
SGNET: a worldwide deployable framework
to support the analysis of malware threat models

Corrado Leita, Marc Dacier
Institut Eurecom

Sophia Antipolis, France
{leita,dacier}@eurecom.fr

Abstract

The dependability community has expressed a growing
interest in the recent years for the effects of malicious, ex-
ternal, operational faults in computing systems, ie. intru-
sions. The term intrusion tolerance has been introduced to
emphasize the need to go beyond what classical fault toler-
ant systems were able to offer. Unfortunately, as opposed to
well understood accidental faults, the domain is still lack-
ing sound data sets and models to offer rationales in the
design of intrusion tolerant solutions. In this paper, we de-
scribe a framework similar in its spirit to so called honey-
farms but built in a way that makes its large-scale deploy-
ment easily feasible. Furthermore, it offers a very rich level
of interaction with the attackers without suffering from the
drawbacks of expensive high interaction systems. The sys-
tem is described, a prototype is presented as well as some
preliminary results that highlight the feasibility as well as
the usefulness of the approach.

1 Introduction

The US-CERT published in the early 2006 a security bul-
letin, summarizing the vulnerabilities being identified be-
tween January 2005 and December 2005. In the whole year,
5198 vulnerabilities, hitting different operating systems and
applications, were reported. This is a frightening number.
Each of these vulnerabilities can be potentially exploited by
an attacker to lead a computer resource to a state of failure.
However, how many of them are used in practice remains
unknown. In order to assess the dependability of a com-
puter system or network resource, it is essential to have a
good understanding of the malicious threats to which the
system will be exposed.

Many different projects, such as DShield [16], the In-
ternet Motion Sensor [5], the CAIDA project [7] or the
Leurré.com project [15] take advantage of different tech-

niques to collect data and thus offer different views on the
attacks observed on the Internet. However, they lack the re-
quired level of interaction with the attackers to adequately
understand and characterize the observed attacks. An ex-
tremely valid instrument to collect information is the hon-
eypot technology. The deployment of honeypots in several
locations of the IP space has underlined the fact that dif-
ferent blocks of addresses are attacked differently [14, 9].
It is thus extremely important to have in-depth information
about these threats in order to study the feasibility of char-
acterizing the different observed segments of the Internet.
Also, recent work has shown the usefulness of gathering ex-
perimental data to model and better understand the threats
due to attackers [24, 29]. Alata et al. have shown the mer-
its of using honeypots for the statistical modeling of attack
processes [20, 2] and, more specifically, the merits of high
interaction ones [3]. The benefits due to high interaction
honeypots, i.e. real machines offered as juicy targets for
attackers, are counterbalanced by several practical issues.
They have to be closely monitored to make sure that they
are not used as stepping stones against third parties, leading
to potential liability issues. Also, one must ensure that they
are not used to store illegal material while, at the same time,
preserving the privacy of innocent users redirected to them.
Last but not least, they are expensive in terms of resources
and, for all these reasons, are not amenable for large scale
deployment purposes.

In this paper, we provide a solution that addresses these
issues thanks to a framework that is scalable and offers al-
most the same amount of information than real high inter-
action systems for a specific class of attacks, namely server-
based code injection attacks. We are aware of the fact that
they correspond only to a subset of the possible attack sce-
narios. However, as of today, they are considered to be re-
sponsible for the creation of large botnets [27] and the pre-
ferred propagation mechanisms of a large number of differ-
ent malware. Enriching the framework for other classes of
attacks is left for future work.

We propose a novel distributed honeypot deployment

called SGNET. SGNET obtains the aforementioned objec-
tive exploiting the strengths of the ScriptGen technology
[22, 21] and dynamically combining them with other exist-
ing solutions, namely Argos [25] and Nepenthes [4]. How-
ever, SGNET is more than a simple deployment of exist-
ing tools. SGNET offers an overlay, based on an ad-hoc
HTTP-like protocol called Peiros, to coordinate these enti-
ties and seamlessly integrate them into a distributed archi-
tecture. The result of this integration is a honeypot deploy-
ment able to automatically learn and handle server-based
exploits, and emulate the code injection attacks up to the
point of the malware download. All this is achieved while
keeping the honeypot sensors free of any computational in-
tensive task and enforcing a reliable containment policy.
SGNET is thus suitable for the future deployment of a num-
ber of small honeypot platforms hosted by worldwide part-
ners on voluntary basis. The information collected by these
sensors is stored in an SQL database, enabling offline so-
phisticated treatment by interested partners.

SGNET is the first Internet deployment taking advantage
of the ScriptGen technology. In [21], the technology was
validated through a set of experiments conducted in a lab.
In a way, the experiments artificially created the required
conditions for the ScriptGen technology to work correctly.
This left a number of open questions about the behavior
of the technology with a more heterogeneous and real data
source such as the Internet. This paper aims at answering
these open questions by observing the behavior of Script-
Gen when handling Internet attacks.

Also, this paper presents an important extension of the
ScriptGen technology as presented in previous work [21].
We will show in this paper how we have been able to ex-
tend the technology, originally conceived to learn and em-
ulate pure network interaction, to embed in the learning
phase code injection information. This allows the SGNET
to automatically learn and handle unknown exploits provid-
ing an observation potential much greater than any existing
knowledge-based approach.

Last but not least, the results of this real life experimental
validation show the usefulness of the approach and offer
sound rationales in favor of a larger scale deployment with
the collaboration of interested partners willing to join.

Summarizing, the contributions of this paper are three-
fold. Firstly, this paper consists in the first validation of the
applicability of the ScriptGen technology to the diversity
of attacks observed on the Internet. Secondly, this paper
presents an important advance in the emulation capabilities
of the ScriptGen framework through the integration of code
injection information in the learning phase and its dynamic
interaction with other entities. Thirdly, it offers the reader
some insight on the kind of data that such platform could
offer when widely deployed.

The paper is structured as follows: Section 2 recalls the

250 OK

250 OK

250 OK

MAIL FROM: <alice@eurecom.fr>

MAIL FROM: <bob.eurecom.fr>
MAIL FROM: <carl@eurecom.fr>

250 OK

MAIL FROM: <*@eurecom.fr>

Figure 1. ScriptGen FSM generalization

principles of the ScriptGen technology. Section 3 gives an
overview of the functional structure of the SGNET. Section
4 describes the SGNET implementation. Section 5 presents
experimental return on experience. Section 6 provides a re-
view of the related work in the field. Section 7 concludes
the paper.

2 Introduction to ScriptGen

The concept of honeypot, existing in the literature since
1995 [18], was defined by Spitzner in [30] as a network
host whose value resides in being compromised by attack-
ers. Bailey et al. in [5] classify honeypots according to
their breadth and depth. The breadth of a honeypot system
is defined as its ability to detect threats across geographical
boundaries. The depth of a honeypot system represents the
level of interaction with the attacking client. Normally, a
trade off exists between these two measures: obtaining high
depth has an impact on the cost of the solution, and thus
affects the achievable breadth.

The ScriptGen technology [22, 21] was created with the
purpose of generating high-depth honeypots having a lim-
ited resource consumption. This is possible by learning the
behavior of a given network protocol and represent this be-
havior under the form of a Finite State Machine. The gener-
ated FSM can then be used to respond to clients, emulating
the behavior of the real service implementation at a very
low cost.

The ScriptGen learning phase is completely protocol ag-
nostic: no knowledge is assumed neither about the struc-
ture of the protocol, nor on its semantics. ScriptGen is thus
able to learn any protocol as long as its payload is not en-

crypted. The ScriptGen learning takes as input a set of sam-
ples of network interaction between a client and the real
implementation of a server. The core of the learning phase
is the Region Analysis algorithm introduced in [22]: taking
advantage of bioinformatics alignment algorithms [23], the
algorithm exploits the statistical variability of the samples
to identify portions of the protocol stream likely to carry
a strong semantic meaning and discard the others. This en-
ables us to rebuild a semantic abstraction as shown in Figure
1 for an excerpt of SMTP FSM.

The properties of the ScriptGen approach allow to per-
form a completely automated incremental learning of the
activities as shown in [21]. ScriptGen-based honeypots are
able to detect when a client request falls out of the current
FSM knowledge (0-day attack) by simply detecting the ab-
sence of a matching transition. We showed in [21] how it is
possible to react to this situation relying on a real host (an
oracle) and proxying the conversation between the attacker
and the host. The resulting conversation is stored and will
lead to an FSM refinement as soon as enough samples of
the same activity will be collected.

ScriptGen is able to correctly learn and emulate the ex-
ploit phase for protocols as complex as NetBIOS [21], but
our early attempts to learn in a similar way the code injec-
tion behavior and represent it in the FSMs (inter-protocol
dependencies [21]) proved to be insufficient. SGNET is
born to address these limitations, offering a solution to the
need for a more elaborate emulation of code injection at-
tacks and for a stronger containment policy when “execut-
ing” injected shellcodes in order to retrieve the actual mal-
ware code itself responsible for the observed attacks.

3 SGNET and the epsilon-gamma-pi-mu
model

The final objective of a code injection attack consists in
forcing the execution of an executable code on a victim ma-
chine exploiting a vulnerable network service. Crandall et
al. introduced in [10] the epsilon-gamma-pi model, to de-
scribe the content of a code-injection attack as being made
of three parts.

Exploit (ε). A set of network bytes being mapped onto
data which is used for conditional control flow decisions.
This consists in the set of client requests that the attacker
needs to perform to lead the vulnerable service to the con-
trol flow hijacking step.

Bogus control data (γ). A set of network bytes being
mapped onto control data which hijacks the control flow
trace and redirects it to someplace else.

Payload (π). A set of network bytes to which the
attacker redirects the vulnerable application control flow
through the usage of ε and γ.

The payload that can be embedded directly in the net-
work conversation with the vulnerable service (commonly
called shellcode) is usually limited to some hundreds of
bytes, or even less. It is often difficult to code in this lim-
ited amount of space complex behaviors. For this reason it
is normally used to force the victim to download from a re-
mote location a larger amount of data: the malware. In the
context of this paper, we propose an extension of the orig-
inal epsilon-gamma-pi model in order to differentiate the
shellcode π from the downloaded malware µ.1

An attack can be characterized as a tuple (ε, γ, π, µ).
Years ago Internet malicious activity was dominated by the
spread of worms. In that case, it was possible to identify
a correlation between the observed exploit, the correspond-
ing injected payload and the uploaded malware (the self-
replicating worm itself). Thanks to the correlation between
the 4 paramaters, retrieving information about a subset of
them was enough to characterize and uniquely identify the
attack. This situation is changing. Taking advantage of
the many freely available tools such as Metasploit [32, 28],
even unexperienced users can easily generate shellcodes
with personalized behavior and reuse existing exploit code.
This allows them to generate new combinations along all the
four dimensions, weakening the correlation between them.

In order to retrieve precise information about a code-
injection attack, all the four components of the epsilon-
gamma-pi-mu model must then be observed. The Script-
Gen approach is suitable for the learning of the exploit net-
work interaction, offering the required level of interactiv-
ity with the client required to lead the attacker into sending
code injection attacks. SGNET greatly expands this capa-
bility by coupling the ScriptGen approach with the program
flow hijack detection capabilities of Argos [25] and with the
shellcode emulation and malware download capabilities of
Nepenthes [4].

When facing an attacker, the SGNET activity evolves
through different stages, corresponding to the main phases
of a network attack. SGNET distributes these phases to
three different functional entities: sensor, sample factory
and shellcode handler.

The SGNET sensor corresponds to the interface of the
SGNET towards the network. The SGNET deployment
aims at monitoring small sets of IPs deployed in multiple
locations of the IP space, in order to characterize the het-
erogeneity of the activities along the Internet as observed in
[14, 9]. SGNET sensors are thus low-end hosts meant to be
deployed at low cost by different organizations and bound to
a limited number of IPs. Taking advantage of the ScriptGen
technology, the sensors are able to handle autonomously the
exploit phase ε of attacks falling inside the FSM knowledge.

1This model does not cover the case of multiple download of executable
files, i.e. the first downloaded executable performs the download of a sec-
ond file. These more complex interactions are left for future work.

We saw in [21] the ability of the ScriptGen approach to
rely on an oracle to handle unknown activities (i.e. 0-days)
and automatically learn their behavior. The SGNET sample
factory is an entity meant to provide samples of network
interaction to refine the knowledge of the exploit phase pro-
vided to the sensors under the form of a FSM. Here we ex-
tend the concept of oracle by enriching the exploit informa-
tion provided by the sample factory with information about
the control flow hijack γ. To do so, we take advantage of a
modified version of Argos, presented by Portokalidis et al.
in [25]. Argos takes advantage of qemu, a fast x86 emu-
lator [6] to implement memory tainting. Keeping track of
the memory locations whose content derives from packets
coming from the network, it is able to detect the moment in
which this data is used in an illegal way. Argos was modi-
fied in order to allow the integration in the SGNET and load
on demand a given honeypot profile with a suitable network
configuration (same IP address, gateway, DNS servers, ...
of the sensor sending the request). The profile loading and
configuration is fast enough (less than 1 second) to be in-
stantiated on the fly upon request of a sensor.

Together with new samples of protocol interaction to
learn the exploit phase, the Argos-based sample factories
provide information about the presence of code injections
(γ) and are able to track down the position in the network
stream of the first byte being executed by the guest host,
corresponding to the first byte Bi of the payload π. We
define here the payload π as the set of bytes following Bi

in the network stream. The (in)validity of this assump-
tion will be discussed in Section 5.2. The code injection
information provided by the sample factory is integrated
in the FSM learning, allowing the sensors to handle au-
tonomously future instances of the same exploits up to the
retrieval of the payload π. It is important to notice that the
cost of relying on a sample factory to handle a network at-
tack is much greater than the autonomous FSM-based op-
eration performed by the sensors. One of the objectives of
the SGNET will thus consist in trying to reduce the time
spent in the learning phase, taking advantage of the collab-
oration of multiple distributed sensors and thus increasing
the sample variability and the sample collection rate. Once
a new attack has been learned and coded by a new path into
the ScriptGen FSM, similar exploit instances do not need to
be presented to the high interaction Argos machine but, in-
stead, they can be autonomously handled by the ScriptGen
sensor up to the point when malware has to be uploaded.

An important aspect of the SGNET sample factory is
its ability to define a reliable containment policy. Memory
tainting allows to detect precisely the moment in which the
attacker succeeds in taking control of the virtual machine
control flow. We are thus able to stop the virtualized host as
soon as this event happens, blocking any opportunity to take

advantage of the host as a stepping stone to attack others2.
The final steps of the code injection attack trace are del-

egated to the SGNET shellcode handler. Every payload π
identified by the SGNET interaction is submitted to a shell-
code handler. This entity acts as an oracle to the sensors,
providing information about the necessary network interac-
tion to emulate the payload behavior and download the mal-
ware µ. The payload emulation is a too complex interaction
to be represented in terms of a FSM; for instance, it would
come down to represent all the possibly large file transfers
with FSMs, which is clearly not an efficient way of proceed-
ing. For this reason, differently from the sample factories,
the network interaction generated by the shellcode handlers
is never learnt in terms of FSM. In case of a code injection,
the sensors will always rely on a shellcode handler that must
thus be cheap in terms of resources. The SGNET shellcode
handler is based on the Nepenthes tool [4].

Nepenthes is a honeypot with a specific objective: to
download malware from attacking sources. Nepenthes is
thus able to handle and observe all the four phases of the
epsilon-gamma-pi-mu model. Nepenthes although suffers
from two restrictions: the limited vision on the exploits ε
and the limited vision on the payloads π. Nepenthes takes
advantage of a knowledge based approach to handle net-
work attacks: the exploit and the code injection information
is hardcoded in a set of vulnerability modules, one for each
emulated exploit. Nepenthes applies then a set of heuris-
tics to recognize the payload behavior and emulate it. The
SGNET shellcode handler bypasses all vulnerability mod-
ules and directly feeds Nepenthes with the retrieved pay-
loads π. In a way, the interaction between the SGNET sen-
sors and SGNET sample factories generates a generic vul-
nerability module that automatically learns any exploit en-
countered by the sensors. This is a major contribution with
respect to the previous work in Nepenthes [4] as we are get-
ting rid of its main limitation, namely the need to develop a
large number of highly specific vulnerability modules.

We still rely on the Nepenthes signatures to identify the
payload behavior. However, the combination of Nepenthes
with the behavior-based information provided by SGNET
in presence of code injections allowed us to identify and ad-
dress cases in which a successful code injection was falling
outside the scope of the Nepenthes knowledge (see section
5.2).

4 The SGNET

We have implemented a SGNET prototype and deployed
it in the Internet. In this Section we describe its design and
implementation.

2Argos does not detect password brute-forcing, but this problem is ad-
dressable by a careful configuration of the guest VM

Sensors Sample factories

Shellcode handlers

SG1

SG2

SG3

SF1 SF2 SF3

SH1 SH2

GW
Private

Network

Figure 2. SGNET architecture

4.1 The architecture

The previous section introduced three main functional
entities, namely sensors, sample factories and shellcode
handlers. These entities are coordinated through an ad-hoc
HTTP-like protocol named Peiros. The goals of this proto-
col are threefold.

Firstly, it must allow the sensors to send service requests
to the other entities, asking for the instantiation of an oracle
or submitting a payload to a shellcode handler.

Secondly, it must allow to exploit the distributed deploy-
ment of the sensors in order to maximize the statistical vari-
ability of the collected samples. That is, it must allow to
share the collected samples in order to perform a central-
ized refinement. Also, it must allow to coordinate the dis-
tribution of the refined FSMs in order to make sure that all
the deployed sensors share the same knowledge of the pro-
tocols.

Finally, it must allow to tunnel packets between the var-
ious entities, avoiding the need to modify packets endpoint
addresses or modify the routers configuration in order to de-
liver tunneled packets to their destination. Delivering tun-
neled packets as application payloads over a normal TCP
stream allows great flexibility and transparency in the place-
ment of the various entities.

The SGNET architecture is shown in Figure 2. The sen-
sors are deployed along the IP space, and due to the small
resource requirements of the ScriptGen approach they can
be easily deployed on low-end machines. The sample facto-
ries are deployed in a central farm on one or more high-end
hosts, together with the shellcode handlers. It is very im-
portant to understand that this solution substantially differs
from the classical honeyfarms where the farm is invoked for
each and every attack not implemented by, for instance, a
honeyd script. In SGNET the high interaction nodes (Argos
machines) are only used when new attacks are observed.
Upon collection of enough samples of attack activity (i.e.
around 20) the ScriptGen FSMs will be refined and pushed
to all the sensors, and the activity will be handled locally.
This has a great impact on the dimensioning of the farm.

An additional component is introduced in the architec-
ture, that is the SGNET gateway. The gateway is the core of
the whole SGNET architecture. The gateway is the default
home for every SGNET sensor. Each sensor on startup takes
advantage of the Peiros protocol to connect to the gateway,
and retrieve its own configuration. Centralizing the con-
figuration details greatly simplifies the administrative tasks.
Also, the gateway acts as an application level proxy for the
Peiros protocol. SGNET sensors send service requests to
the gateway, that transparently dispatches them to a free
sample factory or shellcode handler. The gateway acts then
as a load balancer for the various SGNET entities, using a
simple round robin scheduling policy. Finally, the gateway
centralizes the collection of samples generated by the var-
ious sensors and refines the ScriptGen FSMs. As soon as
a new refinement is produced, the gateway is able to push
the update to all the sensors, taking advantage of the Peiros
protocol. All the sensors active at a given moment will thus
have the same protocol knowledge, with some approxima-
tion due to network latency and retransmissions. It is impor-
tant to understand that the architecture shown in Figure 2 is
just a sample of composition of the different entities. The
Peiros protocol can be easily extended to allow more com-
plex configurations, for instance with multiple gateways to
improve the system availability and scalability. This is left
for future work.

4.2 SGNET interaction

The original proxying algorithm, as introduced in [21],
was application level proxying. That is, the ScriptGen hon-
eypot was handling reassembled TCP streams, or UDP data
payloads. The information about packet boundaries was
thus ignored. We considered this approach to be satisfac-
tory since most of the exploits currently observable on the
Internet target application-level vulnerabilities and not the
TCP/IP stack. The practical experience in replaying Inter-
net attacks such as Blaster [8] underlined the importance
of preserving packet boundaries in order to correctly repro-
duce the attack trace. Also, preserving the TCP/IP headers
allows to correctly reproduce attacks based on misuse of the
TCP/IP header fields. The SGNET interaction is thus based
on RAW proxying, preserving each TCP/IP packet during
replay.

The SGNET interaction when handling an attacking
source A interacting with a honeypot sensor H evolves
through a set of phases represented in Figure 3. An attack
can spread over several TCP sessions, UDP requests and
ICMP packets. Using a finer proxying granularity such as
the single TCP session or UDP packet sequence would be
wrong: the attack trace may be the result of several state
modifications obtained through multiple TCP sessions or
UDP packet sequences. A sensor maintains thus a differ-

Packet from
known activity

Packet
from 0-day Success

Timeout

Packet

Code injection

Code
injection

Timeout

FSM
driven

Warm
up

Raw
PXY

SC
handli

ng

Figure 3. SGNET interaction

ent state for each couple (A,H) of attacking source A and
target address H . Follows an example of interaction in the
most elaborated case of a code injection falling outside the
FSM knowledge:

1. The sensor handles the known interaction using the ex-
isting FSM (FSM driven operation). In this case, the
sensor takes advantage of the normal kernel TCP/IP
stack, that handles retransmissions and duplicate pack-
ets and provides to the sensor the application data
stream. Taking advantage of the Netfilter ipqueue li-
braries [34], the sensor caches all the RAW IP packets
P1...Pi sent from A to H .

2. When facing an unknown request, the sensor sends a
request to its Peiros endpoint (the gateway Gw) ask-
ing for an instance of sample factory and requiring the
assignment of a specific network configuration to the
guest OS.

3. The gateway forwards the request to a free sample fac-
tory, instantiating an oracle instance SF . When the
instance is ready, the sensor is notified.

4. The sensor replays all the packets P1...Pi received
from A towards the obtained sample factory SF to ini-
tialize the honeypot (warm up phase). The packets are
tunneled over the Peiros connection and proxied by the
gateway Gw, thus following the path H → Gw →
SF .

5. The sensor then relies on the sample factory for con-
tinuing the conversation with A (RAW proxying oper-
ation). In this phase the sensor will prevent its TCP/IP
stack from receiving any packet coming from the at-
tacker A targeting IP H , dropping them using the
ipqueue libraries. The attack packets Pi+1, ...Pn will
be instead pushed directly to the sample factory.

6. If a code injection is detected by Argos, the sample
factory notifies the sensor through a Peiros message,

providing information about the position of the pay-
load.

7. The sensor closes the tunnel towards the sample fac-
tory, and sends a second request to its Peiros endpoint
(Gw) to analyze the identified payload (Shellcode
handling phase). The request is forwarded by the gate-
way to a shellcode handler SH .

8. The Nepenthes shellcode analyzer recognizes the
shellcode, and notifies the sensor of the success
through a Peiros message. In case of success, a tunnel
(H → Gw → SH) is initialized and the Nepenthes
download modules download the malware through the
Peiros tunnel.

9. The gateway collects the interaction sample generated
by the packets tunneled between the sensor and the
sample factory and uses it to refine the FSM knowl-
edge. If a new refined FSM is produced, it is pushed to
all the active sensors.

Figure 3 shows that the SGNET lifecycle for a given
attack trace may evolve through different sequences of
phases. For instance, in the case in which the honeypot H
is hit by a code injection already part in the FSM knowl-
edge, the sensor will be able to retrieve the payload without
requiring the instantiation of a sample factory, moving di-
rectly from the FSM driven operation to the shellcode han-
dling phase.

5 SGNET experimental results

A prototype of the SGNET infrastructure was deployed
on the Internet. The deployment has been running for a total
of approximately 100 days, and has been collecting valu-
able information about the observed activities in an SQL
database. This section addresses the validity and the poten-
tial of the proposed architecture by analyzing its behavior
in the experimentation period.

Three main points are addressed here: firstly, the ability
of the SGNET and the underlying ScriptGen approach to
cope with the set of heterogeneous activities inherent to an
Internet deployment. Secondly, the ability of SGNET to
correctly handle and learn code injection attacks. Thirdly,
we offer some insight into the kind of information retrieved
by the deployment.

The prototype deployment is configured as follows. The
gateway, the sample factories and shellcode handlers are in
France. The two sensors are deployed in France and Aus-
tralia. They thus represent respectively the best and worst
case scenario in terms of network delays. All the sensors
are associated to an unpatched Microsoft Windows 2000
machine, running the IIS services. Several open TCP and

Proxied
SG Handled
Scanning

 0

 20

 40

 60

 80

 100

29282726252423222120191817161514131211109876543210

A
tta

ck
 so

ur
ce

s

Days

Figure 4. ScriptGen learning

UDP ports are associated to their corresponding FSM, such
as TCP ports 135, 139 and 445, UDP port 137 and others.

5.1 ScriptGen and real attacks

In order to evaluate the performance of ScriptGen in
learning real Internet activities, we start our experiment in a
condition of 0-knowledge: the FSMs provided to ScriptGen
at day 0 are emptied. ScriptGen is thus forced to handle
any incoming network activity as a new activity. This al-
lows to evaluate its capability to cope with heterogeneous
and diverse samples. We focus this analysis on the first 30
days of operation3. This period corresponds in fact to the
most interesting one from the point of view of the Script-
Gen learning.

In a first approximation, we can distinguish three differ-
ent kinds of activities: scanning activities, activities han-
dled through the FSM knowledge, and activities handled
through proxying. The scanning activities correspond to ac-
tivities in which the source connects to one or more open
ports (mainly HTTP, SMTP and HTTP, as well as some
Windows-specific ports) without sending any payload, and
thus without requiring any FSM knowledge to be handled.
The evolution of the aforementioned classes of activities
along the observation period is represented in Figure 4.

It is possible to observe from Figure 4 that the total num-
ber of attackers does not significantly change over time,
showing that learning does not decrease the attractiveness of
the honeypots. However there is a clear difference between
the initial days and the last days of observation in terms of
nature of the activity. While there is still a prevalence of
proxied activities in the first week, at day 8 48 activities
out of a total of 75 (64%) are handled by ScriptGen FSMs.
Even at day 0, after only 8 hours of operation, ScriptGen

3Due to a technical problem, the system was not able to collect data on
day 13

has been able to collect enough samples to build a first path
in the FSMs allowing it to handle 10 other activities of that
kind appearing on that same day.

We monitored the evolution of the FSM size, and we saw
that the acquired knowledge does not tend to explode as
time goes by: after a constant growth in the first 10 days of
experimentation, the FSM knowledge stabilizes to a number
of 68 states, corresponding to less than 1 MB in size.

This is an important validation of the feasibility of tak-
ing advantage of the ScriptGen approach to handle Internet
attacks. Figure 4 clearly shows the ability of the honey-
pots to handle autonomously the majority of the attacks af-
ter 10 days of unsupervised learning. More importantly, the
generated knowledge is stable: no more paths are gener-
ated in the succeeding days. This means that the ScriptGen
approach has been able to correctly generalize most of the
exploit phases observed by the sensors.

On the other hand, Figure 4 underlines an important is-
sue that could not be spotted in lab-based experimentation.
During the last day of observation, day 29, we still had to
proxy some of the traffic the treatment of which had not
yet been successfully learned. This result can be explained
considering the frequency of the various classes of network
activities. The first activity being learnt by SGNET (in only
8 hours) is likely to correspond to the network activity of the
Allaple worm [17]. The worm tries to bruteforce network
share passwords, and thus each observed IP source gener-
ates hundreds of TCP sessions, and thus samples. Other
common activities such as the Blaster propagation attempts
[8] require approximately one week to be included in the
FSM learning.

We can hypothesize that along with these frequently ob-
served activities, a number of less frequent and diverse ones
is present in the set. Being less frequent, the considered ob-
servation period, with only two sensors hosting a total of 4
IPs, is not sufficient to collect enough samples to perform
the learning. In order to validate the hypothesis, we took
advantage of the Leurré.com dataset and the clustering al-
gorithm defined in [26]. We looked at one month of data
collected by a honeypot platform deployed in the same sub-
net of one of the two sensors. Out of a total of 560 different
clusters of similar activities, 540 of them correspond to in-
frequent activities, observed less than 50 times in the time
span. At the same time, these 540 clusters amount to only
16% of the total observed activities. This is consistent with
the SGNET observations plotted in Figure 4: in average,
21% of the activities between day 20 and day 29 resulted to
be unknown to the FSM knowledge.

5.2 SGNET components interaction

In order to evaluate the SGNET ability to handle code
injection attacks and integrate the additional information

Known, unrecognized injection
Known, recognized injection
Unknown, unrecognized injection
Unknown, recognized injection
Unknown, no injection
Known, no injection
Scanning

 0

 20

 40

 60

 80

 100

29282726252423222120191817161514131211109876543210

A
tta

ck
 so

ur
ce

s

Days

Figure 5. Handling activities

offered by the SGNET entities in the FSM knowledge, it
is necessary to observe the learning from a different view-
point, taking into consideration the interaction between the
various entities. The analysis was run in the same observa-
tion period defined in the previous Section.

Figure 5 is a more detailed view on the activities shown
in Figure 4. Ordered in the Figure from bottom to top, we
can distinguish the following classes of activities: 1) scan-
ning activities, connecting to open ports without sending
any payload; 2) activities handled by the FSM knowledge;
3) activities handled through proxying; 4) activities handled
through proxying that led to a code injection correctly rec-
ognized and emulated by Nepenthes; 5) activities handled
through proxying that led to a code injection detected by
Argos but not recognized by Nepenthes; 6) activities han-
dled through the FSM knowledge able to extract a payload
recognized by Nepenthes; 7) activities handled through the
FSM knowledge that produced a payload not recognized by
Nepenthes.

It is clear from Figure 5 that starting from day 10, an
average of more than 50% of the observed activities are
code injections completely handled by FSM-based opera-
tion without any need to rely on the resources of the sample
factories. These activities mainly correspond to the spread
of the Allaple worm (a polymorphic worm targeting ports
139/445) [17] and Blaster (port 135) [8]. After the first 14
days the amount of code injections not being handled by
FSM-based operation is reduced to 5% of all activities.

It is extremely interesting to see how the set of activi-
ties identified in the previous Section for not having been
learnt by ScriptGen actually corresponds to activities not
leading to a code injection. Inspecting them, we found out
application-level scanning activities, such as HTTP GET re-

Bi Bn

Bi BnBa

A

B

Figure 6. Finding the payload

quests.
Figure 5 validates the SGNET interaction, showing how

the combination of the ScriptGen learning with the mem-
ory tainting provided by Argos is able to produce in a com-
pletely automated and unsupervised way a generic vulnera-
bility module for Nepenthes.

The interaction between the behavior-based knowledge
of ScriptGen FSMs with the knowledge-based Nepenthes
approach becomes extremely interesting in the case of un-
recognized code injections. Two main observations are
worth being mentioned here.

In the beginning of the testing we ran into a consider-
able number of cases in which the shellcode was not recog-
nized correctly by Nepenthes. The information provided
by the Argos honeypots contains hints on the first byte
Bi of payload π being executed by the host. When em-
bedding this information in the new protocol paths of the
ScriptGen FSM, we considered as payload all the follow-
ing bytes Bi, Bi+1, ...Bn up to the end of the reassembled
application-level stream (Figure 6 A). This approach was
often generating extremely short payloads, consisting only
of a few bytes. The real behavior of these payloads is shown
in Figure 6 B. The identified payload consists of a jump in-
struction to another memory location containing most of the
payload, that was located before Bi in the reassembled ap-
plication stream.

We revised our initial assumptions as follows. Given a
reassembled application level stream B1...Bn identified by
Argos as containing a payload π at byte Bi, the sensor tries
to submit a payload π = (Bk, ...Bn) with k ≤ i to the
shellcode handler. The index k is gradually decreased start-
ing from i until the payload is recognized successfully by
Nepenthes. This allows to backtrack from the initial hint
given by Argos, that in these particular situations proved to
be misleading. Since the payload recognition takes a very
small time on the shellcode handler, the heuristic adds a
minimum overhead.

This heuristic allowed to increase the recognition ratio
of the shellcodes, unveiling a much more interesting phe-
nomenon. In the last week of December 2006, SGNET
logged a high number of shellcodes injected through port
139 and not being recognized by the shellcode handler. 147
out of a total of 200 submitted shellcodes were not de-
tected, catching thus our attention. After submission of the

collected payload samples to the Nepenthes development
team, they decided to modify their signature for one class
of shellcodes (bindfiletransfer:amberg). ScriptGen was in
fact collecting samples differing by 3 bytes from the orig-
inal signature. This difference is probably due to the fact
that the shellcode had been modified by using different op-
codes for the same operations. The modification of the sig-
nature allowed Nepenthes to handle and correctly download
the recent Allaple [17] worm, that was previously hidden to
Nepenthes honeypots. This episode is extremely important
since it underlines two facts: 1) the knowledge-based ap-
proach used by Nepenthes to detect and emulate shellcodes
can be evaded; 2) the SGNET allows to observe these cases
and take the appropriate measures.

5.3 Degrees of freedom in the epsilon-
gamma-pi-mu model

During its operation, the SGNET stores a variety of in-
formation about the observed attacks, covering all the four
dimensions of the epsilon-gamma-pi-mu model. While the
dimension of the deployment is at the moment insufficient
to conduct a thorough analysis on this data, we can extract
some preliminary information to offer to the reader a sam-
ple of its potential.

We consider here the whole 100 days of operation of the
deployment. In this period, the SGNET observed 2151 code
injections whose payloads π were correctly identified by the
shellcode handler. Of these injections, only 532 of them
successfully produced a malware sample due to failures in
the malware download phase performed by Nepenthes. We
are currently investigating this issue together with the Ne-
penthes team.

A precise and complete analysis of the various infor-
mation components and their projection on the epsilon-
gamma-pi-mu space is left for future work. We offer here
some preliminary evaluation of the collected data.

Each traversal of a ScriptGen FSM that leads to a node
marked as final point of a code injection corresponds to a
combination of ε and γ values. We consider that different
variants of γ will lead to different branches in the last step
of the FSM traversal. According to this, two paths differing
only in their last transition correspond to the usage of the
same exploit ε but to different bogus control data γ.

In order to uniquely identify shellcodes containing vari-
able parts (e.g. attacker IP address), we choose to use the
combination of the protocol, port and output filename asso-
ciated to the malware download phase as identifiers of π.

The malware, µ, is identified by the name returned by
the F-Secure antivirus product when presented to it.

Using these definitions, we can identify a strong correla-
tion in our data between the ε and γ dimension. The same
does not hold for the other two dimensions, confirming the

claims made in section 3. Two examples are worth being
mentioned here.

Firstly, a specific (ε,γ) couple on port 135 TCP was hit 31
times and led to the generation of 23 different payloads π.
This led to the download of different malware samples, such
as “Hupigon.gen83”, “Backdoor.Win32.Vanbot.dt”. This
shows that the same exploit is reused by different malware
to inject different payloads in the system, forcing the victim
to behave differently.

A specific (ε,γ,π) triplet on port 139 TCP was hit
401 times and led to the download of 6 different mal-
ware types µ, namely: 4 different variants of the previ-
ously mentioned Allaple worm (A,B,D and E), the “Back-
door.Win32.Rbot.bni” backdoor and one single sample
named as “Virus.Win32.Virut.d”. As opposed to the pre-
vious case, we see here that also the payload π has been
reused by the attackers to, ultimately, deploy different mal-
ware.

6 Related work

When considering the ScriptGen deployment in the
SGNET architecture presented in this paper, it is possi-
ble to identify some similarities with the concept of hon-
eyfarm[31]. Many different implementations exist, such as
GenII Honeynets [1], Potemkin [33] and Collapsar [19]. All
these approaches share the idea of running farms of virtu-
alized hosts to handle traffic redirected from several remote
locations to the centralized farm. SGNET architecture pro-
foundly differs from these approaches with respect to two
distinct characteristics.

Containment. When handling farms of virtualized
hosts, a trade-off exists between the quality of the observa-
tions and the security of the system. A virtualized host can
potentially be attacked and compromised, and eventually
used as a stepping stone by attackers to compromise other
systems. It is thus important to carefully define the policy
according to which the network interaction of the farm can
propagate to the Internet. For instance, it is advisable to al-
low the farm to perform DNS requests but at the same time
it is essential to block any exploit attempt towards other
hosts. The knowledge based approach used by GenII Hon-
eynets or by Collapsar needs constant maintenance in order
to avoid misjudgements in the containment decisions. Tak-
ing advantage of memory tainting techniques, SGNET em-
ploys a behavior-based containment in the detection of code
injections that allows to stop the host execution as soon as
an attacker successfully hijiacks the control flow.

Performance and delay. SGNET takes advantage of the
ScriptGen approach to perform a smart selection of the traf-
fic to be relayed to the virtualized hosts. While in normal
honeyfarms all the traffic targeting the monitored addresses
is constantly relayed to the virtualized hosts, in SGNET the

allocation of a virtualized host to handle an activity is a rare
event triggered by the observation of a new kind of activity.
As we saw in section 5, most of the received attacks after
the learning phase are handled locally by the sensors us-
ing ScriptGen FSMs. This property leads to less stringent
performance and resource requirements for the farm of vir-
tualized hosts, and also avoids impacting the delay observed
by the attackers (i.e. the tunneling delay implicit in a world-
wide deployment of sensors).

An important deployment worth being mentioned here is
GQ [11, 13], a high interaction internet telescope. SGNET
is a distributed deployment and GQ is an internet telescope.
By design, they differ profoundly but they also share some
similarities. GQ takes advantage of the protocol learning
capabilities of RolePlayer [12] to filter out known activi-
ties and reduce the load on the telescope. Differently from
SGNET, GQ relies on RolePlayer for the emulation of the
whole attack trace. As explained in Section 3 and quantified
in Section 5.3, we believe that the FSM model generated by
ScriptGen or by RolePlayer fits only to the emulation of the
exploit phase, but it is insufficient to model the complex in-
teractions inherent in code injections. Last but not least, GQ
suffers from the same containment issues seen for the hon-
eyfarms. The interested reader will find in [21] a thorough
comparison of RolePlayer and ScriptGen.

7 Conclusions

We presented in this paper a novel infrastructure to ob-
serve Internet attacks and to retrieve extremely rich infor-
mation about their nature. We showed how, focusing on
code injection attacks, we have been able to address the
epsilon-gamma-pi-mu model and emulate the steps required
to completely emulate the attack trace up to the successful
retrieval of malware samples. We took advantage of three
different approaches, namely ScriptGen, Argos and Ne-
penthes, and we have been able to exploit their strengths in
addressing specific phases of the attack process. We showed
how the ScriptGen approach can act as a generic vulnerabil-
ity module for Nepenthes, providing behavior-based infor-
mation and allowing to overcome some of the limitations of
the Nepenthes knowledge-based approach. Also, we have
been able to concretely validate the ScriptGen approach by
handling successfully real Internet attacks. The experimen-
tal results showed in this paper are the result of the imple-
mentation of an initial prototype. The future deployment in
different locations of the IP space of a wider SGNET de-
ployment will allow us to gather a more detailed picture of
the local threats observable in the Internet.

Acknowledgment

This work has been partially supported by the RNTR
ACES project (contract number ANR05RNRT00103) and
by the ReSIST Network of Excellence (contract number
026764). This work has been partially supported by the
European Commissions through project FP7-ICT-216026-
WOMBAT funded by the 7th framework program. The
opinions expressed in this paper are those of the authors and
do not necessarily reflect the views of the European Com-
mission.

References

[1] Know your enemy: GenII honeynets. Know Your Enemy
Whitepapers, May 2005.

[2] E. Alata, M. Dacier, Y. Deswarte, M. Kaâniche, K. Kortchin-
sky, V. Nicomette, V. H. Pham, and F. Pouget. CADHo:
Collection and Analysis of Data from Honeypots. In
EDCC’05, 5th European Dependable Computing Confer-
ence, Apr 2005.

[3] E. Alata, V. Nicomette, M. Kaâniche, M. Dacier, and
M. Herrb. Lessons learned from the deployment of a high-
interaction honeypot. In EDCC’06, 6th European Depend-
able Computing Conference, Oct 2006.

[4] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling.
The Nepenthes Platform: An Efficient Approach to Collect
Malware. Proceedings of the 9th International Symposium
on Recent Advances in Intrusion Detection (RAID), Septem-
ber 2006.

[5] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Wat-
son. The internet motion sensor: A distributed blackhole
monitoring system. In 12th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, February
2005.

[6] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.
Proceedings of the USENIX Annual Technical Conference,
FREENIX Track, pages 41–46, 2005.

[7] Caida Project. The UCSD Network Telescope,
www.caida.org, 2007.

[8] CERT. Advisory CA-2003-20 W32/Blaster worm, August
2003.

[9] E. Cooke, M. Bailey, Z. M. Mao, D. Watson, F. Jahanian,
and D. McPherson. Toward understanding distributed black-
hole placement. In WORM ’04: Proceedings of the 2004
ACM workshop on Rapid malcode, pages 54–64, New York,
NY, USA, 2004. ACM Press.

[10] J. Crandall, S. Wu, and F. Chong. Experiences using Minos
as a tool for capturing and analyzing novel worms for un-
known vulnerabilities. Proceedings of GI SIG SIDAR Con-
ference on Detection of Intrusions and Malware and Vulner-
ability Assessment (DIMVA), 2005.

[11] W. Cui. Automating Malware Detection by Inferring Intent.
PhD thesis, University of California, Berkeley, Fall 2006.

[12] W. Cui, R. H. Katz, and W.-t. Tan. Protocol-independent
adaptive replay of application dialog. In The 13th An-
nual Network and Distributed System Security Symposium
(NDSS), February 2006.

[13] W. Cui, V. Paxson, and N. Weaver. Gq: Realizing a system
to catch worms in a quarter million places. Technical report,
ICSI Tech Report TR-06-004, September 2006.

[14] M. Dacier, F. Pouget, and H. Debar. Honeypots, a practi-
cal mean to validate malicious fault assumptions. In Pro-
ceedings of the 10th Pacific Ream Dependable Computing
Conference (PRDC04), Tahiti, February 2004.

[15] M. Dacier, F. Pouget, and H. Debar. Leurre.com: On the
advantages of deploying a large scale distributed honeypot
platform. In Proceedings of the E-Crime and Computer
Conference 2005 (ECCE’05), Monaco, March 2005.

[16] DShield. Distributed Intrusion Detection System,
www.dshield.org, 2007.

[17] F-Secure. Malware information pages: Allaple.a,
http://www.f-secure.com/v-descs/allaplea.shtml, December
2006.

[18] L. Halme and R. Bauer. AINT misbehaving-a taxonomy of
anti-intrusion techniques. Proceedings of the 18th National
Information Systems Security Conference, pages 163–172,
1995.

[19] X. Jiang and D. Xu. Collapsar: A VM-Based Architecture
for Network Attack Detention Center. Proceedings of the
13th USENIX Security Symposium, pages 15–28, 2004.

[20] M. Kaâniche, E. Alata, V. Nicomette, Y. Deswarte, and
M. Dacier. Empirical analysis and statistical modeling of
attack processes based on honeypots. In WEEDS 2006 -
Workshop on empirical evaluation of dependability and se-
curity (in conjunction with the international conference on
dependable systems and networks, DSN 2006), Jun 2006.

[21] C. Leita, M. Dacier, and F. Massicotte. Automatic han-
dling of protocol dependencies and reaction to 0-day attacks
with ScriptGen based honeypots. In RAID 2006, 9th Inter-
national Symposium on Recent Advances in Intrusion De-
tection, September 20-22, 2006, Hamburg, Germany - Also
published as Lecture Notes in Computer Science Volume
4219/2006, Sep 2006.

[22] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an au-
tomated script generation tool for honeyd. In Proceedings
of the 21st Annual Computer Security Applications Confer-
ence, December 2005.

[23] S. Needleman and C. Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of
two proteins. J Mol Biol. 48(3):443-53, 1970.

[24] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier. An experi-
mental evaluation to determine if port scans are precursors
to an attack. In Conference on Dependable Systems and Net-
works (DSN 2005), pages 602–611, 2005.

[25] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emula-
tor for fingerprinting zero-day attacks. Proc. ACM SIGOPS
EUROSYS, 2006.

[26] F. Pouget. Distributed System of Honeypots Sensors: Dis-
crimination and Correlative Analysis of Attack Processes.
PhD thesis, Institut Eurecom, 2006.

[27] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multi-
faceted approach to understanding the botnet phenomenon.
In ACM SIGCOMM/USENIX Internet Measurement Confer-
ence, October 2006.

[28] E. Ramirez-Silva and M. Dacier. Empirical study of the im-
pact of metasploit-related attacks in 4 years of attack traces.

In 12th Annual Asian Computing Conference focusing on
computer and network security (ASIAN07), December 2007.

[29] Ramsbrock, Berthier, and Cukier. Profiling attacker behav-
ior following ssh compromises. In Conference on Depend-
able Systems and Networks (DSN 2007), pages 119–124,
2007.

[30] L. Spitzner. Honeypots: Tracking Hackers. Addison-
Welsey, Boston, 2002.

[31] L. Spitzner. Honeypot Farms,
http://www.securityfocus.com/infocus/1720, August
2003.

[32] The Metasploit Project. www.metasploit.org, 2007.
[33] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Sno-

eren, G. Voelker, and S. Savage. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm. ACM
SIGOPS Operating Systems Review, 39(5):148–162, 2005.

[34] H. Welte. The Netfilter framework in Linux 2.4. Proceed-
ings of Linux Kongress, 2000.

	Introduction
	Introduction to ScriptGen
	SGNET and the epsilon-gamma-pi-mu model
	The SGNET
	The architecture
	SGNET interaction

	SGNET experimental results
	ScriptGen and real attacks
	SGNET components interaction
	Degrees of freedom in the epsilon-gamma-pi-mu model

	Related work
	Conclusions

