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AAbbssttrraacctt  

In this doctoral dissertation, we principally explore the use of the temporal 
information available in video sequences for person and gender recognition; in particular, 
we focus on the analysis of head and facial motion, and their potential application as 
biometric identifiers. We also investigate how to exploit as much video information as 
possible for the automatic recognition; more precisely , we examine the possibility of 
integrating the head and mouth motion information with facial appearance into a 
multimodal biometric system, and we study the extraction of novel spatio-temporal facial 
features for recognition. 

We initially present a person recognition system that exploits the unconstrained 
head motion information, extracted by tracking a few facial landmarks in the image plane. 
In particular, we detail how each video sequence is firstly pre-processed by semi-
automatically detecting the face, and then automatically tracking the facial landmarks over 
time using a template matching strategy. Then, we describe the geometrical normalisations of 
the extracted signals, the calculation of the feature vectors, and how these are successively 
used to estimate the client models through a Gaussian mixture model (GMM)  approximation. 
In the end, we achieve person identification and verification by applying the probability 
theory and the Bayesian decision rule (also called Bayesian inference). 

Afterwards, we propose a multimodal extension of our person recognition system; 
more precisely , we successfully integrate the head motion information with mouth motion 
and facial appearance, by taking advantage of a unified probabilistic framework. In fact, we 
develop a new temporal subsystem that has an extended feature space enriched by some 
additional mouth parameters; at the same time, we introduce a complementary spatial 
subsystem based on a probabilistic extension of the original eigenface approach. In the end, 
we implement an integration step to combine the similarity scores of the two parallel 
subsystems, using a suitable opinion fusion (or score fusion) strategy. 

Finally , we investigate a practical method for extracting novel spatio-temporal facial 
features from video sequences, which are used to discriminate identity and gender. For this 
purpose we develop a recognition system called tomofaces, which applies the temporal X-ray 
transformation of a video sequence to summarise the facial motion and appearance 
information of a person into a single X-ray image. Then, we detail the linear projection 
from the X-ray image space to a low dimensional feature space, the estimation of the client 
models obtained by computing their cluster representatives, and the recognition of identity 
and gender through a nearest neighbour classifier using distances. 
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RRééssuumméé  

Dans cette thèse, nous explorons principalement l'utilisation de l'information 
temporelle des séquences vidéo afin de l’appliquer à la reconnaissance de personne et de 
son genre; en particulier, nous nous concentrons sur l'analyse du mouvement de la tête et 
du visage ainsi que sur leurs applications potentielles comme éléments d'identification 
biométriques. De plus, nous cherchons à exploiter la majorité de l’information contenue 
dans la vidéo pour la reconnaissance automatique; plus précisément, nous regardons la 
possibilité d'intégrer dans un système biométrique multimodal l’information liée au 
mouvement de la tête et de la bouche avec celle de l’aspect du visage, et nous étudions 
l'extraction des nouveaux paramètres spatio-temporels pour la reconnaissance faciale. 

Nous présentons d'abord un système de reconnaissance de la personne qui exploite 
l'information relative au mouvement spontané de la tête. Cette information est extraite par 
le suivi dans le plan image de certains éléments caractéristiques du visage. En particulier, 
nous détaillons la détection semi-automatique du visage dans chaque séquence vidéo, puis 
le suivi automatique dans le temps de certains éléments caractéristiques en utilisant une 
approche basée sur l’appariement de bloques (template matching). Ensuite, nous exposons les 
normalisations géométriques des signaux que nous avons obtenus, le calcul des vecteurs 
caractéristiques, et la façon dont ils sont utilisés pour estimer les modèles des clients,  
approximés avec des modèles de mélange de gaussiennes. Nous terminons par le module 
d’identification et vérification basé sur la théorie de probabilités et la règle de décision 
bayésienne (aussi appelée inférence bayésienne). 

Nous proposons ensuite une extension multimodale de notre système de 
reconnaissance de la personne; plus précisément, nous intégrons à travers un cadre 
probabiliste unifié l’information sur le mouvement de la tête avec celle liée au mouvement 
de la bouche et à l’aspect du visage. A cet effet nous développons un nouveau sous-
système temporel qui a un espace caractéristique étendu, lequel est enrichi par certains 
paramètres supplémentaires relatif au mouvement de la bouche; dans le même temps nous 
introduisons un sous-système spatial complémentaire au précédent, basé sur une extension 
probabiliste de l’approche Eigenfaces d’origine. Une étape finale d’intégration combine les 
scores de similarité des deux sous-systèmes parallèles, grâce à une stratégie appropriée de 
fusion d’opinions. 
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La dernière partie de la thèse nous avons voulu la consacrer à l’étude d’une methode 
pratique d’extraction de nouveaux paramètres spatio-temporels liés au visage à partir des 
séquences vidéo; le but est de distinguer l’identité et le genre de la personne. À cette fin 
nous introduisons un système de reconnaissance appelé tomovisages (tomofaces), qui utilise le 
principe de la tomographie vidéo  pour résumer en une seule image l’information relative au 
mouvement et à l’aspect du visage d’une personne. Puis, nous détaillons la projection 
linéaire à partir de l’espace de l'image en rayons X à un espace caractéristique de dimension 
réduite, l'estimation des modèles des utilisateurs en calculant les représentants des clusters 
correspondants, et la reconnaissance de l'identité et du genre par le biais d'un classificateur de 
plus proche voisin, qui adopte des distances dans le sous-espace. 
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RRiiaassssuunnttoo  

In questa tesi di dottorato esploriamo la possibilità di riconoscere l’identità e il sesso 
di una persona attraverso l’utilizzo dell’informazione temporale disponibile in alcune 
sequenze video, in particolare ci concentriamo sull’analisi del movimento della testa e del 
viso, nonché del loro potenziale utilizzo come identificatori biometrici. Esaminiamo 
inoltre la problematica relativa al fatto di sfruttare più informazione video possibile per 
effettuare il riconoscimento automatico della persona; più precisamente, analizziamo la 
possibilità di integrare in un sistema biometrico multimodale l’informazione relativa al 
movimento della testa e della bocca con quella dell’aspetto del viso, e studiamo il calcolo di 
nuovi parametri spazio-temporali che siano utilizzabili per il riconoscimento stesso. 

In primo luogo presentiamo un sistema di riconoscimento biometrico della persona 
che sfrutti l’informazione legata al movimento naturale della testa, il quale è estratto 
seguendo la posizione nel piano immagine di alcuni elementi caratteristici del viso. In 
particolare descriviamo come in una sequenza video il volto venga dapprima individuato 
semiautomaticamente, e come poi alcuni suoi elementi caratteristici siano localizzati nel 
tempo tramite un algoritmo automatico di messa in corrispondenza di modelli  (template matching) 
permettendo di seguirne la posizione. Spieghiamo quindi le normalizzazioni geometriche 
dei segnali che abbiamo ricavato, il calcolo dei vettori caratteristici, ed il modo in cui questi 
sono utilizzati per stimare i modelli degli utilizzatori, approssimandoli tramite delle misture 
di distribuzioni gaussiane  (Gaussian mixture models). Alla fine otteniamo l’identificazione e la 
verifica dell’identità della persona applicando la teoria delle probabilità e la regola di decisione 
o inferenza bayesiana . 

In seguito proponiamo un’estensione multimodale del nostro sistema di 
riconoscimento della persona; più precisamente, tramite un approccio probabilistico 
unificato, integriamo l’informazione sul movimento della testa con quelle relative al 
movimento della bocca e all’aspetto del viso. Infatti sviluppiamo un nuovo sottosistema 
temporale che possiede uno spazio caratteristico esteso, arricchito di alcuni parametri 
aggiuntivi legati al movimento della bocca; contemporaneamente, introduciamo un 
sottosistema spaziale complementare al precedente, basato su un’estensione probabilistica 
dell’approccio Eigenfaces originale. Alla fine implementiamo uno stadio di fusione, che metta 
insieme i valori di somiglianza dei due sottosistemi paralleli, attraverso un’appropriata 
strategia di fusione delle opinioni. 
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Infine investighiamo un metodo pratico per estrarre nuovi parametri spazio-
temporali relativi al volto a partire da sequenze video, i quali sono utilizzati per distinguere 
l’identità ed il sesso della persona. A questo riguardo sviluppiamo un sistema di 
riconoscimento chiamato tomovolti (tomofaces), il quale utilizza la tecnica della tomografia video 
per riassumere in una sola immagine l’informazione relativa all’aspetto ed al movimento 
del volto di una persona. Poi descriviamo la proiezione lineare dallo spazio dell’immagine 
ai raggi X ad un spazio caratteristico di dimensione ridotta, la stima dei modelli degli 
utilizzatori attraverso il calcolo dei rappresentanti corrispondenti ad ogni cluster, ed il 
riconoscimento dell’identità e del genere attraverso un classificatore al vicino più prossimo  
(nearest neighbour classifier), che adopera le distanze nel sottospazio. 
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LLiisstt  ooff   aabbbbrreevviiaattiioonnss  

AAM: active appearance model 

CAR: correct acceptance rate 

CIR: correct identification rate 

CMS: cumulative (correct) match score 

CRR: correct rejection rate 

DCT: discrete cosine transform 

DET: detection error trade-off 

DVT: discrete video tomography 

EER: equal error rate 

EBGM: elastic bunch graph matching 

EGM: elastic graph matching 

EM: expectation-maximisation 

FAR: false acceptance rate 

FLD: Fisher’s linear discriminant 

FMR: false match rate 

FNMR: false non-match rate 

FRR: false rejection rate 

FTCR: failure to capture rate 

FTER: failure to enrol rate 

GMM: Gaussian mixture model 

GUI: graphical user interface 

HDRT: hierarchical discriminative regression tree 

HMM: hidden Markov model 

KLT: Karhunen-Loeve transform 

LDA: linear discriminant analysis 

MAP: maximum a posteriori 

PCA: principal component analysis 
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PDF: probability density function 

RBFNN: radial basis function neural network 

ROC: receiver operating characteristic 

SIS: sequential importance sampling 

TSSSM: time series state space model 
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CChhaapptteerr  II..  IInnttrroodduuccttiioonn  

I.A. Motivation 

There are numerous reasons that motivate our interest in studying novel person 
recognition approaches based on facial video sequences. 

First of all, over the last few decades biometric person recognition has gained a vast 
interest in the scientific community and benefited by increasing investments in the most 
technologically advanced countries. In fact, the expansion of electronic commerce and 
finance, the need for accessing restricted areas and resources, and the development of 
worldwide travel have required simple and reliable person recognition tools. Furthermore, 
after the terrorist attacks of 9 th September 2001, government agencies and corporations 
have been investing in biometric technology more than ever, in order to enforce public 
security and access to sensitive facilities. 

Then, the human face is a fundamental element in our social lives because it 
provides a bewildering variety of important signals: for example, its bearer’s identity , 
gender, age, emotion and interest. For this reason, human face recognition has been a 
central topic in the field of person recognition, and this biometric has demonstrated some 
valuable properties: it is non intrusive, easy to collect, and well-accepted by the public. 

Afterwards, person recognition using facial video information has some advantages 
over image-based recognition. First of all, video frames can provide a huge amount of data 
compared to single pictures, and more robust and stable recognition can be achieved by 
integrating information and decisions from previous frames. Then, in addition to the 
physiological information already present in images, also the temporal one becomes 
available and can be exploited to improve the recognition task; consequently, nowadays 
researches have the possibility to analyse not only facial appearance but also head and 
facial motion, and human face starts to be considered as a hybrid biometric identifier, 
rather than only a physiological one. Finally , video data allows learning and updating the 
models over time. 

In our research, we principally explore the use of the temporal information available 
in video sequences for person and gender recognition; in particular, we focus on the 
analysis of head and facial motion, and their potential application as biometric identifiers. 
We motivate our choice with the following considerations. 
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Currently , the research on person recognition using facial video information has 
been mostly focused on developing straightforward extensions of image-based 
approaches, which exploit only the spatial information in video sequences; furthermore, 
most of temporal strategies take only advantage of the evolution of facial appearance over 
time. Hence, the use of head and mouth motion for person recognition is still a largely 
unexplored topic. On the contrary, we believe that the way an individual moves his head 
or his face is somewhat characteristic, and that the dynamic patterns could be used to 
discriminate people. We are supported in this claim by the study of Knight and Johnston 
[41], which reveals that under non-optimal image conditions (like negative images) 
“moving faces are significantly better recognised than still faces”. 

Finally , in our research we also investigate how to exploit as much video 
information as possible for recognition; more precisely , we focus on the possibility of 
integrating the head and mouth motion information with facial appearance into a 
multimodal biometric system, and we study the extraction of novel spatio-temporal facial 
features for recognition. Again, there are some reasons that motivate our choice. 

Until now, it is a common trend in literature to exploit only a part of the biometric 
information embedded in video sequences, mainly the physiological one related to facial 
appearance. Though, video data does not provide only abundant spatial information but 
also the temporal one, and as far as we know it has never been proposed a hybrid person 
recognition system, using the physiological and behavioural aspects of the face at the same 
time. In contrast, the integration of multiple sources of information typically has 
numerous advantages for biometric recognition systems: it can increase the accuracy of the 
systems, by exploiting complementary information, it can augment their reliability , by 
taking advantage of redundant and richer information that can compensate the individual 
weaknesses, and it can reduce their cost, by exploiting several cheap sensors. Hence, we 
considered taking advantage not only of the temporal facial information present in video 
sequences, but also of facial appearance, which is one of the traditional biometric 
identifiers for person recognition, and it has been largely studied during the last decades. 

I.B. Original contributions 

In this section we underline the original contributions of this thesis. 

The major contribution in Chapter IV is the exploration of the unconstrained 2D 
head motion information for person recognition. In particular, we calculate the feature 
vectors by tracking a few facial landmarks in the image plane, we estimate the user model 
through a Gaussian mixture model approximation (GMM) , and we achieve identification and 
verification by applying the probability theory and the Bayesian decision rule (also called 
Bayesian inference). In addition, one minor contribution is the introduction of two novel 
similarity measures for person recognition using video data: the video log-posterior probability 
for the identification task, and the video log-posterior probability ratio  for the verification one. 
Then, other minor contributions are: the experimental analysis of the effect of tracking 
noise on the discriminatory power of the head motion information, and the application of 
our biometric system to a gender recognition scenario. 
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Afterwards, the major contribution in Chapter V is the study of a multimodal 
person and gender recognition system, which integrates unconstrained head motion with 
mouth motion and facial appearance, in a unified probabilistic framework. In fact, we 
develop a new temporal subsystem that has an extended feature space enriched by some 
additional mouth parameters, and a complementary spatial subsystem based on a 
probabilistic extension of the original eigenface approach; then, we introduce an 
integration step to combine the similarity scores of the two parallel subsystems. In 
addition, one minor contribution is the extension of the eigenface technique to a 
probabilistic framework, by adopting a Gaussian mixture model (GMMs)  approximation to 
represent the biometric features of each client, and Bayesian inference to calculate the 
similarity between tests and models. Then, other minor contributions are: the development 
of a weighted summation fusion  strategy adapted to our probabilistic framework, and its 
probabilistic interpretation. 

Finally , the main original contribution in Chapter VI is the exploration of novel 
spatio-temporal facial features for person and gender recognition. In particular, we 
propose a biometric system called tomofaces, which applies the temporal X-ray 
transformation of a video sequence to summarise the facial motion and appearance 
information of a person into a single X-ray image. 

We conclude this section by underlying the importance of the video database of 
Italian TV speakers that we have been collecting for some months (Chapter VIII): without 
the manual work and this precious data, there would never have been any chance for this 
research to happen. 

I.C. Outline 

This doctoral dissertation is organised as follows: 

• In Chapter II we provide an introduction to the discipline of biometrics 
and its evolution towards multi-biometrics. 

• In Chapter III we review the literature on person recognition using facial 
video information. 

• In Chapter IV we present a novel person recognition system that exploits 
the unconstrained head motion information, extracted by tracking a few 
facial landmarks in the image plane. 

• In Chapter V we propose a multimodal extension of our person 
recognition system; in particular, we successfully integrate the head motion 
information with mouth motion and facial appearance, by taking advantage 
of a unified probabilistic framework. 

• In Chapter VI we investigate a practical method for extracting novel spatio-
temporal facial features from video sequences, which are used to 
discriminate identity and gender in a recognition system called tomofaces. 

• In Chapter VII we conclude this dissertation with a summary and some 
comments on future perspectives. 
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• In Chapter VIII we detail our database of Italian TV speakers, which is 
used in the experiments to evaluate the performance of the recognition 
systems. 

In the following chapters there are some minor intentional repetitions and 
redundant references, because we intend to provide as much consistent and complete 
information possible, and to generate almost self sufficient chapters. 
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CChhaapptteerr  IIII..  GGeenneerraalliittiieess  oonn  bbiioommeettrriiccss  

II.A. Introduction 

Over the last few decades biometric person recognition [20][37][38][52][67][68] has 
gained a vast interest in the scientific community and benefited by increasing investments 
in the most technologically advanced countries. In fact, the expansion of electronic 
commerce and finance, the need for accessing restricted areas and resources, and the 
development of worldwide travel have required simple and reliable person recognition 
tools. Furthermore, after the terrorist attacks of 9 th September 2001, government agencies 
and corporations have been investing in biometric technology more than ever, in order to 
enforce public security and access to sensitive facilities. This growing interest in biometrics 
can be evaluated by considering the total revenue market of the last decade [52], which is 
exponentially increasing as shown in Figure 1. 

 

 
Figure 1: total biometric revenue market: 2000-2007 [52]. 
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II.B. Definitions and properties 

Traditionally , verification systems were of only two types: knowledge-based and 
token-based. Knowledge-based systems make use of something someone knows, like a 
password or a PIN, while token-based systems take advantage of something someone owns, 
like a badge or a key. These verification approaches are inherently insecure, because 
knowledge can be forgotten or guessed and a token can be stolen or lost. On the other 
hand, identification of criminals has exploited biometric characteristics since the beginning 
of XX century, but the need of manual inspection and comparison of numerous 
fingerprints moderated its use and diffusion. Nowadays, the advent of a new generation of 
systems, which are based on the automatic recognition of biometric traits, has been able to 
provide higher security and to extend the potential domains of application. 

II.B.1. Biometric identifier 
A biometric or biometric identifier is originally defined as an objective measurement of a 

physical characteristic of an individual which, when captured in a database, can be used to 
verify the identity or check against other entries in the database. The term biometric has a 
Greek origin: it is composed by bios (life) and metron (measure) and means “measure of 
life”. 

A biometric identifier should ideally possess the following properties to be 
exploited in a recognition system: 

• Universal: each user should have it. 

• Permanent: it should not vary over time. 

• Distinctive : inter-class variability should be as large as possible, which means 
that captured patterns from distinct users should be as different as possible. 

• Robust: intra-class variability should be as small as possible, which means 
that different captured patterns from the same user should be as close as 
possible. 

• Collectable: it should be easy to collect. 

• Accessible: it should be easy to present to the sensor. 

• Acceptable: to be well accepted by the public a biometric trait should be 
perceived as non obtrusive and non intrusive. 

• Hard to circumvent : it should be difficult to alter or reproduce by an impostor 
who wants to fool the system. 

II.B.2. Biometric recognition 
Biometric recognition can be considered as: the automatic person identification or 

identity verification of an individual, based on physiological and/or behavioural biometric 
identifiers. It is not possible to classify all biometrics with a clear distinction between 
physiological and behavioural traits; in some cases a biometric is a combination of both 
elements, so we will introduce the third class of hybrid biometrics. 
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The most important physiological biometrics are the following: 

• Fingerprint  [36][55]: a fingerprint is the pattern of ridges and valleys on the 
surface of a fingertip. Fingerprints of identical twins are different and so are 
the prints on each finger of the same person; for these reasons fingerprints 
possess good discriminatory power and were the first biometric identifiers 
to be used in real recognition systems. In 2002, fingerprint recognition was 
the most important technology, with the biggest market share [52]. 

• Iris [19]: the iris is the annular region of the eye bounded by the pupil and 
the sclera on either side. The complex iris texture carries very distinctive 
information: each iris is different and irises of identical twins are different. 
Iris recognition is a very promising biometric, in terms of accuracy and 
speed, but it requires considerable user cooperation. 

• DNA: Deoxyribonucleic acid (DNA) is a nucleic acid that contains the 
genetic instructions for the development and functioning of all living 
organisms. It represents the one dimensional ultimate unique code for 
one’s individuality , except for the fact that identical twins have identical 
DNA patterns. However, its practical application has been limited due to 
problematical chemical analyses and privacy issues. 

• Retina: the retina is a thin layer of neural cells that lines the back of the 
eyeball; the retinal vasculature is rich in structure and it is supposed to be 
characteristic of each individual and each eye. Although this biometric is 
considered as one of the most secure, the intrusiveness and the need for 
user cooperation are its major drawbacks. 

• Hand and finger geometry  [79]: hand geometry recognition systems are based 
on a number of measurements taken from the human hand and fingers; the 
geometry of the hand is an inexpensive technique, well accepted and easy 
to collect, but not one of the most discriminating. 

• Ear [72][94]: it has been suggested that the shape of the ear and the 
structure of the cartilaginous tissue of the pinna are distinctive. It is a 
relatively new biometric and its accuracy and scalability are not well known 
yet. 

• Palm print [95]: the palms of the human hands contain pattern of ridges and 
valleys much like the fingerprints; human palms also contain additional 
distinctive features such as principal lines and wrinkles. Palm prints can be 
considered as an evolution of fingerprints: they are more accurate but 
acquisition sensors are more expensive. 

• Infrared thermo grams of body parts (face, hand, hand veins)  [42]: the pattern of heat 
radiated by human body is a characteristic of an individual and can be 
captured by an infrared camera. It is a well accepted biometric and can be 
exploited for covert applications, but the acquisition process is very 
sensible to heat emanating surfaces (room heaters, vehicles...). 
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• Odour: it is known that each object exudes an odour that is characteristic of 
its chemical composition and that a component of the odour emitted by a 
human body is distinctive to a particular individual. On the other hand, it is 
not known how the use of deodorants and the chemical composition of the 
surrounding environment affect its performance. 

Then, a few examples of behavioural biometrics are: 

• Gait [62][63]: gait is the particular way one walks and is a complex spatio-
temporal biometric. Gait it is generally not as distinctive and may not 
remain invariant over time, but it is well accepted by the population. 

• Keystroke dynamics [59]: it is hypothesized that each person types on a 
keyboard in a characteristic way. This behavioural biometric is not expected 
to be unique and one may presume to observe large variations in typical 
typing patterns. 

Finally , some examples of hybrid biometrics: 

• Voice [27]: the acoustic patterns used in speaker recognition reflect both 
anatomy (size and shape of the throat and mouth) and behavioural patterns 
(voice pitch and prosody). Voice it is generally not as discriminating; it 
suffers the presence of background noise and may not remain invariant 
over time. 

• Signature [70]: the way a person signs his name is known to be a 
characteristic of that individual; however, signatures of some people vary 
substantially . The shape of the signature is typically a physiological pattern, 
while the speed and the inclination during the signature are behavioural 
ones. Even if this biometric is well accepted and widespread, it is not 
robust and can be reproduced by professional forgers. 

• Face [12][67][96]: face recognition is a non intrusive biometric and probably 
the most common biometric characteristic used by humans to recognise 
people. Facial appearance is a physiological trait, whereas head and facial 
motion are behavioural ones. Face is a very promising biometric, easy to 
collect and well accepted, but at the moment its accuracy is quite low, due 
to the capricious variations of the facial data acquired with cameras. 

We have seen that a number of biometrics exist and are in use in various 
applications (see Figure 2). It is important to notice that no biometric is “optimal”, 
presenting “ideal” properties and outperforming recognition results, but everyone has 
various strengths and weaknesses. That is the reason why person recognition is such a big 
research domain with numerous alternative approaches that must be carefully evaluated, 
depending on the application in question. 
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Figure 2: examples of biometric identifiers [37]: (a) DNA, (b) ear, (c) face, (d) facial thermo 
gram, (e) hand thermo gram, (f) hand vein, (g) fingerprint, (h) gait, (i) hand geometry, (j) 

iris, (k) palm print, (l) retina, (m) signature and (n) voice. 

 

II.B.3. Applications: properties and examples 
Biometric recognition systems can be classified by considering the following 

properties of potential applications: 

• Cooperative/non-cooperative : reflects the necessity for a user to actively 
cooperate during the recognition process, or not. 

• Overt/covert: if the user is aware or not of the measurement, during the 
capture of his biometric identifier. 

• Habituated/non-habituated : indicates the frequency of interaction of a user 
with the recognition system. 

• Attended/non-attended : expresses whether the capture or the recognition 
process in general has to be supervised, observed or guided by an operator. 

• Standard/non-standard environment : considers if the conditions of operation of 
the device are familiar and usual, or not. 

• Public/private: states whether the clients of the system are external 
customers or the device operators. 

• Open/closed: reflects the requirement of exchanging data with peripheral 
applications, or not. 
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The main domains of application for biometric recognition systems are the 
following: 

• Access control: we can divide access control applications into physical and 
virtual categories. Physical access control regulates the entrance to physical 
locations, like buildings and offices; virtual access control regulates the 
usage of resources or services, like networks, computers, cellular phones, 
PDAs, etc. 

• Commercial transaction authentication : these applications are related to banking 
and business activities and need to accurately verify the identity of clients. 
Examples are automatic teller machines (ATM), electronic fund transfers, 
credit card transactions, internet commerce (e-commerce), etc. 

• Citizen identification : mainly used by government agencies to enforce security 
and law. Examples are identification of criminals and corpses, terrorist 
detection, parent determination for abandoned children, etc. Automatic 
biometric recognition plays a major role in the increase of robustness and 
efficiency of traditional methods, based on national ID cards, drivers’ 
licences, passports or manual inspection of fingerprints and DNA patterns.  

• Personalisation: biometrics can also be used by marketing companies to easily 
identify customers and provide personalised services. This is a promising 
business for recognition technology, yet to be fully developed. 

II.C. Operational modes 

A biometric recognition system has two main operational modes: verification (or 
authentication) and identification. Besides, in this dissertation we use the generic term 
recognition when we do not want to refer to any particular operational mode, and the 
expression full recognition when we want to consider both of them. 

II.C.1. Verification (or authentication) 
In a verification (or authentication)  scenario, a user presents his biometric identifier to a 

sensor and claims an identity; after that, the recognition system verifies his claim and 
decides to accept it or reject it. The authentication process is done through a one-to-one 
comparison between the unidentified biometric pattern and the claimed model pattern 
stored in the system. An open-set is generally assumed, which means that the input sample 
may correspond to an individual who is not enrolled in the system. Biometric verification 
is an alternative solution to knowledge-based and token-based traditional systems in positive 
recognition applications, those that prevent multiple individuals by using the same identity . 
In fact, if multiple users claim the same identity , the system will authenticate only one of 
them (the true client or simply the client) and will reject the others (the impostors). 
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We can formally describe the verification problem as follows. If we consider an 
input feature vector, x , and a claimed identity , ϖ , then a verification system must 
determine if the pair ( )x,ϖ  belongs to class ϖk  or ϖk , where ϖk  is the client class 

(claim is true) and ϖk  is the impostor one (also called the alternative hypothesis , for which the 

claim is false). If we represent the stored model pattern for user ϖk  as 
ϖkΘ , the decision 

rule is the following: 

( )
( )( )
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where θ  is a predefined threshold, and ( )( )
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VERS Θx,  is the similarity (or matching) 

score between the test x  and the model 
ϖkΘ . It is important to notice that, in practical 

applications, independent biometric measurements of the same individual are somewhat 
different (even slightly); for this reason, it is not possible to obtain a perfect match and a 
threshold value must be introduced in the decision rule. 

II.C.2. Identification 
In an identification scenario, a user presents his biometric identifier to the sensor and 

makes no claim on his identity; then the system performs a search through the database to 
find the most likely identity . In this case, the unidentified pattern is matched up to all the 
model patterns present in the system, in a one-to-many comparison. A closed-set is generally 
assumed, which means that the input sample belongs to an individual who is enrolled in 
the system. Biometric identification is the only solution for negative recognition applications, 
those that prevent a single individual from using multiple identities. In fact, if a user aims 
to exploit diverse identities or to hide his real one, then a biometric identification system 
can determine its unique authentic identity in each occasion. Moreover, this operational 
mode can be applied in positive recognition applications as well (refer to section II.C.1 for 
more details): in this case it is more convenient than verification, because the user need 
not make a claim, but it can be more complex and less robust, due to a more difficult one-
to-many scenario and there being less information available (the claim). 

Similarly to the verification case, we can formally describe the identification 
problem as follows. If we consider an input feature vector, x , then an identification 
system must determine the identity of the user, Ν∈k , where { }Kkk ,,1| K=  are the 
clients enrolled in the system and 1+= Kk  represents the reject case. If we denote the 
stored model pattern for identity k  as kΘ , and with θ  the predefined threshold, the decision 
rule is the following: 
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where θ  is a predefined threshold and ( )( )k
IDS Θx,  is the similarity (or matching) score  

between the test x  and the model kΘ . 
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II.D. Architecture 

A typical automatic recognition system is composed by two mandatory modules, for 
the enrolment and recognition tasks, and can optionally have a third one, for the 
adaptation of user models. An overview of the common architecture of a biometric system 
is illustrated in Figure 3: the main elements in the picture are described in the following 
sections. 

 

 
Figure 3: common architecture of a biometric system. 

 

II.D.1. Enrolment 
The enrolment module is required for the registration of new users in the recognition 

system. First of all, a client presents his biometric identifier to a sensing device, which 
captures the signal and represents it in a digital form. In general, a pre-processing step 
enhances and normalises the acquired information, in order to achieve a better 
representation for the extraction of discriminative features. For example, pre-processing of 
image data usually consists of: object detection and segmentation, photometric 
compensation, noise reduction and geometric normalisations. Next, the quality of the pre-
processed signal is checked to estimate if reliable features could be extracted from it or 
not; in the latter case, the sample is discarded and a new acquisition is needed. This 
situation is often referred to as failure to enrol , which is detailed in Section II.E.3. After that, 
the feature extraction  step transforms the signal, trying to isolate the significant features that 
characterise the individual and to discard the irrelevant and redundant information. In 
most cases, the feature extractor computes a reduced representation of the acquired pre-
processed signal, which can be seen as a non reversible compression technique. In the end, 
the enrolment module estimates a model of the client, representing the potential range of 
biometric features for that user, and stores it in its internal database (model estimation step). 
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II.D.2. Recognition 
The recognition module verifies and/or identifies users, by comparing new 

acquisitions of the biometric identifier with the models of the clients stored in the 
database. When a user needs to be recognised, he presents his biometric identifier to a 
captor and then the sensing, pre-processing and feature extraction phases are exactly the 
same as in the enrolment module. Afterwards, the classification step compares the 
discriminative features of the unknown user with the model patterns retrieved from the 
database, and computes the similarity score for each possible match (one or more, 
depending on the operational mode). The final decision of the system is determined by the 
operational mode in question: in a verification task the user claim is confirmed or rejected, 
while in an identification one the user identity is established. 

II.D.3. Adaptation 
The adaptation module is optional and it is useful for updating the user models 

stored in the database. Most of the biometrics are not permanent and vary over time, 
especially the behavioural and hybrid ones like: gait, voice, signature and face. 
Consequently, the actual biometric identifier of a client gradually differs from the original 
acquisitions stored at his first enrolment, and may eventually lead to a degradation in 
performance. Therefore, the adaptation module is meant to cope with those variations and 
to provide an updated representation of each user; in general, it progressively adds new 
acquisitions to those already stored, and adapts the model estimate using this new data. 

II.E. Performance evaluation 

Automatic biometric person recognition is a challenging issue. In fact, two samples 
of the same biometric characteristic from the same individual are not exactly identical; this 
effect can be caused by multiple reasons: for example, variable acquisition conditions, 
changes in the user’s physiological or behavioural biometric identifier, diverse ambient 
conditions, dissimilar user interaction with the sensing device, etc. It is then fundamental 
to evaluate the performance of a biometric system and to understand its strengths and 
limitations: this section is dedicated to performance evaluation measures and their 
uncertainties. 

It is possible to consider three different scenarios for assessing the recognition 
capability of a biometric system. These are the following [56]: 

1. Technology evaluation: it is largely the most common in the scientific 
community. The goal of a technology evaluation is to compare competing 
algorithms for a single technology. Testing of all algorithms is carried out 
using offline processing of a standard database, collected by a “universal” 
sensor; because the database is fixed, the results of technology tests are 
repeatable. 
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2. Scenario evaluation: the goal of scenario testing is to determine the overall 
system performance in a prototype or simulated application: testing is 
carried out on a complete system, in an environment that models a real-
world target application. Each tested system will have its own acquisition 
sensor and so will receive slightly different data; consequently, care will be 
required that data collection across different systems is in the same 
environment with the same population. Depending on the storage 
capabilities of each device, testing might be a combination of offline and 
online comparisons. Scenario evaluation has the advantage of taking into 
account not only the technology, but also the human-machine interaction, 
with relative problems and errors. Test results will be repeatable only to the 
extent that the modelled scenario can be carefully controlled. 

3. Operational evaluation : the goal of operational testing is to determine the 
performance of a complete biometric system in a specific application 
environment with a specific target population. Depending upon storage 
capabilities of the tested device, offline testing might not be possible; 
moreover, due to unknown and undocumented differences between 
working environments, in general operational test results are not repeatable. 

II.E.1. Measures for verification (or authentication) 
A system operating in a verification (or authentication) mode can make two major 

types of decision errors: 

• False rejection (or Type-I error): occurs when a client – a person who makes a 
true identity claim – is erroneously rejected. 

• False acceptance (or Type-II error): occurs when an impostor – a person who 
makes a false identity claim – is erroneously accepted. 

It is then possible to define the following four decision error measures:  

• False rejection rate (FRR) (or miss): the expected proportion of transactions 
with true claims incorrectly denied. 

• False acceptance rate (FAR) (or false alarm): the expected proportion of 
transactions with false claims incorrectly confirmed. 

• Correct acceptance rate (CAR) : the complementary measure to the FRR, and 
represents the expected proportion of transactions with true claims 
correctly confirmed. Mathematically: ( ) ( )FRRCAR

θθ ξη −≡1  for θ∀ . 

• Correct rejection rate (CRR) : it is the complementary measure of the FAR, and 
represents the expected proportion of transactions with false claims 
correctly denied. Mathematically: ( ) ( )F ARCRR

θθ ξη −≡1  for θ∀ . 

Clearly , only two of these four measures are needed to characterise the performance 
capability of a verification system: from now on, we will mostly use FRR and FAR. 
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FRR, FAR, CAR and CRR are performance measures from detection/recognition 
theory and are directly related to recall and precision, which are information retrieval 
quantities [84]. The recall value, R , is defined as the proportion of all the material in the 
database which is of relevance, while the precision value, P , represents the proportion of 
retrieved material which is relevant. If we consider a uniform richness, tP , which is the 
probability of appearance of each model in the database, then we can obtain the following 
relations: 

( ) ( )CARFRRR θθθ ηξ =−=1  
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It is important to notice that FRR and FAR are decision error measures and are 
defined over transactions, an attempt by a user to be authenticated by submitting one or 
more biometric samples, as allowed by the system decision policy. To avoid ambiguity 
with systems allowing multiple attempts or having multiple models per client, we define 
the following matching error measures, which consider a single comparison of a submitted 
sample against a single enrolled model: 

• False non-match rate (FNMR): it is the equivalent of the FRR for 
comparisons: it is the expected proportion of comparisons erroneously not 
matched. In a system where an individual transaction implies a single 
comparison, FRR and FNMR are identical. 

• False match rate (FMR): it is the equivalent of the FAR for comparisons: it is 
the expected proportion of comparisons erroneously matched. In a system 
where an individual transaction implies a single comparison, FAR and FMR 
are identical. 

Figure 4 shows an example of client (blue curve) and impostor (red curve) 
distributions of normalised similarity scores; a client similarity score is calculated by 
matching a test pattern of a client with its model pattern, while an impostor similarity 
score is computed by matching a test pattern of a user (the impostor) with a different 
model pattern (the claimed client). 
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Figure 4: example of client (blue curve) and impostor (red curve) distributions of 
normalised similarity scores. 

 

Ideally , these two distributions should be disjointed and the decision rule between 
clients and impostors would be immediate and flawless. Unfortunately in real cases these 
two distributions overlap, and a threshold (green dotted line) is needed to delimit the 
acceptance and rejection decision regions; if the similarity score is lower than the threshold 
value then the claim is considered false (rejection), while if it is higher then the claim is 
considered true (acceptance). Therefore, the overlapping of client and impostor score 
distributions and the choice of a decision threshold create two regions of errors for false 
rejects and false accepts. When the threshold value is increased, the system becomes more 
secure with higher FRR and lower FAR; on the other hand if the threshold value is 
decreased, the system becomes more convenient for the user with lower FRR and higher 
FAR. The choice of a threshold value should be made carefully , by evaluating the real 
context and requirements of the application in question, in order to find the best trade-off 
between security and user convenience. 

A practical way for presenting the performance of a verification system is the receiver 
operating characteristic (ROC) curve as shown in Figure 5, in which FARs are plotted as a 
function of FRRs (or CARs). For drawing this graph, it is necessary to compute several 
pairs of FRRs and FARs at various threshold values; by eventually spanning the whole 
space of thresholds, [ ]1,0∈θ , it is possible to obtain a full overview on the performance 
of a verification system, from low to high security configurations. Moreover, ROC curves 
are threshold independent, allowing performance comparison of different systems under 
similar conditions, or of a single system under differing conditions. 

 

 
Figure 5: example of a receiver operating characteristic (ROC) curve. 
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Even if it is preferred to present verification results by plotting the ROC curve, 
some authors just report a single error measure; it is the equal error rate (EER) , a precise 
point on the ROC curve at which FRR and FAR are equal: ( ) ( )F ARFRR

EEREER θθ ξξ ≡ . 

Finally , there exists a modified ROC curve known as detection error trade-off (DET)  
curve. A DET curve plots error rates on both axes, like the ROC one, but the graph is 
drawn on a logarithmic scale (on both axes); this spreads out the plot and facilitates to 
distinguish and compare different well-performing technologies. 

II.E.2. Measures for identification 
A system operating in an identification mode makes an error when the identity 

matched with the input pattern is not the right one: the correct identification rate (CIR)  is 
defined as the proportion (or percentage) of identification requests correctly answered. In 
this dissertation, as in the large majority of the scientific literature, we will compute the 
CIR by considering only the highest similarity score in each test (also called the best match). 

For a better insight on the recognition capabilities of a system, it is possible to sort 
the similarity scores of each test and consider the ranking of the correct match, which is the 
score computed with the model of the input client. Ideally , in a flawless system the correct 
match is always the highest similarity value and ( ) 1=CIRη ; however in real cases the 
correct match can be lower than the top score and it may be interesting to consider its 
location. 

For this purpose, we introduce the cumulative (correct) match score (CMS) , that is 
defined as the proportion (or percentage) of identification requests for which the correct 
match is among the highest M values. Clearly , when 1=M  we are just considering the 
top matches and ( ) ( )CIRCMS ηη ≡1 . Figure 6 shows an example of CMSs plotted as a 
function of the M  best similarity values retained: it is a monotone increasing curve which, 
at some point, clips at 1. 
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Figure 6: example of cumulative match scores (CMSs) plotted as a function of the M-best 

similarity values retained. 

 

In this operational mode, an unidentified pattern is matched up to all the model 
patterns present in the system, in a one-to-many comparison, and for very large databases 
this could be computationally demanding. Depending on the properties of the biometric in 
question, it may be possible to partition the whole database into smaller sub-datasets, and 
cleverly reduce the number of comparisons needed for each test. For example, if we 
consider a recognition system using fingerprints, it may be possible to partition the dataset 
into a few classes, based on the global pattern at the centre of the fingerprint: the arch, the 
loop, the whorl, etc. During the recognition phase, the test pattern is first used to find out 
the class to which it belongs, and then it is matched up with the models of that class. 
Ideally , the system should always associate the input pattern with the correct class, but in 
practical cases it may select an erroneous partition, causing a binning error .  

In an identification system exploiting a partitioning strategy, we can compute two 
more measures of performance [56]: the binning error rate  (or retrieval error rate ) is defined as 
the expected number of model patterns wrongly discarded due to a binning error; the 
penetration rate is defined as the expected proportion of model patterns to be searched 
under the rule that the search proceeds through the entire partition, regardless of whether 
a match is found. In general, it is desirable to have the highest number of sub-datasets in 
order to reduce as much as possible the amount of comparisons; consequently, the highest 
is the number of partitions, the lower the penetration rate and the higher the binning error 
rate. 
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II.E.3. Other measures 
For scenario and operational evaluations, two more measures of performance can 

be considered: failure to capture rate and failure to enrol rate. A recognition system with 
an automatic capture device may accidentally be unable to sense the biometric identifier 
and properly represent it in digital form. For this reason it can be interesting to measure 
the failure to capture rate (FTCR) , which is defined as the expected proportion of failures to 
capture a sample. Moreover, regardless of the universality property of the biometric 
identifier in question, it may happen that in practical applications some users can not be 
successfully enrolled and recognised with that identifier. For example, fingerprints of a 
small part of the population may be unsuitable for automatic recognition, because of 
genetic factors, aging, environmental or occupational reasons (manual workers may have a 
large number of cuts and bruises). The failure to enrol rate (FTER)  is then defined as the 
expected proportion of the population not able to enrol in the recognition system. It is 
important to notice that the FTER is closely related to the quality checker module and can 
affect the global performance of a system; in fact, the higher is the FTER, the better is the 
quality of the database and the lower are the recognition error rates (FRR and FAR for 
example). 

II.E.4. A glance on testing errors and uncertainty of estimates 
It is out of the scope of this dissertation to provide a detailed analysis on testing 

errors and uncertainty of estimates; in this section we discuss only a few main issues on 
these topics. 

Typically , the experiments run for assessing the performance of a recognition 
system can be affected by two kinds of errors: systematic errors and random errors. 

Systematic errors are those due to bias in the test procedure. It may happen that a few 
categories of the population are over or under-represented in the database of use. A 
solution to reduce this bias is to carry out experiments on as much varied databases as 
possible. Another potential bias may arise when parameter tuning, client enrolment and 
performance assessment are done using the same data set. This choice produces an 
experimental situation over fitted to the data in question, not robust to changes in the 
operational environment and surely overoptimistic on the actual recognition capabilities of 
the technology. To avoid this problem it is strongly recommended to use disjoint datasets 
for tuning parameters, enrolling users and testing the system. 

Random errors  are related to the natural variation in clients and biometric samples, 
and are unavoidably caused by the limited amount of tests that can be done. In fact, the 
size of an evaluation, in terms of the number of users and the amount of attempts made, 
affects how accurately we can measure error rates: the larger the test, the more accurate 
results are likely to be. It can be useful to collect multiple biometric identifiers per person, 
but the number of people tested is more significant in determining test accuracy, rather 
than the total amount of attempts. 
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II.F . Limitations and issues 

Automatic person recognition is a very challenging and elusive pattern recognition 
problem; in general it is perceived as an easy task, but the efforts required to achieve 
satisfactory performances have been largely underestimated. In fact, given a few samples 
of a biometric identifier, the key challenge is to be able to conceive a realistic 
representational model of the individual, and then formally extract the discriminative 
information present in the signal from its samples. By looking at the results of recent 
public evaluation campaigns [10][54][69][71], we have the proof that even after several 
decades of research, biometric recognition techniques are still not mature enough for real 
applications, and that their present market is quite restricted. In this section we analyse the 
main technological issues and operational limitations which negatively affect the 
performances of biometric devices. 

II.F .1. Accuracy 
The main reasons that reduce the accuracy of a biometric system can be grouped 

into three categories. 

The first class is related to information limitation : the discriminative information 
content in the pattern samples may be inherently partial, due to the intrinsic signal capacity 
limitations in the biometric identifier. In other worlds, the signal captured from the 
biometric identifier and represented in a digital form may not be discriminating enough to 
distinguish between multiple different identities. Another aspect of information limitation 
is represented by non universal biometric identifiers, for which it is not possible to obtain 
functional biometric samples from a part of the population. For example it has been 
estimated that around 4% of the population cannot be identified through fingerprints, 
because of the poor quality of their ridges. 

The second category denotes the representation limitation . The ideal recognition system 
should retain all invariant and discriminative information from the sensed measurements; 
nevertheless, in practice the feature extraction step includes some redundant and 
erroneous elements as well, and may fail to preserve the entire significant and distinctive 
information from the signal. The consequences of this imperfect representation are that: 
the potential power to discriminate user identities by the system is reduced, the inter-class 
similarities become more influent and in general the error rates gets higher. 

The last category is related to invariance limitation . An ideal matcher should be able to 
precisely model the variations between different biometric samples of the same user, and 
to provide a robust and invariant relationship of similarity . In practice, due to data scarcity 
and approximated modelling of client identifiers, actual systems are not able to efficiently 
deal with various signals captured from the same user, and recognition performances are 
poor. These intra-class variations are clearly unwanted but impossible to remove, and are 
caused by inconsistent methods of signal acquisition. In fact, if we consider a face 
recognition device as an example, multiple face variations can be generated by: defective or 
improperly maintained sensors, unfavourable ambient conditions (illumination, light 
beams and shadows), differences in pose and facial expressions, occlusions, presence or 
absence of eyeglasses and hair, aging, etc. Data scarcity can become a major problem in 
modelling intra-personal variations for those techniques that require large training 
databases, like some behavioural and hybrid approaches. 
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II.F .2. Scale 
How does the number of clients enrolled in database affect the performance of a 

recognition system? In a verification scenario the size does not really matter, because each 
transaction requires a one-to-one comparison between the unidentified biometric pattern 
and the claimed model pattern stored in the system. On the contrary, in an identification 
scenario there might be a need for an efficient scaling when the number of clients is very 
large, because in each transaction the unidentified pattern is matched up to all the model 
patterns present in the system, in a one-to-many comparison. Typical approaches to 
scaling include using multiple hardware units in parallel and coarse to fine pattern 
partitioning. Unfortunately, when using a parallelisation strategy the amount of required 
hardware units increases linearly with the number of clients, and this is not a feasible 
option in practical situations with thousands or millions of users; however, coarse to fine 
pattern partitioning may be a solution, but it is not easy to define a criterion to efficiently 
cluster biometric identifiers, providing relevant scaling advantages while maintaining good 
recognition results. Another possible strategy may be to index the biometric patterns like 
the conventional database records; however, due to large intra-class variations, it is not 
obvious how to ensure the samples from the same client fall into the same index bin, and 
consequently to obtain a low binning error rate. 

II.F .3. Privacy and security 
Privacy and security issues are closely interconnected. Considering that a reliable 

biometric device provides an irrefutable proof of identity of a person, there are serious 
privacy concerns in the application of biometric recognition systems. In fact, it may be 
possible to track clients from their overt and covert biometric captures, infringing the 
individual right to privacy; also personal biometric data may be abused for unintended or 
criminal purposes. Nevertheless the safeguard of individual privacy can be achieved 
through a clever legislation and through the design of reliable and secure recognition 
applications. Concerning the security aspect, it is critical to assure that the input identifier 
is presented by the legitimate owner, and that the captured sample is matched with a 
genuinely enrolled model pattern. 

If we analyse the problem of having the legitimate owner, it should not be possible for 
an impostor to spoof the biometric trait of a client, and then use it to be recognised at his 
place. If some identifiers can be easily kept secret, like iris, DNA and retina, some others 
may be hiddenly spoofed and possibly replicated, like fingerprint, voice, face or signature. 
A potential solution to this kind of attacks may be given by aliveness detection techniques, 
which can assure that the input measurement is not captured from an unanimated object, 
like audio recorders or digital displays. Additionally , multi-biometric (or multimodal) 
recognition approaches can enforce the security of a system by requiring the presentation 
of various biometric identifiers, instead of only one; this clearly reduces the feasibility to 
spoof and correctly replicate multiple traits. Finally , it is also possible to combine aliveness 
and multimodality , or to exploit the synchronisation between various biometrics, like voice 
and face. 
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The second security issue is related with the integrity of the models  enrolled in the 
database. In most cases, the enrolment of a new user is supervised by an operator, who 
can check the identity of the client and assures that the captured patterns are authentic. 
Though, when the enrolment can be unsupervised or when there is an adaptive procedure 
to update the client’s model, it might be possible for an attacker to inject counterfeit 
biometric samples into the system, in order to corrupt the final decision results. In this 
case, an integrity check technique is needed and it should be possible to revoke those 
biometric identifiers that have been compromised. In addition, the access and 
management of enrolled model and stored patterns must be regulated with care. In fact, 
operators and administrators should not be able to willingly access the biometric identifiers 
present in the database, nor to recreate the original signals from their digital 
representations or to retrieve personal and medical information. A possible solution may 
be represented by administrator logging, which records all accesses and modification to 
stored data; an alternative and promising research direction may be biometric cryptography 
[88], which studies the generation of cryptographic keys based on biometric samples.  

II.G. Multi-biometrics and multimodal biometric systems 

A multimodal biometric recognition system  [35][37][52][80] is strictly defined as a biometric 
recognition system that is using more than one biometric identifier to recognise a person. 
As discussed in detail in the following section (II.G.1), there are several “multimodal” 
approaches based on the same biometric identifier and a few ones based on a single 
sample. Considering the stringent similarities in the integration of these multiple pieces of 
information, we decide to extend the previous definition in order to include these 
particular approaches as well. Therefore, in this dissertation we generalise a multimodal 
biometric recognition system as a biometric recognition system that exploits diverse and 
multiple sources of biometric information to recognise a person. 

The integration of multiple sources of information can have numerous advantages 
for biometric recognition systems: it can increase the accuracy of the systems, by 
exploiting complementary information, it can augment their reliability , by taking advantage 
of redundant and richer information that can compensate the individual weaknesses, and it 
can reduce their cost, by exploiting several cheap sensors. Moreover, multimodal biometric 
systems naturally have enforced anti-spoofing protection, because it becomes more 
difficult for an attacker to simultaneously spoof multiple traits, and enable more 
sophisticated aliveness detection techniques, by asking to present one or more 
unpredictable identifiers of a user. Finally , humans constantly make use of information 
fusion in everyday activities; in fact they naturally integrate sight, hearing, smell and touch, 
in order to have an augmented sensorial perception of the environment. 

II.G.1. Sources of biometric information 
There are different sources of biometric information that can be integrated in a 

multimodal system; we can classify them into one among the following five scenarios [37]: 
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1. Multiple simultaneous captures of the same identifier : in this case, various signals of 
the same biometric identifier are captured simultaneously by using different 
sensors. For example, multiple cameras can acquire different views of a 
face, or optical and capacitance sensing devices can capture diverse signals 
of a fingerprint. 

2. Multiple biometric identifiers : this is the most common scenario, in which 
multiple dissimilar biometric identifiers are combined. In general, there is 
one sensing device for each biometric; for example, a video camera and a 
microphone can acquire facial video and voice data. 

3. Multiple units of the same biometric : in this case, distinct units of the same 
biometric are captured and integrated for recognition. As an example, a 
system may acquire the scans of both irises or the fingerprints of two or 
more fingers. 

4. Multiple repeated captures of the same identifier : in this scenario, repeated captures 
of the same biometric identifier are used to increase the accuracy of the 
system. For example, a video camera can provide many images of a face or 
a fingerprint sensing device can acquire several snapshots of a finger. 

5. Multiple representations/matching algorithms of the same capture : in this case a 
biometric identifier is captured once, and then diverse feature extraction 
techniques and/or matching algorithms are applied for recognition. For 
example, one “minutiae” and one “non-minutiae” based fingerprint 
recognition technique can be applied on the same acquired data. The 
general idea behind the integration of multiple non-homogeneous features 
or classifiers is that their fusion may overcome the “bad properties” of each 
one. 

Figure 7 shows a visual representation of the various scenarios depicted above. It is 
important to notice that diverse combinations of the previous scenarios are also possible; 
for example, multiple facial images can be acquired through a video camera (scenario 4), 
then integrated with voice data (scenario 2). 
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Figure 7: various scenarios of multimodal biometric systems [37]. 

 

During the design process of a multimodal biometric recognition system, it is very 
important to consider the relations among different sources of information to be 
integrated. In fact, it is a general trend in literature that the combination of uncorrelated 
modalities (like fingerprint and face) or loosely correlated ones (like face and iris) are 
expected to provide a better improvement of performances than the combination of 
correlated identifiers. This phenomena is probably caused by the fact that independent 
data convey the most complementary and rich information. Referring to the previous 
classification, scenario 2 has the highest potential since it is supposed to integrate the most 
independent sources of information, while scenarios 1, 4, and 5 combine the most 
correlated ones. 

II.G.2. Integration schemes 
Diverse and multiple sources of biometric information can be integrated in a 

multimodal recognition system by applying one among the following schemes: 

F. Matta - Video person recognition strategies using head motion and facial appearance



45 

• Serial scheme: in this situation, the output of each unimodal recognition 
system is linked to the input of another one, in a serial way. This mode can 
serve as an indexing scheme, narrowing down the number of candidates by 
considering only the best matches at each step. Moreover, the final decision 
on a transaction can be reached without acquiring or processing all 
biometric sources of information. This is the integration design that mostly 
reduces the overall recognition time of a system; in contrast, its 
improvements on the accuracy of the final decisions are usually the lowest. 

• Parallel scheme: in this scenario all sources of biometric information are used 
simultaneously. This is the most common and powerful scheme, because 
the integration of multimodal information can be realized at numerous 
different levels: sensor data, feature, decision and opinion; next section 
(II.H) presents an insight on the main techniques of information fusion 
related to the parallel scheme. 

• Hybrid scheme: this mode includes any hierarchical combination of serial and 
parallel schemes, in which the unimodal classifiers are integrated in a 
treelike structure; it also contains any fuzzy fusion scheme that cannot be 
merely considered as serial or parallel. 

II.H. Information fusion for multi-biometrics 

Information fusion  is an independent scientific domain that studies the combination of 
different sources of information. Multi-biometrics and decision making problems are 
focused on a specific goal among those of information fusion: they are interested in the 
integration of multiple biometric indicators, in order to generate a richer representational 
format and to reach a more precise decision. 

Following the proposal in [80], we divide the most important fusion strategies in 
three categories: pre-mapping, midst-mapping and post-mapping fusion. Figure 8 sketches 
a non-exhaustive tree representing the suggested classes and their more representative 
techniques. 
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Figure 8: non-exhaustive tree of main fusion techniques [80]. 

 

II.H.1. Pre-mapping fusion 
Pre-mapping fusion combines information in the sensor data space or in the feature 

space, before any classifier or expert; therefore the integration can be done at two different 
levels, depending on the space in question: sensor data level fusion and feature level 
fusion. 

Sensor data level fusion integrates the raw signals captured from distinct sensing 
devices. One common technique is the weighted summation , in which multiple signals are 
scaled and added together; for example, several microphones can be used to record a 
stronger audio signal. Another important technique is the “mosaic construction”, in which 
several signals are processed to obtain a richer one; for example, several single-channel 
audio recordings can be combined in a multi channel one, or distinct images of the same 
object can be processed to create super resolution images or mosaics. These methods 
require that the individual raw signals must be commensurate; if it is not the case, it is 
necessary to apply a mapping function before integration, in order to transform the input 
signals into a common interval. 

In the feature level fusion , features are firstly extracted from separate signals and then 
combined together. One representative technique is again the weighted summation ; if the 
numerical values are commensurate and the dimensions of feature spaces correspond, then 
feature vectors belonging to distinct signals are scaled and added together. Another 
technique is the feature concatenation , in which several feature vectors are juxtaposed to 
generate a single and extended one; as an example, this method can be used to combine 
audio and visual features. Unfortunately, the concatenation technique suffers from several 
drawbacks: first of all, there is no control on the information that is going to dominate the 
final decision, then the different features must be extracted synchronously (at the same 
frame rate), and finally the increase of dimension can turn out to be a problem in the 
classification stage. This last downside, which is known as the curse of dimensionality  issue, is 
somewhat avoided by using a suitable feature reduction technique like principal component 
analysis (PCA) [22], which extracts only the most salient information and decreases the 
dimension of the feature space. 

II.H.2. Midst-mapping fusion 
Midst-mapping fusion is a relatively new and more complex concept, since it combines 

information during the mapping from feature space into opinion or decision space. These 
techniques process several information streams concurrently , in order to provide a unified 
opinion or decision; they aim to exploit the temporal synergies and correlations between 
these sources of information, by avoiding the drawbacks of feature concatenation (detailed 
in Section II.H.1). The main techniques consist of extensions of hidden Markov models 
(HMM), and are mostly used for audio-visual person recognition. 
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II.H.3. Post-mapping fusion 
Post-mapping fusion combines information after the mapping from feature space into 

opinion or decision space; depending on the data type that is integrated, it is possible to 
distinguish between decision fusion and opinion fusion (also called score fusion). 

In a decision fusion scenario each classifier provides an independent hard decision, and 
then an integration step combines these individual judgements in order to reach a final 
decision. One representative technique is the majority voting , in which the final decision is 
taken by considering the most popular one, among those presented by the individual 
classifiers. Another important method is the ranked list combination : in this case each 
classifier generates a ranked list of classes, spanning from the preferred choice to the least 
preferred one; after that these lists are combined by various means, possibly taking into 
account the reliability and discriminatory power of each classifier. Concerning the 
verification task, there are two straightforward operators for combining the results of a 
ranked list: the AND and the OR operators. The AND operator is equivalent to the 
unanimity rule, because all classifiers must agree on the same decision; it is a quite 
restrictive policy and no decision may be reached in case of disagreement. On the other 
hand, the OR operator is very relaxed, because the decision can be taken when just one 
classifier agrees. Finally , it has been theoretically demonstrated by Daugman [18], that the 
AND and OR operators are suboptimal, because they can enhance only one between FAR 
and FRR, worsening the other. 

In an opinion fusion (also called score fusion) scenario each system is considered like an 
expert, which provides a numerical opinion on each possible decision, and then an 
integration step combines the scores and takes the final decision. The opinion values must 
be commensurate; without any loss of generality , we suppose to have all scores mapped in 
the interval: [ ]1,0, ∈kmo  for km,∀ , with 0 as the lowest and 1 as the highest possible 
preferences. The ranked list combination , described in the decision fusion scenario, can be 
also considered as a special technique of opinion fusion; in fact, the rank of each class 
itself represents a measure of preference, but the absence of a score value reduces the 
information on the confidence of each opinion. In general, opinions are combined by 
using two main techniques, the weighted summation rule or the weighted product rule; 
after that, a final decision is reached by using the MAX operator on the final scores. This 
approach has a clear advantage on feature vector concatenation and all decision fusion 
techniques, because opinions can be weighted, easily taking into account the reliability and 
discriminatory power of each classifier. If we consider to have M  experts, each of them 
providing a score kmo ,  for a given class k , then the final opinion obtained through the 
weighted summation fusion  (also called sum rule) is the following: 

∑
=

=
M

m
kmmk of

1
,α  

in which [ ]1,0∈mα  represents the normalised weight (∑
=

=
M

m
m

1
1α ) for expert m . 

Another possibility is to use the weighted product fusion  (also called product rule), which has 
been developed by considering a Bayesian framework and exploiting posterior 
probabilities as opinions. In fact, keeping the same mathematical formulation as before, 
the final opinion for class k  is obtained as: 
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However, this latter technique presents some drawbacks: first of all, one expert can 
have a large influence on the final score of a class, especially if it has a very low opinion on 
that class, producing a final value close to zero. Then, in order to exploit the theoretical 
properties of the Bayesian framework, the individual posterior probabilities of each system 
must be strictly independent, an assumption usually not verified in practical applications. 
An alternative approach to the score fusion rule and the MAX operator can be to 
implement a post-classifier [22]; by considering the numerical opinions as “likelihood” values 
of each class, it is then possible to train a classifier in this “likelihood” space, let him 
integrate the different scores and reach a final decision. An important advantage of this 
approach is that the distinct opinions do not need to be commensurate, because the post-
classifier automatically maps any heterogeneous “likelihood” space to a proper class label 
space, in which the final decision is taken. On the contrary, the main downside is that the 
dimensionality of the “likelihood” space is linearly dependent on the number of experts 
and classes, and can become huge: a multimodal system with M  experts and K  classes 
generates an opinion vector of size KM * . This is nevertheless reduced for the 
verification task, in which the number of possible classes is constant (with only clients and 
impostors), and the opinion vector is simply dependent on the number of experts, M . 

II.H.4. Discussion on fusion strategies 
It is generally believed that information fusion is potentially more effective if its 

integration is done as early as possible, and in literature it is common to observe that 
fusion at sensor or feature level offers higher improvement that at decision or opinion 
level. In fact, pre-mapping strategies take advantage of the richest and most genuine 
information (like sensor data and features), while the one used by post-mapping 
approaches (like similarity scores, class labels and opinions) is generated artificially , 
through a series of signal processing and machine learning techniques. In contrast, pre-
mapping fusion appears to be the most challenging one, because the relationships among 
diverse sources of information in sensor or feature spaces are often not known or 
problematic, due to incommensurate or non compatible data. Moreover, in some 
proprietary systems the signal and feature data of the individual modalities is not 
accessible, in order to avoid industrial concurrence, so in the end post-mapping fusion 
becomes the only choice. In conclusion, all these issues have a direct reflection in the 
research literature, because there are very few publications on pre-mapping and midst-
mapping fusion techniques, even if they hold the biggest potential for integrating useful 
discriminative information. 
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II.I. Concluding summary 

In this chapter we introduced the discipline of biometrics, and its evolution towards 
multi-biometrics. We firstly defined what a biometric identifier and a biometric recognition 
are, by specifying their main properties and by describing their most important examples 
and applications. Then, we detailed the two main operational modes of a biometric system: 
verification (or authentication) and identification. After that, we illustrated the architecture 
of a typical recognition system, by explaining the steps of the three main modules: 
enrolment, recognition and adaptation. Afterwards, we examined the large domain of 
performance evaluation, where we principally focused on the multiple measures for 
assessing verification (or authentication) and identification results. We concluded the 
introduction on biometrics with a discussion on the limitations related to the accuracy and 
scalability of the systems, and on the privacy and security concerns associated to their 
utilisation. In the second part we analysed the domain of multi-biometrics, by specifying 
the different sources of biometric information that can be integrated in a multimodal 
system, and by defining the possible integration schemes. Finally , we introduced the 
scientific domain of information fusion, where we detailed the typical integration strategies 
applied in multi-biometrics. 
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CChhaapptteerr  IIIIII..  PPeerrssoonn  rreeccooggnniittiioonn  uussiinngg  
ffaacciiaall  vviiddeeoo  iinnffoorrmmaattiioonn::  aa  ssttaattee  ooff   

tthhee  aarrtt  

III.A. Introduction 

For decades human face recognition [12][67][96] has been an active topic in the 
field of person recognition, or more generally in the field of object recognition. Most of 
algorithms have been proposed to deal with individual images, where usually both the 
enrolment and testing sets consist of a collection of facial pictures. Image-based 
recognition strategies have been exploiting only the physiological information of the face; 
in particular its appearance encoded in the pixel values of the images. Furthermore, the 
recognition performances of these approaches [69] have been severely affected by 
different kinds of variations, like pose, illumination and expression changes. Thus, 
researchers have started to look at video-based recognition, in which both the enrolment 
and recognition sets are facial video sequences representing the clients of the system. 

Person recognition using facial video information has some advantages over image-
based recognition. First of all, video frames can provide a huge amount of data compared 
to single pictures, and more robust and stable recognition can be achieved by integrating 
information and decisions from previous frames. Then, in addition to the physiological 
information already present in images, also the temporal one becomes available and can be 
exploited to improve the recognition task; consequently, nowadays researches have the 
possibility to analyse not only facial appearance but also head and facial motion, and 
human face starts to be considered as a hybrid biometric identifier (Section II.B.2), rather 
than only a physiological one. After that, more effective representations such as 3D face 
models [78] or super resolution images [89] can be generated from video sequences and 
used for recognition. Finally , video data allows learning and updating user models over 
time. 
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Currently , most person recognition techniques using videos are straightforward 
generalisations of image-based algorithms; in these systems, the feature extraction and 
classification are applied independently to each frame, then the similarity scores are 
integrated using post-mapping information fusion techniques (Section II.H.3), like the 
majority voting or the weighted summation rule. However, a few recent attempts that 
exploit the temporal information in videos have emerged to the scientific community, and 
these studies reveal the feasibility and benefit of considering the face as a hybrid biometric. 
Therefore, due to the fact that person recognition strategies using videos involve a 
heterogeneous mixture of techniques, we propose to divide them into the following two 
categories: those that neglect the temporal information, and those that exploit it even 
partially . We consider that a recognition approach neglects the temporal information, if the 
shuffling of frames in each video has no influence on the discriminatory power and the 
global performance of the system. In contrast, breaking the temporal consistency of video 
frames should have an evident impact on those techniques that exploit (even partially) the 
temporal information for recognition. 

In this survey, we focus on those person recognition approaches that make use of 
facial video information. In particular, we analyse their feature extraction, model 
estimation and classification parts (Section II.D), and we overlook the sensing and pre-
processing (face detection and segmentation) steps. It is worth noting that we do not 
consider those recognition strategies that are based on image, audio or 3D data. Finally , in 
the following survey we intentionally do not report a systematic quantitative comparison 
between the different techniques. In fact, the absence of common testing databases and 
the heterogeneous experimental conditions presented in the research literature offer results 
that are incommensurate; for this reason, proposing a quantitative comparison of scores 
would be meaningless. 

III.B. Approaches neglecting the temporal information 

III.B.1. Eigenfaces: extensions to video 
Eigenfaces [87] is one of the essential basic techniques for person recognition by 

using facial appearance; it has been widely studied and largely applied to image and video 
data. It is out of the scope of this state of the art to detail all variants to the standard 
approach; here we focus on its applications to video, and the interested reader can refer to 
[12], [67] and [96] for the image case. 

The eigenface technique is based on the notion of dimensionality reduction; in fact, 
Kirby and Sirovich [40] were the first to remark that the dimensionality of the face space is 
much smaller of that of a single face, considered as an arbitrary image. A first method to 
reduce the image space into a low dimensional feature space is to apply the principal 
component analysis (PCA) (also called the Karhunen-Loeve transform (KLT)) [22]: PCA computes 
a set of orthonormal vectors (the so called eigenfaces), which optimally represent the 
distribution of the training data in the root mean squares sense. A visual example of the 
most important eigenfaces is presented in Figure 9. 
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We consider to have a set of N  vectorised sample images, 
{ }NnM

n ,,1| K=Ν∈s , which take values on an M -dimensional image space and 
belong to one of the K  classes (the individuals in the database). A possible approach to 
generate a mapping from the M -dimensional image space into an D -dimensional feature 
space is to use a linear transformation ; in this case, each input image ns  can be approximated 

with its feature vector, D
n ℜ∈x , by using the following linear projection: 

( )μsWx −= n
T

n  

for Nn ,,1 K= , where DM ×ℜ∈W  is the projection matrix with orthonormal 

columns, and Mℜ∈μ  is the mean image of all samples. In general, MD < , so a 
projected image can be reconstructed in the image space up to a certain error image, nε ; 
the reconstructed image is calculated as: 

nnnn εsWxμs +=+=~  

In the eigenface approach the optimal projection matrix, ( )EIGW , is chosen by 
computing the principal components of the training data, or equivalently by maximising 
the determinant of the global scatter matrix of the projected samples. If the global scatter 
matrix is the following: 

( )( )∑
=

−−=
N

n

T
nk

1
μsμsG  

then the optimal projection matrix is calculated as: 
( ) [ ]D

TEIG wwGWWW
W

,,||maxarg 1 K==  

The solution to the previous equation is the space spanned by the set of M -
dimensional eigenvectors, { }DdM

d ,,1| K=ℜ∈w , corresponding the D  largest 
eigenvalues of the scatter matrix: 

ddd wGw λ=  

The optimal projection matrix can be also calculated by exploiting the global 
covariance matrix, because the covariance and scatter matrices differ by just a scaling 

factor: GΣ
N
1

= . Moreover, considering that the number of images in the training set is 

habitually lower than the dimensionality of the image space ( MN << ), then the 
maximum possible number of eigenvectors (or eigenfaces) is: ( ) ND MAX = . 
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In some cases, the feature vectors, D
n ℜ∈x , are rescaled by a process called 

whitening [48]. In fact, the mean squared error that underlies the PCA preferentially weights 
low frequencies, those that correspond to the largest eigenvalues; therefore, the whitening 
is applied to counterbalance this phenomenon, through the normalisation of the scatter 
matrix for uniform gain control. Hence after the whitening process, each component 
associated to each eigenvector has a uniform unit variance: 

d

dn
dn

x
x

λ
,

,ˆ =  

for Nn ,,1 K=  and Dd ,,1 K= , where D
n ℜ∈x̂  is the whitened feature vector. 

The recognition task is usually done through a nearest neighbour classifier, in which the 
similarity measure is inversely proportional to distances in the reduced feature space; the 
most common distances are based on simple metrics, like 1L  (city-block), 2L  (Euclidean), 
cosine or Mahalanobis.  

 

 
Figure 9: eigenfaces of a set of images of the Stirling database [86]. 

 

In [81], Satoh proposed a straightforward extension of the traditional eigenface 
approach, by introducing a new similarity measure for matching video data. The similarity 
between distinct videos was obtained by considering the smallest distance between frame 
pairs (one from each video), in the reduced feature space. Taking into account the large 
variation of facial appearance in a given sequence, the choice of the closest frame pair 
showed limited robustness to outliers and obtained poor results. 
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Two similar extensions have been proposed by Huang and Trivedi [33], by using 
decision fusion techniques (Section II.H.3) to integrate opinions on each frame. The 
authors firstly applied the eigenface strategy to individual frames, to obtain a sequence of 
independent decisions on the identity of the user; after that, they reached a final decision 
by using the majority rule, which chose the most frequent identity in a video, or by adding 
a post classifier, which was implemented using discrete hidden Markov models (HMMs) with a 
maximum likelihood rule. In their experiments, the recognition system with the post 
classifier obtained slightly better results than the one exploiting the majority rule, and both 
showed improvements on the standard eigenface approach testing one frame per video. 

In order to increase the performances of eigenspace-based strategies, the abundant 
video data has been exploited to train statistical models of the individual facial manifolds. 
Firstly , Torres and Vilà [86] employed the subspace method [64] with video data, which they 
named as the self-eigenface approach. To represent each individual facial manifold they 
generated multiple personal eigenspaces, one for each user, which were trained by selecting 
different views of the same person in a video sequence. For the classification task, the 
authors implemented a suitable similarity measure, which was based on the reconstruction 
error of a testing image after the projection on each individual subspace. The authors also 
exploited the colour information, which is habitually present in sequences, by creating 
separate eigenspaces for each colour component and for each individual; consequently, 
they modified the similarity measure by defining a total reconstruction error as a weighted 
sum of the reconstruction errors of each colour component. 

Then, Satoh [81] extended the CLAFIC method [64] to face sequence matching, by 
proposing two different implementations. The first version was really close to the self-
eigenface approach of Torres and Vilà: in both cases, an input frame was identified as the 
individual who generated the closest eigenspace to it. More precisely , the author trained 
multiple personal subspaces, and adopted a similarity measure proportional to the longest 
projection of a test in each subspace. For the second method, Satoh noticed that face 
images of a person compose a non-linear manifold, so he tested a CLAFIC-based variant 
in a nonlinear space. In particular, he developed a CLAFIC adaptation of the kernel-based 
nonlinear subspace method [53], which consisted of: a nonlinear transformation of feature 
spaces defined by kernel functions, and an application of the subspace method in the 
transformed high-dimensional spaces. 

In [93], Yamaguchi et al. applied the mutual subspace method [64] to the problem of 
person recognition using facial video sequences. The main difference between this 
approach and the other subspace methods was that it exploited an eigenspace 
approximation not only for client modelling, but also for any test sequence; this way, the 
authors implemented a “space-to-space” matching, and considered as similarity measure 
the angle between one input and one reference subspaces. Recently , Nishiyama et al. [61] 
further improved this strategy, by constraining the “space-to-space” matching onto 
multiple special subspaces, built to enhance the discrimination between classes. In fact, 
both the input and reference eigenspaces were projected onto each matching subspace, in 
order to calculate partial similarity scores (the angles); then, the global similarity values 
were obtained through a weighted sum of the partial ones. This last approach was able to 
provide very good recognition scores: 96.8% of CIR on a database containing 500 users; 
nevertheless, it exploited the video just as a source of data, neglecting the temporal 
information. 
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III.B.2. Fisherfaces: extensions to video 
Fisherfaces [3] is another state of the art technique for person recognition using facial 

appearance. Similarly to the eigenface approach, presented in Section III.B.1, fisherfaces is 
also based on the notion of face space reduction into a low dimensional feature space. The 
optimal projection is calculated by applying the Fisher’ s linear discriminant (FLD) (also called 
linear discriminant analysis (LDA)) [22], which is a class specific linear method that tries to 
“shape” the scatter, in order to make it more reliable for classification. While in the 
eigenface strategy the scatter being maximised is due to between-class scatter (useful for 
classification) and within-class one (unwanted information); in the fisherface approach the 
scatter being maximised is the ratio between the between-class scatter and the within-class. 
Figure 10 shows a visual representation of the first fisherfaces obtained through this 
method. 

We consider having the same framework as in the eigenface approach (section 
III.B.1): a linear projection from the image space to the feature subspace, then a matching 
step with a nearest neighbour classifier using distances. Following the same notation, the 
between-class scatter matrix is defined as: 

( )( )∑
=

−−=
K

k

T
kkkB N

1
μμμμG  

in which Mℜ∈μ  is the mean image of all samples, M
k ℜ∈μ  is the mean image of 

class k , and kN  is the cardinality (number of samples) of class k . The within-class scatter 
matrix is the following: 

( )( )∑ ∑
= ∈

−−=
K

k k

T
knknW

n1 s
μsμsG  

If MM
W

×ℜ∈G  is non-singular, the FLD chooses the optimal projection, 
( ) DMFLD ×ℜ∈W , by maximising the ratio of the determinant of the between-class scatter 

matrix of the projected samples on the determinant of the within-class scatter matrix of 
the projected samples: 

( ) [ ]D
W

T
B

T
FLD ww

WGW
WGWW

W
,,

||
||maxarg 1 K==  

where { }DdM
d ,,1| K=ℜ∈w  is the set of generalised eigenvectors of BG  and 

WG , corresponding to the largest generalised eigenvalues { }Ddd ,,1| K=λ : 

dWddB wGwG λ=  
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for Dd ,,1 K= . Considering that there are at most 1−K  non-zero generalised 
eigenvalues, due to the definition of the scatter matrices, and that in general the number of 
classes is lower than the total number of training images, MNK <<< , then the highest 
achievable dimension for the feature space is: ( ) 1−= KD MAX . In practical cases, it is not 
possible to compute the optimal projection by using the previous criterion, because of the 
singularity of the within-class scatter matrix; in fact the rank of MM

W
×ℜ∈G  is at most 

KN − , and usually MN << , so WG  is always singular. 

One strategy to overcome this problem, called fisherfaces [3], is to reduce the image 
space before applying the FLD; by using a PCA transform, the face space is decreased to 

KN −  and the resulting WG  is non-singular. The optimal projection, ( ) DMFIS ×ℜ∈W , 
is then: 

( ) ( ) ( )TPCATFLDTFIS WWW =  

where ( ) ( )KNMPCA −×ℜ∈W  and ( ) ( ) DKNFLD ×−ℜ∈W  are projection matrices with 
orthonormal columns.  

 

 
Figure 10: fisherfaces of a set of images of the FERET database. 

 

In [81], Satoh also proposed a straightforward extension of the traditional fisherface 
approach, by employing the same video similarity measure developed for the eigenface 
case (Section III.B.1). Again, the similarity between distinct videos was calculated by 
considering the smallest distance between frame pairs (one from each video), in the 
reduced feature space. This strategy experienced the same weaknesses to outlier frames as 
before, but it obtained better recognition results because the fisherface method is known 
to be more discriminating than the eigenface one. 

III.B.3. Active appearance models 
Active appearance models (AAMs) [17][23] are statistical models of the face that 

combine shape and intensity variation in an unified framework. They are capable of 
estimating full photo-realistic models by using a reduced number of parameters and their 
rapid and accurate optimisation algorithm makes them valuable in a tracking and 
recognition scenario. 
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The statistical model of shape variation is obtained by extracting the face shape with 
active shape models [16]; a set of key landmark points are firstly located in an input image, 
then aligned in a common coordinate system, and finally represented in an optimal 
subspace computed using the principal component analysis (PCA) (also called the Karhunen-
Loeve transform (KLT)) [22]. If we call 

( )qMℜ∈q  the aligned shape vector, then it is 
approximated as following: 

( ) ( ) ( )qqq vWμq +=  

where ( ) ( )qMq ℜ∈μ  is the mean shape, ( ) ( ) ( )qq DMq ×ℜ∈W  is the projection matrix 

with orthonormal columns, and ( ) ( )qDq ℜ∈v  are the shape projection coefficients. 

The statistical model of appearance is calculated using normalised facial images, 
which are initially warped to match the mean shape and then processed to reduce the 
illumination variation. Again, the shape-normalised image vector 

( )sMΝ∈s  is linearly 
approximated through PCA: 

( ) ( ) ( )sss vWμs +=  

where ( ) ( )sMs ℜ∈μ  is the mean normalised appearance, ( ) ( ) ( )ss DMs ×ℜ∈W is the 

projection matrix with orthonormal columns, and ( ) ( )sDs ℜ∈v  are the appearance 
projection coefficients. 

The final active appearance model is obtained by jointly representing the shape and 
appearance models in the optimal PCA subspace. If we consider the concatenated vector, 

( ) ( )( )sq DD +ℜ∈g : 
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in which ( ) ( ) ( )qq DDq ×ℜ∈B  is a diagonal matrix for shape scaling, then the combined 
shape-appearance projection coefficients are: 

( ) gWx Tx=  

where ( ) ( ) ( )( ) LDDx sq ×+ℜ∈W is the combined orthonormal projection matrix. Figure 
11 shows a visual example of the principal modes of variation of the shape-appearance 
parameters, Lℜ∈x . 

Due to the linear nature of the AAMs, the aligned shape vector, 
( )qMℜ∈q , and the 

shape-normalised image vector, 
( )sMΝ∈s , can be directly expressed from the shape-

appearance parameters, Lℜ∈x : 
( ) ( ) ( ) ( )
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The estimation of the model parameters, from a starting approximation to a precise 
fit, is solved through a high dimensional optimisation algorithm, which considers as cost 
function the root mean square error between the reconstructed and the original images. 
The optimal solution is obtained through a rapid search strategy, where the huge space of 
possible solutions is constrained by linearly modelling the relationship between the 
variations of the shape-appearance parameters and those of the reconstructed images, 

sAx ∂=∂ . 

 

 
Figure 11: first four modes of shape-appearance variations [17]. 

 

Edwards et al. [24][25] successfully applied active appearance models to the 
problem of person recognition, by separating the inter-class variability from the intra-class 
one. In fact, computing the Fisher’ s linear discriminant (FLD) (also called linear discriminant 
analysis (LDA)) [22] in the shape-appearance space, they isolated the parameters related to 
identity , 

( )uLℜ∈u , from those of non-identity (pose, expressions...), 
( )rLℜ∈r : 

RrUux +=  

where 
( )uLL×ℜ∈U  and 

( )rLL×ℜ∈R  are mutually orthogonal projection matrices, 
relative to identity and non identity spaces. For video processing the authors developed an 
iterative tracking algorithm based on Kalman filtering, in which the process model for the 
identity parameters was assumed constant, and the one for non-identity values was first 
order (constant velocity). In the end, the recognition system compared the different 
identity parameters robustly estimated from video sequences, by exploiting the Euclidean 
distance as similarity measure. 
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In [46] Li et al. implemented a variant of AAMs, by developing a multi-view 
dynamic face model to extract shape-and-pose-free normalised facial textures. In fact, their 
statistical model of shape variation was different than active shape models [16], because they 
computed a sparse 3D point distribution model using the 2D positions of facial 
landmarks, rather than estimating a 2D shape model. Then, the authors extracted 
nonlinear discriminative features [47], by applying the kernel discriminant analysis (KDA) on 
the shape-and-pose-free facial images (rather than using the combined shape-appearance 
vectors); this way, the shape information was employed only in the normalisation step and 
not for recognition. Li et al. also implemented a partitioning strategy based on pose 
information (tilt and yaw) [47], in order to compare similar views and reduce the intra-class 
variability . In particular, for each predefined view of a client, the related discriminative 
features were approximated using a plane; the pose information was then exploited for 
matching testing frames with facial models of corresponding planes. The authors adopted 
the Euclidean distance measure for estimating the frame similarity , and computed a 
weighted summation of individual distances to obtain the global video score. 

III.B.4. Radial basis function neural networks: extensions to video 
Radial basis function neural networks (RBFNNs)  [6] have been applied to biometric 

person recognition tasks mostly because of their computational simplicity , robust 
generalisation properties (for example across views and facial orientations), goodness at 
handling sparse high-dimensional data, and guarantee to obtain a globally optimal solution. 

RBFNNs have a feed forward architecture, with one input layer, one hidden layer 
and one output layer, as shown in Figure 12. The input layer has IN  units, and an IN -
dimensional input vector, it is fully connected to HN  hidden units; the hidden layer is also 
fully connected to CN  output units, which represent the CN  classes. 

The activation functions in the hidden layer are generally Gaussian kernels, with 
mean vectors (centres), IN

j ℜ∈μ , and covariance matrices, II NN
jj

×ℜ∈= IΣ 2σ  (here 
considered as diagonal); the number and spread of these centres influence the smoothness 
of the mapping. The activation values of the hidden units are then given by: 

2

2

2
,

j

ji

eg ji
σ

μx −−

=  

for INi ,,1 K=  and HNj ,,1 K= . This value is related to the proximity between 

the test sample, IN
i ℜ∈x , and the centre vector, jμ . The 2

jσ  parameters determine the 
width and the scale of the activation functions and are estimated from the distance 
between centres. 

These same hidden units are fully connected to the output units through a series of 
weights: { }CHkj NkNj ,,1,,,1|, KK ==α . The global response of the k -th output 

unit for the input vector ix  is the following: 
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for CNk ,,1 K= , where 10, =ig  is the bias unit. 

The training of a RBFNN consists of estimating the model parameters, 
{ }kjjj ,,, ασμΘ = , for the problem in question; by applying the pseudo-inverse method, 

the matrix of weights is obtained through a standard least squares solution, which allows 
exact calculations and instantaneous training. The classification task is done by computing 
the output vector CN

i ℜ∈y , and then choosing the highest activated output unit. 

 

 
Figure 12: radial basis function neural network [31]. 

 

RBFNNs have been firstly applied to video sequences by Howell and Buxton in 
[32], even if they were just considering video frames as abundant test data. They developed 
their networks by using two feature spaces: one represented by the zero crossing 
information from the difference of Gaussian filtering of images, and the other by applying 
Gabor wavelet analysis. Then, the authors employed each training vector as a centre for 
their hidden units, and computed the { }jσ  values by using the average of their Euclidean 
distances. Finally , they implemented a confidence measure in order to check the quality of 
video frames, and discard those unsuitable for classification: considering that training 
vectors that are different from network centres are mapped to low output values, they 
chose as a confidence measure the ratio between the highest over the second highest 
output, and discarded the frame if below a threshold value. 
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In a successive work [31], Hock Koh et al. improved the framework of Howell and 
Buxton, firstly by smoothing the confidence measures on a time window through a 
median filtering, then by implementing a measure of video similarity that combined the 
individual decisions on frames with the majority vote rule. The feature space was obtained 
by applying a radial grid sampling on the input frames: they first located a few sampling 
points by centring a uniformly spaced radial grid on the nose tip, then for each point they 
calculated the mean value over a circular patch. They also modified the RBFNN training, 
where they computed the centres by taking the mean vectors of multiple training images 
(not only one vector), previously clustered in a supervised manner by a K-means 
algorithm. The authors reported that their approach had a good tolerance over variations 
in facial scale and orientation ( °± 25 ). 

III.B.5. Elastic graph matching: extensions to video 
Elastic graph matching (EGM)  is a person recognition technique which has its roots in 

the neural network community. It has been firstly introduced by Lades et al. [43], then it 
has been improved by Wiskott et al. in their elastic bunch graph matching (EBGM)  version 
[92]. 

The original EGM approach builds a face graph for each user model, by applying a 
rectangular grid, Ψ , on a training image; the lattice used is much coarser than the pixel 
one. The facial information is captured at each position ( )ji,  of the grid through the 
feature vector field ( ){ }Ψ∈= jiX ji ,|,x , in which each feature vector, ji,x , summarises 
the local properties of the face and is called a jet. In general, jets are calculated by using the 
absolute value of Gabor wavelet coefficients, but other descriptors have been employed, 
like morphological feature vectors. An analogous approach is applied on a test image; in 
this case, however, the vector field ( ){ }Γ∈= vuY vu ,|,y  is computed on a finer grid, Γ , 
as shown in Figure 13. 

Afterwards, to be able to compare related jets, the EGM method needs to find the 
best mapping between the face graph of an enrolled model and that of a test image; we 
indicate with *Μ  the optimal mapping among all possible mappings, { }Μ , between the 
vector fields X  and Y . The quality of a given match, Μ , is evaluated through a cost 
function, ( )Q , that favours the similarity of associated jets and penalises the spatial 
deformation of the lattice: 

( ) ( )( ) ( )( )Μ+Μ=Μ DEFMTC QQQ ρ  

where ( )MTCQ  is the cost of jet matching, ( )DEFQ  is the cost of grid deformations, 
and ρ  is a weighting parameter that controls the rigidity of the mapping . The overall cost of 

jet matching, ( )MTCQ , is computed by adding the individual cosine distances between 

corresponding jets; similarly , the overall cost of grid deformations, ( )DEFQ , is obtained by 
averaging the node deformations, which are calculated using the Euclidean distance. 
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Unfortunately, the number of all possible mappings is extremely large and no 
exhaustive search is possible; on the other hand, it is not necessary to find the optimal 
mapping, *Μ , but a close approximation to it will be sufficient for the recognition task. 
The solution to the matching problem is obtained through a two step optimisation: 

1. Rigid matching  ( ∞→ρ ): first of all, the model graph is rigidly shifted 
around the test one in a sparse scanning, providing a rough head 
localisation. 

2. Deformable matching: then, the model graph is varied in size and aspect ratio 
and the nodes are stretched with random local perturbations, in order to 
obtain a precise alignment. 

In the end, recognition is achieved by computing similarity scores based on the 
overall cost of jet matching, without using the cost of grid deformations. 

The major improvement in the EBGM approach [92] is the association between 
graph nodes and facial landmarks, like the pupils, the corners of the mouth and the tip of 
the nose, which are called fiducial points; the face graph becomes object-oriented, presenting 
a well defined grid structure, in which the same nodes correspond to the same facial 
landmarks. 

In the EBGM case, the best mapping between distinct face graphs is greatly 
simplified, since it is assured by the presence of common fiducial points; nevertheless, the 
algorithm needs to locate these points on each new image. Initially , the graph matching 
procedure is enhanced by the introduction of a general representation of the face, called 
the face bunch graph; its purpose is to provide a wide-ranging description of the human face 
by bundling together in a bunch several feature vectors, which refer to the same fiducial 
point. For example, a fiducial point related to the eye should contain jets computed on 
diverse conditions: when the eye is open and close, when the user wears glasses, for men 
and women, Asians and Europeans, etc. Then, the face bunch graph is used for the 
localisation of the graph on a face image; it exploits a cost function similar to that of 
original approach but more accurate, due to the introduction of the phase information in 
the cost of jet matching. As a final point, the two-step optimisation and the recognition 
parts are identical to the EGM ones. 

 

 
Figure 13: example of mapping between a template (or model) image and a query (or test) 

image. 
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Steffens et al. [83] developed a complete system from video acquisition to final 
recognition, in which they extended the EBGM technique to image sequences. The 
authors improved the original method by implementing a coarse-to-fine matching 
approach: in order to speed up the selection of video frames used for recognition, they 
built multiple face bunch graphs of different complexity and sizes, which were applied 
sequentially . More precisely , their system firstly run a preliminary quality check on the 
captured frames using the coarser bunch graph, in order to extract the best two frontal 
face images; these two frames were further normalised with histogram equalisation and 
background removal, and then precisely matched with the more complex face graphs. 
Finally , only the best mapping was considered for recognition; in fact, even if both 
similarity scores were computed, only the highest was retained for the final decision. 

III.B.6. Hierarchical discriminative regression trees 
Hierarchical discriminative regression trees (HDRTs) [34] are decision trees that have been 

developed for classification and regression tasks. In person recognition applications, they 
generate a mapping from image space to identity space, and their branches represent 
conjunctions of features that lead to classification. HDRTs have the advantage that they 
are fast for training and testing, they are scalable and can handle large databases, they use 
multivariate nonlinear splits (and linear ones as special case), and that they are constructed 
incrementally (online). 

First of all, the classification problem is cast into a regression one in order to 
employ HDRTs. For this purpose, each image vector M

n Ν∈x  belonging to class k  is 

converted into the sample pair ( )kn μx , , where M
k ℜ∈μ  is the continuous outcome for 

class k  and it is calculated by taking the average of all image vectors belonging to that 
class. Then, the training algorithm incrementally builds a HDRT from a series of input 
sample pairs, ( )kn μx , , which are doubly clustered in both input and output spaces. 

At each node, the partitioning in output space provides a virtual class label (the μ -
cluster) that is used for determining to which x -cluster the arriving sample belongs. The 
clustering is obtained by using Euclidean distance and every μ -cluster is represented by 
only its mean value, which is incrementally updated using amnesic average [91]. In parallel, 
the partitioning in the input space is used to structure the regression tree: at each node, 
every x -cluster approximates the sample population for the vectors which belong to it. 
Similarly to the partitioning in the output space, no samples are stored and the x -clusters 
are represented using only their means and covariance matrices, which are updated 
incrementally with their amnesic versions. 
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Unfortunately, the dimension of the input space is very high and the image vectors 
have excessive redundant information, so the clustering process and the distance 
calculations are too demanding. For this reason, the algorithm projects the input samples 
into a discriminative subspace; this step is necessary to reduce the size of the partitioning 
space, but it also generates feature vectors containing less irrelevant and noisy information. 
Considering that in each node there are no more than C  x -clusters, the linear 
discriminative subspace that passes through the centres of these clusters is represented by 

1−C  orthonormal basis vectors, obtained through a Gram-Schmidt ortho-normalisation 
process. Figure 14 shows an example of a HDRT for person recognition where every 
block represents a tree node, with the x -cluster centres in the first row and the 
orthonormal basis vectors in the second one. 

Moreover, the probability for a sample, x , to belong to a given x -cluster is 
approximated using a distance metric similar to a multidimensional Gaussian density 
function; this distance is necessary to determine which cluster should be recursively 
searched, until the corresponding child node is found. To better deal with large, small and 
unbalanced sample cases, the algorithm implements a size dependent negative-log-likelihood 
distance measure [34], which allow a progressive smooth transition among Euclidean, 
Mahalanobis and Gaussian negative-log-likelihoods, based on the number of samples 
available. It’s worth noting that if all x -clusters were modelled using a standard Gaussian 
distribution, then the tree structure would implement a hierarchical version of a Gaussian 
mixture model (GMM), where the shallow levels would be modelled with large Gaussians 
and the deep ones with smaller Gaussians.  

 

 
Figure 14: illustration of the hierarchical discriminative regression tree for person 

recognition [34]. 
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HDRT have been applied to person recognition using videos by Weng et al. [91]. 
Their system exploited facial sequences only as a source of data; in fact, the frames were 
considered independently both for tree generation and performance evaluation. The input 
videos were initially pre-processed by applying a zero-mean-unit-variance normalization 
and by radially weighting the pixels of the face, assigning more importance to the central 
ones. In the end, the recognition system obtained very good results, analogous to a LDA-
based nearest neighbour classifier, and definitively better than any alternative approach 
using regression trees. 

III.B.7. Unsupervised pair wise clustering 
Clustering methods automatically partition a data set into subsets (the so called clusters), 

so that the patterns in each subset share some common traits, often proximity according to 
some defined distance measure. Pair wise clustering algorithms are a special case of clustering 
methods, in which the partitioning is based on pair wise relations between individual 
patterns, rather than centralised relations between samples and a few cluster 
representatives (like centroids, for example). Pair wise clustering can be visualised through 
a graph (as in Figure 15), in which each node represents a pattern and the edges 
correspond to proximity values. 

It is well known that facial video sequences captured in unconstrained dynamic 
scenes are affected by numerous variations, like different views, scale, illumination and 
facial expressions, and that they form complex non-linear manifolds in face image space. 
Therefore, clustering using individual frames is problematic, because the intra-class 
variations can be larger than inter-class ones, and the resulting partitioning may 
discriminate views rather than identities. In a similar way, centroids can be meaningless or 
difficult to define, because in an unsupervised scenario there is no explicit category 
information available and the number of clusters (identities) is not known in advance. 
However, when using pair wise clustering two video sequences are not related directly to 
each other or to a representative centroid, but they can be linked together through a third 
sequence or a connected group of sequences, thus forming an associative chain (as illustrated 
in Figure 15) which reduces the effect of intra-class variations. 

A key element of pair wise clustering algorithms is the computation of the proximity 
matrix, { }Jjip ji ,,1,|, K==P , which expresses the distance between all pairs of 

sequences, iΦ  and jΦ . Its calculation is dependent on the choice of the distance measure 
between facial images and the one between video sequences. In fact, the distance between 
facial images is used to estimate the proximity between two video frames; commonly , 
simple measures are preferred like: the Euclidean distance ( 2L -norm), the city-block 

distance ( 1L -norm) or the *
0L -norm. Given two (vectorised) images, Mℜ∈x  and 

Mℜ∈y , the *
0L -norm calculates the number of pixel locations that differ more than a 

predefined threshold value, θ : 

( ) ∑
>−

−=
θii yx

ii yxL 0*
0 , yx  
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Then, the distance between facial images is used in the computation of the distance 
between video sequences, which inversely represent the proximity measure between two 
videos. One possible choice is to adopt the minimal distance , which is the distance between 
the two nearest frames: 

( )( ) ( )yx
yx

,min,
,

Ld
ji

ji
MIN

Φ∈Φ∈
=ΦΦ  

where ( )L  specifies a suitable norm. Otherwise, the modified Hausdorff distance  can 
be used: 
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in which ( )th
l

f Φ∈a  is the fth quantile function over the set of frames a  in lΦ . After 
that, the distances between video sequences are rearranged into a proximity matrix (or 
transformed into an equivalent affinity matrix  [75]). 

Once the pair wise relations are estimated, the clustering algorithm partitions data 
by optimising a local criterion (like a cluster consistency rule in [74] or the structural cluster 
stability in [75]), in order to obtain an optimal trade-off between over- and under-
segmentation. In particular, the clustering process alternates merging and splitting phases, 
which enforce the cluster validity conditions on each subset, until a stopping criterion is 
met. 

Finally , person recognition is obtained by considering the clustering result when 
inserting a new sample (a test video sequence): if it is added to a valid partition, its identity 
is assumed as the one of that partititon; otherwise the test is rejected or added as a new 
client. 
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Figure 15: graphical representation of pair wise clustering applied to person recognition 
using videos [74]. For nodes, letters specify distinct individuals while numbers indicate 

different sequences; for edges, the values express distances. 

 

In [74], Raytchev and Murase presented an unsupervised pair wise clustering 
algorithm, which incrementally built a graph structure by chaining together similar views in 
video sequences. In its batch version, the clustering graph was formed by firstly computing 
the minimal spanning tree  using the distances in the proximity matrix as edge weights. Then, 
the connecting edges were suitably labelled to specify consistent associations (those that 
bound patterns in each cluster), and finally the graph structure was optimised by using 
local statistical information, in order to eliminate spurious associations of different 
identities (the so called chaining effect). An incremental version of the algorithm was also 
developed, mostly to update the partitioning or to test new videos during the recognition 
phase. 
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Raytchev and Murase also developed another unsupervised recognition approach 
[75], proposing two novel pair wise clustering algorithms based on opposing interaction 
forces between patterns: attraction and repulsion. One method, called CAR1, optimised a 
local criterion (the structural cluster stability ) by alternating merging and splitting steps; the 
other one (CAR2) was based on a global criterion, which looked for an optimal balance 
between attraction and repulsion. The interaction forces between nodes were calculated 
using a particular affinity matrix, consisting of positive and negative similarity values. The 
authors compared different approaches on a small video database (33 subjects) with 
relevant pose and illumination variations: the CAR1 algorithm obtained the best overall 
recognition results (over CAR2, their previous approach [74], and two concurrent pair 
wise clustering alternatives) and acceptable clustering quality . On the other hand, all 
unsupervised recognition strategies performed worse than supervised ones, which have the 
advantage of exploiting the category information in the enrolment phase. 

III.C. Approaches exploiting the temporal information 

III.C.1. Discriminant analysis on facial optical flow 
The temporal information in video sequences enables the analysis of facial motion 

and its application as a biometric identifier for person recognition. In fact, it is possible to 
extract the movement of the face by estimating its optical flow (see Figure 16), and then 
exploit it as a feature for classification. A recognition system based on facial motion has 
the advantage of being less sensitive to variations in facial appearance, due for example to 
different illumination conditions, makeup, beard cuts and haircuts. On the other hand, the 
discriminatory power of this biometric identifier seems inferior to that of facial 
appearance, maybe because this research domain is quite unexplored and the recognition 
techniques are still immature. 

A typical gradient-based approach for optical flow estimation requires the 
optimisation of an energy function, which contains one image and one smoothness 
constraint: 
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where { }tcrt ,,φ=Φ  is the image brightness function for frame t , 

( ) ( ){ }tcrtcrtt vu ,,,, ,, =VU  are the optical flow fields, and α  is a weighting parameter 
between constraints. The optimisation problem can be converted into a linear system of 
convex-quadratic functions of wavelet scaling coefficients, as explained in [13]. In the end, 
for each input video the algorithm computes a sequence of optical flow fields: 
( ){ }Tttt ,,1|, K=VU , where T  is the length of the sequence. 
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A behavioural biometric identifier like facial motion presents some issues which 
have to be addressed. First of all, there is a need for a temporal segmentation of dynamic 
sequences, in order to locate and associate similar gestures to be matched. Then these 
video chunks should be normalised by synchronising their speed and length, in order to 
provide a common representation for analogous gestures, and therefore being able to 
calculate commensurate feature vectors. Finally , it is necessary to select which part of facial 
motion must be retained for computing features for recognition. 

 

 
Figure 16: example of facial motion represented using optical flow. 

 

In [14], Chen et al. developed a person recognition system by applying the 
fisherface approach (Section III.B.2) on a different biometric identifier: facial motion. In 
fact, for each video their algorithm firstly calculated a sequence of optical flow fields, and 
subsequently concatenated them (frame by frame) to form a unique high dimensional 
vector. Then, these motion vectors are projected into a discriminative feature subspace, 
obtained by applying PCA and LDA on the training dataset. Finally , their system 
recognised identities by implementing a nearest neighbour classifier working on distances. 
It is important to notice that in the framework proposed by Chen et al., the issues of 
temporal segmentation and video chunk normalisation were not explicitly addressed; in 
fact, their algorithm considered having sequences of commensurate facial motion, so it 
directly analysed the entire video clips. On the other hand, every frame was semi-
automatically pre-processed before the optical flow computation, in order to align head 
sizes and locations; after that, only the lowest half of optical flow fields was used to extract 
features for recognition, so that these were mostly related to mouth motion. In the end, 
this recognition system did not perform better than the original fisherface approach, but it 
resulted more robust to illumination changes. 
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III.C.2. Hidden Markov models: extensions to video 
Hidden Markov models (HMMs) are a powerful tool to model temporal motion 

information; for this reason, they have been used in speech recognition [27], gesture and 
expression recognition. Moreover, HMMs have been successfully applied to person 
recognition using facial appearance, by spatially associating regions of the face to HMM 
states; for a detailed review on this research topic, the interested reader can refer to [12], 
[67] and [96]. In this section, we will focus on those HMM approaches that are modelling 
temporal information in video data, as shown in Figure 17. 

An HMM [50][73] is a statistical model in which the reference system is assumed to 
be a Markov process with unknown parameters, and the challenge is to determine these 
hidden parameters from observable data, the so called observations. More precisely , an HMM is 
composed by two stochastic processes; one is an unobservable Markov chain with L states, 

{ }Lll ,,1| K==Ω ω , an initial state probability distribution , [ ]L,01,00 ,, ππ K=π , and a state 
transition probability matrix , 

( ){ }TtLjiqqpa itjtji ≤≤≤≤==≡= − 1,,1|| 1, ωωA  

with constraints 1
1

, =∑
=

L

j
jia  for Li ≤≤1 . The second stochastic process is a set of 

probability density functions, ( ){ }Llbl ≤≤=Β 1|x , of the observation, Mℜ∈x . For a 
continuous HMM, the probability density function associated with each state l  is 
approximated using a Gaussian mixture model (GMM) (see Section IV .B.4): 

( ) ( )∑
=

ℵ=
C

c
clclcllb

1
,,, ,| Σμxx α  

where lC  is the number of components, cl ,α  is the mixture weight for the c -th 

component, and ( )clcl ,, ,| Σμxℵ  is a Gaussian probability density function with mean 

vector M
cl ℜ∈,μ  and covariance matrix MM

cl
×ℜ∈,Σ . In short, an HMM can be defined 

by its parameter set: { }0,, πAΘ Β= . 

When applying HMMs to person recognition using facial appearance, researchers 
have tested different kinds of observations computed from image features: pixel values, 
eigen-coefficients and discrete cosine transform (DCT) coefficients. Though, the use of video 
data and the application of HMMs on temporal motion information requires a compact 
representation for the observation vectors; for this reason eigen-coefficients are preferred 
and principal component analysis (PCA) (also called the Karhunen-Loeve transform (KLT)) [22] is 
used for dimensionality reduction of the image space, as it computes a set of orthonormal 
vectors which optimally represent the distribution of data in the root mean squares sense. 
In the end, each video frame is projected into an eigenspace (Section III.B.1) and forms a 
feature vector; we note the sequence of observations related to a given video as: 

{ }TtX M
t ≤≤ℜ∈= 1|x , where T  is the length of the sequence. 
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During the enrolment phase, each subject is modelled by an L -state fully 
connected HMM, which learns the statistics of the training sequences and of the temporal 
dynamics belonging to that individual. The training process [73] estimates the HMM 
parameter set, kΘ , for each user k : in the initialisation part, the observations are 
separated into L  classes and a first estimate of the parameter set is obtained; then, the 
Baum-Welch procedure updates the parameters of the model in order to maximise the 
resulting likelihood, ( )kXp Θ| . 

In the recognition step, the sequence of observations of an input video is analysed 
over time by the HMM of each client. After all, either the likelihood score or the posterior 
probability score, which are calculated by applying the Viterbi algorithm, are used as 
similarity measure for recognition. 

 

 
Figure 17: example of a hidden Markov model temporally applied to video sequences [50]. 

 

In [33], Huang and Trivedi were the first to develop a person recognition system by 
using HMMs for modelling the temporal motion information in video sequences; though, 
their work was not very convincing. In fact, the experimental configuration that obtained 
the best results employed HMMs with a single state and a single Gaussian component; this 
framework was equivalent to using a single multidimensional Gaussian approximation, and 
for this reason the benefits of temporal correlation were lost. 
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Afterwards, Liu and Cheng [50] successfully applied HMMs for temporal video 
recognition by improving the basic implementation of Huang and Trivedi. In fact, to avoid 
singularities on the estimation of the covariance matrices, the authors modified the 
training algorithm this way: each covariance matrix, MM

cj
×ℜ∈,Σ , was gradually adapted 

from a global diagonal one (a general model) by using its class-dependent data. Liu and 
Cheng also proposed an online version of their recognition system, by implementing an 
adaptive strategy for the HMMs. More precisely , each test sequence successfully 
recognised was used to update the model parameters of the client in question (except for 
the covariance matrices), by applying a maximum a posteriori (MAP) adaptation technique. In 
order to discard incorrect or uncertain testing videos, the likelihood difference values were 
used as confidence measures. In conclusion, the system exploiting adaptive HMMs 
performed better than the one without adaptation, and both obtained higher recognition 
scores than the eigenface approach with majority voting (Section III.B.1). 

III.C.3. Stochastic tracking and recognition through particle filtering 
Stochastic tracking and recognition approaches are based on a unified probabilistic 

framework, in which individuals are simultaneously tracked and recognised by estimating 
the posterior probability density function of a time series state space model (TSSSM). Tracking 
is formulated as a Bayesian inference problem, and it is solved as a probability density 
propagation problem (due to the temporal nature of tracking itself); recognition is 
obtained by applying the maximum a posteriori (MAP) rule on the posterior probabilities. A 
TSSSM with non-linear dynamics and non-Gaussian noise model is adopted, whose state 
and probability estimations are numerically computed using sequential Monte Carlo 
methods [21][49], in particular the sequential importance sampling (SIS)  algorithm. 

A time series state space model (TSSSM) [97] applied to person recognition is governed 
by three fundamental equations. The motion equation defines the kinematic behaviour of the 
system; in its general form, the tracking motion vector at a given instant t  is computed as: 

( )ttt G uθθ ,1−=  for 1>t  

where G  represents the kinematic function and tu  is the noise in the motion 
model, whose distribution determines the motion state transition probabilities, 

( )1| −ttp θθ . The tracking motion vector, tθ , is usually parameterised using an affine 
motion model, with four deformation parameters and two translation ones; alternatively, 
3D parameters can be used. Concerning the kinematic behaviour, a first-order Markov 
chain is commonly adopted by using an additive function like: ttt uθθ += −1 . The identity 
equation determines the temporal evolution of the identity variable, tk . It is usually 

assumed constant, so it has the form of: 1−= tt kk  for 1>t . Accordingly, the identity 
transition probabilities are simplified as: 

( ) ( )11| −− −= tttt kkkkp δ  

The observation equation  represents the link between kinematics and identity . By 
assuming that the transformed observation is a noise-corrupted version of an image 
template (the user model), then the observation equation is defined as: 
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( ) tkt tt
T vzθ +Γ=  for 1>t  

in which ( )tt
T zθ  is the transformed version of the observation tz , 

tkΓ  is the image 

template for the identity tk , and tv  is the observation noise whose distribution 

determines the observation likelihood, ( )ttt kp ,| θz . The resulting transformation ( )
t

Tθ  
applied on the observation is composed by a geometric transformation, mostly an affine 
with parameters tθ , and a photometric one, like histogram equalisation or zero-mean-

unit-variance. The observation likelihood, ( )ttt kp ,| θz , is measured in several ways: 
either by a truncated Laplacian or a truncated Gaussian, either by computing the 
prediction error using simple metrics, like 1L  (city-block) or 2L  (Euclidean). 

Assuming the mutual independence between all noise variables, and the prior 
knowledge on the distributions of ( )00 | zθp  and ( )00 | zkp , the goal of the algorithm is 

to compute the posterior probability of the identity variable , ( )ttkp zz ,,| 0 K , which is a 
probability mass function (due to the discrete nature of the identity variable) and is 
obtained by marginalising the joint posterior probability , ( )ttt kp zzθ ,,|, 0 K , over tθ . 
More precisely , the formula of the posterior probability of the identity variable is: 

( ) ( ) ( ) ( ) ( )
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where t:0Z  is the compact notation for tzz ,,0 K . 

The numerical solution of the previous theoretical framework is achieved by using 
the sequential importance sampling (SIS)  algorithm, which is a particular case of particle 
filtering that belongs to the general family of sequential Monte Carlo methods [21][49][97]. 
At each time step, the SIS algorithm approximates the joint probability distribution using a 
set of weighted particles, and propagates it to the next time step. In the end, the marginal 
posterior distribution of the identity variable is used as a similarity measure, and the MAP 
rule provides recognition results. 
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Figure 18: illustration of simultaneous tracking and recognition using particle filtering [98]. 

 

In [45], Li and Chellappa were the first to develop a generic approach for stochastic 
tracking and verification using particle filtering. They implemented a simplified TSSSM 
with no identity variable, in which only the tracking motion vector was estimated and 
propagated. They also proposed two facial representations for the observations, tz : the 
common intensity images of the face, and an elastic graph matching representation of the 
facial landmarks (section III.B.5). Unfortunately, they did not provide any evaluation of 
their techniques. 

Then, Zhou et al. [97] improved the approach of Li and Chellappa, by including 
both the tracking motion vector and the identity variable in the TSSSM. They also 
considered several observation likelihoods, ( )ttt kp ,| θz , and introduced a more complex 
one by explicitly modelling: the appearance changes within videos using a truncated 
Laplacian, and the intra-personal appearance variations using a probabilistic subspace density , 
proposed by Moghaddam in [58]. More interestingly, the authors developed a probabilistic 
learning approach to automatically build user models from video frames. In fact, during 
the enrolment phase, the algorithm incrementally selected exemplar frames of an individual, 
and used them as mixture centres of a probabilistic distribution for that client. For the 
recognition phase, they modified the TSSSM and the observation likelihood accordingly, 
by adding the exemplar variable in the state space model. This last approach obtained the 
best results and very good identification rates on the small (29 subjects) Motion of Body 
video database [29]. 

Successively, Zhou et al. [98] refined their previous recognition system by deriving 
an adaptive version. They modified the observation likelihood by modelling: the 
appearance changes within videos using an adaptive appearance model, the intra- and 
inter-personal appearance variations using a probabilistic subspace density  [58], and up 
weighting frontal view frames using another probabilistic subspace density. Then the 
authors proposed an adaptive motion model, which consisted of: an adaptive velocity 
model, predicted using a first-order linear approximation, an adaptive noise component, 
function of the prediction error, and an adaptive number of particles (in the SIS 
algorithm). Moreover, they included an occlusion handling technique based on robust 
statistics, which stopped the automatic adaptations during occluded frames. The results 
obtained by this system were the best of the stochastic approaches reviewed in this 
section; in fact, this adaptive version achieved perfect tracking and recognition on the 
small Motion of Body video database [29]. 

III.C.4. Tracking and recognition using probabilistic appearance 
manifolds 

Historically , tracking and recognition were two independent components of a 
person recognition system using video data; though, novel strategies have been developed 
to integrate these tasks into a single framework. One solution is to employ a TSSSM (as 
detailed in Section III.C.3), otherwise it is possible to simultaneously track and recognise 
individuals by using the probabilistic appearance manifold  approach [44]; this technique is an 
extension to video tracking and recognition of the concept of appearance manifold, 
introduced by Murase and Nayar in [60]. 
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If we consider the complex nonlinear appearance manifold of person k , kΨ , then 

it can be decomposed into a collection of kL  disjoint sub-manifolds: 

{ }
kLkkk ,1, Γ∪∪Γ=Ψ K  

Next, each sub-manifold, lk ,Γ , can be approximated using a low dimensional linear 

subspace, lk ,Ω ; this subspace can be obtained, for example, by applying the principal 
component analysis (PCA) (also called the Karhunen-Loeve transform (KLT)) [22]. In particular, 
for each client k , the learning algorithm firstly partitions his training video frames into 

kL  disjoint subsets, by clustering different views of the individual using the K-means 
algorithm. Then, the images in each subset are considered as samples drawn from each 
sub-manifold, lk ,Γ , and used to compute its linear approximation, lk ,Ω . This way, the 
appearance model is able to cope with different poses and viewpoints present in videos; 
nevertheless, other variations like shape and illumination changes are not directly modelled 
and their occurrences are handled as episodic. 

Once the disjoint sub-manifolds are determined, the temporal ordering of video 
frames is analysed to learn the connectivity relations. In fact, for each individual k , the 
likelihood ( )jkikp ,, | ΓΓ  of observing a transition between sub-manifolds i  and j  is 
estimated by counting the actual transitions in the training videos. Afterwards, the 
transition probabilities are rearranged in a transition matrix, kk LL

k
×ℜ∈P . Figure 19 

illustrates the probabilistic appearance manifold approach: it shows an example of 
appearance manifold approximation with subspaces, and their relative transition 
probabilities. 

The simultaneous tracking and recognition task, which determines the face location 
and personal identity for each frame, tΦ , is formulated as a maximum a posteriori (MAP)  
estimation problem. We consider a tracking parameter vector, tu , that includes the centre, 

size and orientation of a rectangular region, and a cropping function, ( )ttf Φ,u , that 

retrieves the sub-image of frame tΦ  enclosed in the rectangular region defined by tu . 

This way, the tracking and recognition result for each frame, ( )** , tt ku , is obtained by 
solving the following optimisation problem: 

( ) ( )( )ktktt fdk ΨΦ= ,,minarg,
,

** uu
u

 

where ( )d  is a suitable distance metric between a sub-image and an appearance 
manifold, kΨ . 
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There are practical difficulties to solve the previous optimisation problem, because 
the domain of optimisation, ( )k,u , can be extremely large and there are no closed 
formulas for applying efficient search strategies based on gradients. For this reason, Lee et 
al. [44] proposed to minimise each variable independently, by transforming the original 
formulation into two sub-optimisation problems corresponding to tracking and 
recognition respectively: 

( )( )
( )( )kttkt

ktt

fdk
fd

t

ΨΦ=

ΨΦ=
−

,,minarg
,,minarg

**

*
*

1

u
uu

u  

Finally , in order to compute the distance between a sub-image, ( )ttf Φ=Λ ,u , and 

an appearance manifold, it is necessary to find the point kkx Ψ∈*  which is closest to the 

sub-image. Unfortunately, finding *
kx  can be problematic, because kΨ  has a very coarse 

and sparse representation. The distance calculation can be simplified by taking advantage 
of the linear approximations of the appearance manifold: 

( ) ( ) ( ) ( ) ( )lk

L

l
lklk

L

l
lkk

kk

dpdpd ,
1

,,
1

, ,|,|, ΩΛΛΓ≈ΓΛΛΓ=ΨΛ ∑∑
==

 

where ( )ΛΓ |,lkp  is the probability that lk ,Γ  contains a point at minimal distance 

to Λ , and ( )lkd ,,ΩΛ  is the Euclidean distance from the face subspace lk ,Ω . 

 

 
Figure 19: example of an appearance manifold approximation (M) with subspaces (C), and 

the relative transition probabilities (P) [44]. 
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In [44], Lee et al. developed the probabilistic appearance manifold  approach for tracking 
and recognition using video sequences. The authors applied Bayesian inference to include 
the temporal coherence of human motion in the distance calculation, ( )ktd ΨΛ , ; in fact, 

they replaced the conditional probability , ( )tlkp ΛΓ |, , by using the joint conditional 

probabilities, ( )0, ,,| ΛΛΓ Ktlkp , which were recursively estimated using the transitions 

between sub-manifolds, ( )jkikp ,, | ΓΓ . In the experimental results obtained using a small 
database (20 individuals), the proposed approach: outperformed standard image-based 
recognition techniques, showed better robustness and stability than a majority voting 
strategy or a similar system without temporal coherence, and was able to detect identity 
changes and to handle large pose variations. 

III.D. Concluding summary 

In this chapter we proposed a detailed state of the art on person recognition using 
facial video information. We saw that image-based recognition strategies have been 
exploiting only the physiological information of the face; in particular its appearance 
encoded in the pixel values of the images. Next, we emphasised the advantages of person 
recognition using video sequences compared to image one: the huge amount of data, the 
presence of the temporal information, the possibility to have more effective 
representations, and to learn and update user models over time. Then, we classified the 
existing approaches proposed in the scientific literature between those that neglect the 
temporal information, and those that exploit it even partially . Concerning the first 
category, we detailed the extensions to video data of: eigenfaces, fisherfaces, AAMs, 
RBFNNs, EGM, HDRTs and pair wise clustering methods. After that, we focused on the 
strategies exploiting the temporal information, in particular those analysing: facial motion 
with optical flow, or the evolution of facial appearance over time with HMMs or with 
various probabilistic tracking and recognition approaches. 

We conclude this chapter by underlying a few important points. First of all, only 
recently the attention of the scientific community has been attracted towards the use of 
facial video information for person recognition. Then, the research on this domain has 
been mostly focused on developing straightforward extensions of image-based 
approaches, which exploit only the spatial information in video sequences; furthermore, 
most of temporal strategies take only advantage of the evolution of facial appearance over 
time. Finally , the use of the face as a hybrid identifier, for example by exploiting facial 
appearance and motion for recognition, is still a largely unexplored topic. 
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CChhaapptteerr  IIVV..  VViiddeeoo  ppeerrssoonn  rreeccooggnniittiioonn  
uussiinngg  uunnccoonnssttrraaiinneedd  22DD  hheeaadd  mmoottiioonn  

IV .A. Introduction 

Our study on the literature related to person recognition approaches using facial 
video sequences (Chapter III) has revealed that there are really few works exploiting the 
temporal information, and that none of them is using the unconstrained head motion as a 
biometric identifier; in fact, apart from the recognition approach based on facial motion 
(Section III.C.1), all other techniques take advantage of the evolution of facial appearance 
over time. These elements encouraged us to explore the use of this neglected video 
temporal information, by proposing a strategy that exploits the unconstrained head motion 
for person recognition, and we have found that this information possesses enough 
discriminatory power to be considered as a valuable biometric for the development of new 
applications. 

We decided to focus on the head motion information, because we believe that the 
way an individual moves his head is somewhat characteristic, and that the dynamic 
patterns could be used to discriminate people. We are supported in this claim by the study 
of Knight and Johnston [41], which revealed that under non-optimal image conditions 
(like negative images) “moving faces are significantly better recognised than still faces”. 
Moreover, we chose to exploit natural head motion in an unconstrained recognition 
scenario, because generating a personal moving signature with the head seemed awkward 
and impractical, and most of real video data is in an unconstrained format, like in video 
surveillance applications. In other words, our system has no prior knowledge on the 
explicit gestures that each user is doing in every sequence, like there are no defined 
passphrases in a text-independent speaker recognition application. Hence, to solve the 
issue of temporal synchronisation between unpredictable gestures, we learn the personal 
motion information using Gaussian mixture models (GMMs) , which are well suited to our 
unconstrained recognition scenario. 
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In our biometric system, the head motion information is extracted by tracking a few 
facial landmarks in the 2D image plane. It is a convenient choice for our experimental 
setup, where there is no camera motion, there are no zooms or changes in scale, and that 
the depth variation due to the in-depth movement of the user is insignificant, because the 
camera is far. Therefore, all motion information that can be extracted through a tracking in 
the image plane is relative to the behaviour of the individuals. In addition, instead of 
computing a dense optical flow field, which is computationally expensive, we take 
advantage of the fact that the head is a semi-rigid object, and we represent its motion by 
following a few facial landmarks in video frames. We preferred this solution rather than a 
3D head tracking from video sequences, because the latter is a complicate and 
computational expensive process and it is not required in our experimental scenario. In 
fact, for tracking in the 3D space we should have: dealt with the generation of the 3D 
models from video data, solved the registration problem, estimated the 3D pose from 
video frames, and removed any facial deformation to improve the matching accuracy. 
Hence, considering the complexity of 3D head tracking, we preferred to concentrate our 
efforts on the feature extraction and classification steps, by developing our simpler 
tracking strategy in the 2D image plane. 

The remainder of this chapter is organised in two main sections: one theoretical 
part that details the structure of our person recognition system using head motion, and 
one experimental part that thorough fully evaluates the performances of our approach in 
various conditions. 

IV .B. Proposed method 

The architecture of the person recognition approach using unconstrained 2D head 
motion is illustrated in Figure 20, and closely resembles the one for the general biometric 
system, which has been introduced in Section II.D. 

 

 

F. Matta - Video person recognition strategies using head motion and facial appearance



80 

Figure 20: architecture of the person recognition system that exploits unconstrained head 
motion. 

 

A video sequence is firstly pre-processed, by detecting and tracking a few facial 
landmarks of interest over time, in order to recover the global 2D head motion 
information of the individual. Those tracking signals are then normalised and transformed 
into features that provide a better discriminative representation. After that, the enrolment 
module estimates each client model by using a Gaussian mixture model (GMM)  
approximation; in the end, full person recognition (both identification and verification) is 
achieved through Bayesian decision (also called Bayesian inference). The five main steps of our 
system are detailed in the following sections. 

IV .B.1. Pre-processing: face detection 
The face detection step is semi-automatic: a graphical user interface (GUI) displays the 

first frame of each video and an operator must click on the facial landmarks of interest, 
which are selected and located for tracking. In fact, the face detection step chooses F  
facial landmarks, and then computes their F2  coordinate values (Cartesian coordinates) 
that are stored in the first tracking vector: 

[ ] FT
FF crcr 2

1,1,1,11,11 ,,,, Ν∈= Ks  

where 1,fr  and 1,fc  are respectively the vertical (row) and horizontal (column) 
components of the f -th landmark. 

We prefer to have an active human interaction in the face detection process, in 
order to guarantee a perfect initialisation for the tracking step by precisely locating the 
facial landmarks of interest. In fact, the automatic face detection approaches proposed in 
literature [30] still demonstrate significant wrong detection and false positive rates, which 
can greatly influence our recognition system; we are comforted in our choice by the 
experimental evaluation proposed in Section IV .C.5, about the importance of tracking 
accuracy on final recognition scores. 

IV .B.2. Pre-processing: head tracking 

Given the locations of the F  facial landmarks in the first frame, F2
1 Ν∈s , a fully 

automatic tracking algorithm traces these reference points until the end of the sequence. 
More precisely , for each frame, tΦ , the head tracker estimates the 2D image locations of 

the selected landmarks, F
t

2Ν∈s , which are concatenated one after another to form the 
tracking matrix: 

[ ] TF
T N ×∈= 2

1, ssS K  
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where T  is the video length (defined as the total number of frames). As a result, 
each column of the tracking matrix contains the coordinates of all the landmarks in a given 
frame; in contrast, each row of S  denotes the vertical or horizontal tracking signal for a 
given landmark. A visual example of the tracking signals over time can be seen in Figure 
21. 

 

 
Figure 21: example of the tracking signals over time. 

 

The tracking of each facial landmark is based on the principle of template matching: 
after having created a sub image, called the template, the algorithm moves the template over 
each allowed position in a candidate image, and computes a similarity score between the 
template and the region corresponding to that position. At last, the region (or position) 
that reveals the highest similarity with the template is returned as the best match. 

In our implementation of the template matching strategy , the similarity score in the 
t -th frame is calculated by adding up the similarity values of the distinct RGB colour 
components: 

( ) ( )∑
=

ΓΛ≡ΓΛ
3

1
,, ,,

i
itittt SS  
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where it ,Λ  is the i -th colour channel of a candidate region tΛ , and it ,Γ  is the i -

th colour channel of the template tΓ . Then, the similarity scores of the individual colour 
components are computed by taking the negative value of one among these simple 
distance metrics: 

• City-block distance ( 1L ): ( )( ) ∑∑
= =

−≡ΓΛ
R

r

C

c
critcrititit

Ld
1 1

,,,,,,,, ,1 γλ . 

• Euclidean distance ( 2L ): ( )( ) ( )∑∑
= =

−≡ΓΛ
R

r

C

c
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• Cosine distance: ( )( )
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We also extend the template matching approach by including a simple template update 
strategy: the present template, tΓ , is calculated by a weighted sum (colour component by 

colour component) of the initial template, 1Γ , and all previous best matches, *
tΛ : 

( ) ( ) ( ) 1
1

1

1

*1
1

*
1 111 Γ−+Λ−=Γ−+Λ≡Γ −

−

=

−−
−− ∑ t

t

j
j

jt
ttt ααααα  

for Tt ,,2 K= , in which [ ]1,0∈α  is a weighting constant. It is easy to notice that 
this template update strategy includes the extreme cases of: 

• No update, when 0=α  and 1Γ=Γt  for t∀ . 

• Full update, when 1=α  and *
1−Λ=Γ tt  for t∀ . 

In our implementation, we massively reduce the computational load of the head 
tracking step by constraining the search for the best match to a small neighbourhood. In 
fact, for each facial landmark we take advantage of its spatio-temporal continuity in 
consecutive frames, and we restrict the search space to a small window centred on the 
previous best match. 

Finally , in order to improve the robustness of the tracking and to reduce the impact 
of intra-video illumination and colour variations, we pre-process each sequence by 
applying a histogram equalisation or a contrast stretching to each frame (colour component by 
colour component) [28]. 

IV .B.3. Feature extraction 
The feature extraction step isolates the discriminative information that characterise 

the individual and discards the irrelevant one; it can be considered as a nonlinear 
transformation, ( )f , applied on a tracking matrix, TFN ×∈ 2S : 
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( )SX f=  

where ND×ℜ∈X  is the resulting feature matrix, composed by N  feature vectors 
of dimension D , D

n ℜ∈x , typically indexed at discrete time n . 

In our implementation, the feature extraction step is divided in two phases: the 
geometrical normalisation of the tracking signals, and the calculation of the feature 
vectors. The former part centres and scales the tracking signals; this way, after clearing the 
features from any dependence on absolute head location and size, the head motion 
information is isolated and the inter-video variation is reduced. We adopt one among these 
geometrical normalisations: 

• Centring using zero mean : each tracking signal is centred on its average 
position by the following transformation: ftftf sv µ−= ,,  for 

Ff 2,,1 K=  and Tt ,,1 K= , where fµ  is the mean value of the f -th 

signal, ∑
=

=
T

t
tff s

T 1
,

1
µ . 

• Centring using zero mean and scaling by imposing a unit variance : each tracking 
signal is centred on its average position and the range of each signal is 
normalised to have a unit variance by the following transformation: 

f

ftf
tf

s
v

σ
µ−

= ,
,  for Ff 2,,1 K=  and Tt ,,1 K= , where fµ  is the 

mean value and fσ  is the standard deviation, 

( )
2

1
,1

1 ∑
=

−
−

=
T

t
ftff s

T
µσ . 

• Centring using zero mean and scaling depending on head size : each tracking signal is 
centred on its average position, and its range is normalised based on the 
average eye distance in each video shot. This constraint on uniform eye 
distance conveys more discriminative information than the previous one on 
uniform variance; however, it is less robust to noise because of its 
dependence on the precision of the tracked signals (of the eyes). 

The feature matrix, ND×ℜ∈X , is generated by concatenating one or more of the 
following distinct features: 

• Head positions: the location of the head over time is included using the 
normalised tracking signals: tfnd vx ,, =  for Ff 2,,1 K=  and 

Tt ,,1 K= . 

• Velocities: the velocity of the head over time is calculated by taking the first 
derivatives of the normalised tracking signals: 1,,, −−= tftfnd vvx  for 

Ff 2,,1 K=  and Tt ,,2 K=  (the border effect is solved as: 2,1, dd xx =  

for d∀ ). 
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• Accelerations: the acceleration of the head over time is calculated by taking 
the second derivatives of the normalised tracking signals: 

1,,1,, 2 −+ +−= tftftfnd vvvx  for Ff 2,,1 K=  and 1,,2 −= Tt K  (the 

border effects are solved as: 2,1, dd xx =  and 1,, −= TdTd xx  for d∀ ). 

In our study we tested other features, computed using polar coordinates (like head 
positions and its derivatives) or the frequency domain (like spectral energies), but they 
empirically showed less discriminatory power and were abandoned. After the 
concatenation of one or more of the previous parameters, the number of feature vectors is 
equal to the video length, TN = . On the other hand, the dimension of the feature space 
depends on the concatenation strategy adopted; for example, when using only one type of 
features (like head positions) we have: FD 2= . 

Finally , the feature space can be reduced by applying the principal component analysis 
(PCA) (also called the Karhunen-Loeve transform (KLT)) [22] (refer to section III.B.1) to all 
vectors in the feature matrix, ND×ℜ∈X . In fact, the dimensionality of the feature space 
D  is an important parameter for the training of GMMs, and in some cases it may be 
convenient to reduce it, as explained in the next section (IV .B.4). 

IV .B.4. Model estimation: GMM training 
In order to register new users in our recognition system it is necessary to 

characterise their personal models (also called class models), by using the features extracted 
from the enrolment data set. For this purpose, we adopt a probabilistic approach that 
estimates the distribution of feature vectors of each client in the feature space; in other 
words, for each individual (or class), k , we aim to represent his class conditional probability 
density function (PDF) of feature vectors: ( )kp n |x . It is worth noting that finding a proper 
PDF is a crucial task and can have a critical impact on recognition results. 

As a result, we decide to approximate each class conditional PDF by employing 
finite mixture models , in particular Gaussian mixture models (GMMs) . First of all, GMMs have 
been frequently used as a generic probabilistic model for approximating multivariate 
densities, and are capable of representing arbitrary densities. Moreover, GMMs can be well 
suited to our unconstrained recognition problem, in which there is no prior knowledge on 
user motion, because they are intrinsically unconstrained. In fact, GMMs estimate only the 
underlying distribution of motion features, and are insensitive to the temporal 
synchronisation between different gestures; though, this unconstrained nature is also a 
disadvantage because the higher levels of information, like the knowledge of each gesture, 
are ignored. Finally , GMMs are computationally inexpensive and are based on a well 
understood statistical framework. 

A GMM is a finite mixture model of Gaussian distributions (also called normal 
distributions). A non-singular multivariate normal distribution  of a random variable, Dℜ∈x , is 
defined as: 

( )
( )

( ) ( )μxΣμx

Σ
Σμx

−−− −

≡ℵ
1

2
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e
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where Dℜ∈μ  is the mean vector, and DD×ℜ∈Σ  is the non-singular covariance 
matrix. 

Then, a Gaussian mixture model probability density function (GMM-PDF)  is a weighted 
sum of C normal distributions: 

( ) ( )∑
=

ℵ≡
C

c
cccp

1
,|| ΣμxΘx α  

in which { }Ccccc ,,1|,, K== ΣμΘ α  is the parameter list, and [ ]1,0∈cα  is the 

weight of the c -th Gaussian component. In addition, each cα  corresponds to the a priori 
probability that an observation x  has been generated by the c -th normal source, and its 

value is normalised such as: ∑
=

≡
C

c
c

1
1α . In a GMM modelling, the total number of 

Gaussian components C  does not need to be guessed accurately: it is just a parameter 
defining the complexity of the approximating distribution. However, if C  is too small, 
there is not an adequate amount of components to learn the feature distribution precisely 
enough; on the other hand, when C  is too large the modelling is excessively complex: this 
may lead either to an over fitted classifier, either to singularities in the covariance matrices 
once the amount of training data becomes insufficient. An example of GMM 
approximation and its equiprobability surfaces is illustrated in Figure 22. 

 

 
Figure 22: example of Gaussian mixture model (GMM) approximation and its 

equiprobability surfaces. 
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If we assume statistical independence between the K  classes that correspond to the 
clients of our system, then the overall estimation of GMM parameters can be divided into 
K  separate estimation problems. Hence, for each client k , his model parameters kΘ  are 
obtained by solving a maximum likelihood problem through the expectation-maximisation (EM)  
algorithm [5][22][66]. To simplify the notation, for the rest of this section we will focus on 
a single estimation problem and we will drop the index k  on clients and classes. 

We consider having a set of N  training feature vectors, 
{ }NnX D

n ,,1| K=ℜ∈= x , that are identically distributed because supposedly drawn 

from a common distribution ( )Θx |np . To evaluate the quality of the modelling, we 
define the (incomplete-data) likelihood function as: 

( ) ( )∏
=

≡
N

n
npXL

1

|| ΘxΘ  

which represents the likelihood of the parameters Θ , given the training data X . It 
is worth noting that the likelihood ( )XL |Θ  is a function of the parameters, while the 
data is fixed. We also define the (incomplete-data) log-likelihood function, because it is 
computationally more practical: 

( ) ( ) ( )∑
=

≡≡
N

n
npXLXM

1
|ln|ln| ΘxΘΘ  

The optimal parameter set *Θ  is obtained by maximising the likelihood function or 
the log-likelihood one: 

( ) ( )XMXL |maxarg|maxarg* ΘΘΘ
ΘΘ

≅=  

In fact, due to the monotonicity property of the logarithm function, it is 
theoretically equivalent to maximise ( )L  or ( )M . Unfortunately, the analytical 
approach for solving the maximum likelihood problem is intractable for GMMs with 
unknown and unrestricted covariance matrices and means; the solution is then to apply an 
optimisation strategy, such as the expectation-maximisation (EM)  algorithm. 

The EM algorithm is a general iterative method that calculates the maximum 
likelihood estimate of the parameters of an underlying distribution from a given data set, 
X , when the data is incomplete or has missing values. For finite mixture models as 
GMMs, the optimisation of the likelihood function is analytically intractable, unless we 
assume the existence of values for additional but missing (or hidden) parameters, Y . If we 
consider the training feature set X , which is called the incomplete data set and is generated 
by some distribution ( )Θx |np , and the hidden data set Y , then we can assume that a 

complete data set exists, { }YXZ ,= , supposedly drawn from a joint density function 
( )Θz |np . With this new PDF, we can define the complete-data log-likelihood function: 

( ) ( ) ( ) ( )∑
=

≡≡≡
N

n
npYXLYXMZM

1
|ln,|ln,|| ΘzΘΘΘ  
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Furthermore, ( )YXM ,|Θ  is a random variable, because the missing information 
Y  is: unknown, random and probably governed by an underlying distribution. 

The expectation step (E-step) of the EM algorithm finds the expected value of the 
complete-data log-likelihood, with respect to the unknown data Y , given the observed 
data X , and the current parameter estimates ( )1−iΘ : 

( )( ) ( ) ( )[ ] ( ) ( )[ ]111 ,||,ln,|,|| −−− == i
Y

i
Y

i XYXpEXYXMEQ ΘΘΘΘΘΘ  

In this formula, the expectation makes ( )( )1| −iQ ΘΘ  a deterministic function that 

can be maximised; in fact, X  and ( )1−iΘ  are constants, Θ  is a standard variable, and Y  is 
a random variable but it is marginalised by the expectation. 

The maximisation step (M-step)  of the EM algorithm maximises the expectation with 
respect to Θ : 

( ) ( )( )1|maxarg −= ii Q ΘΘΘ
Θ

 

The two previous steps are repeated until a stopping criterion is met, which is generally 
based on absolute or relative improvements of Q  and Θ , and the total number of 
iterations. In fact, the EM algorithm is guaranteed to increase the log-likelihood value at 
each iteration, until it converges to a local maximum of the likelihood function, but it can 
eventually lead to singular estimates of the covariance matrices. 

The EM algorithm has to be initialised in some way, since it starts from an early 
guess of the model parameters, ( )0Θ . It is an important step, because the choice of ( )0Θ  
determines where the algorithm converges, or hits the boundary of the parameter space 
producing singular meaningless results. Some solutions for the initialisation use multiple 
random starts or a clustering algorithm like the K-means or the fuzzy K-means [4]. 

When choosing GMMs as finite mixture models, the missing information, 
{ }NnyY n ,,1| K== , is the knowledge of which component produced each feature 

vector nx ; in other words, cyn =  if nx  has been generated by the c -th Gaussian 
component. Then, the complete-data log likelihood for GMMs becomes: 

( ) ( )[ ]∑
=

ℵ≡
N

n
yyny nnn

YXM
1

,|ln,| ΣμxΘ α  

Substituting this expression into the general EM formulation, and after some 
calculations [5][66], we obtain the EM equations relative to GMMs . For the E-step: 

( ) ( )( )
( ) ( ) ( )( )
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which is the a posteriori probability that cyn =  after having observed nx  (or 

equivalently the probability that nx  has been generated by the c -th component). Next, 
the M-step equations: 
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The initialisation of the EM algorithm for the estimation of the GMM parameters is 
done in two phases. Firstly , the training data is clustered into C  partitions, by applying the 
K-means method or the fuzzy K-means [4] one. After that, the initial parameter set, 

( ) ( ) ( ) ( ){ }Ccccc ,,1|,, 0000 K== ΣμΘ α , is calculated by: taking the cluster means, uniform 
or cluster covariance matrices, and uniform or cluster weights. 

We also need to guess the minimum number of training feature vectors, ( )minN , 
that are recommended for a reliable estimation of the GMM parameters. Firstly , we recall 
that the number of free parameters in a GMM , with C  Gaussian components and D -
dimensional real feature vectors D

n ℜ∈x , is: 

1
2
3

2
1* 2 −+






 += CDDCη  

Then, as a rule of thumb, we empirically require a minimum number of feature 
vectors as in [66]: ( ) η3min >N . It is worth noting that the number of recommended 
vectors increases linearly with the number of Gaussian components (the complexity of the 
modelling), and quadratically with the dimensionality of the feature space. 

Finally , in addition to the standard EM algorithm, we implemented two variants for 
the estimation of GMM parameters: the Figueiredo-Jain algorithm and the Greedy EM 
algorithm. The Figueiredo-Jain algorithm [26] automatically adjusts the number of 
components, by annihilating those that are not supported by the data or are becoming 
singular. This way, it better avoids the boundary of the parameter space and can start with 
an arbitrary number of initial components. Alternatively, the Greedy EM algorithm [90] 
begins with a single Gaussian and then adds components into the mixture one by one. It 
basically repeats two steps: it inserts the component that mostly increases the likelihood 
into the mixture, and then it runs the EM algorithm to update the parameters. 

F. Matta - Video person recognition strategies using head motion and facial appearance



89 

IV .B.5. Classification: Bayesian classification 
The classification task of our system is achieved by applying the probability theory 

and the Bayesian decision rule (also called Bayesian inference) [66], so that the classifier chooses 
the most probable class, or equivalently the option with the lowest risk (expected cost). 

In our framework, we remember that a given test is represented by a video 
sequence. Then, we aim to compute the video posterior probability , ( )X|kp , which we define 

as the probability that all feature vectors extracted from a video ND×ℜ∈X  belong to class 
k : 

( ) ( )Nkpkp xxX ,,|| 1 K≡  

By applying the Bayes’ rule, the posterior probability ( )X|kp  becomes: 

( ) ( ) ( )
( )

( ) ( )
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First of all, the divisor: 

( ) ( ) ( ) ( ) XxxxxX Mkpkppp
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k
NN ==≡ ∑
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is merely a scaling factor XM , to assure that the posterior probabilities ( )X|kp  
are really probabilities (their sum is one). Hence, we can simplify the previous expression 
as: 

( ) ( ) ( ) ( ) ( )
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==  

Afterwards, the a priori probability  ( )kp  represents the probability of occurrence of 
each class k , and it is usually estimated from the training database. Finally , in order to 
calculate the video posterior probability ( )X|kp , we have to express the joint class 
conditional PDF ( )kp |X  as a function of the class conditional PDFs of feature vectors 

( )kp n |x , which are our user models estimated during the enrolment. This task can be 

problematic, unless we assume that the feature vectors nx  are independent from each 
other; this way, the joint class conditional PDF ( )kp |X  takes the form of: 

( ) ( ) ( )∏
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≅≡
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n
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1
1 ||,,| xxxX K  

and the video posterior probability becomes: 
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The similarity score for the identification task  ( )( )k
IDS ΘX,  (Section II.C.2), is derived 

from the video posterior probability ( )X|kp  by computing the log-posterior probability, 
because it is analytically and numerically more practical, and the properties of the similarity 
function do not change thanks to the monotonicity of the logarithm. Hence, 

( )( )k
IDS ΘX,  takes the form of: 

( )( ) ( ) ( ) ( ) XxXΘX MkpkpkpS
N

n
nk

ID lnln|ln|ln,
1

−+== ∑
=

 

Finally , the similarity score for the verification task  ( )( )k
VERS ΘX,  (Section II.C.1), is the 

log-posterior probability ratio : 
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where ( )X|kp  is the posterior probability of the alternative hypothesis k , and 

( )kp n |x  is the impostor model (the class conditional PDF for k ). In other words, 

( )X|kp  expresses the probability that all feature vectors extracted from a video 
ND×ℜ∈X  do not belong to class k , and ( )kp n |x  represents the probability that the 

alternative hypothesis k  can generate nx . 

Unfortunately, the estimation of the impostor model ( )kp n |x  is usually 
problematic, because it should represent the space of all possible alternatives to k , which 
is huge and requires a massive amount of training data. Inspired by the speaker verification 
domain and the work of Rosenberg et al. [77], we approximate the impostor model by 
using the set of other client models ( )kp n |x , which are called background models or cohorts. 

More precisely , ( )kp n |x  is estimated by taking the average of the L  best client models 
on a given test (a video in our case): 

( ) ( )( )∑
=

≅
L

l

l
nn kp

L
kp

1
|1| xx  

where ( )lk  is the client model that produces the l -th highest video posterior 
probability ( )X|kp . 
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IV .C. Experimental results 

Due to the absence of standard video databases suited for our approach, we assess 
the performance of our person recognition system on our video database of Italian TV 
speakers: please refer to Section VIII.A for a discussion on existing data sets, a description 
of our database, and the structure of the enrolment and recognition subsets. It is worth 
noting that all experimental results and relative comments are related to our small video 
database of Italian TV speakers, so that they should not be considered as absolute general 
conclusions. 

In the following sections, we firstly introduce the default configuration , which obtains 
the best recognition results overall. Next, we evaluate the precision of the tracking and the 
discriminative power of our system in different experimental conditions, by varying: 
signals, features and GMM estimations. After that, we compare our results with the state 
of the art eigenface technique, and we analyse the degradation of performance due to 
inaccurate and noisy tracking. Finally , we also evaluate the discriminatory power of our 
method in a gender recognition application. 

IV .C.1. Default configuration 
We denote the parameter configuration that attains the best overall recognition 

performance as the default configuration , and we use it as a reference throughout the 
experiments; a summary of the parameters for the default configuration of the recognition 
system using head motion is presented in Table 1. 

 
Facial landmarks 4 (eyes, nose & mouth)
Colour space RGB (red, green & blue)
Video pre-processing Histogram equalisation
Distance metric for similarity scores City-block distance

19 pixel rows (or height)
25 pixel columns (or weigth)

Search window 12 x 12 pixels
Template update None (α = 0)

Geometrical normalisation of tracking signals Centring using zero mean
Head features Normalised head positions
PCA reduction No
Dimensionality of feature space 8

GMM parameter estimation Expectation-maximisation (EM)
Gaussian components 4

K-means
Uniform weights
Cluster means
Uniform covariances

CLASSIFICATION Number of background (cohort) models 2

Template size
PRE-PROCESSING

FEATURE EXTRACTION

Initialisation
MODEL ESTIMATION

 
Table 1: summary of the parameters for the default configuration of the recognition system 

using head motion. 
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In the default configuration, the head motion of each individual is represented 
through 8 tracking signals of 4 facial landmarks: the two eyes, the nose and the mouth. To 
improve the robustness of the tracking and reduce the intra-video variation, all frames are 
pre-processed using a histogram equalisation, colour component by colour component. 
During the head tracking step, the algorithm generates a starting template of 19 pixel rows 
and 25 pixel columns for each landmark, and uses no update strategy ( 0=α ); then, the 
similarity scores of each colour component are based on the city-block distance measure. 
After that, the feature extraction consists of centring the tracking signals, by applying a 
zero mean transformation, and using the normalised head positions as features for 
recognition; in the end, the dimensionality of the feature space is still 8 (not reduced with 
PCA). Then, the client models are approximated using GMMs with 4 Gaussian 
components, and their parameters are estimated through the EM algorithm, which is 
initialised with: cluster means (computed using K-means), uniform weights and 
covariances. Finally , the impostor models for verification are approximated by taking the 
average of the best 2 background (or cohort) models. 

We note that, in order to simplify the understanding and comparison between 
different graphs, in the following experiments we always express the results relative to the 
default configuration with a blue colour line. 

IV .C.2. Precision of the head tracking 
In this section we analyse the precision of the tracking signals, automatically 

extracted by our landmark tracker. We provide quantitative results for only one typical 
sequence, because we had to manually click on all facial landmarks in each frame of the 
video to generate the ground truth  (1320 precise clicks), and it was unfeasible to process the 
whole database (274560 clicks!); though, the same effects have been observed on a bigger 
part of the data set by visual inspection. 

The errors between the signals produced by the head tracker, 
[ ] TFT

F N ×∈= 2
21, ssS K , and the ground truth, [ ] TFT

F N ×∈= 2
21, ggG K , are 

calculated using the following measures: 
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We first analyse the performance of the different pre-processing filters. We observe 
that histogram equalisation provides the best results, with an average absolute error of 
0.7591 (pixels per point); on the other hand, contrast stretching is even worse than no 
filtering at all, with an average absolute error of 1.2451 and 0.8720 (pixels per point) 
respectively.  
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The evolution of the frame absolute error over time is shown in Figure 23. We 
notice that the cumulative error of the default configuration (with histogram equalisation) 
has a constant slope, which means that the error is uniformly distributed all over the 
sequence. On the contrary, without pre-processing or with contrast stretching, the error 
increases in the second half of the video when the intra-video appearance variation 
becomes significant and the initial templates differ more than the actual matches. 

 

 
Figure 23: cumulative frame absolute error for various video pre-processing filters. 

 

Then, we examine the importance of the choice of the distance measure, for the 
computation of the similarity scores; the city-block and Euclidean metrics perform better 
than the cosine distance, presenting an average absolute error of: 0.7591, 0.8693 and 
1.0470 (pixels per point) respectively. 

Figure 24 plots the cumulative frame absolute error for the three distance measures; 
the city-block distance appears to be more robust and tolerant to intra-video appearance 
changes than the two alternative metrics. We explain this behaviour by considering that 
the Euclidean and cosine distances possess a higher sensitivity towards appearance 
variations; in fact, when the initial templates start to differ from the actual matches due to 
local misalignments caused by pose changes or facial deformations, then: the number of 
outlier pixels increases, and their importance in the calculation of the matching error is 
more amplified by the 2-norm (used in Euclidean and cosine) rather than the 1-norm 
(used in the city-block). As a result, there are more occasional bad matches during the 
tracking process, the cumulative frame absolute errors show multiple leaps, and the 
resulting signals loose accuracy and get noisy. 
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Figure 24: cumulative frame absolute error for various distance measures. 

 

Afterwards, we study the effect of our template update strategy on the precision of 
the tracking signals; considering that the average absolute errors for partial and full updates 
are 1.8292 and 4.0598 (pixels per point) respectively, we can conclude that our template 
update strategy has a catastrophic impact on the accuracy of the tracking. 

To have a better insight on this phenomenon, we visually inspected the modified 
templates over time, and we discovered that the more the templates were updated, the 
more they drifted away from the selected landmarks. In fact, although the template centres 
were initially aligned with the facial landmarks of interest, they constantly oscillated around 
their exact locations, because of the joint effect of small inaccuracies occurred during 
matching and repeated imprecise updates, and eventually glided away from the landmarks. 
We can also observe this effect by looking at the evolution of the frame absolute error in 
Figure 25, in which the progressive misalignment between each template and its 
corresponding landmark causes a constant increase on the slope of the error plot. 
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Figure 25: cumulative frame absolute error for various template updates. 

 

Finally , we do not report qualitative recognition results as a function of the tracking 
parameters (pre-processing, distance measures, etc.), but we have empirically observed that 
the discriminatory power of the tracking signals is directly influenced by their precision; in 
addition, we are going to focus on the importance of the tracking accuracy in Section 
IV .C.5, where we propose an experimental evaluation of the negative effect of noisy 
signals on the final recognition scores. 

IV .C.3. Recognition results in diverse experimental conditions 
In this section, we assess the performance of our person recognition system by 

testing it in diverse experimental conditions, with various landmarks, signals, features and 
GMM estimations. We present and comment a selection of experiments, preferring those 
that better illustrate the properties of our approach, and help understanding the choices 
towards the best configuration. 

Concerning the measures of performance, we express the identification results by 
reporting the correct identification rates (CIRs) , and by plotting the cumulative (correct) match scores 
(CMSs) as a function of the M  best matches retained (Section II.E.2). For the verification 
scenario, we report the equal error rates (EERs)  and we show the receiver operating characteristic 
(ROC) curves, which offer a global description of the system from low to high security 
applications (Section II.E.1). 
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We firstly analyse the impact of the number of facial landmarks and tracking signals 
on the discriminatory power of the feature space. The best results are obtained by the 
default configuration, which selects 4 landmarks (the eyes, the nose and the mouth) and 
represents the head motion using 8 signals: its CIR is the highest (90.4%) and its EER is 
the lowest (3.0%). When using only 2 or 3 facial landmarks (4 and 6 signals respectively), 
the results are sensibly worse, with CIRs of 72.1% and 76.9% and EERs of 10.5% and 
6.5% respectively. 

Figure 26 provides a complete overview of the recognition results: there is no doubt 
that the more tracking points and signals are used, the finer is the head motion 
representation and the more discriminating are the features extracted from them. We are 
also aware that the 3D movement of a rigid object can be represented by 3 points (6 
signals) in the 3D space; though, we empirically observe that we need more than 3 facial 
landmarks for a proper estimation of the head motion in the 2D image space. If we 
consider that the human head is a semi-rigid object, with local deformations in the lower 
part of the face, then the resulting motion is more complex than that of a rigid object, and 
its modelling may require more than 6 parameters. A second element to take into account 
is the projection of the original 3D moving head into the 2D image plane; as a result, even 
if in our database the camera is fixed and there are minor depth changes, the motion 
estimation in the 2D image plane may require more tracking points than in the 3D space. 
Finally , as we have seen in Section IV .C.2, the automatic tracking algorithm does not 
provide exact signals, so using more facial landmarks can compensate for tracking errors. 

 

 
Figure 26: recognition results with a different number of facial landmarks and tracking 

signals. 
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Then, we study the effect of geometrical normalisations of the tracking signals on 
identification and verification results. The best discriminative features are extracted after 
centring the signals by using a zero mean transformation, with or without the scaling based 
on head size; when no scaling is used (default configuration), the CIR is 90.4% and the 
EER is 3.0%, otherwise the CIR is still 90.4% but the EER is 3.7%. 

The plots for the CMSs and the DETs are shown in Figure 27 and confirm the 
numerical results above: it is not really advantageous to apply a scale normalisation based 
on head size, since a simple centring is sufficient. We explain this effect by recalling that in 
our database there are no zooms, and the head size is pretty similar in every video, so such 
a normalisation is most likely unnecessary; on the other hand, the calculation of the 
average eye distance is affected by tracking errors, and this inaccuracy probably causes the 
small degradation in performance of the red curves. Without any doubt, the worst results 
are those for the zero mean and unit variance normalisation: the CIR is 68.3% and the 
EER is 10.8%. These poor scores are caused by the imposition of a uniform variance, 
which is an excessive constraint in our experimental conditions and clearly alters the 
discriminatory power of the tracking signals. 

 

 
Figure 27: recognition results with different geometrical normalisations. 
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Afterwards, we consider some GMM approximations of different complexity, by 
increasing the number of Gaussian components from one to five, and we evaluate the 
effectiveness of their client modelling. At the beginning, the recognition rates improve 
with the complexity of the approximating distribution: the CIR increases from 76.9% of 
the single Gaussian to 90.4% when using three or four components (as in the default 
configuration), and the EER decreases from 7.6% to 3.8% and 3.0% for three and four 
components respectively. But once the optimal number of Gaussians is attained, a further 
increase of complexity slowly makes the scores worse: in fact with five components the 
CIR is 85.6% and the EER is 4.5%. 

The evolution of the classification results due to the increase in complexity of the 
GMM modelling is illustrated in Figure 28. It is clear that selecting only one or two 
Gaussians does not provide very good outcomes, because the distribution of features is 
undoubtedly multimodal and one or two components cannot approximate their PDF 
precisely enough. On the other hand, when using too many components (five or more) the 
classifier gets over fitted to the enrolment subset, which reduces its ability to generalise to 
unknown data; furthermore, a complex modelling increases the occurrence of singular 
estimations in the covariance matrices, especially when the training data is small as in our 
case. In conclusion, choosing three or four Gaussian components for our system appears 
to be the best compromise between complexity, accuracy and generalisation power. 

 

 
Figure 28: recognition results with a different number of Gaussian components. 
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Finally , we examine the consequences of applying diverse GMM estimation 
techniques on classification performances. The default configuration employs an EM 
algorithm initialised with: cluster means (obtained through K-means) and uniform weights 
and covariances. We also implement two other EM variants that apply a K-means or a 
fuzzy K-means clustering algorithm, and have the following starting conditions and final 
results: 

1. EM, K-means (2): initialised with cluster means, weights and covariances; its 
CIR is 85.6% and its EER is 4.6%. 

2. EM, fuzzy K-means: initialised with cluster means, then uniform weights and 
covariances; its CIR is 89.4% and its EER is 4.1%. 

In addition, we also estimate the GMM parameters by using the Figueiredo-Jain 
algorithm, which achieves a CIR of 88.5% and an EER of 5.6%. 

The identification and verification results, illustrated in Figure 29, show that the EM 
algorithms initialised with uniform weights and covariances (EM, K-means (1) or EM, 
fuzzy K-means) perform equally well; what is more, their result are better then when using 
cluster means, weight and covariances (EM, K-means (2)), or more elaborate estimation 
techniques like the Figueiredo-Jain (and Greedy EM, which is not reported here). Looking 
at the closeness of the best curves (sometimes even coincident), we deduce that the 
clustering algorithm is not a determinant factor for the GMM modelling and final 
classification results; however, we observe that the simpler K-means is slightly more 
performing than its fuzzy version, but at the expense of less stability in its clustering 
outcomes over multiple estimations. Moreover, the comparison between the EM and FJ 
algorithms confirms the experimental results of Paalanen et al. [66], which are the 
following: “the standard EM algorithm outperforms FJ and GEM if a good prior 
knowledge exists about the number of components.” In fact, with the previous 
experiments on the complexity of the GMM modelling, we have determined the optimal 
number of components, so once the EM is taking advantage of this information the 
automatic estimation of Figueiredo-Jain and Greedy EM does not obtain better results. 
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Figure 29: recognition results with different estimation techniques of GMM. 

 

IV .C.4. Comparison with the eigenface technique 
As we have seen in Chapter III, to the best of our knowledge there are no other 

approaches that make use of natural head motion for person recognition; for this reason, 
we cannot compare our experimental results with concurrent techniques that exploit the 
same biometric identifier. Nevertheless, to give an idea of the discriminatory power of our 
person recognition strategy using head motion, we relate it with a state of the art 
recognition technique based on facial appearance: eigenfaces [87]. We remind that the 
standard eigenface approach linearly projects the facial images to a feature subspace 
computed by applying the principal component analysis (PCA), and that the classification in 
this face space is obtained through a nearest neighbour classifier using distances as 
similarity measures. However, we invite the reader to refer to [87] and Section III.B.1 for a 
detailed description on the eigenface method. 

In our implementation of the eigenface approach, we firstly pre-process all images 
with a histogram equalisation, colour component by colour component, to reduce the 
mismatches due to illumination variations. Next, we represent the data set by using the 
NTSC colour space (which consists of: luminance, hue and saturation) [28], because it 
empirically provides more discriminative signals than the RGB does. Once the colour 
components are rearranged into large vectors, we apply the PCA to the enrolment subset 
to compute a reduced face space of dimension 243, and we calculate the feature vectors by 
whitening the projection coefficients in the eigenspace. Then, the client models are 
registered into the system using their centroid vectors, which are calculated by taking the 
average of the feature vectors in the enrolment subset; in the end, recognition is achieved 
using a nearest neighbour classifier with cosine distances in (the whitened) face space. A 
summary of the parameters for our eigenface implementation is proposed in Table 2. 
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NORMALISED DATABASE RAW DATABASE

Database name Image datab. of Italian TV speakers Image datab. of Italian TV speakers
Normalisation Accurate: in-plane rotated and aligned None

32 pixel rows (or height) 48 pixel rows (or height)
32 pixel columns (or weigth) 61 pixel columns (or weigth)

Resizing interpolation method Nearest neighbour Nearest neighbour
Image pre-processing Histogram equalisation Histogram equalisation
Colour space NTSC (luminance, hue & saturation) NTSC (luminance, hue & saturation)
Vertical mirroring No No

Image space reduction method Centered PCA Centered PCA
Subspace dimension 243 243
Whitening of feature vectors Yes Yes

MODEL ESTIM. Client model generation method Centroid vector (average of features) Centroid vector (average of features)

CLASSIFICATION Similarity measure Based on cosine distance Based on cosine distance

Image size

FEATURE EXTR.

DATABASE

PRE-PROCESSING

 
Table 2: summary of the parameters for our eigenface implementation. 

 

The recognition results for our system are calculated using the default configuration 
and the video database of Italian TV speakers (Section VIII.A): as we have already seen, 
the CIR is 90.4% and the EER is 3.0%. For evaluating the performance of the eigenface 
approach, we prefer to employ an appropriate version of the video data set, called the 
image database of Italian TV speaker, which is derived from the video one by sub 
sampling and normalising frames, and it is detailed in Section VIII.B. With this database 
the eigenface approach is tested in its optimal condition, due to the manual accurate 
normalisation of video frames, and the results are excellent: 100.0% of CIR and 0.0% of 
EER (perfect recognition). Nevertheless, the image database of Italian TV speakers creates 
a too favourable and unrealistic situation, so we also evaluated the eigenface technique on 
a raw version of the dataset without normalisation; in this somewhat unfavourable condition1, 
the CIR decreases to 69.2% and the EER increases to 10.8%. However, it is worth noting 
that our recognition system is not in its optimal working condition either, because the 
tracking signals are corrupted by the noise of the automatic tracking process, which 
significantly reduces their discriminatory power. 

                                                
1 We consider that the eigenface technique applied to our not normalised database is 

working in a somewhat unfavourable condition, because we suppose that in real applications the eigenface 
recognition system incorporates an automatic face detection step, which should provide a better 
face normalisation (face warping, alignment, etc.) than the one in our raw data set. 
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We have a complete overview of the recognition results by looking at Figure 30, 
whose graphs clearly confirm that the performance of our recognition system is in 
between those for the favourable and unfavourable eigenface approaches. This is an 
interesting outcome, because it demonstrates that natural head motion possesses enough 
discriminatory power to be used as a possible biometric in recognition applications, and it 
corroborates the assertion that the face can be considered as a hybrid biometric identifier. 
On the other hand, we are aware that eigenfaces are far from being the most performing 
technique working on facial appearance [69], and that our system is not as accurate as the 
best methods presented in this research domain. For this reason, we currently do not 
regard head motion as a practical alternative to facial appearance; nevertheless, we are 
convinced that this information can be successfully integrated in multimodal recognition 
systems, and that it has the potential to become a worthy biometric in video surveillance 
applications. 

 

 
Figure 30: comparison of person recognition results between: the proposed method and 

eigenfaces. 
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IV .C.5. Recognition results with artificial noisy tracking signals 
Due to the absence of ground truth tracking points for the whole database, we 

cannot assess the discriminatory power of the head motion information in that ideal 
scenario, or fully evaluate the robustness of our person recognition system to noisy 
tracking signals. However, we have already analysed the precision of our automatic 
landmark tracker in Section IV .C.2, and we have found that the extracted points present a 
significant error compared to the ground truth ones: their average absolute error in the 
default configuration is 0.7591 pixels per point. Hence, here we want to investigate and 
quantitatively evaluate the influence of the tracking accuracy on recognition results, by 
artificially adding a Gaussian noise with zero mean and variable standard deviation to all 
tracking signals (in both the enrolment and recognition subsets). For this purpose, we 
define the noise strength, ξ , as the ratio between the standard deviation of the Gaussian 

noise, ( )nσ , and the average standard deviation of the tracking signals, ( )sσ , expressed in 
percentages: 
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where the average standard deviation of the tracking signals, ( )sσ , is constant and it 
is computed as: 
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The experiments run using the default configuration show that the recognition rates 
are clearly affected by tracking noise. In fact, the CIR suddenly decreases from 90.4% to 
85.6% (for %5=ξ ), then 81.7% ( %10=ξ ) and 77.9% ( %15=ξ ); in parallel, the EER 
rapidly increases from 3.0% to 3.9% (for %5=ξ ), then 6.0% ( %10=ξ ) and 8.7% 
( %15=ξ ). After that, a further rise in the noise strength does not translate into 
equivalent performance degradation: for example, when the noise strength is 50%, the CIR 
is still 60.6% and the EER is 13.9%. 

By looking at Figure 31, we can visually evaluate the incidence of tracking noise on 
identification and verification scores; in particular, we notice that the highest degradation 
in performance occurs for low values of the noise strength (0% - 15%). One possible 
explanation for this effect is the following: it is highly possible that the finer head motion 
information is the most characteristic one, so a small amount of noise has a big incidence 
on recognition results, because it quickly corrupts the most discriminative part of the 
tracking signals. On the other hand, the overall movement of the head is less distinctive 
than its finer motion, but definitively more robust to noise; for this reason a subsequent 
increase in the noise strength does not affect the performance of the system as much as 
before. 
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Figure 31: recognition results with different strength values for the noise added to the 

tracking signals. 

 

Finally , to give an idea of the unfavourable working condition of our system, we 
estimate the noise power that is present in the signals automatically extracted by the 
landmark tracker. For this experiment, we consider the default configuration and the 
sequence for which we have the ground truth information; then, we calculate its noise 
standard deviation ( ( ) 9548.0=nσ ) and we finally end up with a noise strength of: 15.5%! 
Therefore, we presume that the potential discriminatory power of the head motion 
information is superior of what appears in our experimental results. 

IV .C.6. Gender recognition results 
To conclude these experimental sections, we would like to evaluate the performance 

of our approach when applied to a different scenario: a gender recognition application; in 
particular, we want to compare the gender discriminatory power of natural head motion 
with that of facial appearance, similarly to what we did in Section IV .C.4 for identity . 
Therefore, we consider an equivalent experimental set-up that is adapted to the gender 
recognition task, with the same eigenface implementation and databases of Italian TV 
speakers. It is worth noting that due to the particular nature of this recognition problem, 
which consists of only two classes, the CIRs and EERs are directly related: 

( ) ( )EERCIR ξη −= %100 . 
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In this scenario, our system does not obtain good gender recognition scores: its CIR 
is 84.6% so its EER is 15.4%. In addition, natural head motion appears less discriminating 
than facial appearance, because both the favourable and unfavourable conditions of the 
eigenface approach outperform our system. As we expected, when using the normalised 
image database, eigenfaces obtains excellent recognition results: it achieves perfect 
recognition, with a CIR of 100.0% and an EER of 0.0%. Though, facial appearance 
performs better even in its unfavourable condition, when tested with the database of raw 
images, showing a CIR of 89.4% and an EER of 10.6%. 

We have a complete overview of the gender recognition results by looking at Figure 
32, whose graphs clearly illustrate how the eigenface approach outperforms our system. 
Moreover, if we compare the person verification results of Figure 30 with the gender ones 
in Figure 32, we notice that there is evident performance degradation for our system, while 
the eigenface approach has similar rates. All these elements motivate us to conclude that, 
apart from tracking noise, the natural head motion information is not such a discriminative 
identifier for gender recognition; moreover, keeping in mind the good results obtained for 
person recognition, we also deduce that natural head motion is more an individual rather 
than a sexual characteristic. 

 

 
Figure 32: comparison of gender recognition results between: the proposed method and 

eigenfaces. 
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IV .D. Concluding summary 

In this chapter we presented a novel person recognition system that exploited the 
unconstrained head motion information, extracted by tracking a few facial landmarks in 
the image plane. In particular, we detailed how each video sequence was firstly pre-
processed by semi-automatically detecting the face, and then automatically tracking the 
facial landmarks over time using a template matching strategy. Then, we described the 
geometrical normalisations of the extracted signals, the calculation of the feature vectors, 
and how these were successively used to estimate the client models through a Gaussian 
mixture model (GMM) approximation. In the end, we achieved person identification and 
verification by applying the probability theory and the Bayesian decision rule (also called 
Bayesian inference). 

We assessed the performance of our system through multiple experiments, whose 
results corroborate the following conclusions. First of all, the tracking signals that are 
automatically extracted by our system are not very accurate; for this reason, their potential 
discriminatory power and the performance of our recognition approach are significantly 
reduced. Nevertheless, our biometric system achieves good person recognition results, 
which are in between those obtained with a favourable and an unfavourable eigenface 
implementation. Hence, we deduce that natural head motion possesses enough 
discriminatory power to be used as a possible biometric in recognition applications, but it 
is not yet a practical alternative to facial appearance. Finally , considering the poor scores in 
a gender recognition scenario, we conclude observing that natural head motion seems a 
more individual rather than a sexual characteristic. 
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CChhaapptteerr  VV..  MMuullttiimmooddaall  iinntteeggrraattiioonn  ooff   
hheeaadd  mmoottiioonn  wwiitthh  mmoouutthh  mmoottiioonn  aanndd  

ffaacciiaall  aappppeeaarraannccee  

V.A. Introduction 

Our research on the use of natural head motion for person recognition (Chapter 
IV) attested that video data contains more valuable biometric information than just the 
well known facial appearance, and corroborated the assertion that human face can be 
considered as a hybrid identifier (Section II.B.2). Nevertheless, it is a common trend in 
literature (Chapter III) to exploit only a part of the biometric information embedded in 
video sequences, mainly the physiological one related to facial appearance, and as far as we 
know it has never been proposed a hybrid person recognition system, which makes use of 
the physiological and behavioural aspects of the face at the same time. These facts 
encouraged us to develop a novel person recognition approach using as much biometric 
video information as possible; in particular, we successfully integrated head motion with 
mouth motion and facial appearance, through a unified probabilistic framework. 

We firstly decided to study the discriminative properties of unconstrained facial 
motion, due to its close relationship with the head one; in fact, their analogous dynamic 
nature facilitated the integration of a few mouth parameters in our previous recognition 
system (detailed in Chapter IV), by enriching its feature space with this valuable temporal 
information. Then we considered taking advantage of the facial appearance information 
also present in video sequences, which is one of the traditional biometric identifiers for 
person recognition and it has been largely studied during the last decades [12][67][96]. 
Unfortunately, the different nature of facial appearance and head and mouth motion 
prevented us from directly integrating this spatial information in our temporal system; 
therefore, we were obliged to develop two parallel recognition subsystems, with 
independent feature spaces, user models and classifiers. As a result, we had to constrain 
both the spatial and temporal subsystems to adopt the same probabilistic classification 
framework, in order to facilitate the multimodal integration of motion and appearance in 
the fusion module. 

The remainder of this chapter is organised in two main sections: one theoretical 
part that details the structure of our multimodal recognition system, and one experimental 
part that thorough fully evaluates the performances of our approach in various conditions. 
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V.B. Proposed method 

The architecture of the multimodal extension of our person recognition system is 
illustrated in Figure 33. 

 

 
Figure 33: architecture of the multimodal extension of our person recognition system. 

 

The multimodal recognition system is composed by two parallel complementary 
subsystems and a score integration step. The first recognition subsystem (identified by 
light yellow boxes in Figure 33) is exploiting the temporal video information and is based 
on unconstrained head and mouth motion; in particular, it closely resembles the approach 
presented in Chapter IV , with the addition of some mouth parameters to enrich the 
discriminatory power of the extracted features. The second recognition subsystem 
(identified by tan boxes in Figure 33) works with the spatial information and exploits facial 
appearance; more precisely , it is a probabilistic extension of the original eigenface 
technique presented in [87] by Turk and Pentland. For a consistent integration of this 
heterogeneous biometric information (motion and appearance) into a unified recognition 
approach, both subsystems share the same probabilistic framework: a Gaussian mixture 
model (GMMs) approximation to represent the biometric features of each client, and 
Bayesian inference to calculate the similarity between tests and models. In the end, the 
similarity scores of the two parallel subsystems are combined in the last step (identified by 
a gold box in Figure 33), which operates the final identification and verification decisions 
after a suitable opinion fusion (or score fusion). The two subsystems and the integration step 
are detailed in the following three subsections. 
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V .B.1. Integration with mouth motion2 
To integrate some additional parameters related to local mouth dynamics, the 

recognition system based on 2D unconstrained head motion has to be modified in its pre-
processing and feature extraction steps, which are described in Section IV .B and are 
identified by a red “(1)” in Figure 33. In fact, besides the head detection and tracking 
phases, the pre-processing should also include a lip segmentation part; next, not only the 
head but also the mouth parameters have to be calculated in the feature extraction step, 
and then combined into common feature vectors. 

The lip segmentation algorithm applies a series of image processing techniques [28] to 
locate the outer lip contour in every video frame, tΦ . First of all, it crops a sub image 

corresponding to the mouth region, tΛ , from the original frame, by exploiting the 

position of the mouth given by the head tracker, ( )mt
ts . 

Then, it applies the colour conversion that has been proposed by Canzler and 
Dziurzyk [9] for lip enhancement: the purpose of this transformation is to reduce the 
contribution of the blue component, because it plays a reduced role in lip segmentation 
based on skin colour. Thus, the transformed lip region, tΓ , is the following: 

4
5.02 ,,, BtRtGt

t

Λ−Λ−Λ
=Γ  

where { }BGRiit ,,|, =Λ  are the RGB colour components of the mouth region, 

tΛ . 

Afterwards, the lip segmentation algorithm detects the edges of the transformed lip 
region, tΓ ; it firstly computes the horizontal and vertical gradients with the Sobel 
approximation of the derivatives, and then it generates the binary edge map  by applying 
Otsu’s thresholding [65], which chooses the threshold value that minimises the inter-class 
variance of the black and white pixels in the binary image. 

                                                
2 The work on the extraction of mouth parameters has been done in collaboration with 

Usman Saeed. 
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The last part of the segmentation process consists of several additional steps to 
isolate and enhance the shape of the outer lip contour. In fact, the binary edge map can 
contain spurious contours due to the presence of the nose tip, tongue or teeth, so it may 
be convenient to apply some morphological operators to delete them as: dilate the image, fill 
the holes, and remove 8-connected components that are linked with the boundaries of the 
edge map. In addition, as discussed by Bourel et al. in [7], the resulting lip contour can be 
prone to the following two problems: it can be missed altogether or it can be extracted 
incompletely. In the former case, typically another facial landmark other than the lip is 
segmented, like the nose tip or the tongue; this problem can be easily detected and 
corrected, by checking some geometrical constraints such as: the lip cannot be linked to 
the boundary of the edge map, or the area inside the segmented lip contour should not be 
smaller than 1/3 of the average one in that sequence. However, when the lip is not 
segmented in its entirety, it usually means that the lower part is missing; this problem is 
more difficult to detect and can be recovered only partially by using a temporal smoothing 
filter. 

Finally , the outer lip contour is regularised by computing the convex hull of the 
enhanced edge map with the quickhull algorithm [2]. In fact, the convex hull, which is the 
minimal convex subset of points that contains the whole set, provides a more efficient 
representation of the contour, by smoothing it and filling its holes with a homogeneous 
sampling of the curve. The final result of the lip segmentation algorithm is the regularised 
binary edge map , tΨ , and a few examples of these extracted contours are shown in Figure 
34. 

 

 
Figure 34: illustration of the segmented outer lip contours. 

 

The feature extraction step is also modified for being able to calculate both head 
and mouth parameters, and integrate them into combined feature vectors; the generation 
of features related to the head motion information is already detailed in Section IV .B.3, so 
here we focus on the computation of the additional parameters related to mouth 
dynamics. 

The mouth feature matrix , ( ) ( ) NDmt mt ×ℜ∈X , is generated by concatenating one or 
more of the following features: 
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• Centred major axis of the outer lip contour : the length of the major axis of the lip 
contour, T

tu ℜ∈,1 , partially characterises the mouth motion over time: 

1,1, µ−= tnd ux  for Tt ,,1 K= , where 1µ  is the mean value, 

∑
=

=
T

t
tu

T 1
,11

1
µ . 

• Centred minor axis of the outer lip contour : the length of the minor axis of the lip 
contour, T

tu ℜ∈,2 , also characterises the mouth motion over time: 

2,2, µ−= tnd ux  for Tt ,,1 K= , where 2µ  is the mean value, 

∑
=

=
T

t
tu

T 1
,22

1
µ . 

In our study we tested other features based on the eccentricity value or the 
perimeter length of the lip contour, but they empirically showed less discriminatory power 
and were abandoned. 

Finally , the head feature matrix , ( ) ( ) NDhd hd ×ℜ∈X , and the mouth feature matrix, 
( ) ( ) NDmt mt ×ℜ∈X , are integrated into an extended feature matrix , X , by applying the feature 

concatenation fusion strategy (Section II.H.1): 
( )

( )

( ) ( )

( ) ( )
ND

mt
N

mt

hd
N

hd

mt

hd
×ℜ∈








=








=

xx
xx

X
X

X
K

K

1

1  

where ( ) ( )mthd DDD += . We notice that the number of feature vectors is equal to 
the video length, TN = , while the dimension of the extended feature space D  depends 
on the features selected; for example, when using (normalised) head positions and 
(centred) major and minor axes: 22 += FD , where F  is the number of facial 
landmarks. In the end, each extended feature matrix, ND×ℜ∈X , retains the whole head 
and mouth discriminative information extracted from the corresponding video sequence; 
then, these extended features are successively used for model estimation and classification, 
as detailed in Sections IV .B.4 and IV .B.5. 

V .B.2. Probabilistic extension of the eigenface method 
For a consistent integration of the facial appearance information in our multimodal 

person recognition system, we developed a probabilistic extension of the original eigenface 
technique [87], which is depicted in Figure 33 with tan blocks. In particular, the pre-
processing and feature extraction steps are kept pretty close to the standard eigenface 
approach, while the model estimation and classification steps are adapted to share the 
same probabilistic framework of the other recognition subsystem that exploits head and 
mouth motion. In the following we summarise the steps of our subsystem, and we invite 
the reader to refer to: [87] and Section III.B.1 for a better insight on eigenfaces, and 
Sections IV .B.4 and IV .B.5 for an extensive description of the probabilistic framework. 
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The pre-processing step applies some image processing techniques [28] to a set of 
N  colour pictures of size CR ×  belonging to a video sequence, 
{ }NnCR

n ,,1|3 K=Ν∈Φ ×× , and generates a set of transformed vectors, 

{ }NnRC
n ,,1|3 K=Ν∈s , in which the image pixels are arranged in long vectors (a 

process called image vectorisation). The first transformation is a contrast enhancement like a 
histogram equalisation or a contrast stretching (colour component by colour component), that is 
useful to reduce the impact of inter-image illumination and colour variations. Then, this 
step converts the image signal into the most discriminative representation, chosen among 
these ones: RGB (red, green and blue), HSV (hue, saturation and value), NTSC 
(luminance, hue and saturation), YCbCr (luminance and chrominance components) or 
greyscale values. In addition, the amount of data can be optionally incremented by 
mirroring each image along its vertical axis (a process called vertical mirroring ), before that 
the image vectorisation takes place. 

Afterwards, the feature extraction step isolates the discriminative information that 
characterises the individual and discards the irrelevant one, by transforming the vectorised 
data set, { }NnRC

n ,,1|3 K=Ν∈s , into the corresponding feature matrix: 

[ ] ND
N

×ℜ∈= xxX ,,1 K . First of all, it applies a linear transformation from the high 

dimensional image space, RC3Ν , to a lower dimensional space (called the face space), Dℜ , 
which is much smaller: RCD 3<< . More precisely , each vectorised image RC

n
3Ν∈s  is 

approximated with its projection in the face space D
n ℜ∈v  by the following linear 

transformation : 

( )μsWv −= n
T

n  

where DRC×ℜ∈ 3W  is a projection matrix with orthonormal columns, and 
Dℜ∈μ  is the mean image vector of the whole training set: 

∑∑
= =

=
J

j

N

n
njJN 1 1

,
1 sμ  

in which J  is the total number of sequences in the training set, and RC
nj

3
, Ν∈s  is 

the n -th vectorised image belonging to video jΦ . 

The optimal projection matrix  W  is computed using the principal component analysis 
(PCA) (also called the Karhunen-Loeve transform (KLT)) [22], which has the property of 
optimally representing the distribution of data in the root mean squares sense; the details 
on the calculation of W  can be found in [87] and in Section III.B.1. 

Once the image data set is projected into the face space, the vectors in the feature 
matrix, [ ] ND

N
×ℜ∈= xxX ,,1 K , are generated by choosing either: 

1. The projections in face space: in this case, nn vx =  for Nn ,,1 K= . 
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2. The whitened projections in face space: the whitening process (Section III.B.1) 
rescales the projection coefficients nv  to counterbalance the overweighting 

of the low frequencies as following: 
d

nd
nd

v
x

λ
,

, =  for Dd ,,1 K=  and 

Nn ,,1 K= , in which dλ  is the d -th largest eigenvalue. 

The model estimation step adopts the same probabilistic approach of the parallel 
subsystem using head and mouth motion for recognition. In fact, the distribution of the 
feature vectors of each client is modelled with a GMM, which approximates the class 
conditional probability density function  of each user, k , in feature space: 

( ) ( ) ( )∑
=

ℵ≡≅
kC

c
ckcknckknn pkp

1
,,, ,||| ΣμxΘxx α  

in which ( )ℵ  is a non-singular multivariate normal distribution, 
{ }Ccckckckk ,,1|,, ,,, K== ΣμΘ α  is the parameter list for the k -th model, and 

[ ]1,0, ∈ckα  is the weight of the c -th Gaussian component. We do not provide more 
details here, so the reader is invited to refer to Section IV .B.4 for a discussion on GMM 
modelling and an extensive description of its parameter estimation. Though, it is important 
to notice that the facial appearance manifold needs a high dimensional feature space to be 
exhaustively represented, and that high dimensional distributions are difficult to 
approximate due to limited amount of training data; this is a big issue indeed because we 
remind that, for the estimation of GMM parameters, the minimum number of 
recommended feature vectors increases quadratically with the dimensionality of the feature 
space, D . 

Finally , the classification step closely resembles to the one in the temporal 
recognition system (Section IV .B.5); in fact, it also computes the similarity scores by 
applying the probability theory and the Bayesian decision rule (also called Bayesian inference). In 
our implementation, we select only one key frame to test a given video sequence; hence, 
the related feature matrix contains only one feature vector, Dℜ∈= xX , and the video 
posterior probability  is equal to the frame posterior probability , which is calculated using the Bayes’ 
rule: 

( ) ( ) ( )
( )x

xx
p

kpkpkp || =  

First of all, the divisor: 

( ) ( ) ( ) xxx Mkpkpp
K

k
== ∑

=1
|  

is merely a scaling factor xM , to assure that the posterior probabilities ( )x|kp  are 
really probabilities (their sum is one). Then, the a priori probability  ( )kp  represents the 
probability of occurrence of each class k , and it is usually estimated from the training 
database. 
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Afterwards, the similarity score for the identification task  ( )( )k
IDS Θx,  (Section II.C.2), is 

derived from the image/video posterior probability ( )x|kp  by computing the log-posterior 
probability , because it is analytically and numerically more practical, and the properties of 
the similarity function do not change thanks to the monotonicity of the logarithm. Hence, 

( )( )k
IDS Θx,  takes the form of: 

( )( ) ( ) ( ) ( ) xxxΘx MkpkpkpS k
ID lnln|ln|ln, −+==  

Finally , the similarity score for the verification task  ( )( )k
VERS Θx,  (Section II.C.1), is the 

log-posterior probability ratio : 

( )( ) ( )
( ) ( ) ( ) ( ) 1ln2|ln|ln

|
|ln, −+−=








= kpkpkp

kp
kpS k

VER xx
x
xΘx  

where ( )x|kp  is the posterior probability of the alternative hypothesis k , and 

( )kp |x  is the impostor model (the class conditional PDF for k ). Following the same 
approach of Section IV .B.5, we approximate the impostor model by using the L  best 
client models ( )( )lkp |x , which are called background models or cohorts: 

( ) ( )( )∑
=

≅
L

l

lkp
L

kp
1

|1| xx  

where ( )lk  is the client model that produces the l -th highest posterior probability 
( )x|kp . 

V .B.3. Integration with facial appearance 
The score integration step, which is identified by a gold box in Figure 33, combines 

the similarity scores of the two parallel subsystems by applying a suitable opinion fusion (or 
score fusion) strategy (Section II.H.3); after that, it takes the final identification and 
verification decisions using this extended measure of similarity . 

We remind that the identification and verification similarity measures of both 
recognition subsystems are: the video log-posterior probability and the video log-posterior probability 
ratio, respectively. More precisely , the similarities between the j -th test and the k -th 
client model are: 

( ) ( ) ( )( ) ( )( )
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for the recognition subsystem using unconstrained head and mouth motion (Section 
IV .B.5), and: 
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( ) ( ) ( )( ) ( )( )
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for the one working with facial appearance (Section V .B.2). 

Accordingly, the score integration step calculates the multimodal similarity scores 
between the j -th test sequence jΦ , and the k -th client model by applying two different 
versions of the weighted summation fusion  (also called sum rule), which has the following 
general formula: 

( ) ( )( ) ( ) ( )i
kjkj

i
kjkjkj

ii
kj baS ,,,,, , ρηξ +=Φ≡ Θ  

where kja ,  and kjb ,  are the weighting values and i  specifies the identification or 
verification case. It is worth noting that, due to the properties of the logarithm function, 
the weighted summation fusion of the log-posterior probabilities is equivalent to the 
weighted product fusion  (also called product rule) of the posterior probabilities. 

The first strategy is the equal weighting of modalities: it is obtained by taking the 
average of the separate similarity scores, or equivalently by setting the weights as: 

5.0,, == kjkj ba  

for kj,∀ . This choice has an interesting probabilistic interpretation; in fact, if we 

assume that the features related to facial motion ( )mtn
jX  and those to facial appearance 

( )app
jx  are statistically independent, then the multimodal similarity scores for the identification task  

are equal to the joint log-posterior probabilities  of ( )mtn
jX  and ( )app

jx : 

( ) ( )( ) ( ) ( )( ) ( )kpkpS app
j

mtn
jkj

IDID
kj 2

1,|log
2
1,, +=Φ≡ xXΘξ  

except for an irrelevant translating factor, the a priori probability ( )kp , which is not 
dependent on the test itself and it is already known before the recognition process. 

The other fusion strategy is the adaptive weighting  proposed by Chang et al. in [11], 
which automatically estimates the weights of each modality in a given test j  as: 
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where ( )
( )i

kj l,
η  and ( )

( )i
kj l,

ρ  are the l  best scores for the j -th test, and kjA ,  is a 

scaling factor to make the sum of weights equal to 1: kjkjkj baA ,,, +=  for kj,∀ . The 
principle of this adaptive weighting is to evaluate the distribution of the similarity scores in 
each subsystem, and consider it as a measure of confidence for that subsystem; it follows 
that the more reliable is a subsystem, the higher should be its contribution on the final 
similarity score. In particular, the adaptive weighting suggested by Chang et al. calculates 
the ratio between the distance of the best score from: the second best one, and from the 
third best one; we also tried to replace ( )

( )i
kj rd3,

η  and ( )
( )i

kj rd3,
ρ  with the mean values of the 

respective scores (in each test), but we did not notice any significant difference from just 
using the third best ones. 

V.C. Experimental results 

Due to the absence of standard video databases suited for our approach, we assess 
the performance of our multimodal person recognition system on our database of Italian 
TV speakers; hence, we use the video version of the data set for the subsystem using 
unconstrained head and mouth motion information, and its image version for the one 
working on facial appearance. The interested reader can find a discussion on existing data 
sets, a description of our video database, and the structure of the enrolment and 
recognition subsets in Section VIII.A; for the image version of the database, the details on 
its generation and normalisation are explained in Section VIII.B. It is worth noting that all 
experimental results and relative comments are related to our small video database of 
Italian TV speakers, so that they should not be considered as absolute general conclusions. 

In the following sections, we firstly introduce the default configuration , which obtains 
the best recognition results overall. Next, we evaluate the performances of our system in 
different experimental conditions, by varying: sources of biometric information and fusion 
strategies. After that, we compare our results with the state of the art eigenface technique, 
and finally we evaluate the discriminatory power of our method in a gender recognition 
application. 

V .C.1. Default configuration 
We denote the parameter configuration that attains the best overall recognition 

performance as the default configuration , and we use it as a reference throughout the 
experiments; considering that the multimodal recognition system is composed by two 
subsystems and one integration step, as illustrated in Figure 33, we specify the best 
parameter set for all of them. 

The subsystem using head and mouth motion keeps the same default configuration 
of the one detailed in Section IV .C.1, except for the addition of two mouth features: the 
centred major and minor axes of the outer lip contour. Hence, an updated summary of the 
parameters for the default configuration of this subsystem is presented in Table 3. 
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Facial landmarks 4 (eyes, nose & mouth)
Colour space RGB (red, green & blue)
Video pre-processing Histogram equalisation
Distance metric for similarity scores City-block distance

19 pixel rows (or height)
25 pixel columns (or weigth)

Search window 12 x 12 pixels
Template update None (α = 0)

Geometrical normalisation of tracking signals Centring using zero mean
Head features Normalised head positions
Mouth features Centred major and minor axis
PCA reduction No
Dimensionality of feature space 10

GMM parameter estimation Expectation-maximisation (EM)
Gaussian components 4

K-means
Uniform weights
Cluster means
Uniform covariances

CLASSIFICATION Number of background (cohort) models 2

Template size
PRE-PROCESSING

FEATURE EXTRACTION

Initialisation
MODEL ESTIMATION

 
Table 3: summary of the parameters for the default configuration of the recognition 

subsystem using head and mouth motion. 

 

Then, in the default configuration of the subsystem using facial appearance, all 
images are firstly pre-processed with a histogram equalisation, colour component by colour 
component, to reduce the mismatches due to illumination variations. Next, the data set is 
represented by using the NTSC colour space (which consists of: luminance, hue and 
saturation), because it empirically provides more discriminative signals than the RGB does. 
Due to the problem of approximating high dimensional distributions with a limited 
amount of data (Section V .B.2), we are obliged to adopt serious restrictions on the 
dimension of the face space and the number of Gaussian components, in order to satisfy 
the minimum number of images recommended for a reliable GMM parameter estimation 
(Section IV .B.4). In fact, with 228 images per person in the enrolment subset, we should 
use an eigenspace of dimension 10 or less for being able to reliably train 2 components, 
and 8 or less for 3, which is excessively constraining because too much discriminative 
information is lost with such a reduced space. Hence, in the default configuration the 
client models are estimated using a single Gaussian component (which reverts on using a 
multivariate normal distribution), in a small face space of dimension 27, and the feature 
vectors are calculated by whitening the projection coefficients. Finally , the impostor models 
for verification are approximated by taking the average of the best 2 background (or 
cohort) models. A summary of the parameters for the default configuration of the 
recognition subsystem using facial appearance is proposed in Table 4. 
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NORMALISED DATABASE
Database name Image database of Italian TV speakers
Normalisation Accurate: in-plane rotated and aligned

32 pixel rows (or height)
32 pixel columns (or weigth)

Image resizing interpolation method Nearest neighbour
Image pre-processing Histogram equalisation
Colour space NTSC (luminance, hue & saturation)
Vertical mirroring No

Image space reduction method Centered PCA
Subspace dimension 27
Whitening of feature vectors Yes

GMM parameter estimation Direct mean and covariance calculation
Gaussian components 1

CLASSIFICATION Number of background (cohort) models 2

DATABASE

Image size

MODEL ESTIMATION

PRE-PROCESSING

FEATURE EXTRACTION

 
Table 4: summary of the parameters for the default configuration of the recognition 

subsystem using facial appearance. 

 

Concerning the score integration step, the best results have been obtained by 
choosing an equal weighting of the previous two complementary recognition subsystems. 

Finally , as we did in the experimental section of Chapter IV , in the following 
experiments we express the results relative to the default configuration of the multimodal 
recognition system with a blue colour line, in order to simplify the understanding and 
comparison between different graphs. 

V .C.2. Recognition results in diverse experimental conditions 
In this section, we assess the performance of our person recognition system by 

testing it in diverse experimental conditions, with various sources of biometric information 
and fusion strategies. We present and comment a selection of experiments, preferring 
those that better illustrate the properties of our approach, and help understanding the 
choices towards the best configuration. 

Concerning the measures of performance, we express the identification results by 
reporting the correct identification rates (CIRs) , and by plotting the cumulative (correct) match scores 
(CMSs) as a function of the M  best matches retained (Section II.E.2). For the verification 
scenario, we report the equal error rates (EERs)  and we show the receiver operating characteristic 
(ROC) curves, which offer a global description of the system from low to high security 
applications (Section II.E.1). 
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We firstly compare the discriminatory power of the different sources of biometric 
information. We remind from Chapter IV that the recognition subsystem using only 
unconstrained head motion obtains good results, with a CIR of 90.4% and an EER of 
3.0%; then, we notice that combining the head and the mouth motion information 
improves the scores to: 93.3% of CIR and 2.6% of EER. However, it is with the 
integration of facial appearance that the multimodal recognition system obtains the best 
performance overall; in fact, the spatial subsystem alone already shows good results, with a 
CIR of 93.3% and an EER of 2.2%, but it achieves the best performance when combined 
with the temporal information in the default configuration: still 93.3% of CIR, but 2.1% of 
EER and a small overall improvement in the verification scores. 

Figure 35 provides a complete overview of the recognition results: the experiments 
show that facial appearance conveys the most discriminative information, followed by 
head and mouth motion. We explain this outcome by keeping in mind that the noise 
caused by our automatic tracking process reduces the recognition capabilities of natural 
head motion (Sections IV .C.2 and IV .C.5); likewise, the low quality of our video database 
makes the precise localisation of the outer lip contour really challenging for the lip 
segmentation algorithm, and in some cases the mouth features are excessively noisy. 
Though, the main reason behind the weakness of the mouth information compared to the 
head one is that the feature space of the temporal subsystem is mainly composed by head 
parameters (8 over 10), and only marginally by the mouth ones (only 2). In conclusion, by 
carefully examining the curves in Figure 35 we notice that each addition of biometric 
identifiers improves the recognition results, and that the fusion of the facial appearance 
information with both the head and mouth one provides the best results overall. 

 

 
Figure 35: recognition results with different sources of biometric information. 
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Afterwards, we study the efficiency of the two different fusion strategies on the 
performance of the multimodal recognition system. The experiments on person 
identification show that the two weighting schemes obtain the same results, with a CIR of 
93.3%. On the other hand, the equal weighting seems better suited in a verification 
scenario, where it presents a smaller EER than the adaptive fusion strategy: 2.1% rather 
than 2.9%. 

The plots for the CMSs and the DETs are illustrated in Figure 36 and confirm the 
numerical results above: in general, the adaptive weighting should be preferred in an 
identification scenario, while the equal weighting is the best choice for a verification one. 
To explain this outcome we need to consider the decision rules of the two operational modes 
(Sections II.E.1 and II.E.2): in an identification problem, the system chooses the class with 
the best similarity score independently test by test; on the other hand, in a verification one 
each similarity score is compared with a threshold value, which remains the same for all 
the tests. For this reason, the adaptive weighting top performs in the identification 
scenario, because it is supposed to estimate the best weights for every video; at the same 
time, this test-dependent weighting strategy becomes unpredictable for the whole data set, 
so the similarity values are less commensurate and it is more difficult to find an optimal 
common threshold value. In our experimental situation, we preferred the equal weighting 
for our default configuration, due to the following reasons: it shows a significant 
improvement in verification results obtaining at the same time the best identification 
outcomes, it is computationally more efficient, and it provides a more balanced and stable 
fusion of modalities. 

 

 
Figure 36: recognition results with different fusion strategies. 
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V .C.3. Comparison with the eigenface technique 
We compare our multimodal person recognition system with the state of the art 

eigenface technique [87], which exploits only facial appearance. For our experiments, we 
keep the same eigenface implementation as in Section IV .C.4, whose parameters are 
reported in Table 5. 

 
NORMALISED DATABASE RAW DATABASE

Database name Image datab. of Italian TV speakers Image datab. of Italian TV speakers
Normalisation Accurate: in-plane rotated and aligned None

32 pixel rows (or height) 48 pixel rows (or height)
32 pixel columns (or weigth) 61 pixel columns (or weigth)

Resizing interpolation method Nearest neighbour Nearest neighbour
Image pre-processing Histogram equalisation Histogram equalisation
Colour space NTSC (luminance, hue & saturation) NTSC (luminance, hue & saturation)
Vertical mirroring No No

Image space reduction method Centered PCA Centered PCA
Subspace dimension 243 243
Whitening of feature vectors Yes Yes

MODEL ESTIM. Client model generation method Centroid vector (average of features) Centroid vector (average of features)

CLASSIFICATION Similarity measure Based on cosine distance Based on cosine distance

PRE-PROCESSING

FEATURE EXTR.

DATABASE

Image size

 
Table 5: summary of the parameters for our eigenface implementation. 

 

The recognition results for our multimodal approach are calculated using the default 
configuration and the database of Italian TV speakers: the subsystem working on 
unconstrained head and mouth motion exploits the video data set (Section VIII.A), while 
the other subsystem using facial appearance works with the normalised image version of 
the database (Section VIII.B). In the previous experiments we have already seen that the 
integration of biometric sources of information improves the discriminatory power of the 
system exploiting only head motion: the CIR increases from 90.4% to 93.3% and the EER 
decreases from 3.0% to 2.1%. Then, as we did in Section IV .C.4, we evaluate the 
performance of the eigenface technique on both the normalised and not normalised image 
databases. We remind that in the first favourable case, it achieves perfect recognition, with 
100.0% of CIR and 0.0% of EER; though, in the second somewhat unfavourable case its 
results are poor: 69.2% of CIR and 10.8% of EER. This time, we also test the eigenface 
technique with a small face space of dimension 27, which is surely an adverse situation but 
it allows a fair comparison with our spatial recognition subsystem, and with our 
multimodal system; in this particular condition, its recognition results are noticeably worse, 
even if using the normalised data set: the CIR is 65.4% and the EER is 8.7%. 
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Figure 37 provides a practical and complete overview of these experimental results: 
the multimodal person recognition system still performs in between the favourable and 
unfavourable eigenface approach, but it also noticeably improves the results of the one 
exploiting only head motion. Nevertheless, we believe that the only reason why the 
eigenface technique still outperforms both its probabilistic extension and the multimodal 
recognition system, is the difficulty of estimating high dimensional distributions with a 
limited amount of training data; in particular, in our experimental conditions the spatial 
subsystem must adopt a small face space of dimension 27, which approximates only 
coarsely the facial appearance manifold, and so it possesses a reduced discriminatory 
power. In fact, the recognition results for the eigenface technique working in the same 
reduced face space (violet curves) corroborate our assertion: in this more appropriate 
comparison, it performs clearly worse than both our spatial subsystem and our multimodal 
one. For this reason, we are confident that in the future the use of larger databases will 
confirm the superior performances of our approach; in fact, the availability of a bigger 
enrolment subset would allow our system to use a bigger face space and a more complex 
GMM modelling (with more Gaussian components), and consequently to fully exploit the 
complementary and more discriminative nature of its multimodal identifiers. In 
conclusion, these empirical results let us believe that not only facial appearance but also 
head and mouth motion possess a potentially relevant discriminatory power, and that the 
integration of different sources of biometric information from video sequences is the key 
strategy to develop more accurate and reliable recognition systems. 

 

 
Figure 37: comparison of person recognition results between: the proposed method, 

eigenfaces, and the system using only head motion. 
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V .C.4. Gender recognition results 
To conclude these experimental sections, we would like to evaluate the performance 

of our approach when applied to a different scenario: a gender recognition application; 
more precisely , we want to compare the gender discriminatory power of the multimodal 
system, integrating facial appearance and natural head and mouth motion, with that of the 
eigenface technique, exploiting facial appearance alone. Therefore, similarly to what we did 
in Section V .C.3 for identity , we consider an equivalent experimental set-up that is adapted 
to the gender recognition task, with the same eigenface implementation, databases of 
Italian TV speakers and dimensions of face spaces. It is worth noting that due to the 
particular nature of this recognition problem, which consists of only two classes, the CIRs 
and EERs are directly related: ( ) ( )EERCIR ξη −= %100 . 

Similarly to what we have seen for the person recognition scenario, we notice that 
the integration of multiple sources of biometric information clearly improves the 
performance of the individual modalities. In fact, reminding that the system exploiting 
only head motion obtains poor gender recognition scores with a CIR of 84.6% and an 
EER of 15.4% (Section IV .C.6), we observe that the addition of mouth motion and then 
of facial appearance in our multi-biometric system increases the CIR to 96.2% and 99.0%, 
and decreases the EER to 3.8% and 1.0% respectively. Moreover, this time our gender 
recognition approach performs in between the perfect recognition scores (100.0% of CIR 
and 0.0% of EER) of eigenfaces in its favourable condition, and the poor results in its 
unfavourable one, which are: a CIR of 89.4% and an EER of 10.6%. 

By looking at Figure 38 we can visually evaluate the benefit of integrating multiple 
sources of biometric information; these graphs show that, even if head motion is not such 
an important discriminative identifier for gender recognition applications, it can still 
achieve excellent results if supported by the mouth motion information, and particularly 
by the facial appearance one3. In fact, these experiments are a clear demonstration of the 
advantage of multi-biometrics, in which complementary sources of biometric information 
can increase the accuracy and augment the reliability of the resulting multimodal system, 
by taking advantage of their redundant and richer information to compensate their 
individual weaknesses. We finally remember that due to the noisy tracking signals and the 
noisy mouth parameters (Section V .C.2) in the temporal subsystem, along with the 
reduced dimensionality of the face space and complexity of the GMM modelling in the 
spatial one (Section V .C.3), our recognition system is still far from its optimal working 
condition, so the potential discriminatory power of facial appearance and head and mouth 
motion for gender recognition is probably higher than the one established in these 
experiments. 

 
                                                

3 In other experiments (not reported here), we also divided our database into two random 
classes mixed in gender and consisting of multiple individuals, to evaluate the discriminatory power 
of the head and mouth motion information for gender recognition. The CIRs obtained for these 
random sets were between 60% and 70%, a bit better than the random choice (the system is still 
learning some patterns, and using some information for classification), but definitively worse than 
the corresponding CIR for gender recognition, 96.2%. The outcome of these experiments also 
supports the assertion that the head and mouth motion information contains some discriminative 
information related to identity and gender; information that can be used in person or gender 
recognition applications. 
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Figure 38: comparison of gender recognition results between: the proposed method, 

eigenfaces, and the system using only head motion. 

 

V.D. Concluding summary 

In this chapter we proposed a multimodal extension of our person recognition 
system; in particular, we successfully integrated the head motion information with mouth 
motion and facial appearance, by taking advantage of a unified probabilistic framework. In 
fact, we developed a new temporal subsystem that had an extended feature space enriched 
by some additional mouth parameters; at the same time, we introduced a complementary 
spatial subsystem based on a probabilistic extension of the original eigenface approach. In the 
end, we implemented an integration step to combine the similarity scores of the two 
parallel subsystems, using a suitable opinion fusion (or score fusion) strategy. 
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In the experimental section we assessed the performance of our multimodal 
approach and we deduced the following considerations. First of all, the potential 
discriminatory power of the biometric identifiers integrated in our multimodal recognition 
system is probably higher than what is established by our experiments; in fact, our 
approach cannot be tested in its optimal condition due to: noisy tracking signals and noisy 
mouth parameters in the temporal subsystem, along with the reduced dimensionality of 
the face space and complexity of the GMM modelling in the spatial one. However, we 
observe that the integration of multiple sources of biometric information noticeably 
improves the performance of the separate unimodal systems, and that facial appearance 
conveys the most discriminative information, followed by head and mouth motion. After 
all, our multimodal approach obtains good person recognition results and very good 
gender recognition ones, and it performs closely to the eigenface technique in its most 
favourable testing condition. Finally , we believe that the integration of different sources of 
biometric information extracted from video sequences is the key strategy to develop more 
accurate and reliable recognition systems. 
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CChhaapptteerr  VVII..  TToommooffaacceess::  ssppaattiioo--
tteemmppoorraall  ffaacciiaall  ffeeaattuurreess  ffoorr  

rreeccooggnniittiioonn  

VI.A. Introduction 

In Chapter III we have seen that the video data does not provide only abundant 
spatial information but also the temporal one, and that the face is now considered as a 
hybrid identifier. Then, in Chapter V we developed a multimodal recognition system, 
which exploited different sources of biometric information present in video sequences, 
and we noticed that, even if facial appearance still conveys the most discriminative 
information, its performance can be improved through the integration of some head and 
mouth motion features. All these elements motivate us to conclude that there is a real 
interest in investigating novel spatio-temporal strategies for video person and gender 
recognition. 

In addition, we are aware that the performances of the majority of biometric 
systems using image and video data strongly depend on the accuracy of some complex 
pre-processing. In fact, it is well documented that recognition approaches exploiting facial 
appearance are extremely sensitive to inter-frame variations, like inconsistent facial 
alignments or changes in illumination, pose and head size; however, the precise and 
automatic normalisation of video frames is hard to achieve in practice, and it is 
computationally expensive. Concerning the exploitation of the behavioural information of 
the face, the situation is even more critical; in fact, the need for a temporal synchronisation 
of video chunks, which is necessary for a consistent matching between different gestures, 
has probably prevented an efficient use of the video temporal information for recognition, 
and put back the development of new strategies. 
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For these reasons, we investigated a practical method for extracting the spatio-
temporal biometric information from video sequences, and we used it to discriminate 
identity and gender. Inspired by the research on discrete video tomography (DVT) [1][39] for 
camera work estimation, we developed a recognition system called tomofaces, which applies 
the temporal X-ray transformation of a video sequence to summarise the facial motion 
and appearance information of a person into a single X-ray image. The main advantages of 
this approach are that it does not require a complex pre-processing for accurate spatial 
normalisations, and that it avoids the temporal synchronisation problem; in particular, it is 
well suited to our unconstrained recognition scenario, where there is no prior knowledge 
on the explicit gesture that each user is doing in every video sequence. It is worth noting 
that in our experimental framework there is no camera motion, because the camera is 
fixed, there are no zooms or changes in scale, and that the depth variation of the head 
movement is insignificant, because the camera is far. This situation implies that all motion 
that can be extracted from the sequences is relative to the behaviour of the individual, and 
that in our system the discrete video tomography is no more applied for camera motion 
estimation, but for the extraction of spatio-temporal features for recognition. 

The remainder of this chapter is organised in two main sections: one theoretical 
part that details the structure of our tomoface recognition system, and one experimental 
part that thorough fully evaluates the performances of our approach in various conditions. 

VI.B. Proposed method 

The architecture of the tomoface approach that exploits spatio-temporal facial 
features for recognition is illustrated in Figure 39, and closely resembles the one for the 
general biometric system, which has been introduced in Section II.D. 
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Figure 39: architecture of the tomoface approach, which exploits spatio-temporal facial 
features for recognition. 

 

The pre-processing step firstly generates the X-ray images, by applying the discrete 
video tomography (DVT) introduced by Akutsu and Tonomura [1] to the input video 
sequences. Then, the X-ray image space is reduced into a low dimensional space, in which 
spatio-temporal features are extracted to provide a better discriminative representation. 
After that, the enrolment module estimates each client model by calculating its cluster 
centre, and in the end person (or gender) recognition is achieved through a nearest 
neighbour classifier. The four steps of our system are detailed in the following sections. 

VI.B.1. Pre-processing: temporal video X-ray transformation 
The pre-processing step computes the temporal video X-ray transformation  of a 

sequence, in order to summarise the facial motion and appearance information of a person 
into a single image; more precisely , it generates a vector, RCΝ∈s , representing the video 
X-ray image from each colour sequence of length T  and frame size CR × : 

{ }TtCR
t ,,1|3 K=Ν∈Φ=Φ ×× . 

First of all, this step applies a contrast enhancement to all video frames, like a 
histogram equalisation or a contrast stretching (colour component by colour component) [28], 
that is useful to reduce the impact of inter-image illumination and colour variations. After 
that, it converts the sequence from the RGB colour space to the greyscale one, and then it 
generates the edge map sequence, { }TtCR

t ,,1| K=Ν∈Ψ=Ψ × , by applying the Canny edge 
finding method [8] frame by frame. We remind that the Canny edge detection algorithm 
extracts the local maxima of the gradient by using two thresholds, in order to detect both 
strong and weak edges; in particular, the weak edges are included in the binary edge map 
only if they are connected to strong edges, which improves their detection accuracy. 

Afterwards, the temporal video X-ray transformation  consists of adding up the edge map 
frames, tΨ , along the temporal axis, in order to generate the video X-ray image of the 
sequence: 

∑
=

Ψ=Γ
T

t
tA

1
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where A  is a scaling factor, which is constant for the whole database and is used to 
adjust the upper range values of the video X-ray images. In Figure 40, there is a visual 
example that summarises the major phases of the temporal video X-ray transformation. By 
looking at the lower left picture, corresponding to the video X-ray image, Γ , it is possible 
to notice that the static textured background generates very dark areas and very vivid 
contours; this information is not related to facial motion or appearance, and may 
negatively affect the discriminatory power of the X-ray image. For this reason, the pre-
processing step allows filtering Γ  in order to attenuate its brightest background contours, 
by putting to black all the pixels above a threshold value, θ : 0, =crγ  for 

( ){ }θγ >crcr ,|, . It is worth noting that the choice of the threshold value is quite 
important, because it represents a trade-off between the amount of background contours 
that are removed by filtering, and the amount of head and mouth motion that is preserved; 
in fact, the lower is the threshold, the stronger is the attenuation of the background, but 
also the higher is the loss of useful spatio-temporal information. 

 

 
Figure 40: example of the temporal video X-ray transformation; from left to right, starting 
from the top: original frame, edge map frame, video X-ray image, attenuated video X-ray 

image. 

 

Finally , the amount of data can be optionally incremented by mirroring each 
attenuated X-ray image along its vertical axis (a process called vertical mirroring ), before that 
the ordinary image vectorisation takes place. 
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VI.B.2. Feature extraction: PCA reduction 
The feature extraction step isolates the discriminative information that characterises 

the individual and discards the irrelevant one, by transforming the vectorised X-ray image 
RCΝ∈s  into the corresponding feature vector: Dℜ∈x . First of all, it applies a linear 

transformation from the high dimensional X-ray image space, RCΝ , to a lower dimensional 
space, Dℜ , which is much smaller: RCD << . More precisely , each vectorised X-ray 
image RCΝ∈s  is approximated with its projection in the reduced space Dℜ∈v  by the 
following linear transformation : 

( )μsWv −= T  

where DRC×ℜ∈W  is a projection matrix with orthonormal columns, and Dℜ∈μ  
is the mean X-ray image vector of the whole training set: 

∑
=

=
J

j
jJ 1

1 sμ  

in which J  is the total number of sequences in the training set, and RC
j Ν∈s  is 

the vectorised X-ray image belonging to video jΦ . 

The optimal projection matrix  W  is computed using the principal component analysis 
(PCA) (also called the Karhunen-Loeve transform (KLT)) [22], which has the property of 
optimally representing the distribution of data in the root mean squares sense; the details 
on the calculation of W  can be found in [87] and in Section III.B.1. 

Once the vectorised X-ray image is projected into the reduced space, the 
corresponding feature vector Dℜ∈x  is generated by choosing either: 

1. The projection in the reduced space : in this case, vx = . 

2. The whitened projection in the reduced space : the whitening process (Section 
III.B.1) rescales the projection coefficients dv  to counterbalance the 

overweighting of the low frequencies as following: 
d

d
d

vx
λ

=  for 

Dd ,,1 K= , in which dλ  is the d -th largest eigenvalue. 

VI.B.3. Model estimation and classification 
The model estimation and classification steps of the tomoface recognition approach 

are similar to those of the original eigenface technique [87]. 

The personal models are characterised by representative points in feature space, 
which summarise the distribution of feature vectors belonging to each client; in particular, 
for a given individual k  the model estimation step calculates his cluster centre D

k ℜ∈g , by 
taking the average (the centroid) or the median feature vector of the user training data 
belonging to his enrolment subset. 
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Then, the recognition task is achieved by using a nearest neighbour classifier, which 
compares an unknown feature vector Dℜ∈x  with all the client models stored in the 
system, { }KkD

k ,,1| K=ℜ∈g , and looks for the closest match. In this situation, the 
similarity measure is inversely proportional to one among these simple distance metrics in 
feature space: 

• City-block distance ( 1L ): ( )( ) ∑
=

−≡
D

d
dkdk

L gxd
1

,,1 gx . 

• Euclidean distance ( 2L ): ( )( ) ( )∑
=

−≡
D

d
dkdk

L gxd
1

2
,,2 gx . 

• Cosine distance: ( )( )
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VI.C. Experimental results 

Due to the absence of standard video databases suited for our approach, we assess 
the performance of our person recognition system on our video database of Italian TV 
speakers: please refer to Section VIII.A for a discussion on existing data sets, a description 
of our database, and the structure of the enrolment and recognition subsets. It is worth 
noting that all experimental results and relative comments are related to our small video 
database of Italian TV speakers, so that they should not be considered as absolute general 
conclusions. 

In the following sections, we firstly introduce the default configuration , which obtains 
the best recognition results overall. Then, we evaluate the performance of our system in a 
person recognition scenario, and we compare our results with the state of the art eigenface 
technique and the multimodal recognition system of Chapter V . Finally , we evaluate the 
discriminatory power of our method in a gender recognition application. 

VI.C.1. Default configuration 
We denote the parameter configuration that attains the best overall recognition 

performance as the default configuration , and we use it as a reference throughout the 
experiments; a summary of the parameters for the default configuration of the tomoface 
recognition system is presented in Table 6. 
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Database name Video database of Italian TV speakers
Normalisation None

Image pre-processing Histogram equalisation
Colour space Greyscale
Background attenuation threshold 66%

64 pixel rows (or height)
81 pixel columns (or weigth)

Image resizing interpolation method Nearest neighbour
Vertical mirroring No

Image space reduction method Centered PCA
Subspace dimension 103
Whitening of feature vectors Yes

MODEL ESTIM. Client model generation method Centroid vector (average of features)

CLASSIFICATION Similarity measure Based on cosine distance

DATABASE

Image size
PREPROCESSING

FEATURE EXTRACTION

 
Table 6: summary of the parameters for the default configuration of the tomoface 

recognition system. 

 

In the default configuration of the tomoface approach, all video frames are firstly 
pre-processed with a histogram equalisation, colour component by colour component, to 
reduce the mismatches due to illumination variations. Next, the temporal X-ray 
transformation is applied on the greyscale version of the sequence, and the threshold value 
for the attenuation of background contours in the video X-ray image is set to 66% of the 
grey level range. After that, the filtered X-ray image is resized to 64 pixel rows (height) and 
81 pixel columns (width), by using the nearest neighbour interpolation method ; in fact, we have 
empirically found that this image size best isolates the discriminative information of the 
original X-ray image, once it is approximated with its whitened projection in the reduced 
space of dimension 103 (the maximum possible with our training data). Then, the client 
models are registered into the system by using their centroid vectors, which are calculated by 
taking the average of the feature vectors in the enrolment subset; in the end, recognition is 
achieved by using a nearest neighbour classifier with cosine distances in (the whitened) reduced 
space. 

Finally , as we did in the experimental sections of Chapter IV and Chapter V , in the 
following experiments we express the results relative to the default configuration of the 
tomoface recognition system with a blue colour line, in order to simplify the 
understanding and comparison between different graphs. 

VI.C.2. Person recognition results 
In this section we assess the performance of our person recognition system, and we 

compare it with the state of the art eigenface technique [87] and the multimodal 
recognition system of Chapter V . For our experiments, we keep the same eigenface 
implementation as in Section IV .C.4, and the same default configuration for the 
multimodal approach as in Section V .C.1. 
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Concerning the measures of performance, we express the identification results by 
reporting the correct identification rates (CIRs) , and by plotting the cumulative (correct) match scores 
(CMSs) as a function of the M  best matches retained (Section II.E.2). For the verification 
scenario, we report the equal error rates (EERs)  and we show the receiver operating characteristic 
(ROC) curves, which offer a global description of the system from low to high security 
applications (Section II.E.1). 

The person recognition results of our tomoface approach using spatio-temporal 
facial features are pretty good: its CIR is 74.0% and its EER is 7.7%. Though, they are not 
as good as those discussed in Chapter V for the multimodal recognition system, which 
obtains a CIR of 93.3% and an EER of 2.1%. Eigenfaces is still the top performing 
technique when tested in its optimal condition using the normalised image database of 
Italian TV speakers: in this case it achieves the perfect recognition outcome with 100.0% 
of CIR and 0.0% of EER. On the other hand, the same technique shows poor 
discriminative properties when tested using the raw (not normalised) version of the data 
set; in this unfavourable condition, it has a CIR of 69.2% and an EER of 10.8%. 

By looking at Figure 41 we can easily compare the identification and verification 
results of the various approaches: there is no doubt that the person recognition system 
using video tomography performs better than the eigenface one tested with raw images, 
but it is noticeably inferior to the multimodal recognition strategy, or to eigenfaces in its 
optimal experimental condition. In particular, in those common situations where the frame 
normalisation is not accurate, the tomoface approach performs better than the eigenface 
technique, which corroborates the assertion that spatio-temporal facial features are more 
discriminating than sole appearance ones. However, these experiments also reveal that the 
biometric information relative to facial appearance and motion is more distinctive if it is 
extracted separately through facial pictures and temporal signals, rather than when it is 
combined into video X-ray images; consequently, a post-mapping score integration like in 
the multimodal system of Chapter V should be preferred to a pre-mapping fusion at 
feature level, as in the tomoface approach. In conclusion, even if the comparison with the 
eigenface technique in its optimal condition is unfair, we are aware that our system is not 
as accurate as the best methods exploiting facial appearance [69], and we do not still regard 
the spatio-temporal facial features as a practical alternative to appearance ones. 
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Figure 41: comparison of person recognition results between: the proposed method, 

eigenfaces, and the multimodal system of Chapter V . 

 

VI.C.3. Gender recognition results 
We also evaluate the performance of the tomoface system in a gender recognition 

application; hence, in this section we compare the gender discriminatory power of spatio-
temporal facial features with that of facial appearance alone, and with that of facial 
appearance combined with head and mouth motion, similarly to what we did in Section 
VI.C.2 for identity . Therefore, we consider an equivalent experimental set-up that is 
adapted to the gender recognition task, with the same eigenface implementation and 
databases of Italian TV speakers. It is worth noting that due to the particular nature of this 
recognition problem, which consists of only two classes, the CIRs and EERs are directly 
related: ( ) ( )EERCIR ξη −= %100 . 

In a gender recognition scenario, the tomoface approach obtains very good results: 
it presents a CIR of 98.1% and so an EER of 1.9%. It also performs very close to its 
alternative strategies: we remind that the system exploiting facial appearance and head and 
mouth motion has a CIR of 99.0% and an EER of 1.0%, and the eigenface technique 
achives perfect recognition when in its favourable experimental condition, with a 100.0% 
of CIR and 0.0% of EER. On the contrary, the same eigenface strategy applied on a not 
normalised database presents poor results: a CIR of 89.4% and an EER of 10.6%. 

F. Matta - Video person recognition strategies using head motion and facial appearance



135 

By looking at Figure 42 we notice that, similarly to the person recognition case, the 
tomoface system performs better than the eigenface technique when it is applied on raw 
images, but this time its scores are really close to those belonging to the multimodal 
recognition approach, or to eigenfaces in its optimal experimental condition. All these 
elements confirm that spatio-temporal facial features are more discriminating than sole 
appearance ones, and let us believe that in a gender recognition scenario the biometric 
information relative to facial appearance and motion possesses almost the same 
discriminatory power, if it is extracted separately through facial pictures and temporal 
signals, or rather if it is combined into video X-ray images. In conclusion, we suppose that 
spatio-temporal features are potentially more discriminating than sole facial appearance, 
and we consider the tomoface technique promising, even if it is still too immature for real 
applications. 

 

 
Figure 42: comparison of gender recognition results between: the proposed method, 

eigenfaces, and the multimodal system of Chapter V . 

 

VI.D. Concluding summary 

In this chapter we investigated a practical method for extracting novel spatio-
temporal facial features from video sequences, which were used to discriminate identity 
and gender. For this purpose we developed a recognition system called tomofaces, which 
applied the temporal X-ray transformation  of a video sequence to summarise the facial motion 
and appearance information of a person into a single X-ray image. Then, we detailed the 
linear projection from the X-ray image space to a low dimensional feature space, the 
estimation of the client models obtained by computing their cluster representatives, and 
the recognition of identity and gender through a nearest neighbour classifier using distances. 
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The experiments run to evaluate the performance of the tomoface approach 
showed that it achieves pretty good person recognition results and very good gender 
recognition ones, and supported us for the following conclusions. Firstly , when video 
frames are not accurately normalised, the tomoface recognition system performs better 
than the eigenface technique, so the spatio-temporal facial features seems more 
discriminating than the sole appearance ones. However, the biometric information 
extracted separately through facial pictures and temporal signals, as in the multimodal 
system of Chapter V , appears to be more distinctive than when it is combined into video 
X-ray images. Finally , the spatio-temporal facial features do not represent a practical 
alternative to appearance ones yet; in fact, even if they possess a relevant potential 
discriminatory power, their calculation is still immature and needs some more 
investigation. 
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CChhaapptteerr  VVIIII..  CCoonncclluussiioonn  aanndd  
ppeerrssppeeccttiivveess  

VII.A. Concluding summary 

After having introduced the discipline of biometrics and its evolution towards 
multi-biometrics in Chapter II, we reviewed the literature on those person recognition 
strategies exploiting facial video information in Chapter III. We observed that only 
recently the attention of the scientific community has been attracted towards the use of 
facial video information for person recognition. We also noticed that the research on this 
domain has been mostly focused on developing straightforward extensions of image-based 
approaches, which exploit only the spatial information in video sequences; furthermore, 
most of temporal strategies took only advantage of the evolution of facial appearance over 
time. We concluded that the use of the face as a hybrid identifier, for example by 
exploiting facial appearance and motion for recognition, was still a largely unexplored 
topic. 

In Chapter IV we presented a novel person recognition system that exploited the 
unconstrained head motion information, obtained by tracking a few facial landmarks in the 
image plane. We saw how the tracking signals automatically extracted by our system were 
not very accurate; for this reason, their potential discriminatory power and the 
performance of our recognition approach were significantly reduced. Nevertheless, we 
remarked that our biometric system was able to achieve good person recognition results, 
but poor gender recognition ones. We deduced that natural head motion possessed 
enough discriminatory power to be used as a possible biometric in recognition 
applications, but it was not yet a practical alternative to facial appearance. 

In Chapter V we proposed a multimodal extension of our person recognition 
system; in particular, we successfully integrated the head motion information with mouth 
motion and facial appearance, by taking advantage of a unified probabilistic framework. 
We remarked that the potential discriminatory power of the biometric identifiers 
integrated in our multimodal recognition system was probably higher than what has been 
established by our experiments; in fact, our approach could not be tested in its optimal 
condition due to: noisy tracking signals, noisy mouth parameters, the reduced 
dimensionality of the face space and complexity of the GMM modelling. However, we 
observed that the integration of multiple sources of biometric information noticeably 
improved the performance of the separate unimodal systems, and that facial appearance 
conveyed the most discriminative information, followed by head and mouth motion. After 
all, our multimodal approach obtained good person recognition results and very good 
gender recognition ones, and it performed closely to the eigenface technique in its most 
favourable testing condition. 
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In Chapter VI we investigated a practical method for extracting novel spatio-
temporal facial features from video sequences, and we developed a recognition system 
called tomofaces, which applied the temporal X-ray transformation to summarise the facial 
motion and appearance information into a single X-ray image. This approach achieved 
pretty good person recognition results and very good gender recognition ones, and it 
performed better than the eigenface technique when video frames were not accurately 
normalised. We deduced then that spatio-temporal facial features seemed more 
discriminating than the sole appearance ones; however, the biometric information 
extracted separately through facial pictures and temporal signals appeared to be more 
distinctive than when it was combined into video X-ray images. In the end, we concluded 
that the calculation of these novel spatio-temporal facial features was still immature and 
needed some more investigation. 

We completed this doctoral dissertation with the appendices in Chapter VIII, where 
we detailed our database of Italian TV speakers in its video and image formats. 

VII.B. Future works 

So far, the issue of recognising people by using head motion, mouth motion and 
facial appearance from video sequences has been intensively discussed. Despite its 
promise, which has been shown in this thesis, this work has some limitations; in this 
section we discuss these limitations and possible directions for future research. 

First of all, the recognition results presented in this thesis should be validated using 
other databases. In particular, it would be necessary to assess the performance of our 
biometric systems with a larger dataset, containing far more individuals. After that, it could 
be interesting to evaluate the discriminatory power of our approaches in scenarios that are 
different from the one proposed here with professional TV speakers; for example, we 
would like to study the impact of the stress and various emotional states on the 
behavioural features of everyday users. Unfortunately, as far as we know there are no other 
databases available that could be suited to evaluate our techniques (Chapter VIII). 

Then, to improve the performance of our recognition system using head motion, 
which has been presented in Chapter IV , we should increase the accuracy of its tracking 
signals by implementing a more robust tracker. In fact, in this dissertation we have verified 
that the discriminatory power of the tracking signals is considerably affected by their 
precision, and that the signals extracted using a template matching technique possess a 
significant noise; hence, we are convinced that implementing a more accurate technique 
will surely provide better recognition results. In addition, it would also be of interest to 
study and take advantage of the head motion information at a higher level, for example at 
a gesture level. A possible strategy could include a local analysis of the tracking signals 
using a sliding window, coupled with a modelling of the distinct head gestures through 
multiple GMMs or HMMs. In this case, however, it would not be possible to avoid the 
temporal synchronisation problem between similar gestures, and some more issues would 
also arise, like: the definition of those “fundamental” head gestures that could be relevant 
for recognising identities, the automatic segmentation of video sequences based on those 
core gestures, and the bigger amount of data necessary for training multiple GMMs or 
HMMs. 
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Afterwards, the multimodal biometric system presented in Chapter V can be 
enhanced in several ways. The temporal subsystem may be improved by increasing the 
accuracy of the head tracking signals, or the precision of the segmented lip contours; in the 
former case, we have already proposed to implement a more robust tracking algorithm. In 
the second case, the best solution would be to exploit a video database of higher quality , 
because we observed that the main cause of error in the localisation of the lip contour is 
probably the low quality of the video frames; otherwise, it may be possible to refine the lip 
segmentation process, by investigating some additional error correction strategies, or to 
explore other image segmentation techniques [15][51], like active contours. Furthermore, it 
could be interesting to increase the present feature space with some more behavioural 
parameters from facial motion. One possibility is to study the discriminative properties of 
the lip curvature, area or shape variation over time; otherwise, it may worth exploring the 
extraction of some features related to the movement of the pupils and the eyebrows, or 
the blinking of the eyes. However, we are afraid that the automatic location of these facial 
landmarks and the extraction of the corresponding behavioural parameters could be too 
challenging because of the low quality of our video database. Concerning the spatial 
subsystem of our multimodal biometric approach, the literature on person recognition 
using facial appearance  has clearly demonstrated that PCA is not suited for computing the 
most discriminative features [12][67][96]. Hence, it would be necessary to examine more 
performing approaches, and investigate their compatibility with our probabilistic 
framework for model estimation and user classification; for this purpose, one possible 
candidate may be the probabilistic subspace strategy proposed by Moghaddam in [58]. 
Finally , the integration step can be improved by exploring more sophisticated fusion 
techniques, like for example the use of a post-classifier [22] (Section II.H.3) to integrate 
the different similarity scores; however, the amount of data required for estimating its 
parameters can be enormous compared to the one available. 

A future way to improve the tomoface recognition system introduced in Chapter 
VI, could be to develop an alternative space reduction strategy that demonstrates better 
discriminative properties than PCA; for this purpose, we suggest looking into some more 
linear techniques, like LDA or canonical correlation analysis (CCA)  [85], or eventually their 
non-linear extensions, like kernel principal component analysis (KPCA)  [82] or kernel linear 
discriminant analysis (KLDA) [57]. Moreover, it could be important to evaluate the effect of 
uncontrolled body and camera motion on the resulting video X-ray images, which are 
supposed to summarise only the facial motion and appearance information. We expect 
that it would be necessary to develop some further pre-processing to compensate for these 
additional disturbing movements, before extending the tomoface approach to these novel 
situations as well. 

Finally , considering the evolution of the research on speaker verification [27][76], all 
biometric systems proposed in this thesis could be improved by developing a universal 
background model (UBM) approach for impostor modelling, which could replace the 
background or cohort model estimations in our classification steps. 

VII.C. Scientific publications derived from this research 

Some parts of the work presented in this doctoral dissertation resulted in the 
following scientific publications: 
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CChhaapptteerr  VVIIIIII..  AAppppeennddiicceess  

VIII.A. Video database of Italian TV speakers 

There are two fundamental requirements for developing and assessing the 
performance of our recognition systems that exploit the temporal information in videos: 

1. A data set with natural head and facial motion in an unconstrained 
scenario. 

2. Enough data per user to enable the enrolment and recognition using 
behavioural biometric identifiers; for our techniques we estimate that they 
require at least 3-4 minutes of video per person. 

VIII.A.1. Analysis of standard video databases 
Unfortunately, to the best of our knowledge there are really few standard video 

databases available, and none of them is suited for our research. The main reason is that 
few recognition approaches exploit the temporal information in videos, and that the use of 
face as a hybrid (both physiological and behavioural) identifier has been largely unexplored 
until now, as investigated in Chapter III. In fact, the existing databases have been 
conceived for multi-biometric recognition systems that integrate two of more of these well 
known biometric identifiers: facial appearance, voice, 3D scans, signatures or fingerprints; 
in contrast, the head and facial motion has not been considered. 

In particular, we examined the following video databases: 

• The extended M2VTS database (XM2VTSDB)  [99]. It fulfils none of the 
requirements: the users are reading numbers in a constrained scenario with 
no head motion, and there is not enough data per user (less than 20 
seconds of video). 

• The V ALID database [100]. Again, it satisfies none of the requirements: 5 
recordings per person (less than 30 seconds) are not enough, and the users 
are static readers with no motion. 

• The My IDea database [101]. It does not fulfil the requirements as well. First 
of all, even if it has more data than the previous ones (less than 120 
seconds per user), it is still not enough. In addition, the videos have been 
recorded in too heterogeneous situations: in some shots the users repeat a 
phrase, in some others they count, sometimes they rotate the head 
horizontally , sometimes vertically , and some videos have full facial 
occlusions. Hence, the actual data that could be used to represent the 
natural motion of the users is minimal. 
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VIII.A.2. Description of the database 
Due to the lack of standard video databases suited for our research, we were 

obliged to create our own data set. Hence, we have been recording a compressed version 
of the TV news from the Italian national channel RAI 1 [102], over a period of 21 months. 
Next, we manually isolated a few short video clips, in which the TV speakers introduce the 
coverage; we selected those sequences where the movement of the announcer is natural 
and no capricious events are occurring, like a scene change, a discussion with a guest or a 
reporter, etc. In the end, we produced a small video database consisting of 208 video clips 
from 13 TV speakers (8 men and 5 women) of 13 seconds each. 

Figure 43 illustrates our data set by showing the first 7 frames of each speaker. It is 
important to notice that: there is no camera motion, because the camera is fixed, there are 
no zooms or changes in scale, and that the depth variation due to the in-depth movement 
of the speaker is insignificant, because the camera is far. Hence, all motion that can be 
extracted from these sequences is relative to the behaviour of the announcers. 
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Figure 43: illustration of our video database with the first 7 frames of each TV speaker. 
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In Figure 44 we have an example of variations present in our database; there are: 
assorted haircuts, clothing and backgrounds, lesser appearance variations due to aging and 
makeup, and various ornamentations (ear rings, necklaces). 

 

 
Figure 44: example of variations in our video database. 

 

In Figure 45 there is close up of a video key frame and of a predicted frame, to give 
an idea of the visual quality of the database; the compression artefacts are easy to remark 
by looking at the eyes, lips and textured background. From one side, the automatic 
location and segmentation of facial landmarks becomes challenging, which could actually 
affect their exploitation for recognition; on the other hand, this low quality database better 
simulates the real operational conditions of those systems that use surveillance video data. 
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Figure 45: close-ups of a video key frame (left) and of a predicted frame (right). 

 

VIII.A.3. Enrolment and recognition subsets 
For a technology evaluation of our recognition systems (Section II.E), we split the 

whole database into an enrolment subset and a recognition subset: 104 video sequences (8 for 
each of the 13 clients) are employed for the training of our systems (enrolment), and the 
remaining 104 (8 for each of the 13 clients) are used for their testing (recognition). We 
explicitly keep the two data subsets disjoint, in order to reduce the risk of systematic errors 
in the test procedure, due to an experimental situation over fitted to our video database 
(Section II.E.4). 

All technical details of our video database are summarised in Table 7. 

 
WHOLE DATABASE ENROLMENT SUBSET RECOGNITION SUBSET

Number of individuals 13 13 13
Number of men 8 8 8
Number of women 5 5 5
Number of videos 208 104 104
Number of frames 68640 34320 34320
Length of videos 45min. 49sec. 22 min. 54sec. 22 min. 54sec.

Number of videos 16 8 8
Number of frames 5280 2640 2640
Length of videos 3min. 31sec. 1min. 46sec. 1min. 46sec.

Number of frames 330 330 330
Length 13 sec. 13 sec. 13 sec.

192 pixel rows or height 192 pixel rows or height 192 pixel rows or height
224 pixel columns or width 224 pixel columns or width 224 pixel columns or width

Temporal 24.97 frames/second 24.97 frames/second 24.97 frames/second

Compression rate 118 Kbits/second 118 Kbits/second 118 Kbits/second
Format Windows Media Video 9 Windows Media Video 9 Windows Media Video 9

COMPRESSION

OVERALL

PER PERSON

SpatialRESOLUTION

PER VIDEO

 
Table 7: summary of the technical details of our video database. 
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VIII.B. Image database of Italian TV speakers 

Person recognition systems based on facial appearance usually do not need the huge 
amount of data that a video can offer (in our case: 330 frames at 24.97 frames per second). 
In fact, the appearance variation in consecutive frames is minimal, and so it is the 
supplementary information that can be exploited from them; moreover, the additional 
computational burden largely surpasses its benefits. On the contrary, appearance based 
recognition algorithms are highly sensitive to inter-frame variations, like inconsistent facial 
alignments or changes in pose and head size. 

For these reasons, we derived a special version of the video database of Italian TV 
speakers by sub sampling and manually normalising some video frames. More precisely , 
for the enrolment subset we extracted 28 frames from each sequence, at a frame rate of 2 
frames per second, whereas for the recognition subset we retrieved only the first key frame. 
After that, to normalise the video frames we firstly (in-plane) rotated the heads to 
horizontal eye position, then we cropped the face regions, and finally we aligned the 
images using the locations of the pupils. Finally , all technical details of our normalised image 
database are summarised in Table 8, and an illustration of this image database can be seen 
in Figure 46. 

 
WHOLE DATABASE ENROLMENT SUBSET RECOGNITION SUBSET

Number of individuals 13 13 13
Number of men 8 8 8
Number of women 5 5 5
Number of images 3016 2912 104

PER PERSON Number of images 232 224 8

64 pixel rows or height 64 pixel rows or height 64 pixel rows or height
64 pixel columns or width 64 pixel columns or width 64 pixel columns or width

OVERALL

SpatialRESOLUTION
 

Table 8: summary of the technical details of our normalised image database. 
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Figure 46: illustration of our normalised image database with the first 9 images of each TV 

speaker. 
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