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Service discovery, an essential building block of nomadic and ubiquitous computing 
applications, needs to be secured to be effectively deployed. Centralized and 
decentralized approaches have been proposed to this end. This paper analyzes the 
application layer secure matching function using a Markovian performance model in 
order to analyze various deployment scenarios. This study outlines the determinant 
parameters that should be evaluated for selecting one out of these two architectures in 
order to ensure a scalable and efficient service discovery. 

1.   Introduction 

The deployment of ubiquitous computing systems, as notably envisioned by 
Mark Weiser [1], and the trend towards Service Oriented Architectures will 
undoubtedly generalize the need for discovery mechanisms as essential 
components for locating ambient and location-based services. Service discovery 
in a network can be implemented in two manners, first using a decentralized 
architecture relying on broadcast or multicast communication, and second using 
a centralized architecture based on an identified registry relied upon by users 
and servers to facilitate discovery request matching. The choice of the 
appropriate architecture to enable an efficient service discovery highly depends 
on the deployment environment (LAN, wireless or ad-hoc communications, 
Internet, VPN, etc.) and on parameters like the expected number of users and 
services, the type and amount of resources available (CPU, memory …), and the 
power consumption of user devices. The performance of discovery mechanisms 
has already been studied through simulation: [2] and [3] present an evaluation of 
the performance of post-query discovery strategies in ad-hoc networks, while 
[4] introduces a service discovery performance model that makes it possible to 
predict discovery service failure and overload in real time. Numerous service 
discovery standards like WS-Discovery, Jini, UPnP, SLP, or UDDI have also 
been proposed in recent years, even though their performance has not been 
assessed analytically to our knowledge. This approach falls short for taking into 
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account the increasing use of discovery in open ubiquitous computing 
scenarios with numerous new threats [5] [6]. This paper analyzes security 
mechanisms introduced in [7] and [8] to deal with such issues using 
performance results obtained out of a Markovian models detailed in [9]. While 
this model does not take into account low-level network artifacts such as delay 
or losses, it can assess the impact of introducing security mechanisms at the 
application level and the resulting processing and traffic overhead incurred. It 
thus makes it possible to reason about the preferred architecture to ensure an 
efficient and scalable deployment of secure service discovery depending on 
specific scenarios. 

2.   Secure Service Discovery Models 

Service discovery involves a service requester (client) and a service provider 
(server), the latter providing one or multiple services that can be accessed by the 
clients. In traditional discovery approaches, security is usually limited to 
recommendations about classical message authentication and integrity 
protection, thereby implicitly restricting discovery to known services.   
Ubiquitous computing has prompted standard-independent studies aimed at 
securing service discovery using an infrastructure for establishing the 
trustworthiness of clients and services. For instance, Zhu et al. [10] assume that 
participants to the discovery protocol are located behind a trusted proxy that sets 
up trust relationships through key exchanges with other proxies. [12] instead 
suggests the use of a central entity that combines the roles of a Certificate 
Authority and of a registry, and that helps clients and servers to set up a trust 
relationship and to establish secure channels with each another. These solutions 
are not adapted to decentralized architectures and address server rather than 
client security, contrary to [7] and [8] on which we focus. These security 
solutions being destined to a wireless environment, they aim at protecting 
discovery systems against illegal access to discovery messages which the 
adversary can get. Similarly to these solutions, we consider that brute force DoS 
and signal jamming are out of scope of our adversarial model. The following 
sections introduce queuing models of these two approaches. 

2.1.   Centralized Discovery Model 

Centralized discovery approaches rely on a registry which plays the role of a 
trusted third party in charge of enforcing security policies provided by clients 
and services. Clients and services send their discovery policies to the registry 
that will be in charge of judging whether a discovery matching is secure. 



 3 

The queuing model depicted in Figure 1 represents the processing phase of a 
secure client service request at the registry for a centralized configuration, 
considering a sole thread is in charge of all processing steps. 

 
Figure 1: Centralized Model 
 

The discovery process consists of four steps: 
1. Client service discovery requests arrival: requests are assumed to be 

generated according to arrival process with a rate λ.  
2.  Buffering: The registry can temporarily store the requests to be 

processed by the central unit. Messages are served in a FIFO manner. 
3.  Request processing: the registry first matches a client request with the 

service profiles available locally. The matched service will be 
authenticated in order to verify its compliance with the security policy 
provided by the client. If the verification is successful, the registry also 
has to further authenticate the client in order to verify its compliance 
with the security policy provided by the service. The corresponding 
service time is a random variable with a mean value 1/μ. 

4.  Probabilistic decisions (acceptance/rejection): q1 is the probability that 
a service matches with a client request and be compliant with its policy, 
q2 the probability that a client be compliant with this service policy. 

2.2.   Decentralized Discovery Model 

The security solution proposed in [8] for a decentralized configuration relies on 
a particular usage of the Attribute Based Encryption mechanism [11]. This 
mechanism is used by clients to protect their requests by encrypting them 
according to a particular policy of disclosure of client/service profile attributes.  
The queuing model depicted in Figure 2 represents the decentralized discovery 
scheme in which some computing time is now allocated to encryption and 
decryption. Requests are routed using multicast, which adds complexity to event 
handling. In such a decentralized architecture, nodes usually have limited 
capacities as compared to a registry. For this reason, we considered in our model 
that a server does not buffer new requests when it is busy. The execution 
proceeds as follows: 
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1. Client service discovery request arrival: requests are generated 
according to an arrival process with rate λ.  

2.  Servers message processing: all the available servers are contacted by 
the client via multicast. Each of these servers has to decrypt the 
messages in order to authenticate and access to client’s request. The 
time to decrypt is assumed to be a random variable with a mean value 
1/μ1.  

3.  Service authentication: q1 is the probability to successfully decrypt a 
client request. In case of success the server has to encrypt the response 
message to the client. 

4. Client authentication: q2 is the success decryption probability of a 
client. 

 
Figure 2: Decentralized Model 

3.   Matching Probabilities 

The probabilities q1 and q2 described above represent the probability for a 
client or a service to obtain a successful matching (including authentication, 
access control, decryption) with security policies protecting the access to 
resource profiles.  This probability depends on the number of elements of the 
systems and on the volume of vocabulary known by each element. The 
vocabulary volume is the amount of data knowledge related to a certain domain. 
For example, a subset of the medical vocabulary (scanner, radiology, 
dermatology, cardiology etc.) can be related to the services deployed inside a 
hospital building or the roles of users (surgeon, patient, etc.). In analogy to such 
concepts, we define a vocabulary as the global set of possible identities or roles 
in a system. The subset of this vocabulary is represented by the group of 
identities and roles existing in the system. 
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The probability to match an element (client or au server), represented by a 
group of attributes x in a system, is defined by the probability P that these 
attributes belong to the subset vocabulary C part of the general vocabulary V: 
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4.   Performance Analysis 

Markov chains corresponding to the two queuing models were detailed and 
validated with a continuous time simulator in [9]. This mathematical model 
makes it possible to study the performance parameters of service discovery and 
to determine whether a centralized or a decentralized strategy should be 
adopted. 

The performance study detailed below answers the following determinant 
questions for selecting one of the two secure solutions to service discovery: in 
which conditions is the request rejection rate better or worse? Which model is 
able to serve the largest number of clients? What is the fastest approach? What 
is the impact of a variable number of servers in the system? What is the impact 
of the matching probabilities on the performance? 

4.1.   System Setup 

 
Table1. Values of the input variables used in the tests. 

 Centr1 Decentr1 Centra2 Decentr2 Centr3 Decentr3 Centr4 Decentr4 

λ 0.5 → 40 0.5 → 
40 

0.5 → 
40 

0.5 → 40 0.5 → 40 0.5 → 40 0.5 → 40 0.5 → 40 

μ1 14.28 2.5 14.28 2.5 14.28 2.5 14.28 2.5 

μ2 -      20 - 20 - 20 - 20 

V 10 10 10 10 20 20 20 20 

C 5 5 8 8 16 16 5 5 

q1 0.5 0.5  
0.8 

 
0.8 

 
0.8 

 
0.8 

 
0.25 

 
0.25 

Buffer Size 2-5-10 - 2-5-10 - 2-5-10 - 2-5-10 - 

 
This relies on measurements obtained on real systems as previously published.  
Four test scenarios are described in Table 1. The Attribute Based 
Encryption/Decryption duration are excerpted from [11] according to set values 
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for x={1,2,3}. We experimented ourselves with XACML policy reasoning and 
enforcement as detailed in [7]. The arrival rate of client requests, number of 
services, vocabulary size, and matching probability q1 are variable in our tests. 

4.2.   Rejection Rate 
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Figure 3: Rejection rate curves for the four test scenarios 
 
We compare the average rejection rate representing the probability for a client 
request to be rejected from a server before the processing phase. Rejection 
occurs when all the servers in the decentralized model are busy, i.e., 

( )NPRd =   (2) 

and when N slots of the registry cache are occupied in the centralized model, 

)1,()0,( NPNPRc +=   (3) 

Figure 3 shows that the rejection rate due to a lack of resources is invariant 
for the centralized model in case of a fixed buffer size; in contrast, as the buffer 
size increases, the rejection rate reduces. Regarding the decentralized model, 
Figures 3-a, 3-b, and 3-c show that the rejection rate is strongly dependent on 
the number of servers deployed. As the number of servers increases, the 
rejection rate decreases. Figure 3-d shows that probability q1 does not affect the 
rejection rate for the decentralized model but clearly impacts the rejection rate 
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for the centralized model. We can conclude that the decentralized system is 
more suitable in a system with a large number of servers.   

4.3.   Average Number of Users in the System 

The average number of users Q present in the system is the temporal mean N(t) 
of the number of users observed in the system over period [0,T]. 

( ) ( )∑ ⋅=
n

TnTn
T

TQ ,1   (4) 
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Figure 4: Average number of users in the system for the four test scenarios 
 
In the centralized Markov chain model, Equation (4) can be written as: 

( ) ( )( )∑
=

+⋅=
Nbuffer

n
c npnpnQ

1
1,0,   (5) 

In the decentralized Model this equation becomes: 

( )∑
=

⋅=
Nservers

n
d npnQ

1

  (6) 

Figure 4 illustrates the capacity to serve requests. In the centralized system, 
it is proportional to the buffer size and to the matching probability (the bigger 
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the matching rate, the longer requests stay in the system). In the decentralized 
system, the number of users served is proportional to the number of servers and 
the matching probability does not affect the number of users in the system. 

4.4.   Service Time Duration of a Request in the System 
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Figure 5: Service time duration of a request in the system for the four tests scenarios 
 
The lifetime R of a request in the system is the mean time spent by the requests 
accepted and processed during time period [0,T]. This rate can be computed 
using Little’s Law that states that “the long-term average number of customers 
in a stable system Q is equal to the long-term average arrival rate X multiplied 
by the long-term average time a customer spends in the system R” [13]: 

X
QR =   (6) 

where X is the product of the probability of at least a user being served and of 
the Processing Rate. For the centralized model, the service time rate R is: 
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  (7) 

For the decentralized model, the service time rate R is: 
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As depicted in Figure 5, the service time duration is strongly related to the 
matching probability in the centralized model. As this probability increases, the 
longer it takes to process the request. With a small buffer size, the system 
delivers a quicker response although with a high rejection rate. In contrast, the 
decentralized model exhibits a constant service time in every situation: this is 
due to the facts that tasks are distributed between servers. 

4.5.   Summary  

Table 2 summarizes the tradeoffs from the performance study presented above: 
it lists the effects of a change in the infrastructure on the performance 
parameters that influence the quality of service of the service discovery 
functionality. One important result of this study is that no single approach can 
satisfy the requirements of all deployment scenarios. 
 
Table 2: Performance summary (C : Centralized, D: Decentralized, + : increase, - : decrease, = : 
unchanged value) 

Performance parameters:  Reject Number of users Service Time 
 C D C D C D 

Increased Buffer Size  - = + = + = 
Increased Matching Probability = = - = + = 
Increased Number of Servers = - = + = = 

5.   Conclusion 

This paper evaluated the performance of the secure service discovery function, a 
basic building block in nomadic and ubiquitous computing, as deployed with 
two approaches: a centralized one, requiring the setup of a trusted third party, 
the registry; a decentralized one, relying only on a decentralized matching by 
services themselves. To our knowledge, this is the very first evaluation of the 
performance of service discovery that takes into account the cost of secure 
matching and that compares these two different techniques using a Markovian 
model. This study provides determinant elements for selecting and fine-tuning 
either of these approaches in order to ensure the scalability of service discovery 
according to the application scenario deployment parameters. We plan to 
evaluate the impact of blind DoS attacks on the system by considering a 
malicious traffic class representing fake encrypted messages. 
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