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Abstract 

 
 
SOA supported pervasive applications introduce new threats to service discovery. 

Securing service discovery impacts performance and scalability, yet the additional 
performance and scalability costs of solutions proposed so far have not been 
evaluated analytically nor by simulation. This paper addresses this problem by 
introducing a Markovian application layer performance model for centralized and 
decentralized secure service discovery, which is then validated through simulation. 
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1   Introduction 

The deployment of ubiquitous computing systems, as envisioned by [1] for 
instance, and the trend towards Service Oriented Architectures will undoubtedly 
generalize the need for discovery mechanisms as essential components for locating 
ambient and location-based services. Service discovery in a network can be 
implemented in two manners, first using a decentralized architecture relying on point 
to point (broadcast) or point to multipoint (multicast) communication, and second 
using a centralized architecture based on an identified registry relied upon by users 
and servers to facilitate discovery request matching. The choice of the appropriate 
architecture to enable an efficient service discovery highly depends on the 
deployment environment (LAN, wireless or ad-hoc communications, Internet, VPN, 
etc.) and on parameters like the expected number of users and services, the type and 
amount of resources available (CPU, memory …), and the power consumption. The 
performance of discovery mechanisms has already been studied through simulation. 
[2] and [3] present an evaluation of the performance of post-query discovery 
strategies in ad-hoc networks in which the authors test five strategies with the DSR 
and DSDV routing protocols. [4] introduces a service discovery performance model 
that makes it possible to predict discovery service failure and overloading in real time. 
This work presents simulation results that suggest that a decentralized architecture 
yields better robustness than a centralized one. These studies aim at getting a better 
understanding of the phenomena observed during discovery like message loss, faults, 
delays, or saturation, so as to select the most efficient service discovery mechanism 
for a given application. Numerous service discovery standards like WS-Discovery, 
Jini, UPnP, SLP, or UDDI (see Table 1) have also been proposed in recent years, even 
though their performance has not been assessed analytically to our knowledge. 
Security in these standards is usually limited to recommendations about classical 
message authentication and integrity protection, thereby implicitly restricting 
discovery to known services. This approach falls short for taking into account the 
increasing use of discovery in open ubiquitous computing scenarios with numerous 
new threats [5] [6]. We presented security mechanisms to deal with such issues in [7] 
and [8]. This paper introduces Markovian models that aim at assessing the impact at 
the application level of introducing security mechanisms, for both centralized and 
decentralized service discovery. Focusing on the application level, i.e., neglecting 
network artifacts such as delay or losses enables us to delineate network effects from 
the impact of security mechanisms in terms of processing overhead for the nodes in 
the system. 
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Table 1. Discovery Protocols diffusion mechanisms 

 Centralized Decentralized Unicast Multicast Broadcast 
SLP Yes Yes No Yes No 
UPnP No Yes No Yes No 
UDDI Yes No Yes No No 
Jini Yes Yes Yes Yes No 
SDP 
Bluetooth 

No Yes No No Yes 

WS-Discovery Yes Yes Yes Yes No 
Salutation Yes No Yes No No 
 

This paper is organized as follows: Section 2 describes security and networking 
assumptions that are accounted for by our model. Section 3 details our Markovian 
model whose validation is then described in Section 4. 

2   Modeling Secure Service Discovery 

We essentially focus on Service Oriented Architectures (SOA), which introduce a 
loosely coupled interaction model that serves as a basis to define protocols and 
procedures to interconnect different application systems or software components. 
SOA mainly consists of services, which are software wrapped components providing 
elaborate functions (e.g., database access, data processing, business logic…), and of 
clients, which are requesting such services through the exchange of messages. These 
two types of players rely on a standardized interface to communicate but do not 
necessarily share the same implementation platforms (programming language or OS). 
With the emergence of new dynamic networks, discovery techniques are being 
adapted in order to cope with the pervasive deployment of services onto this new 
infrastructure. This in particular stresses the need to locate and combine services to 
achieve a given task in an unknown environment. In this respect, service discovery is 
evolving from a simple brokering mechanism to a central composition component, 
with increasingly demanding security requirements, and whose performance should 
be better understood. 

2.1   Service Discovery Basis 

The main players of the discovery phase are: the service requester (client), which can 
be a human user or software and the service provider (server), which represents the 
entity providing one or multiple services that can be accessed by the clients. 

 
Centralized Discovery. Centralized discovery approaches rely on a registry which 
plays the role of yellow pages, and which clients can refer to. The registry (or 
repository) is a database containing descriptions and references to some available 
services. Servers publish their services by contacting a registry, while clients discover 
published services by requesting a registry. A service advertises its capabilities (a set 
of attributes describing the service) to the registry, which will store them for a certain 
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amount of time. A client contacts the registry to find a service by sending a request 
containing service preferences, which the registry tries to match with the most 
suitable provider found from the stored advertisements. In that approach, registries 
have to be considered by the services and the clients as a third trusted party. 

 
Decentralized Discovery. Limiting service discovery to registry supported 
architecture that many standards SOA based services have adopted in their 
implementations is reductive in terms of network architecture and equipments (e.g., 
need to deploy specific equipments like registries). An alternative approach to service 
discovery exists that relies on peer to peer advertisements between services and 
clients (point to point and point to multipoint). In such an approach, clients discover 
services by broadcasting their requests to their neighborhood, and if one of the 
neighbors features the requested service, it will directly respond; the neighbor may 
otherwise forward a request to its own neighborhood. This mechanism is used for 
instance by the P2P-based Web Service Discovery system (PWSD) [9], which relies 
on the Chord P2P protocol to perform the service discovery over the internet. 
 
Secure Service Discovery. The first approach to securing service discovery is to rely 
on an infrastructure for establishing the trustworthiness of clients and services. In the 
work by Zhu et al. [10], each participant to the discovery protocol is located behind a 
trusted proxy that sets up trust relationships through key exchanges with other 
proxies. [12] suggests instead the use of a central entity that combines the roles of a 
Certificate Authority and registry, and help clients and servers to set up a trust 
relationship and established secure channels between each another. Concerning 
privacy Zhu et al [11] proposed a Bloom filter based matching aims at hiding private 
information related to client and services that could be exchanged during a service 
discovery process. These solutions are not adapted to decentralized architectures and 
focus more on servers than client security, contrary to [7] and [8] on which we focus. 
We detail those solutions along with their model hereafter. 

2.2   Centralized Discovery 

 
Security. Our security solution designed for a centralized configuration relies on 
security policies provided by clients and services. Registries have to be considered by 
services and clients as a trusted third party whose role is no more limited to a basic 
matchmaker, but it evolves to a security guarantor. In this configuration [7], clients 
and services first establish a secure connection (e.g., SSL) with the registry to protect 
the confidentiality of the exchanged messages. Servers can restrict the discovery of 
their services to only certified users by specifying a security discovery policy to be 
enforced by the registry. Clients are also able to restrict the matching scope to some 
certified services by specifying a security discovery policy also enforced by the 
trusted registry. Both clients and servers have to provide credentials issued by a 
known authority that can be used by the registry to authenticate them during the 
policy verification phase. More details on this architecture can be found in [7]. 
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Fig. 1. Centralized Model 

 
Model. Figure 1 presents the processing phase of a secure client service request at the 
registry for a centralized configuration in case of a single-threaded registry, a sole 
thread is in charge of all processing steps.  

The discovery process consists of these steps: 
1. Client service discovery requests arrival: requests are assumed to be generated 

according to arrival process with a rate λ.  
2. Buffering: The registry can temporarily store the requests to be processed by the 

central unit. Messages are served in a FIFO manner. 
3. Request processing: the registry first matches a client request with the service 

profiles available locally. The matched service will be authenticated in order to 
verify its compliance with the security policy provided by the client. If the 
verification is successful, the registry also has to further authenticate the client in 
order to verify its compliance with the security policy provided by the service. The 
corresponding service time is a random variable with a mean value 1/µ. 

4. Probabilistic decisions (acceptance or rejection): q1 is the probability that a service 
matches with a client request and also be compliant with its policy. q2 is the 
probability that a client be compliant with this service policy. 

 

2.3 Decentralized Model 

 
Security. The security solution proposed in [8] for a decentralized configuration 
relies on a particular usage of the Identity Based Encryption mechanism [13]. The 
server advertises its service capabilities by multicasting its profile to the entire 
network. Clients can cache service information or ask for a specific service by 
multicasting its requests to all available servers and only concerned services will 
respond to him. With no possible reliance on any third party in ad-hoc configurations, 
clients and servers now must assure their own secure service discovery using a 
particular encryption scheme. In [8], Attribute Based Encryption (ABE) [14] was 
adopted to make it possible for a server to encrypt its service description according to 
the restrictions imposed to users (i.e., only a class of users holding corresponding 
private keys will be able to access to services information). Clients also can use the 
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same encryption mechanism in order to protect their request messages from 
unauthorized servers (i.e., only a class of servers is able to decrypt the request). 

 
Model. Authentication and policy verification computing time are now replaced with 
encryption and decryption time. The fact that the request is routed using multicast 
adds complexity to the event handling. In a decentralized architecture, nodes usually 
have limited capacities as compared to a registry: For this reason, we considered in 
our model that servers do not buffer new requests when they are busy. In Figure 2, the 
execution takes this order: 
1. Client service discovery request arrival: requests are generated according to an 

arrival process with rate λ.  
2. Servers message processing: all the available servers are contacted by the client via 

multicast. Each of these servers has to decrypt the messages in order to 
authenticate and access to client’s request. The time to decrypt is assumed to be a 
random variable with a mean value 1/µ1.  

3. Service authentication: q1 is the probability to successfully decrypt a client request. 
In case of success the server has to encrypt the response message to the client. 

4. Client authentication: q2 is the success decryption probability of a client. 

 
Fig. 2. Decentralized Model 

2.4   System Model Assumptions 

We make the following assumptions concerning the service demands and the 
processing for the service requesters and service providers.  

•  Processing Time. As described above, servers and clients must both perform 
some tasks during discovery. In the distributed configuration, processing 
time is essentially dedicated to encryption and decryption tasks. This 
processing time is variable for each message (message length, key length, 
padding size …), and also variable for the same message and the same 
encryption/decryption key. This variability is exemplified in [18], in which 
we can observe an event independent duration time for Encryption/ 
Decryption actions. We model processing time in our decentralized model as 
an exponentially distributed random variable with mean 1/µ. In the 
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centralized configuration we observed that the processing time is strongly 
correlated with the policy size (number of conditions/attributes to be 
checked) and does not vary for a given policy size. We assume enough 
diversity in the distribution of policy sizes to model the processing time as a 
random variable that we further assume to be exponentially distributed for 
mathematical tractability in our Markov models. 

•  Inter-arrival Time. We assume clients request to follow a Poisson process 
with rate λ.  

•  Traffic class. For a decentralized scenario, some servers could be more 
popular than others. In this case, the matching probability with the clients 
request is higher for popular services. To model this popularity, traffic 
classes could be used to distinguish between these services. The model 
described in this paper assumes that all services have the same popularity, or 
to put it differently, focuses on the performance of an average client. 

3   Markovian Model 

In this section we present Markovian models for the centralized and decentralized 
secure service discovery systems. We use networks of queues to model both 
approaches.  

3.1   Markovian centralized Model 

For each request, the CPU of the registry is assumed to perform one or two 
authentication and policy verification cycles (since we assume that the registry is 
adopting a mono-threading strategy for the request processing). The first cycle 
corresponds to service authentication, while the second one corresponds to client 
authentication. We model these two cycles using a bi-dimensional Markov chain (see 
Figure 3). 

The first dimension of the Markov chain (A) represents the number of requests 
stored in the cache and the number of requests currently processed (0 or 1).The 
second dimension of the Markov chain (B) is a Boolean representing the request in 
the second processing cycle. If B = 1, the parameter A represents the number of 
requests in the cache. If B = 0, A represents the number of requests in the cache plus 
one request in the first cycle processing state. For instance, the left upper state in 
Figure 3 corresponds to A = 0 and B = 0. 

 
Markov Chain. Figure 3 is the Markovian representation of the centralized system 
outlined in Figure 1. Client requests are entering the system according to a Poisson 
process with rate λ. The parameter A is the first to be incremented. After an 
authentication and verification first cycle (exponential with rate µ), the system moves 
to the second authentication and verification cycle with a probability q1 (B = 1) or the 
client is rejected with a probability (1-q1). If B = 1 and a new request reaches the 
registry, only A will be incremented 
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Fig. 3. Centralized Markov Chain Model 

 
 
 

Numerical Resolution. The bi-dimensional Markov chain described above is not 
easy to resolve using balance equations for the stationary distribution. We used a 
transition rate matrix and transition rate diagram to resolve numerically the system 
with the Gauss-Seidel method. The transition rate matrix Q is written by: 
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Where Tij is the transition rate between state i and state j 
Q can be decomposed as: 

DULQ −+= ; where D is a diagonal matrix, L is the lower part of Q and U is the 
upper part of Q. In a stationary regime the steady state probability vector P can be 
written as follows: 
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The steady state vector P is used to calculate the different performance parameters 

of the system, including the rejection rate, the server usage rate, the mean number of 
users, the acceptance rate, the authentication rate, etc. 
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3.2   Markovian Decentralized Model 

Since we do not account for network effects, especially delay and losses, we assume 
that each client request reaches all available servers simultaneously, through some 
multicast communication scheme. For each request arrival the number of busy servers 
is equal to the total number of servers in the system. Each server independently 
processes the request. After decrypting the message, a server will generate a response, 
encrypt it, and send it to the client. 

Markov Chain. 

 
Fig. 4. Decentralized Markov Chain Model 

The Markovian chain in Figure 4 represents parts 1 and 2 of the model described in 
Figure 2. Each state of this linear Markov chain represents the number of occupied 
servers. Part 3 and 4 of the Figure 2 are represented by the two states Markov chains 
in Figure 5. 

 
Fig. 5. a – Encryption Markov chain; b - Decryption Markov chain 

The request arrival rate Xe1 represents the output rate of the linear chain in Figure 
4. The encryption Markov chain (Figure 5-a) is used to evaluate the impact of the 
server encrypting time on the system. Xe2 represents the rate at which encrypted 
messages can be sent from servers. The decryption Markov Chain (Figure 5-b) is used 
to evaluate the impact of the decryption action performed by the client when it 
receives the encrypted response from the server. 
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Numerical resolution.  The Markov chain representing the system is linear. For this 
reason, it is easy to calculate the steady state probability vector P using balance 
equations: 
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The steady state probability vector P can be written: 
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4   Validation and Evaluation 

In this section, we consider several scenarios to compare the results obtained with our 
simulator (described below) and with the Markovian models presented in Section 3. 
For a complete validation, we have considered a large set of the system parameters by 
varying values like arrival rates, processing time, acceptance probabilities … These 
scenarios are not necessarily realistic but they aim to provide as complete as possible 
validation of our analytical models. 

4.1   Java Simulator 

In order to study the behavior of a system under various conditions, simulation is 
usually considered as a realistic solution to provide the expected performance 
measurements. A lot of network-oriented simulator tools are available but they are not 
really adapted to model security mechanisms (like encryption, authentication, access 
control…).For this reason we implemented our own event-driven simulator in Java 
using the SSJ [15] Java library for stochastic simulation. This library provides 
methods for generating random variables, computing different measures related to 
probability distributions, performing goodness-of-fit tests. 

The simulator is configured according to the models described in Sections 3.2 and 
3.3. The request source is represented by a generator that creates a new Client 
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message structure entering the system every arrival time period (according to a 
Poisson process). In the centralized configuration the registry processor is represented 
by random variable generator that generates a uniform processing time values. In the 
decentralized configuration an exponential time generator is used for the same 
purpose. All the events of the simulator are collected by a scheduler that memorizes 
the arrival time of each client, the processing time of each request, the number of 
rejected requests, the number of successful matchings. All the data acquired with the 
scheduler are reused to compute the performance parameters described in the next 
section. 

4.2   Rejection Rate 

In Figures 7 and 8, we compare the average rejection rate representing the probability 
for a client request to be rejected from a server before the processing phase. Rejection 
occurs when all the servers in the decentralized model are busy, i.e., 

( )NPRd =  (4) 

And when N places of the cache of the registry in centralized model are occupied, i.e., 

)1,()0,( NPNPRc +=  (5) 

After setting the processing rate time µ to 0.2 (5 seconds on average to process a 
message), we varied the request arrival rate λ from 0.1 to 0.3 (10 seconds to 3.33 
seconds of inter-arrival time) with an increment step of 0.01 in order to study different 
cases of system load: for instance, 0.1 corresponds to a light load while 0.3 
corresponds to a heavy load. We also varied the number of servers and the buffer size 
at the registry (5, 10, and 20 places). The authentication probabilities (q1 and q2) are 
constant and equal to 0.5. 
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Fig. 6. Rejection rate in a centralized architecture 
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Fig. 7. Rejection rate in a decentralized architecture 

 
We observe from Figure 6 and 7 a perfect matching between the rejection rate 

measured by the simulator and the one computed by the Markovian model (the 
margin error is 0.07 %). For a distributed discovery model, the evolution of the 
rejection rate is linear: this behavior is due to the fact that for every sent request, all 
the servers become busy at the same time.  

This means that a system administrator is able to predict in advance under which 
conditions his secure discovery system might become overloaded based on the  
behavior described through Equations 4 and 5, and which configuration is more 
suitable to ensure a better availability. 

A straightforward observation of Figures 6 and 7 could lead to the conclusion that 
rejection rate in centralized architecture is always higher the one in decentralized 
model. However this comparison is misleading as in reality a registry should be much 
more powerful than a server in a decentralized architecture, and action performed by 
registries are less expressive in terms of computing resources. 

4.3   Server and Resource Usage Rate 

Using the same scenario as in the previous section, we now provide a comparison 
between the usage rates of the servers for both architectures, in order to increase the 
accuracy of validation tests. To obtain a meaningful comparison between the 
distributed model (S servers where S > 1) and the centralized model (1 server but N 
slots in the queue), we focused on the resource usage time and not on the server usage 
time (the proportion of time the resources are busy). With decentralized discovery, 
this usage time is equal to:  

∑
>
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k
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kpkU
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where S is the number of servers in the distributed system. And for a decentralized 
architecture, with N the maximum capacity of the registry we obtain:  

∑
>

=
N

k
c N

kpkU
0

)(.  (7) 

Figure 8 and 9 illustrate a perfect matching between the resource usage rate 
measured by the simulator and the one computed by the Markovian model (with less 
than 0.05% of discrepancy). We notice that the usage rate in the decentralized model 
is independent from the resource size. This is due to the multicast allocation technique 
that balances the resource occupation. A system administrator should therefore be 
able to dimension the resources deployed in the system based on the behavior 
described in Equations 6 and 7. Buffer size can be optimally adjusted to the traffic in 
a centralized scenario and an optimal number of replicas of services (provided by the 
same server) can be deployed to ensure a good quality of service. 
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Fig. 8. Resource usage comparison in a centralized architecture 
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Fig. 9. Resource usage comparison in a decentralized architecture 

We notice in the Figure 8 that the resource usage rate lower in 20 slots buffer when 
λ < 0.13 and becomes higher when λ < 0.13. This is however misleading as the 
number of free slots remains higher in any for a 20 slot buffer in any circumstances. 
For instance when λ = 0.1, in a 20 slot buffer, 17.6 places are free while 3.5 places are 
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available in a 5 slot buffer. But if λ = 0. 4 places remain free 3 in a 20 slot buffer as 
compared to 1.5 for a 5 slot buffer. 

5   Conclusion 

This paper introduced analytical models to assess the impact of security mechanisms 
used in both centralized and decentralized secure service discovery architectures. This 
is the first such analytical study of this problem to our knowledge. Results provided 
by our Markovian models are extremely important to determine whether a centralized 
or decentralized strategy should be used to deploy services. They make it possible to 
undertake a systematic study of the robustness, efficiency, resource consumption, 
fault tolerance, message size, or acceptance rate in a SOA architecture, these 
performance parameters being easily computed thanks to the analytic approach. We 
are currently working towards improving the modeling of security aspects of 
discovery, in particular the efficiency of ABE key combinations. We also plan to 
study the combination of our application level models with network level model 
developed either for specific network environments, e.g. ad hoc networks [17], or 
specific communication schemes, e.g. network level multicast [16]. 
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