the multi-
headed worm got launched. As a consequence, one cannot simply rely on the usage of a
large fixed time window, as proposed in [6] to detect those worms. Using a sliding time
window is obviously the way to go in order to address this issue.

Global cluster time series vs. cluster time seriesThe top plot in Figure 2, shows
two distinct cluster time series on platform 18 over a periodof 30 days. The first (resp.
second) one represents the evolution of cluster number 15611(resp. 68049). The bot-
tom plot in Figure 2 represents the corresponding global cluster time series (over all
platforms) over the same period for these two clusters. These figures highlight the fact
that, on platform 18, the two cluster time series are highly correlated between day 70
until day 100 whereas the corresponding global cluster timeseries are not. This can be
explained by the fact that a multi-headed worm is not necessarily observed everywhere
in the world. If the multi-headed worm is reusing attack vectors that are frequently ob-
served elsewhere, its existence will remain hidden if we useglobal cluster time series
instead of carrying out the analysis on each platform independently.

Working with global cluster time series is thus not an option. One of the contri-
bution of this paper will be to demonstrate that, unlike global clusters, platform time
series carry enough information so as to uncover correlations among cluster time se-
ries. This is an important finding as it enables us to reduce the computational cost of the
correlation search phase as shown in the next section.

2.3 Complexity Analysis

From the previous two examples, it comes out that, in order todeal with these two
issues, we should apply the method proposed in [6] between all cluster time series, for
every platform, over a sliding time window. Intuitively, this leads to a very large amount
of computations that we detail hereafter.

Let S = {Si}, i = 1..N , be the set of platforms andA = {cli}, i = 1..K be the
set of distinct clusters observed on all the platforms during a period of T consecutive
days. Our objective is to identify all clusters that targeted a subsetS′ ⊂ S of platforms
over a period ofT ′ ≤ T consecutive days in a similar way. By similar, we mean that
the selected cluster time series on any two platforms ofS′ are highly correlated.

To do so, we compute the correlation over a sliding window of sizeL. For a total of
M time series (M ≤ K × N as not all clusters are observed on all platforms), the total
number of correlations to be computed is given by:

C1 =
M × (M − 1)

2
(T − L)

C1 = O(M2T)

We postpone until Section 4 the details of the numerical results obtained from the
experiments but, for now, the reader should be aware thatM amounts to more than
59,000 in the 15 months period considered. Clearly the simplistic generalization of the
method described in [6] is too expensive.

Our solution to reduce the complexity is twofold. First, we find an automated way to
select a subsetM ′ from M such thatM ′ ≪ M . The reduction technique is presented
in Section 3.1. Experimentally, we found out thatM ′ can be an order of magnitude
smaller thanM . After such selection, the complexity comes down toC2 = O(M ′2T)
andC2 ≪ C1. However, the costC2 remains prohibitive and this leads to the second
step of our method where we compute filtered platform time series corresponding to the
sum of activities corresponding to theseM ′ time series per platform. We then look for
similitude between these filtered platform time series instead of between cluster time
series. The cost to pay for finding similar platform time series comes down to

C3 =
N × (N − 1)

2
(T − L)

C3 = O(N2T)

This leads us to the identification of a certain amountP (with P ≪ T −L) of periods in
which we have a group ofGi (with i = 1..P and for∀i|Gi| ≪ N) correlated platform
time series. For each period, we have to find the cluster responsible for the identified
similarity. In other words, for each period, we must comparetheM ′ cluster time series
with, at maximum,N filtered platform time series. This leads to the identification of
the root causes of the similarity on each platform. If we defineG = maxGi|i = 1..P ,
an upper bound of the cost of this operation can be given byC4 = P × G × M ′.
Thus, the total cost of this method is equal toC5 = C3 + C4 and we haveC5 =
O(N2T +PGM ′). In the general case, nothing ensures,a priori, thatC5 ≪ C2 ≪ C1

but, as we expect the values ofN, P andG to be very small compared to M andM ′, this
justifies the choice of this solution. Experimental resultspresented in Section 4 validate
this choice.

3 Methodology

We detail in this section the three steps of our methodology we have eluded to in the
previous Section:

1. All attack traces can be grouped into three distinct families. Only one of them is
likely to contain traces due to multi-headed worms. Therefore, the method starts by
selecting in our dataset those traces that belong to the soleinteresting family.

2. Our platforms observe a limited number of hits per day. If at some points in time
two platforms become the target of a multi-headed worm, we make the assumption
that this will significantly impact the overall platform time series on that period.
Therefore, the method identifies groups of platform time series strongly correlated
over different periods of time and identifies the root causesfor those similitudes.
Similarly to the approach followed in [6], if a similitude iscaused by many attack
tools, we believe this reveals the existence of a multi-headed worm. Obviously, if
the intensity of the attack is not high enough that it impactsthe platform time series
of at least two platforms, our method will miss it. The validity of the method is
further discussed while presenting the experimental results in Section 4.

3. We search for the root causes, i.e. the clusters that are responsible, if any, for the
similar shape of the filtered platform time series in each group. Once we have found
them, we verify that they did not also existed on other platforms than the ones we
had in the group under study. This can happen if the influence of these clusters on
the other filtered platform time series was not strong enoughto include them in the
group of similar platforms.

3.1 Construction of filtered platform time series

As explained before, the first step of our technique aims at reducing the number of
cluster time series we need to focus on. Our method to reduce the size of the problem
is based on our experience with attack traces collected in the Leurré.com project. We
have observed that cluster time series can be categorized into 3 distinct families1:

1. Peaked family: Time series in this family exhibit a significant peak of values during
a very small period of one or two days and almost no activity otherwise. In most
cases, the corresponding cluster is observed on a single platform only. We leave for
future work a more in depth study of this specific type of phenomena and we thus
exclude those time series when building platform time series.

2. Stable family: Time series in this family have a roughly constant behaviorduring
the whole observation period. As we make assumption that correlated clusters due
to multi-headed worms exhibits time series having similar noticeable variations
over time, stable clusters are meaningless in the context ofthis analysis. We can
simply remove them from our dataset. Note that removing the stable ones has little
impact on the shape of the platform time series. However, as avery large num-
ber of time series falls into the stable family, removing them from our initial set
dramatically reduces the computational cost.

3. Strongly varying family : Time series in this family are characterized by wide am-
plitude variations over long periods of time. Our objectiveis to uncover phenomena

1 There is no reason to believe that the findings described hereafter are not also applicable to
datasets collected by other projects. If that were the case,it would certainly be worth investi-
gating the reasons why.

that involve several cluster time series over periods of time larger than a few days,
we restrict our attention to those time series in the remaining of this paper.

We proceed as follows to classify each cluster time series into one of the three fam-
ilies introduced above. We first compute the standard deviation of the time series over
the whole observation period. If it is smaller than a threshold δ, then we flag the time
series as belonging to the stable family. Otherwise, we filter out the outlier values from
the time series. Outliers are defined as the two greatest and smallest values of the time
series. Then we compute the standard deviation of newly obtained time series. If the
standard deviation is now smaller thanδ, we declare the time series as being a peaked
time series. Otherwise, we declare the time series as belonging to the strongly varying
family and we thus keep it in our set of cluster time series. Inthe above procedure, we
usedδ = 2, which is intended to be a conservative value, based on the visual inspection
of a lot of cluster time series.

0 5 10 15 20
0

5

10

15

20

25

30

Time(day)

N
um

be
r o

f s
ou

rc
es

Fig. 3. Example of the peaked family time
series

100 102 104 106 108 110 112 114 116 118 120
200

400

600

800

1000

Time(day)

N
u

m
b

e
r

o
f
s
o

u
rc

e
s

Original data
Peaks removed
Clean dataPeaks generated by

two clusters 165249 and 165143

Fig. 4. Data Pre-processing

Figure 3 illustrates the algorithm for a cluster time seriesthat spans over 20 days.
The standard deviation of the time series is 6.51. Since it isgreater than 2, our algorithm
can not declare this time series as a stable one upfront. We next filter the extreme values
from this time series , which for the case of Figure 3 boils down to cutting the peak
on day 12. The resulting time series is obviously smoother than the initial one and its
standard deviation is 0.46, which is smaller than the threshold 2. Hence, our algorithm
eventually flags the time series of Figure 3 as belonging to the peaked family.

The cost of the above filtering process comes on top of the complexity evaluated in
the previous Section but it is very small compared toC1 since its complexity is linear
with respect to the number of clusters and the algorithm involved for each cluster is
much cheaper to run than the evaluation of the correlation between two clusters (over
sliding windows), as discussed before.

Figure 4 illustrates our pre-processing technique. We plotthree platform time series
for platform 18.Original data is the platform time series obtained using all clusters.
It is made of 6162 clusters in this specific case.Peaks removedis obtained once the
peaked time series have been filtered out. It is made of 6108 clusters as 54 clusters were
peaks in this example.Clean datais the platform time series data once the peaked and

stable time series have been removed. It is made of only 39 clusters! This highlights the
usefulness of the preprocessing phase.

Figure 4 clearly shows thatoriginal data is quite different fromclean datadue to
the two peaks at the same position (110). These peaks (clusters number 165249 and
165143) were created by 510 sources. This attack was neitherobserved before or after
day 80, nor was it observed on any other platform. As we can see, thepeaks removed
and clean datatime series have a very similar shape. They differ only with respect
to their amplitude. However, we remind the reader that thepeaks removedtime series
contain 6108 clusters and that only 39 (strongly varying) time series remain inclean
data.

3.2 Groups of Correlated Filtered Platform Time Series

In this section, we explain how we identify correlated groups, i.e. groups of platforms
for which any two filtered platform time series are mutually correlated for a given pe-
riod of T ′ days. Obviously, one wants to maximize the number of platforms involved
and the durationT ′ over which each group exists. The proposed algorithm is madeof
three successive steps described in the following subsections: i) pairwise comparison of
filtered platform time series, ii) construction of groups ofcorrelated platforms within
a given time period and iii) reorganization of the time periods to maximize them on a
group by group basis.

Pairwise correlation of filtered platform time series The first step of our algorithm
consists in computing the correlation of any two platform time series using a sliding
window ofL days. Consider two time seriesΦ andΨ . Let cor(A, B) be the coefficient
of correlation of two vectors A and B. The correlation vectorC of Φ andΨ is computed
as follows:

C[k] = cor(Φ[k, k + L], Ψ [k, k + L]), k = 1, . . . T − L

Φ andΨ are considered to be correlated in the interval[t1, t2] if C[k] is greater than
a given threshold for everyk value in the interval[t1, t2 − L]. We use as a measure of
correlation the Pearson coefficient of correlation [11].

An important parameter of our procedure is the choice of the threshold to declare
that two time series are correlated. Again, we rely on experience, i.e. visual inspection
of a lot of cases, to choose our threshold. We end up having a threshold of 0.75. We
note that this is a high, and thus safe, value as 0.4 is alreadyconsidered as a significant
correlation value in the statistical literature.

Figure 5 illustrates the first step of our procedure. The platform time series for
platforms 2 and 15 are deemed correlated in the interval[t1, t3] as their correlation
vector is greater than the threshold of 0.75 in the period[t1, t2] = [t1, t3 − L].

Application of the above procedure to all the pairs of platform time series leads to
the identification of a set of correlated pairs of platforms over different periods of time.
Figure 6 illustrates the situation at the end of the first phase. It shows that platform time
series 4 and 7 (curve4&7) are correlated from day 1 to day 4, platform time series 1
and 8 (curve8&1) are correlated from day 1 to day 6, etc.

0 20 40 60 80 100 120
0

500

1000

Time(day)
N

u
m

b
e

r
o

f
s
o

u
rc

e
s

0 20 40 60 80 100 120
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

1.5

C
o

rr
e

la
ti
o

n
 v

a
lu

e

platform 2 time series

platform 15 time series

correlation value

threshold=0.75

L=30

t3t2

t1

Fig. 5. Example of correlated platform time series

Correlated groups extraction per time interval Based on this first result, our next
objective is to divide the time line from 0 toT into a set of time intervals such that the
pairs of platforms associated to one interval are correlated over the whole duration of
this interval. Within each interval, we want to identify groups of platforms such that all
platforms in the group are correlated to all others. The algorithm we use to achieve this
task can be summarized as follow:

1. i = 1, Tstart,i = 1, Tend,i = 1, L is the sliding window parameter.
2. We defineSi as being the set of pairs of correlated platforms at timeTstart,i.
3. We exclude fromS all pairs of correlated platforms that are not correlated until, at

least,Tstart,i + L.
4. We defineTend,i as being the first end point of the pairwise correlations inS. Inter-

val i is then defined as[Tstart,i, Tend,i]; We proceed to the next intervali → i + 1
5. We defineTstart,i as being the first start point of a pairwise correlations not yet

present inS.
6. If Tstart,i ≤ T −L, we reinitializeS to ∅ and go back to step 2; if not the algorithm

terminates.

.
Applying this algorithm to the case described in Figure 6, leads to the identification

of the three periods defined in Table 1 when we chose L=3.

Table 1.Periods

T1 = [Tstart,1, Tend,1] = [1, 4] S1 = {(4, 7), (8, 1), (1, 2), (2, 8)}

T2 = [Tstart,2, Tend,2] = [3, 6] S1 = {(8, 1), (1, 2), (2, 8), (9, 10)}

T3 = [Tstart,3, Tend,3] = [4, 8] S1 = {(5, 1), (1, 2), (2, 5)}

1 2 3 4 5 6 7 8

Time(day)

1&2

2&5

5&1

2&8

8&1

4&7

9&10

Fig. 6. Correlated pairs of platform time series
over time

1

a) period T1

2 8

4 7

b) period T2

1

2 8

9 10

1

2 5

c) period T3

Fig. 7. Correlated groups extraction

Having identified time intervals, we now need to group together all platforms that
are correlated with each other. If we use a graph representation of the correlated pairs
identified in the previous stage of our algorithm, the problem corresponds to the iden-
tification of cliques2 within the graph. We generate one graph per period. Nodes in a
graph represent platform time series and if two platform time series are correlated in
that period, their edges are connected. Figure 7 depicts thegraphs we obtain for the
periodsT1, T2 andT3 extracted from Figure 6. The clique extraction problem [1] is an
NP-complete one. In our case, this is not an issue as the number of nodes (platforms)
per period is very small, typically less than 20.

Reorganization of the time periodsFrom the example given above, it is clear that our
algorithm generates overlapping time intervals and that the very same group of corre-
lated platforms can be found in these overlapping periods. For instance, the correlated
group consisting of platforms 1,2 and 8 appears in periodT1 and also in periodT2 in
Figure 7.

In the last step, we revisit the various groups obtained and,on a group by group
basis, merge time intervals whenever the same group is foundin two consecutive or
overlapping periods. This eventually leads to the following time periods (Table 2) and
groups for the preceding example.

Table 2.Groups

T1 = [1, 4] G1 = (4, 7)

T2 = [1, 6] G2 = (1, 2, 8)

T3 = [3, 6] G3 = (9, 10)

T4 = [4, 8] G4 = (1, 2, 5)

2 A clique in an undirected graph G is a set of vertices V such that for every two vertices in V,
there exists an edge connecting the two

3.3 Root Cause Analysis and Hidden Correlations

The most intuitive explanation behind the existence of correlated groups of platforms is
that those platforms are targeted by the same tool, launchedfrom a diverse set of sources
in a loosely coordinated way. In that case, the same clusters(s) should be found on each
platform of the group as being the root cause of the correlation of the platform time
series. We could, therefore, simply search for the root causes on one platform per group.
However, as explained in [6], multi-headed worms could hit platform X with cluster 1
and platform Y with cluster 2. Therefore, we take the stance of not assuming a priori
that the traces left by a given attack tool are the same on the platforms of a correlated
group. We thus look for the root causes behind a correlation independently for each
platform in a correlated group. This means that for a period of T ′ days associated to a
correlated group, we look, for each platform, for the set of cluster time series that are
correlated with the platform time series. Here too, we use a sliding window as one can
imagine that the platform time series are correlated due to two distinct and consecutive,
or overlapping phenomena. Section 4.2 shows an example of such a situation found in
our dataset.

30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

550

Time(day)

N
um

be
r o

f s
ou

rc
es

cluster 15238 t.s on platform 2
cluster 15715 t.s on platform 2
cluster 60231 t.s on platform 2
cluster 15238 t.s on plaform 15
cluster 15715 t.s on platform 15
cluster 60231 t.s on platform 15

Fig. 8. cluster time series for the clusters uncovered during the root cause analysis for platforms
2 and 15

The correlated group in Figure 5 (between day 31 and day 91) provides an illus-
tration of when the attack tool leaves the same fingerprint oneach platform of a corre-
lated group. Indeed, our root cause analysis technique identifies three clusters numbered
15238,15715 and 60231 on both platform 2 and platform 15 as the root causes behind
the observed correlation. Figure 8 depicts the cluster timeseries over the correspond-
ing interval. Table 3 summarizes the correlation values obtained between the different
cluster time series for each pair of platforms in the extended group of platforms formed
by platforms{2,15}. As we can see, the correlation coefficients between those clusters
are extremely high (greater than 0.85) in this period.

We can observe the highly synchronized behavior of the activities targeting the two
platforms.

Hidden Correlations The root cause analysis technique described above enables us
to find a set of candidate clusters associated to each correlated group for each platform
in that group. However, since we initially identify correlation based on the platform
time series, it is possible that a tool targetedx platforms but the effect of the tool is
only strongly influencing a subset ofy < x platform time series (e.g due to the activity
of other local malwares) To uncover all possible hidden correlations, we check if all
clusters identified as root causes for a period ofT ′ days for a correlated group are
correlated with their siblings on the platforms that are notin the correlated group.

Table 3.Correlation coefficient between clusters

cluster t.s 2 2 2 15 15 15
15238 15715 60231 15238 15715 60231

15238-2 1.00000.85210.84220.89160.86310.8550
15715-2 0.85211.00000.98630.92480.99380.9908
60231-2 0.84220.98631.00000.92600.98730.9873
15238-150.89160.92480.92601.00000.91540.9121
15715-150.86310.99380.98730.91541.00000.9969
60231-150.85500.99080.98730.91210.99691.0000

4 Results

We experimented our algorithms for a period ofT = 467 days (15 months) and for
28 platforms, whose up time rate was above 90% for the considered period. Those 28
platforms are located in 15 different countries. We appliedthe methodology described
in Section3.2 to a large dataset. It enables us to confirm the existence of multi-headed
attack tools, but it also leads to a better understanding of the specific behavior of other
interesting classes of attack tools. A summary of these findings is presented hereafter.

4.1 Overview

For our specific dataset, we identified 28 groups involving 111 cluster time series before
the hidden correlation identification phase and 130 clustertime series after that. The
groups were found in 23 distinct periods, lasting between 30and 117 days. Figure 9
provides the distribution of number of clusters per correlated group. We observe from
Figure 9 that 18 out of 28 correlated groups (ie. 64%) have been associated to more than
one root cause. Table 4 lists all the clusters related to at least one correlated group. The
first column contains the cluster id. The second column liststhe corresponding ports
sequences. If a cluster contacts two (resp. three) machinesit will have two (resp. three)
ports sequences separated by a comma. The last column indicates the number of groups
that the cluster is involved in. Figure 10 shows the distribution of the size of correlated
groups. We observe from Figure 10 that most of the groups havea small size: 90% of
the groups have less than 7 platforms. This observation relates to the fact that malware

attack processes are in general not uniform over the IP address space. The observed
phenomena appear to be localized. This is confirmed by Figure11 which shows that
most phenomena target a single /8 network. However, we observe that 21 out of the 28
platforms are involved in at least one correlated group showing that these phenomena
are visible all over the world. These 21 platforms are located in 13 (resp 12) out of 15
countries (16 /8 networks).

1 2 3 4 8 10
0

1

2

3

4

5

6

7

8

9

10

11

number of root causes

N
um

be
r o

f g
ro

up
s

Fig. 9. Distribution of number of clusters

Fig. 10.Platform size distribution Fig. 11. /8 network distribution

4.2 Root causes analysis

Based on the nature of correlated groups, we classify them into four different families
as follows: single root cause, variant signature attack tools, fingerprint worm, and multi-
headed worm.

Table 4.Cluster description

Cluster Id Ports sequences Number
of groups

15611 ICMP 7
15715 1433T 6
17466 135T 5
14647 445T 4
60231 5900T 4
60943 ICMP, ICMP 4

0 unclassified 3
17718 ICMP |445T 3
175309 2967T 3
15238 139T 2
15610 ICMP 2
54623 1025T 2
65710 1026U, 1026U, 1026U 2
75851 ICMP |445T |139T |445T |139T |445T 2
75853 ICMP |445T |139T |445T |139|T445T 2
136244 ICMP |445T |139T |445T |139T |445T 2
136323 ICMP |445T |139T |445T |139|T445T 2
17470 1026U 1
65862 1026U, 1026U 1
72377 1028U 1
76768 445T |5000T |445T |5000T 1
81280 5900T, 5900T 1
145554 445T |5000T |445T |5000T |135T |5000T 1

135T |5000T |135T |5000T |135T

147436 ICMP |445T |80T 1
147476 ICMP |445T |80T 1
150691 2967T, 2967T, 2967T 1
164629 2967T, 2967T 1
168772 1027U |1028U |1026U 1
171073 1027U |1026U |1028U 1
174163 1026U |1028U |1027U 1

Single root cause Table 5 presents all single root cause groups. They correspond to
phenomena where a single, and always the same, cluster is theroot cause of the cor-
relation of platform time series. They could have been easily detected by computing
the correlation (still using a sliding window approach) between all the cluster time se-
ries corresponding to the same cluster on each platform. This is in contrast with the
multi-headed tools that require comparisons between cluster time series that do not
correspond to the same clusters.

As an example, the top plot of Figure 12 represents the attacks corresponding to
cluster number 170309 on two platforms 7 and 27 from day 194 today 290 (group 7 in
Table 5), targeting Symantec System Center Agent (SSC Agent) service on port 2967
TCP. As we can see, its cluster time series on these two platforms are almost the same.

190 200 210 220 230 240 250 260 270 280 290
0

20

40

60

80

100

Time(day)

Nu
m

be
r o

f s
ou

rc
es

190 200 210 220 230 240 250 260 270 280 290
0

20

40

60

80

100

Time(day)

Nu
m

be
r o

f s
ou

rc
es

Cluster t.s 175309 on platform 7
Cluster t.s 175309 on platform 27

Cluster t.s 60231 on platform 7
Cluster t.s 60231 on platform 27

Fig. 12.Single root cause example

Table 5.Single root cause

group platforms root causesstart,end dates
1 6 8 22 24 26 17466 13,116
2 24 26 0 2,119
3 2 15 17466 31,91
4 7 27 15715 194,290
5 7 27 54623 198,263
6 7 27 60231 194,290
7 7 27 175309 194,290
8 6 8 17 22 26 17515 241,286
9 2 3 8 9 10 12 15 24 26 0 241,286
10 2 3 8 9 10 12 15 24 26 14647 412,452

The bottom plot represents the highly correlated attacks onthe same two platforms and
also during the same period, but related to cluster 60231, targeting Virtual Networking
Computing service on port 5900 TCP (group 6 in Table 5). The interesting thing is that
the attacks of these two clusters are totally dissimilar. This shows the usefulness of the
sliding window technique during the root cause identification phase. We can see other
groups related to these 2 platforms around the same period. Amore in-depth analysis
of these identified groups and clusters would reveal interesting findings, from a forensic
point of view, highlighting relationships between phenomena which, otherwise, would
have been studied isolated from each other. Instead, our grouping can help those in
charge of attributing attacks to malicious actors, on the basis of their modus operandi.

Variant signature attack tools Our clustering algorithm classifies sources into clusters
on a basis of a set of attributes such as the number of packets sent by the sources to our
platforms, the ports sequences, the number of virtual hostscontacted,etc. Not all attack
tools have a deterministic behavior. Some may probe ports ina random order, a variable
number of times, etc. As a result, traces left by such tools will appear in distinct clusters

group platforms root causes start,end datesMulti- Finger- Var-
headed print iant

11 5 13 15610 15611 17718 60943 52,119 Y Y(1,2)
75851 75853 136244 136323

12 5 13 15611 17718 157,194 Y
13 27 0 14647 145554 316,364 Y
14 10 21 14647 15611 76768 332,364 Y
15 9 27 72377 168772 171073 174163 371,408 Y(2)
16 24 26 15611 60943 419,452 Y(1)
17 7 27 175309 164629 73,119 Y(1)
18 8 11 17470 65862 156,202 Y(1)
19 7 27 60231 81280 316,364 Y(1)
20 1 2 3 6 10 15611 60943 2,119 Y(1)

12 15 22 24 26
21 6 8 10 17 150691 175309 56,91 Y(1)

22 24 26
22 9 23 15611 65710 405,448 Y
23 2 15 15238,15715,60231 31,91 Y
24 2 15 14647 15238 15715 17466 246,286 Y
25 6 8 17 22 26 15715 17466 253,286 Y
26 5 13 28 15610 15611 17718 60943 120,156 Y Y Y(1,2)

75851 75853 136244
136323 147436 147476

27 2 15 15715 17466 60231 163,194 Y
28 7 8 27 54623 65710 214,245 Y

Table 6.Multiple root cause groups

that will appear in correlated groups. Table 6 lists them with the value ”Y” in the column
labeled ”Variant”. In this specific dataset, we found two reasons for which clusters can
be ”splitted”.

The first one is that they have contacted a different number oftargets (marked Y(1)
in Table 6). One cluster contacts only 1 honeypot and the other cluster contacts two
honeypots. By our observation, two-honeypot-contactedclusters have a smaller number
of sources than the one-honeypot-contacted clusters. It may be explained as follows: if
one source randomly chooses its target in a network, the probability for it to hit only one
of our machines is much higher than to hit two (or even three) of them. As an example,
the left plot of Figure 13 represents the attacks of all cluster time series related to group
26 in Table 6. The middle plot of Figure 13 represents only theattacks of two clusters
15611 and 60943 on platform 5. Cluster 15611 contacts 1 honeypot and cluster 60943
contacts two honeypots.

The other case is that the attack tool sends different amountof packets each time
it attacks our platform. These groups are marked ’Y(2)’ in the ”Variant” column. The
right plot of Figure 13 represents the attacks of three clusters numbered 75851, 75853
and 136323 also on platform 5. The three clusters have the same ports sequence:

120 130 140 150 160
0

50

100

150

200

250

300

350
Group 26

time(day)

nu
m

be
r

of
 s

ou
rc

es
120 130 140 150 160
0

50

100

150

200

250
Clusters 15611 and 60943

time(day)

nu
m

be
r

of
 s

ou
rc

es

120 130 140 150 160
0

5

10

15

20
Clusters 75851,75853 and 136323

time(day)

nu
m

be
r

of
 s

ou
rc

es

cluster 15611
cluster 60943

Cluster 75851
Cluster 136323
Cluster 75853

Fig. 13.Example variant worm

ICMP |445T |139T |445T |139T |445T . The difference resides in the number of
packets sent by each source in these clusters.

Fingerprint worm OS fingerprint is a well-known attack tactic. The idea is thatbe-
fore launching the attack, the attacker checks the type of target system it faces and then
launches, or not, the appropriate attack. We have found worms that automatized this
idea. We call them ”Fingerprint worm”. If a fingerprint worm learns that it is attacking
a non vulnerable host (w.r.t its attack model), it gives up. Since on our platforms, we
deploy two kinds of virtual machines: Windows and Linux, thefingerprint worms will
leave different traces on these two platforms. In terms of ports sequences, fingerprint
worms may leave two different ports sequences on two kinds ofvirtual machines. One
ports sequence may be the prefix of the other. We have found 5 cases of fingerprint
worm in our dataset. They are presented in Table 6 with the value ”Y” in the column
”fingerprint”. For instance, we plot 4 clusters numbered 75851, 75853, 136323, and
17718 of platform 5 from, again, group 26 (in Table 6) on Figure 14. The three clus-
ters numbered 75851,75853 and 136323 (resp. 17718) have thecorresponding ports
sequenceICMP |445T |139T |445T |139T |445T (resp.ICMP |445T). Cluster 17718
is mostly observed on the Linux machine (296 sources). Thereare only 64 sources that
sent packets to the other two windows machines. The three other clusters however, are
only observed on the two windows machines (251 sources in total). The explanation
is that since port 445TCP is closed on the Linux machine, the attack tool is ”intelli-
gent enough” not to try port 139 TCP since it knows that the target is not vulnerable
w.r.t its attacks. The fact that 64 sources have contacted the two Windows machines
but have given up can probably be explained by packet losses,either in the network
(e.g packet losses, firewall filters,etc..) or at the host (e.g congestion while launching
too many scans in parallel). Here too, the identification of this class of attacks helps in
understanding the threats on the Internet.

Multi-headed attack tools As being mentioned before, attack tools belonging to the
multi-headed family have different attack techniques, buteach time they use only one
of them against the victim. The services targeted are usually different. Table 6 indicates

120 125 130 135 140
0

20

40

60

Time(day)

N
um

be
r

of
 s

ou
rc

es

Cluster 17718
Cluster 75851
Cluster 75853
Cluster 136323

Fig. 14.Example Fingerprint worm

all the multi-headed groups we found. They have the ”Y” valuein the column labeled
”Multi-headed”. As an example, group 23 in Figure 8 consistsof three clusters targeting
Microsoft NetBios Service (port 139 TCP), Virtual Network Computing service (port
5900 TCP) and Microsoft SQL Server (port 1433 TCP). The coordinated attacks of
these three clusters spanned from day 31 to day 91. The top plot of Figure 15 represents
group 24. It consists of four clusters numbered 14647(port 445 TCP), 15238 (port 139
TCP), 15715 (port 1433 TCP) and 17466(135 TCP). Their time series on platforms 2
and 15 are highly correlated from day 246 to day 286. As a sanity check, we found
very low correlation coefficient between these cluster timeseries when computing their
correlation coefficients over the whole period. For instance, the bottom plot of Figure 15
shows the dissimilitude of two cluster time series 17466 and14647 on platform 2 from
day 1 to day 245 (the interval just before the correlation). We could not have discovered
this group if we had applied the algorithm for the whole period.

245 250 255 260 265 270 275 280 285 290
0

50

100

150

Time(day)

N
um

be
r

of
 s

ou
rc

es

cluster t.s 14647, 15238, 15715 and 17466 on platforms 2,15

0 50 100 150 200 250
0

20

40

60

80

100

Time(day)

N
um

be
r

of
 s

ou
rc

es

cluster time series 17466 on platform 2
Cluster time series 14647 on platform 2

Fig. 15.Example of multi-header worm

5 Conclusion

In this paper, we revisit the problem of discovering multi-headed worms mentioned
in [6], but in the context of a larger dataset collected from adistributed honeypot net-

work. Compared to the approach in [6] where correlation was investigated over the
whole period of observation, our technique is able to look for correlation over smaller
periods of time. To avoid comparing all possible cluster time series over different time
windows, which is very costly, we worked around this issue byusing filtered platform
time series. Our expectation was that the phenomena we were looking for would be
enough spatially and timely localized so as to be visible in the filtered platform time
series over some periods of time. Applying our technique to a15 month dataset, we
are not only able to confirm the existence of multi-headed worms (on many places),
but also bring to the community insight knowledge about wormbehaviours. Besides
that, the results obtained can also be used to improve our clustering algorithm. How-
ever, work remains to take full advantage of the obtained result in order to carry out a
systematic analysis of the identified phenomena and to help in studying the so called
attack attribution problem.

References

1. Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM, 16(9):575–577, 1973.

2. Mark W. Eichin and Jon A. A. Rochlis. With microscope and tweezers: An analysis of
the internet virus of november 1988. InProceedings of the 1989 IEEE Computer Society
Symposium on Security and Privacy, Oakland, Ohio, 1989.

3. Greg Hoglund and Gary Mc Graw.Exploiting Software: How to Break Code. Addison-
Wesley Professional, 2004.

4. Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic representation of
time series, with implications for streaming algorithms. In DMKD ’03: Proceedings of the
8th ACM SIGMOD workshop on Research issues in data mining andknowledge discovery,
pages 2–11, New York, NY, USA, 2003. ACM Press.

5. Fabien Pouget and Marc Dacier. Honeypot-based forensics. In AusCERT2004, AusCERT
Asia Pacific Information technology Security Conference 2004, 23rd - 27th May 2004, Bris-
bane, Australia, May 2004.

6. Fabien Pouget, Guillaume Urvoy Keller, and Marc Dacier. Time signatures to detect multi-
headed stealthy attack tools. In18th Annual FIRST Conference, June 25-30, 2006, Baltimore,
USA, Jun 2006.

7. Niels Provos. Home page of honeyd. see http://www.honeyd.org/.
8. J. Shoch and J. Hupp. The worm programs: Early experience with a distributed computation.

Commun. ACM, 25(3):172–180, 1982.
9. Eugene H. Spafford. The internet worm program: an analysis. SIGCOMM Comput. Com-

mun. Rev., 19(1):17–57, 1989.
10. Stuart Staniford, Vern Paxson, and Nicholas Weaver. Howto own the internet in your spare

time. In Proceedings of the 11th USENIX Security Symposium, pages 149–167, Berkeley,
CA, USA, 2002. USENIX Association.

11. William Trochim and James P. Donnelly.The Research Methods Knowledge Base. Atomic
Dog, December 2006.

12. Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham. A taxonomy of
computer worms. InWORM ’03: Proceedings of the 2003 ACM workshop on Rapid malcode,
pages 11–18, New York, NY, USA, 2003. ACM Press.

