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ABSTRACT

This paper presents an automatic semantic concept extrac-
tion method which employs low level visual feature fusion.
Both static and dynamic feature fusion approaches are stud-
ied and evaluated. The main contributions of this paper
are: A novel dynamic feature fusion approach inspired from
coding is proposed to create compact yet rich signatures; A
statistical study of descriptors with and without fusion. To
validate and evaluate our approach, we have conducted a
set experiments on the classification of soccer video shots.
These experiments show, in particular, that the feature fu-
sion step of our system increases the classification rate of
17% comparing to a system without feature fusion.

1. INTRODUCTION

The emergence of multimedia technology coupled with the
ever expanding image and video collections on the World
Wide Web have attracted significant research efforts in pro-
viding tools for effective retrieval and management of vi-
sual informations. Many application domains making use
of video data are available: Security, digital library, interac-
tive TV, etc... Many of those rely on video content analysis
and in particular video shot classification [1, 2].

Retrieving complex semantic concepts from video shots
requires to finely analyze the video shot content and to ex-
tract a set of features best describing the content. Fusing
these features toward an effective classification is however
far from being trivial. The fusion mechanism can take place
at different levels of the classification process. Generally,
it is either applied on extracted features (Feature or early
fusion) or on classifier outputs (Classifier or late fusion).
The main objective of this paper is to show the importance
and the role of fusion particularly at the feature fusion level.
This study extends the architecture for video shot classifi-
cation of [3] with a novel method for feature fusion which
we call coder neural network. The general architecture of
our semantic video content indexing and retrieval system
is depicted in Figure 1. The overall chain can be divided
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Fig. 1. General framework of the application.

into four parts: (1) Feature extraction, (2) feature fusion,
(3) classification and (4) classifier fusion. The feature ex-
traction step consists in extracting a set of low level features
based on color, texture and edges. Two feature fusion ap-
proaches are used: A static approach and a dynamic one.
The objective is to compute a compact and effective sig-
nature in order to describe key-frames of video shots. The
static approach is based on average and concatenation op-
erators while the dynamic approach uses coder neural net-
work and Principal Component Analysis (PCA). The SVM
classification step is used to feed the fusion layer, performed
thanks to a neural network based on evidence theory (NNET)
which labels video shots.

In order to validate and evaluate our method, we have
conducted a set of experiments on the classification of soc-
cer footages because of its importance and commercial po-
tential in several applications [4].

This paper is organized as follows. Section 2 describes
our system architecture. We briefly discuss feature extrac-
tion as the basis for our system and we present our ap-
proaches for fusing the low level features. Section 3 eval-
uates the performance of the proposed system. Statistical
studies of descriptors and fusion results are presented in
Section 4. Finally, section 5 summarizes the main results
and future research directions.



2. SYSTEM ARCHITECTURE

This section describes the workflow of our system process.

2.1. Feature extraction

Key-frames are segmented using two techniques: Region
and block segmentations. The first technique segments the
image into homogeneous regions thanks to the graph-based
image segmentation algorithm described in [5]. The second
technique divides the image into a set of non-overlapping
sub-images. Segments are represented using four visual fea-
tures: RGB, HSV, energies of Gabor’s filters, and edges
histogram descriptor. Then, to reduce computation com-
plexity and storage requirements, region and block features
are quantized and video key-frames are represented using
IVSM signatures (Image Vector Space Model) [2].

2.2. Feature fusion

The objective of feature fusion is to reduce the redundancy,
the uncertainty and the ambiguity of signatures. Under this
conditions, the fused feature should enable better classifi-
cation performance. In our work, two approaches are com-
pared, among them a novel one based on neural network.

2.2.1. Static Approach: This approach is based on sim-
ple operators such as concatenation and average. The de-
scriptors are merged into a unique vector. It does not re-
quire any compilation of feature vectors. The average op-
erator has need a simple sum of the IVSM region numbers
for each key-frame. Although, it may be interesting to give
a weight or a confidence level to each descriptor.

2.2.2. Dynamic Approach: It is based on dimension-
ality reduction, where the purpose is to map data onto low
dimensional space, improving visualization. Several meth-
ods are proposed for the various learning problems and data
mining, such as PCA, LDA, ICA, NMF [6, 7]. PCA is de-
rived from eigenvectors (the principle components) corre-
sponding to the largest eigenvalues of the covariance matrix
for data of all classes. It seeks to optimally represent the
data in terms of minimum mean square error between rep-
resentation and the original data.

We propose to perform feature fusion in a novel way,
using a trainable encoding scheme in order to reduce the
dimension of the original data vector (Figure 2). The coder
presents three layers (One input layer X, one hidden layer U,
and one output layer Y). The particularity of this coder, is
in the desired output (Y=X). The system is trained by back-
propagation and the number of neurons in the hidden layer
defines the dimension of the merged feature. Unlike PCA,
the coder makes a purely weighted additive representation,
providing a compact learned feature vectors U. To analyze
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Fig. 2. Coder/decoder multi-layers perceptron scheme.

the power of the merged feature obtained by PCA and coder,
a statistical study of descriptors before and after feature fu-
sion is presented in Section 4.

2.3. Classifier fusion (NNET)

In this part, we briefly describe our recently proposed neu-
ral network based on evidence theory (NNET) to address
classifier fusion (Figure 3) [3].
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1. Layer Linput: Contains N units. Identical to the
RBF network input layer with an exponential activation func-
tion φ. d: distance computed using training data. α ∈ [0, 1]
is a weakening parameter associated to unit i.�

si = αiφ(di)
φ(di) = exp (−γi(di)2)

(1)

2. Layer L2: Computes the belief masses mi (Equ. 2)
associated to each unit. The units of module i are connected
to neuron i of the previous layer.�

mi({wq}) = αiui
qφ(di)

mi(Ω) = 1− αiφ(di)
(2)

where ui
q is the membership degree to each class wq, q class

index q = {1, ...,M}.

3. Layer L3: The Dempster-Shafer combination rule
combines N different mass functions in one single mass. It
is given by the conjunctive combination (Eq. 3):

m(A) = (m1 ⊕ ...⊕mN ) =
X

B1
T

...
T

BN =A

NY
i=1

mi(Bi) (3)



The activation vector of modules i is defined as
→
µi. The

activation vectors can be recursively computed using:
8><
>:

µ1 = m1

µi
j = µi−1

j mi
j + µi−1

j mi
M+1 + µi−1

M+1mi
j

µi
M+1 = µi−1

M+1mi
M+1

(4)

4. Layer Loutput: In [8], the output is directly obtained
by Oj = µN

j . The experiments show that this output is very
sensitive to the number of prototype, where a small modi-
fication in the number can change the classifier fusion be-
havior. To resolve this problem, we use normalized output
(Eq. 5). Here, the output is computed taking into account
the activation vectors of all prototypes to decrease the ef-
fect of an eventual bad behavior of prototype in the mass
computation.

Oj =

PN
i=1 µi

jPN
i=1

PM+1
j=1 µi

j

(5)

Pq = Oq + OM+1 (6)

The different parameters (∆u, ∆γ, ∆α, ∆P , ∆s) can be
determined by gradient descent of output error for an input
pattern x. Finally, the maximum of plausibility Pq of each
class wq is computed.

3. EXPERIMENTS

Experiments have been conducted on soccer videos. About
2256 key-frames have been used to train the feature extrac-
tion system and 1129 key-frames for evaluation. Classifi-
cation task consists in retrieving key-frames expressing one
of the 12 considered semantic concepts (Table 1). Perfor-
mance is measured using the standard precision vs recall
metrics. In order to assess the contribution of feature fu-
sion, we designed five different systems (Table 2).

Id Concepts Test Train Total

1 close-up action 200 617 817

2 game stop 81 76 157

3 goal camera 5 13 18

4 lateral camera 50 92 142

5 global center view 217 507 724

6 global rear view 13 6 19

7 global right view 21 142 163

8 global left view 144 208 352

9 zoom on public 139 94 233

10 zoom on player 156 246 402

11 aerial view 15 15 30

Others 75 238 313

Table 1. Key-frames distribution of the video key-frames in
the various sets by semantic concepts.

Figure 4.1 shows the average precision (AP) results for
the five experiences. For concepts (3,7), all systems ob-

Id System

1 System without feature fusion step (See Figure 1).

2 System with a concatenation feature fusion approach.

3 System with an average feature fusion approach.

4 System with PCA feature fusion approach.

5 System with coder neural-network feature fusion approach.

Table 2. Experiment systems.

tain high detection rate (100%, 86%) respectively. It is ex-
plained by the low number of positive samples in the test
set (See Table 1). Here, almost all positive samples are re-
trieved in the 50 first key-frames returned by systems.

For concept (6), systems have obtained bad detection
rate, where the best one is given by the system 3 with 3%.
It is due to two reasons: The first is the low number of pos-
itive samples in the training set and the second is due to
the strong correlation between the global concepts (5,6,7,8).
The MAP oscillates around 39.7% using system 3, which
represents a good performance considering the annotation
complexity of the images under consideration.

We can notice that System 5 improves the rest of con-
cepts detection and obtains 17% MAP improvement com-
pared to system 1 (Witout feature fusion level). The best
MAP is 49, 70% using dim = 390.

System 4 obtains the same results as system 2 for con-
cepts (2,5,8,10) and improves concept (11). The best MAP
of System 4 is 44, 50% using dim = 270.

Figure 4.2 shows MAP results for systems 4 and 5 vs
dimension. The dimension dim ∈ [10, 450] per step of 20.
Smaller dimensions lead to loss of information which ex-
plains the poor performances. In higher dimensions signa-
tures are very sparse and computation time is unnecessarily
high. The best result is given by dim ∈ [70, 400].

Systems 1 2 3 4 5

MAP (%) 32.30 36.40 39.70 44.50 49.70

Table 3. Mean Average Precision for different systems.

The table 3 summarizes the MAP results obtained with
the different systems. We notice that the Neural Network
Coder obtains superior scores to those obtained by the other
systems (1,2,3,4) for all semantic concepts. This supports
further the importance of feature fusion.

4. STATISTICAL STUDY

The major quality indicators for description extraction meth-
ods are the characteristics of the output descriptor elements.
The characteristics can be measured as variance within vec-
tors, proximity between descriptor elements, distributions
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Fig. 4. (1) Comparison of system configurations results. (2) Mean Average Precision for dynamic feature fusion, from 10 to
450 dimension.

of quantized vector elements, etc. In this work, three meth-
ods were used: (1) Mean and standard deviation, (2) factor
analysis, (3) hierarchical cluster analysis.

4.1. Before feature fusion

The average mean is about 0.6 and the standard deviation
is lower than 0.1 (Values are normalized to [0, 1]). This
indicates that descriptors values could be transformed and
quantized to a smaller data type.

Interesting findings are obtained thinks to hierarchical
cluster structure analysis. It intuitively shows the proximity
between elements. It starts by clustering the elements with
high color similarity, the distance is less than 50. Then, it
clusters the elements with high edges histograms and the
elements with Gabor texture. Finally, it is easy to see that
color features are more redundant and dimensionality re-
duction is suitable comparing to texture dominant elements.

4.2. After feature fusion:

Now, standard deviation is 0.31 for PCA and 0.43 using
coder neural-network with dim = 270. In the figure 4.2,
we can notice that 70 factors are able to explain the global
variance. The descriptors before fusion are highly redun-
dant. This is not very surprising, because four of the seven
investigated descriptors are colors based. Of course, this is
a problem if color descriptors should be applied on media
objects with monochrome content.

5. CONCLUSION

We have presented both static and dynamic low-level fea-
ture fusion models based on dimensionality reduction via
PCA and information coding neural-network.

We have demonstrated through statistical study and em-
pirical testing the potential of feature fusion, to be exploited

in video shots retrieval. Our model, achieves respectable
performance, particularly, for certain semantic concepts like
close up action, zoom on player, center view, etc. when the
variety of the quality of features used is considered. Re-
sults obtained by the dynamic approach on soccer video us-
ing precision/recall evaluation protocol report the efficiency
of fusion mechanism (before and post classification) and
demonstrate the improvement provided by such a combi-
nation with an effective signatures coding and lowers com-
putation time by reducing the dimensionality, compared to
the system without feature fusion level.

Future works will take several directions. We start a pro-
gram of work about ontology study between the classes and
the exploitation of this semantic information on our classi-
fication or fusion system.

6. REFERENCES

[1] M. Rautiainen and T. Seppanen, “Comparison of visual features and
fusion techniques in automatic detection of concepts from news video
based on gabor filters,” Proceedings of IEEE ICME, 2005.

[2] F. Souvannavong, B. Merialdo and B. Huet, “Latent semantic analysis
for an effective region based video shot retrieval system,” Proceedings
of MIR, 2004.

[3] R. Benmokhtar, B. Huet,“Neural network combining classifier based
on Dempster-Shafer theory for semantic indexing in video content,”
Proceedings of MMM, vol. 4351, pp. 196–205, 2007.

[4] L. Duan, M. Xu, T. Chua, Q. Tian and C. Xu, “A mid-level represen-
tation framework for semantic sports video analysis,” Proceedings of
ACM MM, pp. 33–44, 2003.

[5] P. Felzenszwalb and D. Huttenlocher, “Efficiently computing a good
segmentation,” Proceedings of CVPR, pp. 98–104, 1998.

[6] I. Jolliffe, “Principle component analysis,” Springer-Verlag, 1986.

[7] D.D. Lee and H.S. Seung, “Algorithms for Non-negative Matrix Fac-
torization,” Proceedings of NIPS, vol. 13, pp. 556–562, 2000.

[8] T. Denoeux, “An evidence-theoretic neural network classifier,” Pro-
ceedings of IEEE SMC, vol. 3, pp. 712–717, 1995.


