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ABSTRACT 

 
This paper reports some work undertaken during the 
development of a generic object tracking application based 
on a keypoint model. In our previous work, we proposed a 
keypoint labeling algorithm to distinguish object from 
background keypoints. This article is the continuation of 
this work and deals with the problem of handling object 
deformation using the keypoint labels. In consequence, we 
introduce an algorithm to refine the bounding box position 
according to the surrounding keypoint labels. Experimental 
results are shown to validate this theory. 
 

1. INTRODUCTION 
 
Our tracking system was developped in the context of the 
portivity project which is developing a converged rich 
media iTV system, integrating broadcast and mobile 
broadband delivery to portables and mobiles and which will 
enable the end-user to link rich media information with 
moving objects within TV programmes. This particular 
framework brings up some constraints to our application. 
For the annotation process to be efficient, the tracking has, 
first, to be as near to real-time as possible. Moreover, in 
order to limit the user required intervention, the object 
needs to be coarsely located within a bounding box. And 
finally, the tracker has to be generic, handling all types of 
videos and thus, all kinds of difficulties such as illumination 
changes, blur, affine transformations, fast object motion, 
occlusions, and so forth. 
 

During the last few decades, a multitude of approaches 
have been developed to tackle the object tracking issue. The 
simplest of these, the block matching technique [1] proceeds 
in two steps. It starts by isolating the object of interest from 
the background. The object is then cut into rectangular 
blocks. The algorithm is based upon the correlation between 
such blocks in successive frames. The very fast results are 
balanced by a low tolerance to most of the difficulties and a 
rather imprecise localization of the object. In contrast, 
methods that track the object boundary [2] offers an 
accurate detection, but, it is obvious that highly distinctive 
contours are required. They use deformable contours, like 
“snakes”, that behave badly in the case of small or fast 
moving objects. Mesh-based methods [3] are a good 

compromise, in terms of precision, between the first two 
methods. They offer good object delimitation for a low 
computational cost. Their efficiency is directly dependent 
on the node detection process. 

Approaches relying on a particular cue to achieve the 
tracking usually choose color or motion. Color information 
has the advantage of being immediately available, and thus 
easy to exploit. Segmentation based methods [4] or 
histograms perform in real-time but are highly sensitive to 
illumination changes and occlusions. On the contrary, 
gradient ascent methods, and especially the mean-shift 
algorithm [5][6] are nowadays considered as yielding the 
best results. The mean-shift approach first aims to build up a 
similarity map with the salient colors of the object. The 
local resemblance between the object and the studied area of 
the image is modeled with Gaussians probability density 
functions. The similarity map is then constructed by 
summing these kernels. The most probable position of the 
object will finally be obtained with a gradient ascent starting 
at its last known position. This approach is particularly well 
adapted for the tracking of small and fast objects and 
efficiently deals with occlusions. However, at least one 
salient color is required for the algorithm to work properly. 

Motion is a feature used jointly with other characteristics 
by most of the applications. However, techniques relying on 
this cue are drastically different and constitute a separate 
branch. Some methods dubbed “predictive” analyze the 
anterior displacements of the object to predict the next. As 
regards Bayesian methods, they evaluate the potential 
displacements in terms of probability. They generally use 
Markov random fields, or particle filters [7][8]. 

All of these methods are specific to a given application 
and designed to deal with the stemming difficulties. The 
keypoint algorithms [9-12] overcome this flaw. These 
points are localized at strategic positions of the image, such 
as corners or extrema of a given function and enriched by 
local descriptors. They have been proved robust to usual 
transformations and are designed to deal with partial 
occlusions. In consequence, they have been the subject of 
intensive studies in the past few years [13-16]. Their 
advantages make the keypoints a promising tool for a 
generic tracking system. Nevertheless, their computation is 
expensive. But, in our specific context of an annotation 
system, this extensive calculation can be completed off-line. 

 



We previously developed a generic keypoint-based 
object tracking system [17][18] in order to fulfill our project 
requirements. The principle consists in extracting the 
keypoints and their corresponding descriptors for 
consecutive frames in order to assess the global bounding 
box displacement thanks to its included keypoint motion 
vectors. Moreover, we also propose a keypoint labeling 
algorithm [19] in order to differentiate object keypoints 
from those of the scenery (see Figure 1). 

Although our motion model remains reliable in the case 
of uniform motion, it suffers of some limitations when the 
object motion is not homogeneous on its surface: different 
motion vectors associated with different parts of the object 
are involved. This kind of situation usually takes place in 
the presence of deformable objects but can also arise with 
rigid ones under complex motion (rotation for instance). 
Differentiating background displacements from those of the 
object is then a much more delicate issue. Moreover, since 
the keypoint density is not generally homogeneous, a part of 
the object having a higher quantity of keypoints will bias 
the global object motion toward this part. 

However, we have other data in order to support the 
bounding box repositioning which are the keypoint labels. 
Given that the motion model is sufficiently reliable, we can 
use it to assess the global object motion, and refine the 
bounding box repositioning in relation to the label of the 
surrounding keypoints. 

The rest of the paper is organized as follows. The 
principles of the labeling algorithm are described in Section 
2 as a pre-requisite for the bounding box position 
refinement algorithm detailed in Section 3. Section 4 shows 
experimental results studying the algorithm behavior under 
various conditions. Finally, Section 5 presents our 
conclusions. 
 

2. LABELING ALORITHM 
 
In the scope of an object tracking application, the object is 
often coarsely located within a bounding box. Due to this 
approximation, part of the information included in the 
bounding box, and hence, falsely considered as identifying 
the object, will thereby perturb the algorithm. Despite this 
coarse localization, the accuracy of the bounding box 
positioning remains, like for every tracking algorithm, one 
of our priorities. Thus, we propose a keypoint labeling 
algorithm in order to prevent the scenery information to be 
part of the tracking process. 

Labeling the keypoints consists in differentiating object 
keypoints from those of the background in order to avoid 
the scenery influence like for a common background 
subtraction problem. The principle relies on allocating an 
“object” or “background” flag to each point. Only the 
“object” keypoints will latter be used to estimate the object 

motion. A classical labeling algorithm will consider that 
keypoints inside of the bounding box are “object” and those 
outside are “background”. To improve the tracking 
performance, we refine this process by introducing for each 
keypoint a likelihood to belong to the object or the scenery. 
This likelihood will be a real value ranging from 0 to 1 
determined on a four-features basis: the label of the matched 
keypoint, the color, the motion, and the position in relation 
to the bounding box. In order to increase the reliability of 
the labeling algorithm, the label allocation of keypoints for 
which there is a lack of information (some keypoints may 
remain unmatched) is postponed. An example of labeling is 
shown in Figure 1. 

 

Figure 1: Labeling for frames 30 and 60 of the 
“surveillance” sequence. The “object” keypoints are in 
blue, those of the “background” in white, undetermined 
keypoints are in red. 

However, in the case of a non cluttered background 
where all the extracted keypoints will certainly belong to the 
object, the basic algorithm mentioned above will be more 
efficient. The best solution to this issue being an algorithm 
adapting to the scenery, we have set up a clutter assessment 
measure based on the background keypoint rate. For a 
detailed version of the algorithms, please refer to [19]. 
 

3. POSITION REFINEMENT ALGORITHM 
 

This section is dedicated to the algorithm description. 
The mechanism relies on the allocation of labels to the 
immediate inner and outer areas of the bounding box frame. 
The label of an area, that we call “quality” is calculated as 
the mean of all the included keypoints in the area. The 
principle consists in evaluating the quality of areas that are 
adjacent to the bounding box frame, for various sizes. If an 
exterior (respectively interior) area is deemed belonging to 
the object (respectively to the scenery), the bounding box is 
moved in consequence. It is obvious that the precision of the 
approach strongly relies on accurate keypoint labeling 
(which has been proven in [19]). This modification most of 
the time resulting from a local displacement of the object, 



and in particular of object contours, we choose not to 
integrate it in the object global motion computation. 

Two factors influence this quality measure, first of all, 
by the number of considered keypoints, from which the 
measure reliability directly depends, and second, by the fact 
that this measure will be biased by our labeling algorithm. 
Indeed, this algorithm will consider that the area where the 
labels are uncertain is widespread inside of the bounding 
box, and restricted on the outside. Thus, there will be more 
“background” keypoints inside of the bounding box than 
“object” keypoints on the outside. The optimization of the 
bounding box in relation with the keypoint labels will then 
trend to shrink it.  

Considering these behaviors, we have set up a bounding 
box optimization algorithm. For each of the four sides of the 
bounding box, we test the possibilities of a two- or four-
pixel narrowing (or dilatation). If the area quality is higher 
than a given threshold Tquality, the shift is retained as a 
candidate. Afterwards, the best candidate is applied. The 
shrinking and dilating algorithm are the following: 
 
Bounding box narrowing (initial threshold Tquality = 2×S) 

Add = 0.5-quality; 
If (Add > Tquality/nb) 

  Save the modification; 
  Tquality = add×nb; 
 
Bounding box dilatation (initial threshold Tquality = S) 

Add = quality-0.5 ; 
Si (Add > Tquality/nb) 

  Save the modification; 
  Tquality = add×nb; 

 
,where nb is the number of analyzed keypoints, 

After this step, information about shrinking and dilating 
for each border of the bounding box is available. In order to 
limit excessive deformations, each axis is treated 
independently and the following repositioning rules are 
applied: 

 
1- If the d1 and d2 border deformations are in opposite 
directions, the bounding box is then shrunk or dilated by M 
pixels according to the smallest magnitude of the two 
detected shifts. M = min(abs(d1), abs(d2)).  
 
2- Else (the d1 and d2 deformations are in the same 
direction), the bounding box is then recentred according to 
these deformations by applying a displacement M = 
(d1+d2)/2 to each of these two borders. 
 
This process can then change the scale or recenter the 
bounding box. A conceivable variant will be to perform the 
two modifications for the same frame, first, the scale shift, 

and then the center adjustment. However, we prefer not 
doing it in order to counter potential errors. The shift 
between two images being minimal, if recentering the 
bounding box is really needed, it will be redetected at the 
next frame. Figure 2 illustrates this process. 
 

 
Figure 2: Bounding box optimization example based on 
the labeling (a) narrowing (b) recentering. d1 and d2 
represents the detected deformations and M the 
performed modification. 

The efficiency of this algorithm entirely relies on the 
adjustments of the Tquality threshold. It is initialized at a 
value twice more important for narrowing than for dilatation 
in order to favor the former in relation to the latter. 
Moreover, this threshold adapts itself in accordance to the 
number of keypoints involved. The higher the keypoint 
number, the more reliable the measure considered, and 
lower the threshold will be. For each retained modification, 
the threshold is updated in order to consider only the 
modifications with a better quality. 

This algorithm is also adaptable in the context of non 
cluttered environment (few or none of the extracted 
keypoints belongs to the scenery). It is then based on the 
number of keypoints present in the analyzed area without 
considering their labels. If an area inside of the bounding 
box has no keypoints, a consequent edge reduction is 
memorized. And, if an area outer of the bounding box has 
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more than one keypoint, we save a corresponding border 
dilatation. The priority is given to the dilatation rather than 
to the narrowing, and then to the candidate with the highest 
amplitude.  

By applying the following rules, similar to those 
enunciated for a cluttered environment, it is possible to 
obtain a bounding box optimization algorithm reliable for 
non cluttered environments. 
 

Reduction M = min(abs(d1)-p, abs(d2)-p) 
Dilatation M = min(abs(d1)/d, abs(d2)/d) 

Recentering M = (d1+d2)/2*d 
 
The purpose of the number of pixels p and the d factor is to 
increase the reliability of the transformations by minimizing 
the modifications. Only the modifications detected on 
several consecutive frames, and so deemed reliable, will be 
fully compensated. We use p=4 and d=2. The main 
advantage of this variant is the absence of parameters to 
adjust. 

Nevertheless, a generic algorithm has to face cluttered 
environments as well as those that are uniform. It is also 
possible for the clutter to change during the video sequence 
(for instance, a character passing in front of a tree). Our 
algorithm has then to adapt as a function of the scenery. In 
order to do that, we use the clutter measure discussed in 
Section 2 of this article [19]. The threshold determining the 
choice of the algorithm to use is fixed to 5% clutter, like for 
the labeling algorithm [19]. This simultaneous use of the 
two algorithm variants leads however sometimes to lapses 
when the clutter rate is oscillating around the threshold. 
Indeed, the behavior of the two variants of the algorithm 
will be very different for a rather still configuration of the 
scenery. In order to harmonize the behaviors, we restrict the 
transformations from the algorithm operating in non 
cluttered environment to the recentering of the bounding 
box. 

Figures 6 and 9 show examples of the algorithm for, 
respectively, bounding box rescaling and repositioning 
under cluttered environment. The method effectiveness for 
recentering the bounding box on the object in non cluttered 
scenery is illustrated by examples 7 and 8. 
 

4. EXPERIMENTAL RESULTS  
 
Two sets of tests have been conducted separately. First, we 
have experimented this algorithm in a cluttered environment 
for two types of keypoint having different densities (Harris 
[9][10] and Harris-Laplace [11] keypoints) as well as for 
different values of the Tquality parameter. The results are 
presented in Figures 3 and 4. We have also tested the 
algorithm in the case of non cluttered scenery on 3 video 
sequences. The results, shown in Figure 5, highlight the 

enhancement brought up by the label-based bounding box 
optimization algorithm in this context. 
Whilst the results with the Harris keypoints are 
encouraging, those with Harris-Laplace keypoints are 
disappointing. This is due to a too weak keypoint density 
for the algorithm to be efficient. Moreover, the quality 
threshold, which is the only important parameter, has no 
drastic influence on the algorithm results, proving that the 
method is not constrained by parameter tuning. 
Nevertheless, this threshold represents the compromise 
between security and the amount of shifts. With a high 
quality threshold, only reliable changes will be made, 
missing small repositioning. On the contrary, with a low 
value of the quality threshold, lot of shifts will be made, but 
at the risk of some mistakes. 
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Figure 3: Results for the bounding box optimization 
algorithm in relation to the Harris keypoint labels. Tests 
on 6 video sequences with cluttered background. 
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Figure 4: Results for the bounding box optimization 
algorithm in relation to the Harris-Laplace keypoint 
labels. Tests on 6 video sequences with cluttered 
background. 
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In the case of non cluttered environment, the 
algorithm improves the tracking system performances 
whatever the used keypoints are.  
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Figure 5: Results for the bounding box optimization 
algorithm in relation to the Harris and Harris-Laplace 
keypoint labels. Tests on 3 videos sequences with non 
cluttered background. 

Notice that although this algorithm will be able to rectify 
minor trajectory errors from the motion model, it cannot 
replace it and will be useless in the case of global motion 
estimation failure. This process will handle object 
deformations but will be unable to deal with object loss or 
occlusions which have to be treated by some other 
algorithms.  
 

5. CONCLUSION 
 
This paper has presented a bounding box position 
optimization algorithm. This technique takes as input a label 
that is allocated to each keypoint. The process uses the label 
of the keypoints surrounding the bounding box frame in 
order to correctly center and scale it, if required. It has been 
shown to be a success but needs a sufficient keypoint 
density to be effective. 

The results have proved that, in the case of correct 
global motion estimation, this algorithm is yielding a much 
more accurate bounding box positioning. 
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Figure 6: bounding box rescaling. Frames 7 and 8 of the 
“surveillance” sequence. The “object” keypoints are in 
blue, those of the “background” in white, undetermined 
keypoints are in red. 

  

Figure 7: bounding box recentering. Frames 18 and 21 
of the “soccer” sequence. The “object” keypoints are in 
blue, those of the “background” in white, undetermined 
keypoints are in red. 

 

Figure 8: Tracking of a blurred football player thanks to 
the bounding box recentering. Frames 20 to 30 of the 
“football from above” sequence. T The “object” 
keypoints are in blue, those of the “background” in 
white, undetermined keypoints are in red. 

 



 

 

Figure 9: bounding box repositioning 4 pixels to the 
right. Frames 35 and 37 of the “cooking” sequence. The 
“object” keypoints are in blue, those of the 
“background” in white, undetermined keypoints are in 
red. 

 


