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Abstract— Non-Line-of-Sight (NLOS) and multipath propa- be very high. This problem has been considered in the past
gation conditions pose significant problems for most Mobile and solutions based on adding the spatial dimension [9], [10
Terminal (MT) positioning approaches. This is because only path |,5ve been found. Recently in [11], Qi et al considered a total

parameters of LOS paths are considered. When in fact all paths . e . .
are considered, much more information for positioning becomes different approach for positioning in multipath envirormes

available, though proper consideration of the NLOS character of Instead of estimating TOA, based solely on the LOS path, they
NLOS paths is required. On the other hand, channel parameters investigated the enhancement in performance when muitipat
that have been used so far for positioning purposes concern a components are also being processed. They showed that the

static channel snapshot. In the case of mobility, the path Doppler signal strength of those components and the variance of thei
shifts provide information on the mobile terminal speed. In this del | . tant role in th h t
paper we combine this information with traditional positioning elays play an important role in . een an_cemen :
information to jointly estimate the terminal’s speed and position. The performance of geometrical techniques can also be

seriously degraded by the complete lack of a LOS component.
This is why the very first approaches were based on the
assumption that a LOS path always exists. However in urban

The first attempts to estimate the location of a MT alongnvironments this condition is rarely met. The most common
with some very early results date back to the late sixtiepproach for localizing in these environments is to try to
[1]. However, localization attracted a huge amount of ieseér mitigate the NLOS error. This can be accomplished in various
only after the U.S. Federal Communications Commissiomays: Identifying the NLOS BSs so as to localize with just
(FCC) announced that it is mandatory for all wireless servithe remaining LOS ones [12], [13] is one way. Using all BSs
providers to be able to provide location information to pabl but introducing either proper weighting to the measuresent
safety services in case of an emergency [2], [3]. Undouptedll4], [15] or a cost function that must be minimized [16],
that was just the initial motivation. During the attempt t¢17] in order to minimize the effect of the NLOS ones, is
meet with the FCC requirements in the predetermined timenother. Both of these approaches require the reception of
interval, researchers envisioned new commercial sentfeas the signal in many BSs, some of which must necessarily be
could become feasible if the exact location of the mobilinked through a LOS path with the MT. A third and more
user is known to the provider. Specifically, location-stéwsi appealing way, to mitigate the NLOS errors, is to introduce
billing, increased data rate due to optimum resource dilmca an appropriate NLOS channel model [18], [19] and use its
cellular phone fraud detection, cargo tracking, navigeti@and propagation characteristics to derive new equations thet m
yellow-pages services can be introduced by wireless servime satisfied by the MT position’s coordinates.
providers, not only to attract new costumers but also taBati The method proposed herein falls into the last categorg. It i
the demanding ones. based on the channel model introduced in [20], which enables

Amongst the numerous techniques that have been developsdo express the coordinates of the MT as a function of the
up to now, the most commonly used and accepted are the E@ation-dependent parameters, mentioned above. It doesn
called geometrical ones. Geometrical techniques are pfimarequire the reception of the MT’s transmitted signal in more
based on the estimation, usually in more than one Base Btatiban one BS and aims at providing a high location accuracy
(BS), of location-dependent parameters, such as the Arfgleiro strictly NLOS environments. Furthermore, in contrast to
Arrival (AOA), the Time of Arrival (TOA), the time differere  existing localization methods, we consider an environment
of Arrival (TDOA), a combination of two of the above (e.g.that changes dynamically due to the movement of the MT,
[4], [B]) or the estimation of the Received Signal Strengthather than a static one. By doing so, we introduce one more
(RSS) [6], [7]- dimension to the localization procedure, namely the (tiama

A main source of inaccuracies for geometrical techniquesiig time. This new dimension can be exploited to provide us
multipath propagation [8]. If the receiver is unable to teeo with more information about the MT’s position.
the paths and determine which is the first-arriving one in The problem of estimating the exact location of a MT can
order to identify it as the LOS path, the position error wilalso be attacked from a different perspective. Continyousl

I. INTRODUCTION



estimating the coordinates is essentially equivalentaoking S, (X1 Ygp)
the MT. Thus some interesting techniques based on Ke
filtering [21], [22] or the principles of Bayesian param
estimation [23] have been introduced. We will show |
the approach in [21] can be efficiently combined with
approach to mitigate errors introduced by the non-linganf
the movement of the MT on a larger time-scale.

The rest of the paper is organized as follows: In secti
we present the channel model along with the assumptiol
adopt. In section Il we formulate the Maximum Likelihc
joint estimation of the speed and the position for the gd
case when spatial and temporal correlation amongst th¢
mated parameters exist and can be computed. We then p
with the derivation of the Cramer-Rao Bound in section
Identifiability concerns are briefly discussed in sectionA
tracking procedure to enhance the performance of the peo
method is presented in section VI. Finally conclusions
suggestions for future work are given in section VII.

Notation: Throughout the paper, upper case and lower case Fig. 1. Single Bounce model
boldface symbols will represent matrices and column vesctor

respectively.(-)* will denote the transpose of any vector or ] ) ) )
matrix. In order to make the notation more compact, arw;)ordlnates of the scatterers. With respect to figure 1 aimgjus

random vectora with elementsa;;, ..., a;; will be denoted subscriptij for the parameters at time instant 0 <i < NNy
and corresponding to path (or scattéjei, 1 < j < N, the

SZ (st’ysz)

asa;j:ki- 5 o
“ channel’'s parameters, whose value has been estimatedrg-pri
Il. CHANNEL MODEL are given by:
In the following analysis, we consider the single bounce tan—1 Yeius YU
model, slightly different versions of which have been intro bij = e~y ’ Iy 1)
duced and employed in localization techniques by Miao et THtanT i pgma < 0

al [20], [19] and Jazzar and Caffery [18]. The single bounce v _

model describes accurately numerous scenarios, desgte thl/)“ — o, = tan ™! ZZj:iZiz J lijiiZ‘Zi >0 @)
fact that it is very simple. Its wide applicability stems rfto Y] m4-tanT! g s <0

the fact that in a physical propagation environment, theemor

bounces, the larger the attenuation will be, not only bezaus

the scatterer absorbs some of the signal's energy but also di; :\/(ysj —yi)2 + (25 — )2
because more bounces usually implies a longer path length. 5 5
Thus if a limited number of NLOS signal components with +\/(ysj —yps)? + (255 — 2Bs) @)

non-negligible energy arrive at the receiver, it is reabtizo Furthermore, considering the movement of the MT, which

assume that they have bounced only once. . . . ; . . X
. . . is depicted in the figure 1 as consecutive points starting at

The aforementioned approaches consider a static propa- .

. . ) . 0,Yo) and passing througliz;,y;), we can express the
gation environment, i.e. they assume that the MT is n%f(o ler shiftsf, ;; as a function of the same parameters:
moving. We, on the other hand, are particularly interested I PP dij P '
dynamically changing environments. It is well known thag th
shift in frequency due to the movement of a terminal (Doppler
effect) depends strongly on the magnitude and the direction
of its speed vector. Therefore estimating this shift carvigie _ Je Uz (Ts5 — @) + Uy (Ysj — ¥i) (4)
us with valuable information for the localization proceeluas ¢ /(ysj —vi)? + (zsj — 21)?
will be shown below.

Let ¢, ¢ and d denote the AoA, AoD and length of the ) :
NLOS path respectivelly Based on the single bounce modeY = 1/v2 + v is the magnitude and, = tan™" (v, /vs)
we can express these location-dependent parametersitixpliés the direction of the speed. Assuming tHaf, — 1) x dt
as a function of the MT coordinates; and y, its speed is small (e.g. fraction of a second), whelg represents the
components (projection to the same axes)andv, and the number of times we repeated the observations in timednd

fai; = %U cos (¢ij — o)

where f. is the carrier frequency is the speed of light,

1The length of the path is just the product of the speed of lighes the 2For the sake of simplicity we assume that the scatterers do nee.riite
corresponding estimated delay. extension to the more general case is beyond the scope ofapées.p



is the average time between subsequent observatisescan likely that the covariance matri€ also depends on the same
approximate the movement of the MT with a linear one gfarameters, however exploring such relationship is beyoad
constant speed, i.e. scope of this paper, so we will limit our analysis to the case
where C does not depend on the entriesf On the other
hand, to make our analysis more general, we will not assume
that C is necessarily diagonal, i.e. we do not require that all
wheredt;y = t; — to. Substituting (5) in (1), (3) and (4) we the entries off are iAndAepAendent. For example the entries of
get the AoAs, the path lengths and the Doppler Shifts asaay of the vectors, v, d, f; with the same time indexcould

Ty = T + Ugdlio , yi = Yo + vydtyg, 1 < i < Ny (%)

function of only the initial position and the speed: be correlated. The p.d.f & conditioned onp is given by:
—1 Ysj—(yotvydtio) 55 —(yo+vydtio) ~ 1 _1_ tev—1/p_
b tan isj—(ZZJrvmdtiZ) , —i’sj_(zszwdt;)) >0 f(0lp) = N 3¢ 5(6-6(p))'C™'(6-6(p) (13)
W T+ tan~ ! Yei —(yo+vydtio) Ysj—(yo+vydtio) (277) 2 (det C)
Toj—(ToF+vedtio) 7 xsj—(To+vadtio)

(6) To obtain a Maximum Likelihood (ML) estimate of our
parameters of interest, we need to maximfZ@|p) -or equiv-

d;; :\/(ysj — (yo + vydtin))? + (zs; — (zo + vediip))? alently maximize or minimize a corresponding likelihood-
with respect to both the parameters of interest and the mcesa
+\/(ysj —yps)? + (zs5 — TBs)? (7)  parameters. Define a log-likehood obtained by taking the

natural logarithm off(8|p) and ignoring the constant terms
_ va(xsj — (20 + vadtio)) + vy (Ys; — (Yo + vydti)) 9 /(6lp) 9 g

faiy = ¢ /(ysj — (o + vydtin))? + (255 — (xo + detio(g);

S _ L~ tv—1/pn
I1l. JOINT ESTIMATION OF SPEED AND INITIAL POSITION L=L6p) = 5(6 —8(p))’C™ (6 -6(p)) (14)

We are interested in estimating jointly the MT’s coordisate Then the ML estimate denoted @sis given by:
at time 0, namelyxy, and y, and its speed components.

and v,, which, as mentioned above, remain constant during p = argmin{L} (15)

the short period of the estimation procedure. These two p

pairs of parameters (parameters of interest) compose arvect IV. CRAMER-RAO BOUND

which we denote apin: = [0, Y0, vz, vy]°. The rest of  According to the Cramer-Rao Bound (CRB) for an unbiased

the unknown parameters on the right hand side of equaticfitimatorp of p, the correlation matrix of the parameter
(2),(6)-(8), which are the coordinates of the scattereesjast estimation errorp is bounded below by the inverse of the

nuisance parameters and they compose the vgefQl; = Fisher Information Matrix (FIM) as shown beléw
[Zs1,Ys1,- > Zsn., Ysn. |t The set of all of the abovaN, +4
parameters compose the vector: Rss = E{(P—p)(P—p)'} = I (16)

p=[p., bl (9) Where the FIM is given by:

R LetA¢A> £ $o1;(Nt—1)NS, 'lZ £ ’lZLNS, d2 am;(th)Ns, g E{ ai % t} _ 87@0_1879 (17)
f, = f4,01:(v,—1)~, be the random vectors containing the esti- op Jp op Jopt
mated channel-dependent parameters @nd ¢o1.(v, _1)n,,  The derivation ofJ is given in the Appendix. Each of the

P £ Yy, d é dov:(v,—1)n.s fa £ fg.01:(v,—1)n. b€ four first diagonal entries af ! is just the lower bound for the
the vectors containing the true value of the entries of th@riance of the estimation error of each one of our parameter

above vectors. Define the following vectors of si2é = of interest, namely the coordinates and the speed component
(3Ny + 1)Ny: of the MT. These bounds are plotted in figures 2 and 3 as a
function of the standard deviation of the entriefgfassuming
_ t ot qt ptit these entries have the same standard devfationthe first
~ S oy sy e figure we show that ML estimation can potentially achieve
‘j - [:;S ' fg] (11)  better performance as more information from different path
0 = 0-06 (12) becomes available, since the CRB is dramatically decreased

. T . ?SNS is increased froni to 3. In the second figure we show
The vector@ is deterministic and contains the true value o ) X i
~ . “that the same effect can happen with an increase in the number
all channel-dependent parameters. The ve@ter a Gaussian

random vector with mean valu®and covariance matri€ = of measurementeN; = 10,20,50), in a predetermined time

C,- The mean value vectdr depends on the entries pf It is interval,

4For matricesA andB, A > B means thaiA —B is non-negative definite.
3By considering the average, we overcome the restriction dfouml 5This assumption is valid if the power of the noise remains @msdurin
y g g y p p 9
spaced measurement times. the short observation time.



TABLE |
COORDINATES AND SPEED COMPONENTS CONSIDERED FOR COMPUTING
THE CRB

(m)

o, (m

(zBs,yBs) | (zo,%0) | (vz,vy) | (@s1,¥s1) | (xs2,9s2) | (s3,9s3)

(0,0 (30,20) | (2-15) | (20,20 (35,15) (25,5)

delay is low, leading to the estimation of the parametersisif |
of . " one separable path. It is easy to show that identifiabilitgrin
T o s error-free scenario can be achieved if the speed of the MT and
e Ll the parameters of a single path are known. The straight-line
I e equation derived in [20]

T e Yi = a;x; + b; (18)

0, (H2) o, (H2)

with the constant terms depending on the estimated AOAs,

_ - _ AODs and path lengths according to
Fig. 2. Standard Deviation gb versuso ;. (various Ng)

_ Ccos¢; + cosy
sin ¢; + sin Y
bi = —a;(xps — d;siny) + ypgs — d; cos (20)
‘ " ) and eq. (5), provide a set of equations from which the
) e T coordinates of the MTx;,y;) can be computed.

(19)

o, m
(m)

VI. ENHANCEMENT THROUGH KALMAN FILTERING ON A
: LARGER TIME-SCALE

The method proposed in section Ill can only be applied
on a finer time-scale since it is based on the assumption
: that the movement of a MT is linear. In practice that is
w true only for very small time intervals, during which the
. T curve that the MT might be possibly moving on can be
S d S approximated by a straight line and any non-zero acceterati

) can be neglected. However we are interested in tracking the
R e s e o MT for time intervals much larger thaw,dt. On a much
’ larger time-scale, for which the considered time instances
are multiples ofN,dt our parameters of interest;,,; can be
g. 3. Standard Deviation qb versuso ; (various ) tracked using a standard mobility model:

o, (misec)
o, (misec)

Fi

The measurements are uniformly spaced ands such Pint (fi1) = SPins () + (1)
that NV;dt = 1sec. The carrier frequency is9 x 10°Hz. The where o = [0,0, o, (t) Nidt, oy (t) Nidt]' with its non-
standard deviation of each of the entries¢afiy andd are zero entries being Gaussian random variables represehtng
2°,2° and bm. respectively. The cross-correlation is assumeathknown acceleration and

to be negligible. Finally the true values of the entriespof 1 0 Ndi 0
are given in table I. The values for the coordinates are &fpic 01 0 Nt
values for picocells and the values for the speed components S=100 1 0 (22)
correspond to average walking speed. 00 0 1
V. IDENTIFIABILITY CONCERNS However, the exact values of the entries of,,(t,) are

One major advantage of taking into account informationot available. Their estimated value derived by ML estiorati
about the speed in addition to the information about the-locanight contain small errors, thus:
tion is the ability to perform Maximum Likelihood estimatio ~ -
with as few as one NLOS signal component. This can be Pint(tr) = Pint(fk) + 1 (23)
proven to be extremely useful for cases when the resolutiaeren = [z, 50, U, Uy| contains the speed and position
of the channel impulse response as a function of time amdtimation errors and its entries are all Gaussian random



variables. Letp;n:(to.x) = [Pl (to),---,Ph,(tr)]? denote BS are employed. The latter case would possibly require the
the vector containing all previously estimated values. riTheintroduction of delay offsets as nuisance parameters, due t
since all the errors are Gaussian distributed, the optinlatk of synchronization. MT orientation and BS delay offset

ML/MMSE estimate for timek is given by: issues along with the extension to include a LOS component
will be treated in future work.
Pint(tk) = E{Pint(tr)[Pint (to:r)} (24) APPENDIX

As pointed out in [21], the above optimal estimate can be In the following analysis we derive a general expression for
computed recursively with the use of a Kalman filter. Thall the entries of the FIM. Let's start by defining the diffeces
derivation of the algorithm is straightforward and can benfd in the coordinates of the positions of the MT and between the
in their paper. To initiate the recursive algorithf,,(to) can coordinates of the scatterers and the BS:
be used. An initial value for the conditional covariance ma-

_trix E{(pmt (tk) *ﬁmt (tk))(pint (tk) *ﬁint (tk))t_‘ﬁmt (tO:k)} o Ayij (ysj — Yo — Uydtio) (25)

is also needed. The most reasonable choice for an intial

covariance matrix is a scaled identity matrix. However an Baij = (55 = T0 — vadtio) (26)
inference on the cross correlations of the position’s aeedjs Ayj = (Ysj —Yss) (27)
components could be based on the first estimated values, JANS (xsj — xRS) (28)
octgaBlr:re]d(lbg))t.he finer time-scale ML estimation (e.g. usire th The partial derivatives of all different kinds of entries of

6 - which could be an AoAp, an AoD v, a path lengthd
VIl. CONCLUSIONS or a doppler shiftf,;- with respect to all different kinds of

. . . , , entries of p- which could be the coordinates or the speed
In this paper, we investigated how information about th

. ; . . . @omponents of the MTy, yo, vs, vy OF the coordinates of the
movement of a m.obll.e termlnql can be .|ntegrated in tradwonscattererszsj, ;- can be expressed as a function of the above
geometrical localization techniques to improve their aacy differences and the speed components. These express®ns ar
Such information is available through the Doppler frequen%iven below.
shifts. Instead of considering a static channel snapsteo-

X ) If the entry of@ is an AOA:
posed method considers a set of adjacent snapshots, separat

by a very small amount of time. This enables us to assume that 99; - _ 0%ij - Aaij (29)
consecutive positions of the MT satisfy a linear equatibnost 9ys; Yo A?cij + Afﬂj
although the aforementioned amount of information can be 0gij  —dtigAy; (30)
utilized in the estimation procedure, only two extra pareare Juy N Afm.j + Afﬂj
namely the projections of the speed vector along the two axes D D —Ayij
need to be jointly estimated. Disregarding the information 0r. Oz AT 1AL (31)
about the movement and considering static snapshots would 8¢J N e vyt
lead to suboptimal solutions for location estimation. A ML 2 = % (32)
solution was formulated for the case when estimates abeut th G, ALij T By
AoAs, AoDs, delays and frequency shifts are available. Thethe entry of@ is an AoD:
Cramer Rao Bound was derived to serve as an indication on the i A
attainable performance of the proposed problem formuiatio p ”4 = ﬁ (33)
Moreover, identifiability was shown to be possible with as fe Ysi ©j vi
as one NLOS component received at only one BS. Finally, i - Ay (34)
we suggested Kalman filtering on a larger time-scale as an Oxg; Aij + A:;j
efficient method not only to enhance the performance of ;. Oy —0 (35)
the ML estimation but also to combat the errors possibly Yo Ovy
introduced by an acceleration of the MT. N N

Although the framework provided herein is as general as dre  Ov, 0 (36)
possible, there are still some problems that need to beetracklf the entry of@ is a path length:
and some special cases that would broaden the applicadsiility
the method. It has been assumed throughout the whole paper 9dyj — Ayij + Ay, (37)
that the AoAs and the AoDs are measured with respect to the 9ys; \/ Agij + Afm \/ Aij + Aflj
same axes system. However if the AoAs are measured at the ad. A . ' '
MT (e.g with the use of multiple antenna elements), this is Y = Yt (38)
not the case. A new unknown nuisance parameter will have o Agij +A§ij
to be introduced in the model then, namely the orientation of ad;; dtiolyij
the MT. Some possible extensions of our framework would be = - (39)

the cases when a LOS path is also present, or more than one Yy Agij + Aiij



szjj = TS L = = s " (40)
\/ wij T Dyij \/ zj T Byj
adz j wz j
6 J — J (41)
o Jar, el
od;j dtioAgij
A @
‘ AJ”] + AZﬂ]
Finally, if the entry of@ is a Doppler Shift:
Ofaij _ _ Ofaij _ fe UyALi; = vaBaijAyij (43)
aysj ayo ¢ (Afnj + A?ﬂ])g/z
8fd,ij _ E Ayu + UydtiQ(A?Qﬂj ) + detiOAwijAyij
vy c (A2, +AZ)32
(44)
Ofaij  Ofaij  fev e A% — Uy Agij Ay 45
Ovg; Oy ¢ (A2, +A2)32 45)
Ofaij _ JoBaij + Vpdtio(A2;; — 1) + vydtio Awij Ay
vy c (A2, + A7)/
(46)

Define the subscripts < m,n < N;+4. Taking the partial
derivative of the log-likehood. with respect to any entry,,
of p we obtain:

06
= c
apﬂ’L

106t ~
=__—C'o+
2 Opm

oL

Opm

06

1
o 0 (47)

70tc !

By multiplying two partial derivatives ofs with respect to
two entriesp,, andp,, of p we get the following:

oL oL
O Oy

90" -1ggre1 29
B

48
= Opm Pn (48)

(1]

(2]

K]

(4]

(5]

(6]

(7]

(8]

(9

(10]

[11]

(12]

(23]

(14]

(15]

[16]

respect tof we obtain the general expression for any entr

Jmn Of the FIM:

00!

_ 90" 190
Opm

oL oL
} Opn,

Jmn = Eg {8pm Opn

(49)

where the row vectof’— is a concatenation of four vectors

as follows:

00t
Opm

oty adt of!
Opm ’ Opm ' Opm ’ Opm

= ] (50)

and the column vectof?- is defined similarly. The final step
to obtain any entrmen of the FIM is just to replace the

8]

(19]

(20]

[21]

[22]

23]

entries of these two vectors with the appropriate exprassio

from the right hand side of equations (29)-(46).
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