
1

A PERFORMANCE BASED APPROACH TO SELECTING A
SECURE SERVICE DISCOVERY ARCHITECTURE

SLIM TRABELSI, GUILLAUME URVOY KELLER, YVES ROUDIER
Institut Eurecom, 2229 route des Crêtes, BP 193, 06904 Sophia-Antipolis, France

Service discovery, an essential building block of nomadic and ubiquitous computing
applications, needs to be secured to be effectively deployed. Centralized and
decentralized approaches have been proposed to this end. This paper analyzes the
application layer secure matching function using a Markovian performance model in
order to analyze various deployment scenarios. This study outlines the determinant
parameters that should be evaluated for selecting one out of these two architectures in
order to ensure a scalable and efficient service discovery.

1. Introduction

The deployment of ubiquitous computing systems, as notably envisioned by
Mark Weiser [1], and the trend towards Service Oriented Architectures will
undoubtedly generalize the need for discovery mechanisms as essential
components for locating ambient and location-based services. Service discovery
in a network can be implemented in two manners, first using a decentralized
architecture relying on broadcast or multicast communication, and second using
a centralized architecture based on an identified registry relied upon by users
and servers to facilitate discovery request matching. The choice of the
appropriate architecture to enable an efficient service discovery highly depends
on the deployment environment (LAN, wireless or ad-hoc communications,
Internet, VPN, etc.) and on parameters like the expected number of users and
services, the type and amount of resources available (CPU, memory …), and the
power consumption of user devices. The performance of discovery mechanisms
has already been studied through simulation: [2] and [3] present an evaluation of
the performance of post-query discovery strategies in ad-hoc networks, while
[4] introduces a service discovery performance model that makes it possible to
predict discovery service failure and overload in real time. Numerous service
discovery standards like WS-Discovery, Jini, UPnP, SLP, or UDDI have also
been proposed in recent years, even though their performance has not been
assessed analytically to our knowledge. This approach falls short for taking into

 2

account the increasing use of discovery in open ubiquitous computing
scenarios with numerous new threats [5] [6]. This paper analyzes security
mechanisms introduced in [7] and [8] to deal with such issues using
performance results obtained out of a Markovian models detailed in [9]. While
this model does not take into account low-level network artifacts such as delay
or losses, it can assess the impact of introducing security mechanisms at the
application level and the resulting processing and traffic overhead incurred. It
thus makes it possible to reason about the preferred architecture to ensure an
efficient and scalable deployment of secure service discovery depending on
specific scenarios.

2. Secure Service Discovery Models

Service discovery involves a service requester (client) and a service provider
(server), the latter providing one or multiple services that can be accessed by the
clients. In traditional discovery approaches, security is usually limited to
recommendations about classical message authentication and integrity
protection, thereby implicitly restricting discovery to known services.
Ubiquitous computing has prompted standard-independent studies aimed at
securing service discovery using an infrastructure for establishing the
trustworthiness of clients and services. For instance, Zhu et al. [10] assume that
participants to the discovery protocol are located behind a trusted proxy that sets
up trust relationships through key exchanges with other proxies. [12] instead
suggests the use of a central entity that combines the roles of a Certificate
Authority and of a registry, and that helps clients and servers to set up a trust
relationship and to establish secure channels with each another. These solutions
are not adapted to decentralized architectures and address server rather than
client security, contrary to [7] and [8] on which we focus. These security
solutions being destined to a wireless environment, they aim at protecting
discovery systems against illegal access to discovery messages which the
adversary can get. Similarly to these solutions, we consider that brute force DoS
and signal jamming are out of scope of our adversarial model. The following
sections introduce queuing models of these two approaches.

2.1. Centralized Discovery Model

Centralized discovery approaches rely on a registry which plays the role of a
trusted third party in charge of enforcing security policies provided by clients
and services. Clients and services send their discovery policies to the registry
that will be in charge of judging whether a discovery matching is secure.

 3

The queuing model depicted in Figure 1 represents the processing phase of a
secure client service request at the registry for a centralized configuration,
considering a sole thread is in charge of all processing steps.

Figure 1: Centralized Model

The discovery process consists of four steps:
1. Client service discovery requests arrival: requests are assumed to be

generated according to arrival process with a rate λ.
2. Buffering: The registry can temporarily store the requests to be

processed by the central unit. Messages are served in a FIFO manner.
3. Request processing: the registry first matches a client request with the

service profiles available locally. The matched service will be
authenticated in order to verify its compliance with the security policy
provided by the client. If the verification is successful, the registry also
has to further authenticate the client in order to verify its compliance
with the security policy provided by the service. The corresponding
service time is a random variable with a mean value 1/μ.

4. Probabilistic decisions (acceptance/rejection): q1 is the probability that
a service matches with a client request and be compliant with its policy,
q2 the probability that a client be compliant with this service policy.

2.2. Decentralized Discovery Model

The security solution proposed in [8] for a decentralized configuration relies on
a particular usage of the Attribute Based Encryption mechanism [11]. This
mechanism is used by clients to protect their requests by encrypting them
according to a particular policy of disclosure of client/service profile attributes.
The queuing model depicted in Figure 2 represents the decentralized discovery
scheme in which some computing time is now allocated to encryption and
decryption. Requests are routed using multicast, which adds complexity to event
handling. In such a decentralized architecture, nodes usually have limited
capacities as compared to a registry. For this reason, we considered in our model
that a server does not buffer new requests when it is busy. The execution
proceeds as follows:

 4

1. Client service discovery request arrival: requests are generated
according to an arrival process with rate λ.

2. Servers message processing: all the available servers are contacted by
the client via multicast. Each of these servers has to decrypt the
messages in order to authenticate and access to client’s request. The
time to decrypt is assumed to be a random variable with a mean value
1/μ1.

3. Service authentication: q1 is the probability to successfully decrypt a
client request. In case of success the server has to encrypt the response
message to the client.

4. Client authentication: q2 is the success decryption probability of a
client.

Figure 2: Decentralized Model

3. Matching Probabilities

The probabilities q1 and q2 described above represent the probability for a
client or a service to obtain a successful matching (including authentication,
access control, decryption) with security policies protecting the access to
resource profiles. This probability depends on the number of elements of the
systems and on the volume of vocabulary known by each element. The
vocabulary volume is the amount of data knowledge related to a certain domain.
For example, a subset of the medical vocabulary (scanner, radiology,
dermatology, cardiology etc.) can be related to the services deployed inside a
hospital building or the roles of users (surgeon, patient, etc.). In analogy to such
concepts, we define a vocabulary as the global set of possible identities or roles
in a system. The subset of this vocabulary is represented by the group of
identities and roles existing in the system.

 5

The probability to match an element (client or au server), represented by a
group of attributes x in a system, is defined by the probability P that these
attributes belong to the subset vocabulary C part of the general vocabulary V:

() 1)(; ≥

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= xsize

V
x
C
x

xP
 (1)

4. Performance Analysis

Markov chains corresponding to the two queuing models were detailed and
validated with a continuous time simulator in [9]. This mathematical model
makes it possible to study the performance parameters of service discovery and
to determine whether a centralized or a decentralized strategy should be
adopted.

The performance study detailed below answers the following determinant
questions for selecting one of the two secure solutions to service discovery: in
which conditions is the request rejection rate better or worse? Which model is
able to serve the largest number of clients? What is the fastest approach? What
is the impact of a variable number of servers in the system? What is the impact
of the matching probabilities on the performance?

4.1. System Setup

Table1. Values of the input variables used in the tests.

 Centr1 Decentr1 Centra2 Decentr2 Centr3 Decentr3 Centr4 Decentr4

λ 0.5 → 40 0.5 →
40

0.5 →
40

0.5 → 40 0.5 → 40 0.5 → 40 0.5 → 40 0.5 → 40

μ1 14.28 2.5 14.28 2.5 14.28 2.5 14.28 2.5

μ2 - 20 - 20 - 20 - 20

V 10 10 10 10 20 20 20 20

C 5 5 8 8 16 16 5 5

q1 0.5 0.5
0.8

0.8

0.8

0.8

0.25

0.25

Buffer Size 2-5-10 - 2-5-10 - 2-5-10 - 2-5-10 -

This relies on measurements obtained on real systems as previously published.
Four test scenarios are described in Table 1. The Attribute Based
Encryption/Decryption duration are excerpted from [11] according to set values

 6

for x={1,2,3}. We experimented ourselves with XACML policy reasoning and
enforcement as detailed in [7]. The arrival rate of client requests, number of
services, vocabulary size, and matching probability q1 are variable in our tests.

4.2. Rejection Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

Figure 3: Rejection rate curves for the four test scenarios

We compare the average rejection rate representing the probability for a client
request to be rejected from a server before the processing phase. Rejection
occurs when all the servers in the decentralized model are busy, i.e.,

()NPRd = (2)

and when N slots of the registry cache are occupied in the centralized model,

)1,()0,(NPNPRc += (3)

Figure 3 shows that the rejection rate due to a lack of resources is invariant
for the centralized model in case of a fixed buffer size; in contrast, as the buffer
size increases, the rejection rate reduces. Regarding the decentralized model,
Figures 3-a, 3-b, and 3-c show that the rejection rate is strongly dependent on
the number of servers deployed. As the number of servers increases, the
rejection rate decreases. Figure 3-d shows that probability q1 does not affect the
rejection rate for the decentralized model but clearly impacts the rejection rate

 7

for the centralized model. We can conclude that the decentralized system is
more suitable in a system with a large number of servers.

4.3. Average Number of Users in the System

The average number of users Q present in the system is the temporal mean N(t)
of the number of users observed in the system over period [0,T].

() ()∑ ⋅=
n

TnTn
T

TQ ,1 (4)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 U
se

rs
 N

um
be

r

Lambda

Average Users Number

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 U
se

rs
 N

um
be

r

Lambda

Average Users Number

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 U
se

rs
 N

um
be

r

Lambda

Average Users Number

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 U
se

rs
 N

um
be

r

Lambda

Average Users Number

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

Figure 4: Average number of users in the system for the four test scenarios

In the centralized Markov chain model, Equation (4) can be written as:

() ()()∑
=

+⋅=
Nbuffer

n
c npnpnQ

1
1,0, (5)

In the decentralized Model this equation becomes:

()∑
=

⋅=
Nservers

n
d npnQ

1

 (6)

Figure 4 illustrates the capacity to serve requests. In the centralized system,
it is proportional to the buffer size and to the matching probability (the bigger

 8

the matching rate, the longer requests stay in the system). In the decentralized
system, the number of users served is proportional to the number of servers and
the matching probability does not affect the number of users in the system.

4.4. Service Time Duration of a Request in the System

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Lambda

Average Sojourn Time

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Lambda

Average Sojourn Time

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Lambda

Average Sojourn Time

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 S
oj

ou
rn

 T
im

e

Lambda

Average Sojourn Time

Decentralized
Centralized-N=2
Centralized-N=5

Centralized-N=10

Figure 5: Service time duration of a request in the system for the four tests scenarios

The lifetime R of a request in the system is the mean time spent by the requests
accepted and processed during time period [0,T]. This rate can be computed
using Little’s Law that states that “the long-term average number of customers
in a stable system Q is equal to the long-term average arrival rate X multiplied
by the long-term average time a customer spends in the system R” [13]:

X
QR = (6)

where X is the product of the probability of at least a user being served and of
the Processing Rate. For the centralized model, the service time rate R is:

()() ()[]∑
=

+−
= Nbufeer

n

c
c

npqnp

QR

1

.1,11.0, μ

 (7)

For the decentralized model, the service time rate R is:

 9

()∑
=

= Nservers

n

d
d

np

QR

1
.μ

 (8)

As depicted in Figure 5, the service time duration is strongly related to the
matching probability in the centralized model. As this probability increases, the
longer it takes to process the request. With a small buffer size, the system
delivers a quicker response although with a high rejection rate. In contrast, the
decentralized model exhibits a constant service time in every situation: this is
due to the facts that tasks are distributed between servers.

4.5. Summary

Table 2 summarizes the tradeoffs from the performance study presented above:
it lists the effects of a change in the infrastructure on the performance
parameters that influence the quality of service of the service discovery
functionality. One important result of this study is that no single approach can
satisfy the requirements of all deployment scenarios.

Table 2: Performance summary (C : Centralized, D: Decentralized, + : increase, - : decrease, = :
unchanged value)

Performance parameters: Reject Number of users Service Time
 C D C D C D

Increased Buffer Size - = + = + =
Increased Matching Probability = = - = + =
Increased Number of Servers = - = + = =

5. Conclusion

This paper evaluated the performance of the secure service discovery function, a
basic building block in nomadic and ubiquitous computing, as deployed with
two approaches: a centralized one, requiring the setup of a trusted third party,
the registry; a decentralized one, relying only on a decentralized matching by
services themselves. To our knowledge, this is the very first evaluation of the
performance of service discovery that takes into account the cost of secure
matching and that compares these two different techniques using a Markovian
model. This study provides determinant elements for selecting and fine-tuning
either of these approaches in order to ensure the scalability of service discovery
according to the application scenario deployment parameters. We plan to
evaluate the impact of blind DoS attacks on the system by considering a
malicious traffic class representing fake encrypted messages.

 10

References

1. Weiser, M. : The Computer of the 21st Century. Scientific American, vol.
265, no. 3, pp. 66–75 (1991)

2. Luo, H., L., Barbeau, M.: Performance Evaluation of Service Discovery
Strategies in Ad Hoc Networks. Second Annual Conference on
Communication Networks and Services Research pp. 61-68 (2004)

3. Barbeau, M., Kranakis, E.: Modeling and Performance Analysis of Service
Discovery Strategies in Ad Hoc Networks. International Conference on
Wireless Networks pp. 44-50 (2003)

4. Dabrowski, C., Mills, K.L., Rukhin, A.L.: Performance of Service-
Discovery Architectures in Response to Node Failures. Software
Engineering Research and Practice 2003: 95-104

5. Trabelsi, S., Roudier, Y., Pazzaglia, J.C.: Discovery: Threats and solutions.
2nd Conference on Security in Network Architectures and Information
Systems, Annecy, France (2007)

6. Trabelsi, S., Roudier, Y., Pazzaglia, J.C.: Service discovery: Reviewing
Threats and Security Architectures. Research Report RR-07/197 (2007)

7. Trabelsi, S., Gomez, L., Roudier, Y.: Context-Aware Security Policy for the
Service Discovery. Symposium on Security in Networks and Distributed
Systems (SSNDS) Niagara Falls, Canada (2007)

8. Trabelsi, S., Pazzaglia, J.C, Roudier, Y.: Secure Web service discovery:
overcoming challenges of ubiquitous computing. 4th IEEE European
Conference on Web Services, Zurich - Switzerland (2006)

9. Trabelsi, S., Urvoy-Keller, G., Roudier, Y.: A Markovian performance
model for secure service discovery systems. Rapport de recherche RR-08-
214. (2008)

10. Zhu, F., Mutka, M., and Ni, L.: Splendor: A secure, private, and
locationaware service discovery protocol supporting mobile services. First
IEEE International Conference on Pervasive Computing and
Communications, pp. 235–242, (2003)

11. Hengartner, U. and Steenkiste, P.: Exploiting Hierarchical Identity-Based
Encryption for Access Control to Pervasive Computing Information. Proc.
of First IEEE/CreateNet International Conference on Security and Privacy
for Emerging Areas in Communication Networks (2005), Athens, Greece,
pp. 384-393.

12. Czerwinski, S.E., et al: An Architecture for a Secure Service Discovery
Service. MobiCom, Seattle, WA (1999)

13. Little, J. D. C.: A Proof of the Queueing Formula L = λ W" Operations
Research, 9, (1961), pp. 383-387

