

Institut Eurécom1
Mobile Communications Department

2229, route des Crêtes
B.P. 193

06904 Sophia Antipolis
FRANCE

Research Report RR-08-214
A Markovian Performance Model for Secure Service

Discovery Systems
7 March 2008

Slim Trabelsi, Guillaume Urvoy-Keller , and Yves Roudier

Tel: (+33) 4 93 00 81 00
Fax: (+33) 4 93 00 82 00

Email: {Slim.Trabelsi, urvoy, Yves.Roudier}@eurecom.fr

1 Eurecom’s research is partially supported by its industrial partners: BMW, Bouygues Télécom,

Cisco Systems, France Télécom , Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom,
Thales

2

Abstract

SOA supported pervasive applications introduce new threats to service discovery.

Securing service discovery impacts performance and scalability, yet the additional
performance and scalability costs of solutions proposed so far have not been
evaluated analytically nor by simulation. This paper addresses this problem by
introducing a Markovian application layer performance model for centralized and
decentralized secure service discovery, which is then validated through simulation.

 3

1 Introduction

The deployment of ubiquitous computing systems, as envisioned by [1] for
instance, and the trend towards Service Oriented Architectures will undoubtedly
generalize the need for discovery mechanisms as essential components for locating
ambient and location-based services. Service discovery in a network can be
implemented in two manners, first using a decentralized architecture relying on point
to point (broadcast) or point to multipoint (multicast) communication, and second
using a centralized architecture based on an identified registry relied upon by users
and servers to facilitate discovery request matching. The choice of the appropriate
architecture to enable an efficient service discovery highly depends on the
deployment environment (LAN, wireless or ad-hoc communications, Internet, VPN,
etc.) and on parameters like the expected number of users and services, the type and
amount of resources available (CPU, memory …), and the power consumption. The
performance of discovery mechanisms has already been studied through simulation.
[2] and [3] present an evaluation of the performance of post-query discovery
strategies in ad-hoc networks in which the authors test five strategies with the DSR
and DSDV routing protocols. [4] introduces a service discovery performance model
that makes it possible to predict discovery service failure and overloading in real time.
This work presents simulation results that suggest that a decentralized architecture
yields better robustness than a centralized one. These studies aim at getting a better
understanding of the phenomena observed during discovery like message loss, faults,
delays, or saturation, so as to select the most efficient service discovery mechanism
for a given application. Numerous service discovery standards like WS-Discovery,
Jini, UPnP, SLP, or UDDI (see Table 1) have also been proposed in recent years, even
though their performance has not been assessed analytically to our knowledge.
Security in these standards is usually limited to recommendations about classical
message authentication and integrity protection, thereby implicitly restricting
discovery to known services. This approach falls short for taking into account the
increasing use of discovery in open ubiquitous computing scenarios with numerous
new threats [5] [6]. We presented security mechanisms to deal with such issues in [7]
and [8]. This paper introduces Markovian models that aim at assessing the impact at
the application level of introducing security mechanisms, for both centralized and
decentralized service discovery. Focusing on the application level, i.e., neglecting
network artifacts such as delay or losses enables us to delineate network effects from
the impact of security mechanisms in terms of processing overhead for the nodes in
the system.

4

Table 1. Discovery Protocols diffusion mechanisms

 Centralized Decentralized Unicast Multicast Broadcast
SLP Yes Yes No Yes No
UPnP No Yes No Yes No
UDDI Yes No Yes No No
Jini Yes Yes Yes Yes No
SDP
Bluetooth

No Yes No No Yes

WS-Discovery Yes Yes Yes Yes No
Salutation Yes No Yes No No

This paper is organized as follows: Section 2 describes security and networking
assumptions that are accounted for by our model. Section 3 details our Markovian
model whose validation is then described in Section 4.

2 Modeling Secure Service Discovery

We essentially focus on Service Oriented Architectures (SOA), which introduce a
loosely coupled interaction model that serves as a basis to define protocols and
procedures to interconnect different application systems or software components.
SOA mainly consists of services, which are software wrapped components providing
elaborate functions (e.g., database access, data processing, business logic…), and of
clients, which are requesting such services through the exchange of messages. These
two types of players rely on a standardized interface to communicate but do not
necessarily share the same implementation platforms (programming language or OS).
With the emergence of new dynamic networks, discovery techniques are being
adapted in order to cope with the pervasive deployment of services onto this new
infrastructure. This in particular stresses the need to locate and combine services to
achieve a given task in an unknown environment. In this respect, service discovery is
evolving from a simple brokering mechanism to a central composition component,
with increasingly demanding security requirements, and whose performance should
be better understood.

2.1 Service Discovery Basis

The main players of the discovery phase are: the service requester (client), which can
be a human user or software and the service provider (server), which represents the
entity providing one or multiple services that can be accessed by the clients.

Centralized Discovery. Centralized discovery approaches rely on a registry which
plays the role of yellow pages, and which clients can refer to. The registry (or
repository) is a database containing descriptions and references to some available
services. Servers publish their services by contacting a registry, while clients discover
published services by requesting a registry. A service advertises its capabilities (a set
of attributes describing the service) to the registry, which will store them for a certain

 5

amount of time. A client contacts the registry to find a service by sending a request
containing service preferences, which the registry tries to match with the most
suitable provider found from the stored advertisements. In that approach, registries
have to be considered by the services and the clients as a third trusted party.

Decentralized Discovery. Limiting service discovery to registry supported
architecture that many standards SOA based services have adopted in their
implementations is reductive in terms of network architecture and equipments (e.g.,
need to deploy specific equipments like registries). An alternative approach to service
discovery exists that relies on peer to peer advertisements between services and
clients (point to point and point to multipoint). In such an approach, clients discover
services by broadcasting their requests to their neighborhood, and if one of the
neighbors features the requested service, it will directly respond; the neighbor may
otherwise forward a request to its own neighborhood. This mechanism is used for
instance by the P2P-based Web Service Discovery system (PWSD) [9], which relies
on the Chord P2P protocol to perform the service discovery over the internet.

Secure Service Discovery. The first approach to securing service discovery is to rely
on an infrastructure for establishing the trustworthiness of clients and services. In the
work by Zhu et al. [10], each participant to the discovery protocol is located behind a
trusted proxy that sets up trust relationships through key exchanges with other
proxies. [12] suggests instead the use of a central entity that combines the roles of a
Certificate Authority and registry, and help clients and servers to set up a trust
relationship and established secure channels between each another. Concerning
privacy Zhu et al [11] proposed a Bloom filter based matching aims at hiding private
information related to client and services that could be exchanged during a service
discovery process. These solutions are not adapted to decentralized architectures and
focus more on servers than client security, contrary to [7] and [8] on which we focus.
We detail those solutions along with their model hereafter.

2.2 Centralized Discovery

Security. Our security solution designed for a centralized configuration relies on
security policies provided by clients and services. Registries have to be considered by
services and clients as a trusted third party whose role is no more limited to a basic
matchmaker, but it evolves to a security guarantor. In this configuration [7], clients
and services first establish a secure connection (e.g., SSL) with the registry to protect
the confidentiality of the exchanged messages. Servers can restrict the discovery of
their services to only certified users by specifying a security discovery policy to be
enforced by the registry. Clients are also able to restrict the matching scope to some
certified services by specifying a security discovery policy also enforced by the
trusted registry. Both clients and servers have to provide credentials issued by a
known authority that can be used by the registry to authenticate them during the
policy verification phase. More details on this architecture can be found in [7].

6

Fig. 1. Centralized Model

Model. Figure 1 presents the processing phase of a secure client service request at the
registry for a centralized configuration in case of a single-threaded registry, a sole
thread is in charge of all processing steps.

The discovery process consists of these steps:
1. Client service discovery requests arrival: requests are assumed to be generated

according to arrival process with a rate λ.
2. Buffering: The registry can temporarily store the requests to be processed by the

central unit. Messages are served in a FIFO manner.
3. Request processing: the registry first matches a client request with the service

profiles available locally. The matched service will be authenticated in order to
verify its compliance with the security policy provided by the client. If the
verification is successful, the registry also has to further authenticate the client in
order to verify its compliance with the security policy provided by the service. The
corresponding service time is a random variable with a mean value 1/µ.

4. Probabilistic decisions (acceptance or rejection): q1 is the probability that a service
matches with a client request and also be compliant with its policy. q2 is the
probability that a client be compliant with this service policy.

2.3 Decentralized Model

Security. The security solution proposed in [8] for a decentralized configuration
relies on a particular usage of the Identity Based Encryption mechanism [13]. The
server advertises its service capabilities by multicasting its profile to the entire
network. Clients can cache service information or ask for a specific service by
multicasting its requests to all available servers and only concerned services will
respond to him. With no possible reliance on any third party in ad-hoc configurations,
clients and servers now must assure their own secure service discovery using a
particular encryption scheme. In [8], Attribute Based Encryption (ABE) [14] was
adopted to make it possible for a server to encrypt its service description according to
the restrictions imposed to users (i.e., only a class of users holding corresponding
private keys will be able to access to services information). Clients also can use the

 7

same encryption mechanism in order to protect their request messages from
unauthorized servers (i.e., only a class of servers is able to decrypt the request).

Model. Authentication and policy verification computing time are now replaced with
encryption and decryption time. The fact that the request is routed using multicast
adds complexity to the event handling. In a decentralized architecture, nodes usually
have limited capacities as compared to a registry: For this reason, we considered in
our model that servers do not buffer new requests when they are busy. In Figure 2, the
execution takes this order:
1. Client service discovery request arrival: requests are generated according to an

arrival process with rate λ.
2. Servers message processing: all the available servers are contacted by the client via

multicast. Each of these servers has to decrypt the messages in order to
authenticate and access to client’s request. The time to decrypt is assumed to be a
random variable with a mean value 1/µ1.

3. Service authentication: q1 is the probability to successfully decrypt a client request.
In case of success the server has to encrypt the response message to the client.

4. Client authentication: q2 is the success decryption probability of a client.

Fig. 2. Decentralized Model

2.4 System Model Assumptions

We make the following assumptions concerning the service demands and the
processing for the service requesters and service providers.

• Processing Time. As described above, servers and clients must both perform
some tasks during discovery. In the distributed configuration, processing
time is essentially dedicated to encryption and decryption tasks. This
processing time is variable for each message (message length, key length,
padding size …), and also variable for the same message and the same
encryption/decryption key. This variability is exemplified in [18], in which
we can observe an event independent duration time for Encryption/
Decryption actions. We model processing time in our decentralized model as
an exponentially distributed random variable with mean 1/µ. In the

8

centralized configuration we observed that the processing time is strongly
correlated with the policy size (number of conditions/attributes to be
checked) and does not vary for a given policy size. We assume enough
diversity in the distribution of policy sizes to model the processing time as a
random variable that we further assume to be exponentially distributed for
mathematical tractability in our Markov models.

• Inter-arrival Time. We assume clients request to follow a Poisson process
with rate λ.

• Traffic class. For a decentralized scenario, some servers could be more
popular than others. In this case, the matching probability with the clients
request is higher for popular services. To model this popularity, traffic
classes could be used to distinguish between these services. The model
described in this paper assumes that all services have the same popularity, or
to put it differently, focuses on the performance of an average client.

3 Markovian Model

In this section we present Markovian models for the centralized and decentralized
secure service discovery systems. We use networks of queues to model both
approaches.

3.1 Markovian centralized Model

For each request, the CPU of the registry is assumed to perform one or two
authentication and policy verification cycles (since we assume that the registry is
adopting a mono-threading strategy for the request processing). The first cycle
corresponds to service authentication, while the second one corresponds to client
authentication. We model these two cycles using a bi-dimensional Markov chain (see
Figure 3).

The first dimension of the Markov chain (A) represents the number of requests
stored in the cache and the number of requests currently processed (0 or 1).The
second dimension of the Markov chain (B) is a Boolean representing the request in
the second processing cycle. If B = 1, the parameter A represents the number of
requests in the cache. If B = 0, A represents the number of requests in the cache plus
one request in the first cycle processing state. For instance, the left upper state in
Figure 3 corresponds to A = 0 and B = 0.

Markov Chain. Figure 3 is the Markovian representation of the centralized system
outlined in Figure 1. Client requests are entering the system according to a Poisson
process with rate λ. The parameter A is the first to be incremented. After an
authentication and verification first cycle (exponential with rate µ), the system moves
to the second authentication and verification cycle with a probability q1 (B = 1) or the
client is rejected with a probability (1-q1). If B = 1 and a new request reaches the
registry, only A will be incremented

 9

Fig. 3. Centralized Markov Chain Model

Numerical Resolution. The bi-dimensional Markov chain described above is not
easy to resolve using balance equations for the stationary distribution. We used a
transition rate matrix and transition rate diagram to resolve numerically the system
with the Gauss-Seidel method. The transition rate matrix Q is written by:























−

−

= ∑
∑

≠

≠

|................
|...............|

|.........

........

1

2
221

112
1

T

TT
TTT

i

j
j

j
j

ij

Q

Where Tij is the transition rate between state i and state j
Q can be decomposed as:

DULQ −+= ; where D is a diagonal matrix, L is the lower part of Q and U is the
upper part of Q. In a stationary regime the steady state probability vector P can be
written as follows:

()









+=

⇒
+=

⇒
+=⇒=

∑∑∑ >

−

<
≠

−−

ji
ij

n
i

ji
ij

n
i

ji
ji

n
j

nnn

TPTP
T

P

DUPLPP

PLUPDPQP

)1()()(

1)1()(

1

..0.

(1)

The steady state vector P is used to calculate the different performance parameters

of the system, including the rejection rate, the server usage rate, the mean number of
users, the acceptance rate, the authentication rate, etc.

10

3.2 Markovian Decentralized Model

Since we do not account for network effects, especially delay and losses, we assume
that each client request reaches all available servers simultaneously, through some
multicast communication scheme. For each request arrival the number of busy servers
is equal to the total number of servers in the system. Each server independently
processes the request. After decrypting the message, a server will generate a response,
encrypt it, and send it to the client.

Markov Chain.

Fig. 4. Decentralized Markov Chain Model

The Markovian chain in Figure 4 represents parts 1 and 2 of the model described in
Figure 2. Each state of this linear Markov chain represents the number of occupied
servers. Part 3 and 4 of the Figure 2 are represented by the two states Markov chains
in Figure 5.

Fig. 5. a – Encryption Markov chain; b - Decryption Markov chain

The request arrival rate Xe1 represents the output rate of the linear chain in Figure
4. The encryption Markov chain (Figure 5-a) is used to evaluate the impact of the
server encrypting time on the system. Xe2 represents the rate at which encrypted
messages can be sent from servers. The decryption Markov Chain (Figure 5-b) is used
to evaluate the impact of the decryption action performed by the client when it
receives the encrypted response from the server.

 11

Numerical resolution. The Markov chain representing the system is linear. For this
reason, it is easy to calculate the steady state probability vector P using balance
equations:

()









=+−−

=+
=

µλµ

µµλ
µλ

nnpnnp

pp
pp

)()1()1(
...........

2).2())(1(
)1()0(

The steady state probability vector P can be written:

∏
=








 +−=
i

k

p
k

kip
1

)0(.)1()(
µ

λµ (2)

With

∑∏
∑

= =

= +






 −+
=⇔=

n

i

i

k

n

i

k
k

pip

1 1

0 1)1(
1)0(1)(

µ
µλ

 (3)

4 Validation and Evaluation

In this section, we consider several scenarios to compare the results obtained with our
simulator (described below) and with the Markovian models presented in Section 3.
For a complete validation, we have considered a large set of the system parameters by
varying values like arrival rates, processing time, acceptance probabilities … These
scenarios are not necessarily realistic but they aim to provide as complete as possible
validation of our analytical models.

4.1 Java Simulator

In order to study the behavior of a system under various conditions, simulation is
usually considered as a realistic solution to provide the expected performance
measurements. A lot of network-oriented simulator tools are available but they are not
really adapted to model security mechanisms (like encryption, authentication, access
control…).For this reason we implemented our own event-driven simulator in Java
using the SSJ [15] Java library for stochastic simulation. This library provides
methods for generating random variables, computing different measures related to
probability distributions, performing goodness-of-fit tests.

The simulator is configured according to the models described in Sections 3.2 and
3.3. The request source is represented by a generator that creates a new Client

12

message structure entering the system every arrival time period (according to a
Poisson process). In the centralized configuration the registry processor is represented
by random variable generator that generates a uniform processing time values. In the
decentralized configuration an exponential time generator is used for the same
purpose. All the events of the simulator are collected by a scheduler that memorizes
the arrival time of each client, the processing time of each request, the number of
rejected requests, the number of successful matchings. All the data acquired with the
scheduler are reused to compute the performance parameters described in the next
section.

4.2 Rejection Rate

In Figures 7 and 8, we compare the average rejection rate representing the probability
for a client request to be rejected from a server before the processing phase. Rejection
occurs when all the servers in the decentralized model are busy, i.e.,

()NPRd = (4)

And when N places of the cache of the registry in centralized model are occupied, i.e.,

)1,()0,(NPNPRc += (5)

After setting the processing rate time µ to 0.2 (5 seconds on average to process a
message), we varied the request arrival rate λ from 0.1 to 0.3 (10 seconds to 3.33
seconds of inter-arrival time) with an increment step of 0.01 in order to study different
cases of system load: for instance, 0.1 corresponds to a light load while 0.3
corresponds to a heavy load. We also varied the number of servers and the buffer size
at the registry (5, 10, and 20 places). The authentication probabilities (q1 and q2) are
constant and equal to 0.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

 13

Fig. 6. Rejection rate in a centralized architecture

0

0.05

0.1

0.15

0.2

0.25

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
ej

ec
tio

n
R

at
e

Lambda

Rejection Rate

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

Fig. 7. Rejection rate in a decentralized architecture

We observe from Figure 6 and 7 a perfect matching between the rejection rate

measured by the simulator and the one computed by the Markovian model (the
margin error is 0.07 %). For a distributed discovery model, the evolution of the
rejection rate is linear: this behavior is due to the fact that for every sent request, all
the servers become busy at the same time.

This means that a system administrator is able to predict in advance under which
conditions his secure discovery system might become overloaded based on the
behavior described through Equations 4 and 5, and which configuration is more
suitable to ensure a better availability.

A straightforward observation of Figures 6 and 7 could lead to the conclusion that
rejection rate in centralized architecture is always higher the one in decentralized
model. However this comparison is misleading as in reality a registry should be much
more powerful than a server in a decentralized architecture, and action performed by
registries are less expressive in terms of computing resources.

4.3 Server and Resource Usage Rate

Using the same scenario as in the previous section, we now provide a comparison
between the usage rates of the servers for both architectures, in order to increase the
accuracy of validation tests. To obtain a meaningful comparison between the
distributed model (S servers where S > 1) and the centralized model (1 server but N
slots in the queue), we focused on the resource usage time and not on the server usage
time (the proportion of time the resources are busy). With decentralized discovery,
this usage time is equal to:

∑
>

=
S

k
d S

kpkU
0

)(. (6)

14

where S is the number of servers in the distributed system. And for a decentralized
architecture, with N the maximum capacity of the registry we obtain:

∑
>

=
N

k
c N

kpkU
0

)(. (7)

Figure 8 and 9 illustrate a perfect matching between the resource usage rate
measured by the simulator and the one computed by the Markovian model (with less
than 0.05% of discrepancy). We notice that the usage rate in the decentralized model
is independent from the resource size. This is due to the multicast allocation technique
that balances the resource occupation. A system administrator should therefore be
able to dimension the resources deployed in the system based on the behavior
described in Equations 6 and 7. Buffer size can be optimally adjusted to the traffic in
a centralized scenario and an optimal number of replicas of services (provided by the
same server) can be deployed to ensure a good quality of service.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
es

ou
rc

e
us

ag
e

Lambda

Resource usage

Model-5
Simulator-5

Model-10
Simulator-10

Model-20
Simulator-20

Fig. 8. Resource usage comparison in a centralized architecture

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

R
es

ou
rc

e
us

ag
e

Lambda

Resource usage

Model-10
Simulator-10

Model-20
Simulator-20

Fig. 9. Resource usage comparison in a decentralized architecture

We notice in the Figure 8 that the resource usage rate lower in 20 slots buffer when
λ < 0.13 and becomes higher when λ < 0.13. This is however misleading as the
number of free slots remains higher in any for a 20 slot buffer in any circumstances.
For instance when λ = 0.1, in a 20 slot buffer, 17.6 places are free while 3.5 places are

 15

available in a 5 slot buffer. But if λ = 0. 4 places remain free 3 in a 20 slot buffer as
compared to 1.5 for a 5 slot buffer.

5 Conclusion

This paper introduced analytical models to assess the impact of security mechanisms
used in both centralized and decentralized secure service discovery architectures. This
is the first such analytical study of this problem to our knowledge. Results provided
by our Markovian models are extremely important to determine whether a centralized
or decentralized strategy should be used to deploy services. They make it possible to
undertake a systematic study of the robustness, efficiency, resource consumption,
fault tolerance, message size, or acceptance rate in a SOA architecture, these
performance parameters being easily computed thanks to the analytic approach. We
are currently working towards improving the modeling of security aspects of
discovery, in particular the efficiency of ABE key combinations. We also plan to
study the combination of our application level models with network level model
developed either for specific network environments, e.g. ad hoc networks [17], or
specific communication schemes, e.g. network level multicast [16].

References

1. Weiser, M. :The Computer of the 21st Century. Scientific American, vol. 265, no. 3, pp. 66–
75 (1991)

2. Luo, H., L., Barbeau, M.: Performance Evaluation of Service Discovery Strategies in Ad
Hoc Networks. Second Annual Conference on Communication Networks and Services
Research pp. 61-68 (2004)

3. Barbeau, M., Kranakis, E.: Modeling and Performance Analysis of Service Discovery
Strategies in Ad Hoc Networks. International Conference on Wireless Networks pp. 44-50
(2003)

4. Dabrowski, C., Mills, K.L., Rukhin, A.L.: Performance of Service-Discovery Architectures
in Response to Node Failures. Software Engineering Research and Practice 2003: 95-104

5. Trabelsi, S., Roudier, Y., Pazzaglia, J.C.: Discovery: Threats and solutions. 2nd Conference
on Security in Network Architectures and Information Systems, Annecy, France (2007)

6. Trabelsi, S., Roudier, Y., Pazzaglia, J.C.: Service discovery: Reviewing Threats and Security
Architectures. Research Report RR-07/197 (2007)

7. Trabelsi, S., Gomez, L., Roudier, Y.: Context-Aware Security Policy for the Service
Discovery. Symposium on Security in Networks and Distributed Systems (SSNDS) Niagara
Falls, Canada (2007)

8. Trabelsi, S., Pazzaglia, J.C, Roudier, Y.: Secure Web service discovery: overcoming
challenges of ubiquitous computing. 4th IEEE European Conference on Web Services,
Zurich - Switzerland (2006)

9. Garofalakis, O. et al: Web Service Discovery Mechanisms: Looking for a Needle in a
Haystack?. 15th ACM Conference on Hypertext and Hypermedia, Santa Cruz, USA (2004)

16

10. Zhu, F., Mutka, M., and Ni, L.: Splendor: A secure, private, and locationaware service
discovery protocol supporting mobile services. First IEEE International Conference on
Pervasive Computing and Communications, pp. 235–242, (2003)

11. Zhu, F., Mutka, M., and Ni, L.: Prudent exposure: A private and user centric service
discovery protocol. 2nd IEEE International Conference on Pervasive Computing and
Communications, Orlando, USA (2004)

12. Czerwinski, S.E., et al: An Architecture for a Secure Service Discovery Service. MobiCom,
Seattle, WA (1999)

13. Shamir, A.: Identity-based cryptosystems and signature schemes. Advances in Cryptology,
Lecture Notes in Computer Science, Vol. 196, pp. 47-53,Springer-Verlag (1984)

14. Goyal, V. et al: Attribute-Based Encryption for Fine-Grained Access Control of Encrypted
Data. 13th ACM Conference on Computer and Communications Security, Alexandria, USA
(2006)

15. L'Ecuyer, P., Meliani, L., Vaucher, J. G. : SSJ: a framework for stochastic simulation in
Java. Winter Simulation Conference (2002)

16. Özkasap, Ö. : Performance Study of a Probabilistic Multicast Transport Protocol. Elsevier
Science - Performance Evaluation Journal, 57/2, pp. 177-198, (2004)

17. Ari, I., Jethani, N., Rangnekar, A., Natarajan, S. : Performance Analysis and Comparison of
Ah-Hoc Routing Protocols. CMSC691T Mobile Computing Project Report, (2000).

18. Hengartner, U. Steenkiste, P.: Exploiting Hierarchical Identity-Based Encryption for
Access Control to Pervasive Computing Information. In proceedings of the First
International Conference on Security and Privacy for Emerging Areas in Communications
Networks, (2005).

	Abstract

