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Abstract— Workflow technologies are becoming pervasive in
that they enable the execution of business processes in distributed
and ubiquitous computing environments. As long running trans-
actions, the execution of workflows in environments without
dedicated infrastructures raises transactional requirements due
to the dynamicity of resources available to run a workflow
instance and the integration of relaxed atomicity constraints at
both design and instantiation time. In this paper, we propose an
adaptive transactional protocol for the pervasive workflow model
developed in a previous work to support the execution of business
processes in the pervasive setting. The execution of this protocol
takes place in two phases. First candidate business partners are
assigned to tasks using an algorithm wherein the selection process
is based on both functional and transactional requirements.
The workflow execution further proceeds through a hierarchical
coordination protocol managed by the workflow initiator and
controlled based on a decision table computed as an outcome
of the business partner assignment procedure. The resulting
workflow execution is compliant with the defined consistency
requirements and the coordination decisions depend on the
transactional characteristics offered by the partners assigned to
each task. An implementation of our theoretical results relying
on OWL-S and BPEL technologies is further detailed as a proof
of concept.

Index Terms— Decentralized workflows, transaction-aware
composition, transactional consistency

I. INTRODUCTION

Workflow technologies are becoming pervasive in that they
enable the execution of long running business processes and
transactions in distributed and ubiquitous environments [1],
[2], [3]. The adequate execution support for pervasive work-
flows has to cope with the lack of dedicated infrastructure for
management and control tasks in order to provide business
users with means to leverage the resources available in their
surrounding environment. To that effect a first step has been
achieved by the design of a fully decentralized workflow ar-
chitecture based on the Service Oriented Computing paradigm
[4]. Featuring a dynamic assignment of tasks to workflow
partners, this architecture allows users to initiate workflows
in any environment where surrounding users’ resources can
be advertised by various means including a service discov-
ery mechanism. Yet, this architecture does not provide any
guarantee on the consistency of the outcome reached by the
process execution. Considering the lack of reliability akin to
distributed environments, data and transaction consistency is a
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main issue. Transactional requirements raised by the execution
of processes on top of the pervasive workflow infrastructure
are twofold: on the one hand, the workflow execution is
dynamic in that the workflow partners offering different char-
acteristics can be assigned to tasks depending on the resources
available at runtime and on the other hand, atomicity of the
workflow execution can be relaxed as intermediate results
produced by the workflow may be kept despite the failure
of one partner. Existing transactional protocols [5], [6] are not
adapted to solve this paradigm as they do not offer enough
flexibility to cope for instance with the runtime assignment of
computational tasks.

In this paper, we propose an adaptive transactional protocol
for the pervasive workflow management system developed in
[4]. The execution of this protocol takes place in two phases.
First, business partners are assigned to tasks using an algorithm
wherein the selection process is based on functional and
transactional requirements. These transactional requirements
are defined at the workflow design stage using the Acceptable
Termination States (ATS) model. The workflow execution
further proceeds through a hierarchical coordination protocol
managed by the workflow initiator and controlled using a
decision table computed as an outcome of the business partner
assignment procedure. The resulting workflow execution is
compliant with the defined consistency requirements and the
coordination decisions depend on the characteristics of the
partners assigned to each task. Besides, it should be noted
that the practical solutions that are presented in this work
do not only answer specific requirements introduced by the
pervasive workflow model but are sufficiently generic to
be applied to other workflow architectures supporting long-
running transactions.

The remainder of the paper is organized as follows. Section
II introduces preliminary definitions and the methodology un-
derpinning our approach. We present an example of pervasive
workflow execution in section III for the purpose of illustrating
our results throughout the paper. Section IV introduces a de-
tailed description of the transactional model used to represent
the characteristics offered by business partners. Section V
describes how transactional requirements expressed by means
of the ATS model are derived from the inherent properties
of termination states. Section VI and section VII present the
transaction-aware partner assignment procedure and the asso-
ciated coordination protocol, respectively. An implementation
of our theoretical results based on Web services technologies
including OWL-S [7] and BPEL [8] is presented in section
VIII. Section IX discusses related work while section X
presents concluding remarks.
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Fig. 1. Pervasive workflow runtime specification

II. DEFINITIONS AND GOALS STATEMENT

Defining a transactional protocol for pervasive workflows
raises challenges that are mainly due to the flexibility of their
execution and their lack of dedicated infrastructure in charge
of management and control tasks. After a short overview of
the features offered by the pervasive workflow architecture,
we specify the set of requirements in terms of transactional
consistency that must be met by the execution of pervasive
workflows.

A. Pervasive workflows

In this section, we present the pervasive workflow model
that was designed in [4]. The pervasive workflow concept
introduces a workflow management system supporting the
execution of business processes in environments whereby
computational resources offered by each business partner can
potentially be used by any party within the surroundings of that
business partner. This workflow management system features
a distributed architecture characterized by two objectives:
• fully decentralized architecture: the management of the

workflow execution is distributed amongst the partners
taking part in a workflow instance in order to cope
with the lack of dedicated infrastructure in the pervasive
setting

• dynamic assignment of business partners to workflow
tasks: the peers in charge of executing the workflow can
be discovered at runtime based on available resources

The runtime specification of the pervasive workflow archi-
tecture is depicted in figure 1. Having designed an abstract
representation of the workflow whereby business partners are
not yet assigned to functional tasks, the workflow initiator
d1 launches the execution. d1 executes a first set of tasks
t1 (1) before discovering in its surrounding environment a
partner able to perform the next tasks t2 (2). Once the
discovery phase is complete, workflow data are transferred
from the peer that performed the discovery to the discovered
one (3) and the workflow execution further proceeds with
the processing of the next set of tasks t3 (4). The sequence
composed of the discovery request, the transfer of workflow
data and the execution of a set of tasks is iterated till the
final vertex. In order to relax the availability constraints of
pervasive environments, the execution is stateless so that after
the completion of a set of tasks each business partner sends
all workflow data to the next partner involved in the workflow
execution and thus does not have to remain online till the
end of a workflow instance. Along with workflow application
data, the flow of data amongst business partners includes the
abstract representation of the workflow which consists of the
execution plan and the functional requirements associated with
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each workflow step. We note W the abstract representation of
a pervasive workflow and W = (ta)a∈[1,q] where ta denotes a
vertex which is a set of workflow tasks that are performed by
a business partner from the receipt of workflow data till the
transfer of these data to the next partner. The instance of W
wherein q business partners (da)a∈[1,q] have been assigned to
the sets (ta)a∈[1,q] is denoted Wd = (da)a∈[1,q].

B. Assuring consistency of pervasive workflows

As a first step towards assuring workflow consistency one
has to be able to express transactional requirements as part of
the workflow model. We therefore want to offer the possibility
to coordinate some tasks of a pervasive workflow instance
in order to assure the consistency of termination states. Our
approach consists in partitioning the specification of a per-
vasive workflow into subsets or zones and identifying some
zones called critical zones wherein transactional requirements
defined by designers have to be fulfilled.

Definition 2-1. We define a critical zone C of a workflow
W as a subset of W composed of contiguous vertices which
require to meet some transactional requirements. We distin-
guish within C:
• (mk)k∈[1,i] the i vertices whose tasks only modify mobile

or volatile data
• (vk)k∈[1,j] the j vertices whose tasks modify data other

than mobile ones, v1 being the first vertex of C

The business partner assigned to the vertex vk (resp. mk)
is noted dv

k (resp. dm
k ) and the instance of C is noted Cd.

We adopt a simple transactional protocol in which the co-
ordination is managed in a centralized manner by dv

1 assigned
to v1. The role of the coordinator consists in making decisions
based on the transactional requirements defined for the critical
zone given the overall state of workflow execution so that the
critical zone execution can reach a consistent state of termina-
tion. The coordination is assured in a hierarchical way and
the business partners (dv

k)k∈[1,j] which are subcoordinators
report directly to dv

1 whereas the partners dm
k report to the

business partner dv
x most recently executed 1. For the sake

of simplicity, we consider that the set of business partners
{dm

l , dm
l+1, ...d

m
p } reporting to the business partner dv

x form
an abstract partner named dm

l,p that is assigned to the abstract
vertex ml,p. C therefore denotes a set of n vertices (abstract
or not) C = (ca)a∈[1,n]. This reporting strategy based on the
type of business partners is depicted in figure 2.

1business partner of type dv
k that is located on the same branch of the

workflow as these dm
k business partners and that has most recently completed

its execution.



3

Assignment 
procedure 

Available partners offering 
different Transactional Properties

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

1 2

Critical Zone C
1 2

Cd

Instance of C 
consistent with TR 

��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������

Transactional Requirements 
defined for C

1 2

Execution of Cd 

coordinated w.r.t TR 

Fig. 3. Methodology

Within the pervasive workflow model, the workflow exe-
cution is performed by business partners which are assigned
to vertices at runtime. Considering the diversity of business
partners encountered in the pervasive setting, we assume that
these partners might offer various transactional properties, in
addition to different functional capabilities. For instance, a
business partner can have the capability to compensate the
effects of a given operation or to re-execute the operation after
failure as possible transactional properties whereas some other
business partner does not have any of these capabilities. It thus
becomes necessary to select the business partners executing
a critical zone of a pervasive workflow not only based on
functional requirements but also according to transactional
ones. The business partner assignment procedure through
which business partners are assigned to vertices using a
matchmaking procedure based on functional requirements has
to be augmented to integrate transactional ones. The purpose of
the business partner assignment procedure consists in building
an instance of C consistent with the transactional requirements
imposed by designers. It is thus required to discover first all
the business partners that will be involved in the execution of
a given critical zone prior to the execution in order to verify
the existence of a set of business partners that can be assigned
to C. Once the instance of C has been created, the execution
supported by the coordination protocol can start. The execution
of the coordination protocol therefore consists of two phases:
the first phase that includes the discovery and assignment of
business partners to vertices and the second one with the actual
execution.

C. Methodology
As described in section II-B, a coordination protocol de-

signed to support the execution of pervasive workflows has to
meet two basic requirements. First, business partners have to
be assigned based on a transaction-aware process. Second, a
runtime mechanism should process and assure the coordination
of the execution in the face of failure scenarios. In order
to achieve the first, we capitalize on the work presented in
[9] whose results are reminded later on in this paper. In our
approach, the partners part of a critical zone instance Cd are
selected according to their transactional properties by means
of a matchmaking procedure. We therefore need to specify
first the semantic associated with the transactional properties
offered by business partners. The matchmaking procedure is
indeed based on this semantic. This semantic is also used
in order to define a tool allowing workflow designers to
specify their transactional requirements for a given critical
zone. Based on these transactional requirements, business
partners can be assigned to workflow vertices. Finally, once

Cd is formed we can proceed towards the second goal by
expressing the coordination rules inherent to Cd and designing
the actual coordination protocol in charge of processing those
rules. This methodology basically follows the steps of the
transactional pervasive workflow lifecyle from the instantiation
to the execution as depicted in figure 3.

III. MOTIVATING EXAMPLE

In this section we describe a motivating example that will be
used throughout the paper to illustrate the design methodology.
We consider a workflow executed during a computer fair
where clients, retailers and hardware providers can exchange
electronically orders and invoices. The workflow used in this
example is depicted in figure 4. Alice would like to buy a new
computer and makes a call for offer to three available retailers.
After having received some offers, she decides to go for the
cheapest one and therefore contacts the corresponding retailer
Bob. Bob initiates the critical zone C1 by sending an invoice
to Alice and contacting his hardware provider Jack (vertex
v1). Alice pays using Bob’s trusted payment platform (vertex
v2). In the meantime Jack receives the order from Bob and
sends him an invoice (vertex m1) which he pays (vertex v3)
using Jack’s trusted payment platform. Afterwards, Bob starts
to build the computer and ships it to Alice (vertex v4).

Of course in this example, we need to define transactional
requirements as for instance Bob would like to have the
opportunity to cancel his payment to Jack if Alice’s payment
is not done. Likewise, Alice would like to be refunded if
Bob does not manage to assemble and ship the computer.
These different scenarios refer to characteristics offered by
the business partners or services assigned to the workflow
tasks. For example, the payment platform should be able
to compensate Alice’s payment and Jack’s payment platform
should offer the possibility to cancel an order. Yet, it is no
longer necessary for Jack to provide the cancellation option if
the payment platform claims that it is reliable and not prone
to transaction errors. In this example we do not focus on the
trust relationship between the different entities and therefore
assume the trustworthiness of each of them yet we are rather
interested in the transactional characteristics offered by each
participant.

IV. TRANSACTIONAL MODEL

In this section, we provide and extend the semantic speci-
fying the transactional properties offered by business partners
described in [9] before specifying the consistency evaluation
tool associated with this semantic. The semantic model is
based on the “transactional Web service description” defined
in [10].
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TS(C1) v1 v2 m1 v3 v4

ts1 completed completed completed completed completed
ts2 completed completed completed completed failed
ts3 completed completed completed compensated failed
ts4 completed compensated completed completed failed
ts5 completed compensated completed compensated failed
ts6 compensated completed completed completed failed
ts7 compensated completed completed compensated failed
ts8 compensated compensated completed completed failed
ts9 compensated compensated completed compensated failed
ts10 completed completed completed failed aborted
ts11 completed compensated completed failed aborted
ts12 completed canceled completed failed aborted
ts13 compensated completed completed failed aborted
ts14 compensated compensated completed failed aborted
ts15 compensated canceled completed failed aborted
ts16 completed completed hfailed aborted aborted
ts17 completed compensated hfailed aborted aborted
ts18 completed canceled hfailed aborted aborted
ts19 compensated completed hfailed aborted aborted
ts20 compensated compensated hfailed aborted aborted
ts21 compensated canceled hfailed aborted aborted
ts22 completed failed completed aborted aborted
ts23 completed failed canceled aborted aborted
ts24 compensated failed completed aborted aborted
ts25 compensated failed canceled aborted aborted
ts26 completed failed completed completed aborted
ts27 completed failed completed compensated aborted
ts28 completed failed completed canceled aborted
ts29 compensated failed completed completed aborted
ts30 compensated failed completed compensated aborted
ts31 compensated failed completed canceled aborted
ts32 failed aborted aborted aborted aborted

Fig. 5. Termination states of C1
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A. Transactional Properties of Business Partners

In [10] a model specifying semantically the transactional
properties of Web services is presented. This model is based
on the classification of computational tasks made in [11], [12]
which considers three different types of transactional proper-
ties. A task and by extension a business partner executing this
task can be:
• Compensatable: the data modified by the task can be

rolled back
• Retriable: the task is sure to complete successfully after

a finite number of tries
• Pivot: the task is neither compensatable nor retriable
In the definition of a critical zone, we distinguish two sets

of business partners: (dm
k )k∈[1,i] which only modify mobile

or volatile data and (dv
k)k∈[1,j] which only modify data other

than mobile ones, e.g. remote database, production of an
item, etc. Based on this distinction, the above mentioned

transactional model has to be extended. This model describes
the modification of permanent data and is thus only relevant
to database systems whereas the pervasive setting introduces
in addition transactional properties representing business part-
ners’ hardware characteristics such as battery level, reliability,
connectivity, etc. A new transactional property representing
the reliability of a business partner is therefore introduced.
• A business partner is reliable (resp. unreliable) if it is

highly unlikely (resp. likely) that the business partner will
fail due to hardware failures (battery level, communica-
tion medium access, etc.)

To properly detail this model, we can map the transactional
properties with the state of data modified by the business
partners during the execution of computational tasks. This
mapping is depicted in figure 6. Basically, data can be in
three different states: initial (0), unknown (x), completed (1).
In the state (0), it means either that the vertex execution
has not yet started initial, the execution has been aborted
before starting, or the data modified have been compensated
after completion. In state (1) it means that the vertex has
been properly completed. In state (x) it means either that
the execution is active, the execution has been stopped,
canceled before completion, the execution has failed or
an hardware failure, Hfailed happened. These transactional
properties allow to define eight types of business partners: (Re-
liable,Retriable) (rl,rt), (Reliable,Compensatable) (rl,c), (Re-
liable,Retriable and Compensatable) (rl,rtc), (Reliable,Pivot)
(rl,p) and the four others Unreliable (url). We must distinguish
within this model:
• the inherent termination states: failed, completed and

Hfailed which result from the normal course of the task
execution

• the forced termination states: compensated, aborted
and canceled which result from a coordination message
received during a coordination protocol instance and
forcing a task execution to either stop or rollback

In the state diagrams of figures 6 and 7 plain and dashed
lines represent the inherent transitions leading to inherent
states and the forced transitions leading to forced states,
respectively.

The transactional properties of the business partners are
only differentiated by the states failed, compensated and
Hfailed which indeed respectively specify the retriability,
compensatability and reliability aspects.

Definition 4-1. We have for a given partner d:
• failed is not a termination state of d⇔ d is retriable
• compensated is a termination state of d⇔ d is compen-

satable
• Hfailed is not a termination state of d⇔ d is reliable
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From the state transition diagram, we can also derive some
simple rules. The states failed, completed, Hfailed and
canceled can only be reached if the business partner is in
the state active. The state compensated can only be reached
if the partner is in the state completed. The state aborted can
only be reached if the partner is in the state initial.

Regarding the distinction made on the nature of vertices
within a critical zone, we specify some requirements for the
business partners selected for a critical zone execution.

On the one hand, as the partners (dv
k)k∈[1,j] modify sensitive

and permanent data, we consider that they are required to be
reliable. There are therefore four types of dv

k partners: (rl,rt),
(rl,c), (rl,rtc) and (rl,p).

On the other hand, as the business partners of type dm
k only

modify mobile and volatile data, we consider first that they are
retriable besides compensatability is not required for volatile
data. Second, we assume that these tasks can be executed
by unreliable partners and there are as a result only two
types of dm

k partners: (rl,rt) and (url,rt). If one of the dm
k

partners part of the abstraction dm
l,p is unreliable then dm

l,p
is unreliable, otherwise dm

l,p is reliable. Figure 7 depicts the
transition diagram for the six types of transactional partners
that can be encountered.

B. Termination states
The crucial point of the transactional model specifying the

transactional properties of business partners is the analysis of
their possible termination states. The ultimate goal is indeed
to be able to define consistent termination states for a critical
zone i.e. determining for each partner executing a critical zone
vertex which termination states it is allowed to reach.

Definition 4-2. We define the operator termination state
ts(x) which specifies the possible termination states of the
element x. This element x can be:
• a partner d and ts(d) ∈ {aborted, canceled, failed,

Hfailed, completed, compensated}
• a vertex c and ts(c) ∈ {aborted, canceled, failed,

Hfailed, completed, compensated}
• a critical zone composed of n vertices C = (ca)a∈[1,n]

and ts(C) = (ts(c1), ts(c2), ..., ts(cn))
• an instance Cd of C composed of n partners Cd =

(da)a∈[1,n] and ts(Cd) = (ts(d1), ts(d2), ..., ts(dn))
The operator TS(x) represents the finite set of all possible

termination states of the element x, TS(x) = (tsk(x))k∈[1,j].
We have especially, TS(Cd) ⊆ TS(C) since the set TS(Cd)
represents the actual termination states that can be reached by
Cd according to the transactional properties of the partners
assigned to C. We also define for x critical zone or critical
zone instance and a ∈ [1, n]:
• ts(x, ca): the value of ts(ca) in ts(x)
• tscomp(x): the termination state of x such that ∀ a ∈

[1, n] ts(x, ca) = completed.
For the remaining of the paper, C = (ca)a∈[1,n] denotes a
critical zone of n vertices and Cd = (da)a∈[1,n] an instance
of C.

C. Transactional consistency tool
We use the Acceptable Termination States (ATS) [13]

model as the consistency evaluation tool for the critical zone.

ATS defines the termination states a critical zone is allowed
to reach so that its execution is deemed consistent.

Definition 4-3. An ATS(C) is a subset of TS(C) whose
elements are considered consistent by workflow designers for
a specific execution of C. A consistent termination state of
C is called an acceptable termination state atsk(C), thus
ATS(C) = (atsk(C))k∈[1,i]. A set ATS(C) specifies the
transactional requirements defined by designers associated
with a specific execution of C.

ATS(C) and TS(C) can be represented by a table which
defines for each termination state the tuple of termination
states reached by each vertex as depicted in figures 5 and
8. Depending on the application different ATS tables can of
course be specified by designers for the same critical zone C,
and for the sake of readability we do not introduce in this
paper an index (as in ATSi(C)) in the notation ATS(C). As
mentioned in the definition, the specification of ATS(C) is
done at the workflow designing phase. ATS(C) is mainly used
as a decision table for a coordination protocol so that Cd can
reach an acceptable termination state knowing the termination
state of at least one vertex. The coordination decision, i.e. the
termination state that has to be reached, made given a state
of the critical zone execution has to be unique, this is the
main characteristic of a coordination protocol. In order to cope
with this requirement, ATS(C) which is used as input for the
coordination decision-making process has thus to verify some
properties that are specified in the next section.

V. FORMING ATS(C)

In this section the definitions and theorems introduced and
proved in [9] are reminded and adapted to specify ATS(C)
in the scope of the pervasive workflow model. The approach
followed is based on the fact that ATS(C) ⊆ TS(C) thus
ATS(C) inherits the characteristics of TS(C). For the sake of
clarity in what follows, we make the assumption that only one
business partner can fail at a time during a pervasive workflow
instance. Our approach can indeed be easily extended to
concurrent failure scenarios as discussed later on in section
VI-D.

As explained above the unicity of the coordination decision
during the execution of a coordination protocol is a major
requirement. We thus try here to identify the elements of
TS(C) that correspond to different coordination decisions
given the same state of a workflow execution. There are
two situations whereby a protocol coordination has different
possibilities of coordination given the state of a workflow
vertex. Let a, b ∈ [1, n] and assume that the vertex cb has
failed:
• the vertex ca is in the state completed and either it

remains in this state or it is compensated
• the vertex ca is in the state active and either it

is canceled or the coordinator let it reach the state
completed

From these two statements, we define the incompatibility
from a coordination perspective and the flexibility notions.

Definition 5-1. Two termination states of C tsk(C) and
tsl(C) are said incompatible from a coordination per-
spective iff ∃ a,b ∈ [1, n] such that tsk(C, ca) =
completed, tsk(C, cb) = tsl(C, cb) ∈ {failed, Hfailed} and
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tsl(C, ca) = compensated. Otherwise, tsl(C) and tsk(C) are
said compatible from a coordination perspective.

The value in {compensated, completed} reached by a
vertex ca in a termination state tsk(C) whereby tsk(C, cb) ∈
{failed, Hfailed} is called recovery strategy of ca against
cb in tsk(C).

Definition 5-2. A vertex ca is flexible against an other
vertex cb iff ∃ k ∈ [1, j] such that tsk(C, cb) ∈
{failed, Hfailed} and tsk(C, ca) = canceled. Such a ter-
mination state is said to be flexible to ca against cb. The set
of termination states of C flexible to ca against cb is denoted
FTS(ca, cb).

From these definitions, we now study the termination states
of C according to the compatibility and flexibility criterias in
order to identify the termination states that follow a common
strategy of coordination.

Definition 5-3. A termination state of C tsk(C) is called
generator of a vertex ca iff tsk(C, ca) ∈ {failed, Hfailed}
and ∀ b ∈ [1, n] such that cb is executed before or in parallel
with ca, tsk(C, cb) ∈ {completed, compensated}. The set of
termination states of C compatible with tsk(C) generator of
ca is denoted CTS(tsk(C), ca).
The set CTS(tsk(C), ca) specifies all the termination states
of C that follow the same recovery strategy as tsk(C) against
ca.

Definition 5-4. Let tsk(C) ∈ TS(C) be a generator of
ca. Coordinating an instance Cd of C in case of the failure
of ca consists in choosing the recovery strategy of each
vertex of C against ca and the za < n vertices (vai

)i∈[1,za]

flexible to ca whose execution is not canceled when ca

fails. As unreliable business partners modify only volatile
data we consider that cancellation is always performed if
a task execution is still active as soon as a failure occurs.
The set (vai

)i∈[1,za] is thus only composed of vertices of
type vk. We call coordination strategy of Cd against ca the
set CS(Cd, tsk(C), (vai)i∈[1,za], ca) = CTS(tsk(C), ca) −
za⋃

i=1

FTS(vai , ca). If the partner da assigned to ca is retriable

then CS(Cd, tsk(C), (vai)i∈[1,za], ca) = ∅.
Cd is said to be coordinated according to

CS(Cd, tsk(C), (vai
)i∈[1,za], ca) if in case of the

failure of ca, Cd reaches a termination state in
CS(Cd, tsk(C), (vai)i∈[1,za], ca). Of course, it assumes
that the transactional properties of Cd are sufficient to reach
tsk(C).

Given a vertex ca the idea is to classify the elements of
TS(C) using the sets of termination states compatible with

v1 v2 m1 v3 v4
ats1 ts1 completed completed completed completed completed
ats2 ts4 completed compensated completed completed failed
ats3 ts11 completed compensated completed failed aborted
ats4 ts12 completed canceled completed failed aborted
ats5 ts17 completed compensated hfailed aborted aborted
ats6 ts18 completed canceled hfailed aborted aborted
ats7 ts22 completed failed completed aborted aborted
ats8 ts23 completed failed canceled aborted aborted
ats9 ts27 completed failed completed compensated aborted
ats10 ts28 completed failed completed canceled aborted
ats11 ts32 failed aborted aborted aborted aborted

ATS(C1)

v1 d11 yes no yes
v2 d21 no yes yes

d22 yes no yes
m1 d31 yes no no
v3 d41 no yes yes
v4 d51 yes no yes

d52 yes yes yes

Available 
Partners

Retriable Compensatable Reliable

Fig. 8. ATS(C1) and available business partners

the generators of ca. Using this approach, we can identify
the different recovery strategies and the coordination strategies
associated with the failure of ca as we decide which vertices
can be canceled. Defining ATS(C) is therefore deciding at
design time the termination states of C that are consistent.
ATS(C) is to be inputted to a coordination protocol in
order to provide it with a set of rules which leads to a
unique coordination decision in any cases. According to the
definitions and properties we introduced above, we can now
explicit some rules on ATS(C) so that the unicity requirement
of coordination decisions is respected.

Definition 5-5. Let tsk(C) ∈ TS(C) such that tsk(C, ca) ∈
{failed, Hfailed} and tsk(C) ∈ ATS(C). ATS(C) is valid
iff ∃ ! l ∈ [1, j] such that tsl(C) generator of ca compati-

ble with tsk(C) and CTS(tsl(C), ca)−
za⋃

i=1

FTS(vai
, ca) ⊂

ATS(C) for a set of vertices (vai
)i∈[1,za] flexible to ca.

A valid ATS(C) therefore contains for all tsk(C) in
which a vertex fails a unique coordination strategy associated
with this failure and the termination states contained in this
coordination strategy are compatible with tsk(C). In figure
8, an example of possible ATS is presented for the critical
zone C1. It just consists in selecting the termination states of
the table TS(C1) that we consider consistent and respect the
validity rule for the created ATS(C1). For example here the
payment of Alice has to be compensated if Bob fails to deliver
the computer as specified in ats2 = ts4.

VI. ASSIGNING BUSINESS PARTNERS USING ATS

In this section, we specify the main steps of the partner as-
signment procedure whose underpinning theorems are proved
in [9]. The transaction-aware business partner assignment
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procedure aims at assigning n business partners to the n
vertices ca in order to create an instance of C acceptable
with respect to a valid ATS(C). We first define a validity
criteria for the instance Cd of C with respect to ATS(C),
the business partner assignment algorithm is then detailed.
Finally, we specify the coordination strategy associated with
the instance created from our assignment scheme.

A. Acceptability of Cd with respect to ATS(C)
Definition 6-1. Cd is an acceptable instance of C with

respect to ATS(C) iff TS(Cd) ⊆ ATS(C).
Now we express the condition TS(Cd) ⊆ ATS(C) in terms

of coordination strategies. The termination state generator of
ca present in ATS(C) is noted tska(C). The set of vertices
whose execution is not canceled when ca fails is noted
(vai

)i∈[1,za]. We get the theorem 6-2 [9].
Theorem 6-2. TS(Cd) ⊆ ATS(C) iff ∀ a ∈ [1, n]

CS(Cd, tska(C), (vai)i∈[1,za], ca) ⊂ ATS(C).
It should be noted that if failed (resp. Hfailed)

6∈ ATS(C, ca) where ATS(C, ca) represents the accept-
able termination states of the vertex ca in ATS(C) then
CS(Cd, tska(C), (vai)i∈[1,za], ca) = ∅.

B. Transaction-aware assignment procedure
The business partner assignment algorithm uses ATS(C) as

a set of requirements during the partner assignment procedure
and thus identifies those partners whose transactional prop-
erties match the transactional requirements associated with
vertices defined in ATS(C). The assignment procedure is an
iterative process, partners are assigned to vertices sequentially.
At each step i, the assignment procedure therefore generates
a partial instance of C noted Ci

d. TS(Ci
d) refers to the

termination states of C that can be reached based on the
transactional properties of the i partners that are already
assigned. Intuitively the acceptable termination states refer to
the degree of flexibility offered when choosing the partners
with respect to the different coordination strategies complying
with ATS(C). This degree of flexibility is influenced by two
parameters:
• The list of acceptable termination states for each work-

flow vertex. This list can be determined based on
ATS(C). Using this list, the requirements on the trans-
actional properties of a candidate partner can be derived
since this partner can only reach the states defined in
ATS(C) for the considered vertex.

• The assignment process is iterative and therefore, as new
partners are assigned to vertices, both TS(Ci

s) and the
transactional properties required for the assignment of
further partners are updated. For instance, we are sure to
no longer reach the termination states CTS(tsk(C), ca)
allowing the failure of the vertex ca in ATS(C) when we
assign a partner retriable and reliable to ca. In this specific
case, we no longer care about the states reached by other
vertices in CTS(tsk(C), ca) and therefore there is no
transactional requirements introduced for the vertices to
which business partners have not already been assigned.

We therefore need to define first the transactional requirements
for the assignment of a partner after i steps in the assignment
procedure.

1) Extraction of transactional requirements: From the two
requirements above, we define for a vertex ca :

• ATS(C, ca): Set of acceptable termination states of ca

which is derived from ATS(C)
• DIS(ca, Ci

d): Set of transactional requirements that the
partner assigned to ca must meet based on previous as-
signments. This set is determined based on the following
reasoning:
(DIS1): the partner must be compensatable iff
compensated ∈ DIS(ca, Ci

d)
(DIS2): the partner must be retriable iff failed 6∈
DIS(ca, Ci

d)
(DIS3): the partner must be reliable iff Hfailed 6∈
DIS(ca, Ci

d)
Using these two sets, we are able to compute

MinTP (da, ca, Ci
d) = ATS(C, ca)

⋂
DIS(ca, Ci

d) which
defines the minimal transactional properties a partner da

has at least to comply with in order to be assigned to the
vertex ca at the i + 1 assignment step. We simply check
the retriability and compensatability properties for the set
MinTP (da, ca, Ci

d):
• failed 6∈ MinTP (da, ca, Ci

d) ⇔ da has to verify the
retriability property

• Hfailed 6∈ MinTP (da, ca, Ci
d) ⇔ da has to verify the

reliability property
• compensated ∈MinTP (da, ca, Ci

d)⇔ da has to verify
the compensatability property

The set ATS(C, ca) is easily derived from ATS(C). We
need now to compute DIS(ca, Ci

d). We assume that we are
at the i + 1 step of an assignment procedure, i.e. the current
partial instance of C is Ci

d. Computing DIS(ca, Ci
d) means

determining if (DIS1), (DIS2) and (DIS3) are true. From
these three statements we can derive four properties:

1) (DIS1) implies that state compensated can definitely be
reached by ca

2) (DIS2) implies that ca can not fail
3) (DIS2) implies that ca can not be canceled
4) (DIS3) implies that ca can not Hfail

The third property is derived from the fact that if a vertex
can not be canceled when the failure of a vertex has occurred,
then it has to finish its execution and reach at least the state
completed. In this case, if a business partner can not be
canceled then it can not fail, which is the third property.
To verify whether 1., 2., 3. and 4. are true, we present the
following theorems that are an extension of results proved in
[9].

Theorem 6-3. Let a ∈ [1, n]. The state compensated can
definitely be reached by ca iff ∃ b ∈ [1, n] − {a} verifying
(6-3b): db not retriable (resp. reliable) is assigned to cb and
∃ tsk(C) ∈ ATS(C) generator of cb such that tsk(C, ca) =
compensated.

Theorem 6-4. Let a ∈ [1, n]. ca can not fail (resp. Hfail)
iff ∃ b ∈ [1, n]−{a} verifying (6-4b): (db not compensatable is
assigned to cb and ∃ tsk(C) ∈ ATS(C) generator of ca such
that tsk(C, cb) = compensated) or (cb is flexible to ca and
db not retriable is assigned to cb and ∀ tsk(C) ∈ ATS(C)
such that tsk(C, ca) = failed (resp. tsk(C, ca) = Hfailed),
tsk(C, tb) 6= canceled).
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Theorem 6-5. Let a, b ∈ [1, n] such that ca is flexible to cb.
ca is not canceled when cb fails (resp. Hfail) iff (6-5b): db not
retriable (resp. not reliable) is assigned to cb and ∀ tsk(C)
∈ ATS(C) such that tsk(C, cb) = failed (resp. tsk(C, cb) =
Hfailed), tsk(C, ca) 6= canceled.

In order to compute DIS(ca, Ci
d), we have to compare ca

with each of the i vertices cb ∈ C−{ca} to which a business
partner db has been already assigned. Two cases have to be
considered: either we assign a business partner to a vertex vk

or to an abstract vertex ml,p. This is an iterative procedure.
At the initialization phase in the first case we have: since no
vertex has been yet compared to ca = vk, da can be of type
(rl, p): DIS(ca, Ci

d) = {failed}.
1. if cb verifies (6-3b) ⇒ compensated ∈ DIS(ca, Ci

d)
2. if cb verifies (6-4b) ⇒ failed 6∈ DIS(ca, Ci

d)
3. if cb is flexible to ca and verifies (6-5b) ⇒ failed 6∈

DIS(ca, Ci
d)

In this case, the verification stops if failed 6∈ DIS(ca, Ci
d)

and compensated ∈ DIS(ca, Ci
d). For the vertices of type

vk, we indeed only need to check the retriability and compen-
satability properties.

In the second case, we have at the initialization phase: since
no vertex has been yet compared to ca = ml,p, da can be of
type (url): DIS(ca, Ci

d) = {Hfailed}.
4. if cb verifies (6-4b) ⇒ Hfailed 6∈ DIS(ca, Ci

d)
In that case, the verification stops if Hfailed 6∈

DIS(ca, Ci
d). For the vertices of type ml,p we only need to

check the reliability property.
Finally, when MinTP (da, ca, Ci

d) is computed, we are able
to select the appropriate business partner to be assigned to a
given vertex according to transactional requirements.

2) Business partner assignment process: Business partners
are assigned to each vertex based on an iterative process. De-
pending on the transactional requirements and the transactional
properties of the business partners available for each vertex,
different scenarios can occur:

(i) business partners of type (rl, rtc) are available in the
case of a vertex vk or business partners of type (rl)
are available in the case of a vertex ml,p (i.e. all the
business partners of the abstraction are of type (rl)). It is
not necessary to compute any transactional requirements
as such partners match all transactional requirements.

(ii) a single partner is available for the considered vertex. We
need to compute the transactional requirements associated
with the vertex and either the transactional properties
offered by this partner are sufficient or there is no
solution.

(iii) business partners of type (rl, rt) and (rl, c) but none of
type (rl, rtc) are available for a vertex vk. We need to
compute the transactional requirements associated with
the vertex and we have three cases. First, (rl, rtc) is re-
quired and therefore there is no solution. Second, (rl, rt)
(resp. (rl, c)) is required and we assign a business partner
of type (rl, rt) (resp. (rl, c)) to the vertex. Third, there is
no requirement.

The assignment procedure is performed by the coordinator c1.
Business partners have to be assigned to all vertices prior to
the beginning of the critical zone execution. The first vertex is
de facto assigned to the critical zone initiator. The idea is then

to assign first business partners to the vertices verifying (i) and
(ii) since there is no flexibility in the choice of the business
partner. Vertices verifying (iii) are finally analyzed. Based
on the transactional requirements raised by the remaining
vertices, we first assign partners to vertices with a non-empty
transactional requirements. We then handle the assignment for
vertices with an empty transactional requirements. Note that
the transactional requirements of all the vertices to which
partners are not yet assigned are also affected (updated) as
a result of the current partner assignment. If no vertex has
transactional requirements then we assign the partners of type
(rl, rt) to assure the completion of the remaining vertices’
execution.

C. Actual termination states of Cd

Once all the business partners have been assigned to vertices
we can coordinate their execution so that they respect the
defined transactional requirements. In order to do so, we need
to know the actual termination states subset of ATS(C) that can
be reached by the defined instance of C. Having computed
TS(Cd), we can deduce the coordination rules associated
with the execution of Cd. This subset is determined using the
following theorem that is proved in [9].

Theorem 6-6. Let Cd be an acceptable instance of C
with respect to ATS(C). We note (cai)i∈[1,nr] the set of
vertices to which neither a retriable nor a reliable busi-
ness partner has been assigned. tskai

(C) is the gener-
ator of cai

present in ATS(C) and (vaij
)j∈[1,zai

] de-
notes the set of vertices which are not canceled when cai

fails. TS(Cd)={tscomp(Cd)}
⋃ nr⋃

i=1

(CTS(tskai
(C), cai

) −
zai⋃
j=1

FTS(vaij
, cai

)).

TS(Cd) is indeed derived from ATS(C) which contains for
all vertices at most a single coordination strategy as specified
in 5-5. As a result, whenever the failure of a vertex ca is
detected, a transactional protocol in charge of coordinating an
instance Cd resulting from our approach reacts as follows. The
coordination strategy CS(Cd, tsk(C), (vai

)i∈[1,za], ca) corre-
sponding to ca is identified and a unique termination state
belonging to CS(Cd, tsk(C), (vai

)i∈[1,za], ca) can be reached
given the current state of the critical zone execution.

D. Discussion and performance evaluation
In order to handle the scenarios wherein more than one

business partner can fail at a time, one would need to extend
the definition of the termination state generator to take into
account the failure of a set of partners as follows.

Definition 6-7. A termination state of C tsk(C) is called
generator of a set of vertices (cai

)i∈[1,p] iff ∀i ∈ [1, p]
tsk(C, cai

) ∈ {failed, Hfailed} and ∀ b ∈ [1, n] such
that cb is executed before one of the vertices (cai

)i∈[1,p],
or in parallel with all the vertices (cai)i∈[1,p], tsk(C, cb) ∈
{completed, compensated}.

The compatibility definition would be also defined for
termination states in which exactly the same set of partners
fail at the same time so that coordination strategies are defined
for possible concurrent failures. In this case, two termination
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states such that the set of failures in the first is a subset of
the set of failures in the second are not incompatible. The
composition algorithm and the coordination protocol are not
affected by this configuration.

The operations that are relevant from the complexity point
of view are twofold: the definition of transactional require-
ments by means of the acceptable termination states model
and the execution of the transaction-aware business partner
assignment procedure.

One can argue that building an ATS table specifying the
transactional requirements of a business process W consists of
computing the whole TS(W ) table, yet this is not the case.
Building a ATS(C) set in fact only requires for designers
to identify the vertices of C that they allow to fail as part
of the process execution and to select the termination state
generator associated with each of those vertices that meet their
requirements in terms of failure atomicity. Once this phase is
complete, designers only need to select the vertices whose
execution can be canceled when the former vertices may fail
and complete the associated coordination strategy.

The second aspect concerns the complexity of the transac-
tion aware assignment procedure that we presented in section
VI.

Theorem 6-8. Let C = (ca)a∈[1,n] a critical zone. The
complexity of the transaction-aware assignment procedure is
O(n3).

Proof: We can show that the number of operations
necessary to compute the step i of the assignment procedure
for a vertex ca is bounded by 4× n× i. Computing the step
i indeed consists of verifying the theorems 6-3, 6-4 and 6-5
and determining ATS(C, ca). On the one hand, performing
the operations part of theorems 6-3 (one comparison), 6-
4 (two comparisons) and 6-5 (one comparison) requires at
most 4 comparisons. On the other hand, building ATS(C, ca)
requires at most n operations (there is at most n generators
in a ATS(C) set). Therefore, we can derive that the number
of operations that needs to be performed in order to compute
the n steps of the assignment procedure for a critical zone

composed of n tasks is bounded by 4 × n ×
n∑

j=1

j which is

equivalent to n3 as n −→∞.

E. Example
We consider the critical zone C1 of figure 4. Designers

have defined ATS(C1) of figure 8 as the transactional
requirements. The set of available business partners for each
vertex of C1 is specified in the figure 8. The goal is to assign
business partners to vertices so that the instance of C1 is
valid with respect to ATS(C1) and we apply the presented
assignment procedure. The critical zone initiator assigned
to v1 uses a business partner of type (rl, rt) matching
the transactional requirements. We now start to assign the
business partners of type (rl, rtc) and (rl) for which it is
not necessary to compute any transactional requirements.
d52 which is the only available business partner of type
(rl, rtc) is therefore assigned to v4. We then try to assign
business partners to tasks for which there is no choice, and
we verify whether d31 can be assigned to m1. We compute
MinTP (da, m1, C

2
1d) = ATS(C1, m1)

⋂
DIS(m1, C

2
1d).

TS (C 1d) d11 d21 d31 d41 d51

ts1 com ple ted com pleted com ple ted c om pleted com pleted
ts11 com ple ted com p ens ated com ple ted fa iled aborted
ts12 com ple ted canceled com ple ted fa iled aborted
ts17 com ple ted com p ens ated hfa iled abo rted aborted
ts18 com ple ted canceled hfa iled abo rted aborted
ts22 com ple ted fa iled com ple ted abo rted aborted
ts23 com ple ted fa iled canceled abo rted aborted
ts27 com ple ted fa iled com ple ted com pensa ted aborted
ts28 com ple ted fa iled com ple ted canceled aborted

Fig. 9. TS(C1d)

vd1
v
kd m

kd
Receives Sends Receives Sends Receives Sends

Completed Compensate Compensate Abort Leave Aborted

Failed Cancel Cancel Aborted Cancel Canceled

Aborted Abort Abort Canceled Ack Alive

Canceled Leave Leave Cancel Abort Ack

Compensated Ping Aborted Leave Ping Completed

Ack Alive Ping

Hfailed Ack Ack

Alive Ping Hfailed

Canceled Alive

Completed Compensated

Failed

completed

Fig. 10. Notification messages

ATS(C1, m1) = {completed,Hfailed} and
DIS(m1, C

2
1d) = {Hfailed} as d52 and d11 are

the only business partner already assigned and the
theorems 6-3, 6-4 and 6-5 are not verified. Thus
MinTP (ca, m1, C

2
1d) = {Hfailed} and d31 can be

assigned to m1 as it matches the transactional requirements.
We get for v3 MinTP (da, v3, C

3
1d) = {failed}. The

business partner d41 which is of type (rl, c) verifies the
transactional requirements is assigned to v3. Now we
compute the transactional requirements of v2 and we get
MinTP (da, v2, C

4
1d) = {failed, compensated} as theorem

6-3 is verified with the business partners d31. The partner
d21 can thus be assigned to v2 as it matches the transactional
requirements of the task. Using the created instance of C1

we get the set TS(C1d) of figure 9.

VII. COORDINATION PROTOCOL SPECIFICATION

Having introduced the method through which an instance
of C is obtained by assigning partners to workflow vertices
according to the transactional requirements of C, we turn to
the actual coordination of partners during the execution of the
critical zone. The protocol that is in charge of the coordination
is specified in terms of the different actors, notification mes-
sages and coordination cases. We finally motivate the chosen
solution by comparing it with existing coordination protocols.

A. Protocol actors

As mentioned in section II-B and figure 2 we distinguish
three main entities within the coordination protocol execution:
• Business partner dv

1 = c1: this business partner is the
critical zone initiator and is in charge of performing the
business partner assignment procedure and coordinating
the execution of C. The coordination decisions are made
using the table TS(Cd) specifying the subset of ATS(C)
Cd is actually able to reach.

• Business partners dv
k: these business partners modify

sensitive data and play the role of subcoordinators. They
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Ack(W Id)

Registered(    ,W Id)
vxd

Fig. 11. Business partner registration

report their state of execution and the state of execution
of the business partners dm

k to dv
1 .

• Business partners dm
k : these partners modify volatile data

and report to the partner dv
x most recently executed.

Actors exchange messages for the purpose of decision
making and forwarding as listed in figure 10. These messages
are mostly derived from the state diagram of the transactional
model and the respective role of the partners in the protocol.
The flow of notification messages within the protocol execu-
tion and the mechanisms involved in the processing of these
notification messages are stated in the next section.

B. Coordination scenarios

In this section, we detail the different phases and coordina-
tion scenarios that can be encountered during the execution of
the protocol. First, we explain how partners are registered with
the coordination protocol during the partner assignment phase.
Then, we analyse the message flow between the different
actors of the protocol in three different scenarios: normal
course of execution, failure of a partner dv

k and failure of a
partner dm

k .
1) Business partner registration: The first phase of the

coordination protocol consists of the discovery and registration
of the business partners that will be involved in the critical
zone execution. The discovery process through which business
partners that can be assigned to critical zone vertices are
identified is performed by the business partner c1 = dv

1 . The
transactional requirements extraction procedure, specified in
section VI-B provides the coordinator with a list of suitable
business partners that match the computed transactional re-
quirements. It is then necessary to contact the business partners
of this list in order to receive from of one of them the commit-
ment to execute the requested vertex. Based on the registration
handshake depicted in figure 11, the coordinator dv

1 contacts
a business partner asking it whether it agrees to commit to
execute the operation a of the workflow whose identifier is
WId. Once the newly assigned business partner’s coordinator
is known, dv

1 sends the information. In the case of business
partners dv

k this information is known from the beginning since
dv
1 is their coordinator whereas for the business partners dm

k ,
the information is known when dv

x the business partner dv
k

most recently executed has been assigned to a vertex.
2) Normal course of execution: Once all involved business

partners are known, the critical zone execution can start
supported by the coordination protocol. Business partners are
sequentially activated based on the workflow specification. A
sample for normal execution of C is depicted in figure 12.
The Activate(W, k, WId, D) message is a workflow message
defined in [4], it especially contains the workflow specification
W , the requested vertex k to be executed, the workflow data
D modified during the execution and the workflow identifier

vd1 vd 2 md1 md 2 vd3Activate(W,2,W id) Activate(W,5,W id)

Completed(4,W id,D)

Completed(5,W id)

Ack(W Id)

Completed(2,W id)

Leave(W id)

Fig. 12. Normal executionvd1 vd 2 md1 md 2 vd3Ack

Failed(2 ,W id)

Activate(W ,2,W id) Abort(3,W id)
Abort(5,W id)

Aborted(3,W id)

Aborted(4,W id)Timeout

Fig. 13. Failure of a business partner dv
k

WId. Within the critical zone execution local acknowledg-
ments Ack(WId) are used. Each business partner dm

k reports
its status to the business partner dv

x most recently executed
and once its execution is complete it can leave the critical
zone execution. The Completed(k, WId, D) message sent by
a business partner dm

k includes a backup copy of the volatile
data modified by the business partner that can be reused later
on for the recovery procedure in case of failure of a business
partner dm

k (Section VII-B.4). Once in the state completed,
business partners of type dm

k can leave the coordination as they
won’t be asked to compensate their execution. Depending on
the transactional requirements defined for C, business partners
dv

k may leave the critical zone before the end of the critical
zone execution. A business partner dv

k is indeed able to leave
the coordination if it reaches the state completed regardless
of possible failures in the sequel of the critical zone execution.
The condition allowing a business partner dv

k to leave the
coordination is therefore stated as follows.

Theorem 7-1. A partner dv
k assigned to a vertex cl can

leave the execution of a critical zone C iff the partner dv
k is

in the state completed and ∀ i ∈ [1, n] such that a business
partner di not retriable (resp. not reliable) is assigned to the
vertex ci, di is in the state initial and tsk(C, cl) = completed
where tsk(C) is the termination state generator of ci in
TS(Cd).

3) Failure of a business partner dv
k: This scenario is

only possible with business partners of type (rl, p). We can
encounter two situations: either the failure is total and the
business partner is not able to communicate any longer or the
business partner is still alive and can forward a failure message
to dv

1 . Figure 13 depicts the two cases whereby the total failure
is detected using a simple timeout in Ping/Alive message
exchanges. Once the failure has been detected, the coordinator
forwards the coordination decision to all involved business
partners. It should be noted here that business partners of type
(rl, rt) can also reach the state failed but the retriability prop-
erty implies that they have at their disposal recovery solutions
ensuring that the contact is never permanently lost. Thus, the
failure of business partners of type (rl, rt) is transparent to the
rest of the coordination and does not have to be handled.
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Timeout

vd1 vd 2 md1 md 2 vd3
Compensate(W,2,W id)

Abort(5,W id)

HFailed(4,W id)

Activate(W,2,W id) Activate(W ,4,W id)

Fig. 14. Failure of a business partner dm
k

4) Failure of a business partner dm
k : The failure of a

business partner dm
k is detected by its subcoordinator with a

timeout. As specified in the transactional model, we indeed
consider that business partners of type dm

k can only fail
because of hardware problems and failure of such partners
therefore implies a loss of contact with their coordinator. The
failure of a partner dm

k is reported by its subcoordinator to
the partner dv

1 . The failure detection and forwarding of the
Hfailed message are depicted in figure 14.

C. Coordination decisions and recovery

Having detailed various coordination scenarios that can
occur during the execution of a critical zone, we analyse the
possible recovery strategies, in particular the replacement of
failed partners dv

k and dm
k and how coordination decisions are

made upon detection of a failure.
1) Replacement of failed partners dv

k: During the course of
the execution new partners can be discovered and assigned to
vertices in order to replace failed ones. In fact two situations
can happen: either the failure of a partner occurs while
executing its assigned vertex or the coordinator loses contact
(timeout detection) prior to the activation of the partner. The
first situation is specified in the previous section and no backup
solution is possible as the data modified by the failed business
partner are in an unknown state. In the second situation, it
is possible on the contrary to assign a new business partner
matching the transactional requirements to the vertex which
has not yet started with the execution. Once the loss of contact
with a business partner dv

k is detected, no coordination decision
is yet sent to business partners and the execution continues. If
no business partner is found to be assigned to the vertex when
its execution should be activated, the protocol coordinator
considers the business partner it has lost contact with as failed.

2) Replacement of failed business partners dm
k : In case

of failure of a business partner dm
k , be it before or after

its activation, a recovery procedure can be executed prior to
informing the coordinator of the hardware failure. It is indeed
possible to assign to the vertex a new business partner so that
the execution can go on. This is possible as on the one hand the
partners dm

k only modify volatile data and on the other hand,
we have a backup copy of the data modified by the partners
that are part of the abstract vertex dm

l,p. Once the failure is
detected, the subcoordinator of the failed partner tries to assign
a new partner to the failed vertex. In this case, only volatile
data are being modified, transactional requirements is not a
concern and the assignment procedure can be repeated till a
business partner manages to execute the requested vertex.

3) Reaching consistent termination states: Once all possi-
ble recovery mechanisms have been attempted, a coordination

decision is made by the coordination dv
1 . The table TS(Cd)

is the input to the coordination decisions that are made
throughout the execution of a critical zone. Once the failure of
a vertex ca has been detected, the protocol coordinator reads
in TS(Cd) the set CS(Cd, tsk(C), (vai)i∈[1,za], ca) listing the
possible termination states reachable by Cd whereby ca is
failed. There is a unique element of this set that is reachable
by Cd with respect to its current state of execution and dv

1

sends the appropriate messages so that the overall critical zone
can reach this consistent termination state.

D. Discussion
The coordination protocol integrates the semantic descrip-

tion of involved business partners and relies on an adaptive
decision table which is computed during the assignment pro-
cedure. The coordination protocol is flexible as it completely
depends on the designers’ choice for the specification of
Acceptable Termination States. This solution therefore offers
a full support of relaxed atomicity constraints for workflow
based applications and is also self-adaptable to the business
partners characteristics which is not the case with recent efforts
[14],[15].

The organization of the coordination is based on a simple
hierarchical approach as in BTP [16]. In that respect, the
central point of the coordination is the business partner dv

1 on
which relies the whole coordination. This is the main weakness
of the protocol, as a failure of this business partner would
cause the complete failure of the workflow execution. The
role of critical zone initiator of the coordination is therefore
reserved to business partners that are both reliable and retri-
able. Nonetheless, this centralized and hierarchical approach
facilitates the management of the coordination process.

In addition to usual coordination phases such as coordi-
nation registration, business partner completion and failure,
our protocol offers the possibility to replace participants at
runtime depending on their role within the coordination and
the volatility degree of data they have to modify during the
workflow execution. This makes the protocol flexible and
adapted to the pervasive paradigm whereas such recovery
procedure is not specified in other transactional protocols.

In the protocol description, we do not specify the data
recovery strategy especially for the compensated states. Dif-
ferent approaches can be integrated with our work to support
either forward error recovery or backward error recovery [17].
The choice of the recovery strategy basically depends on
the application and its fault-handling protocol. For instance,
a simple backward error recovery strategy is sufficient for
workflows used for payment in the example of the paper
whereas a forward recovery strategy might be required for
a hotel booking system. Existing mechanisms in this area can
therefore be used to augment our transactional protocol to
specify complex fault-handling and compensation scenarios
[8], [18].

VIII. IMPLEMENTATION

In this section an implementation of the work presented
in this paper is described. The overall system architecture is
depicted in figure 15. The basic pervasive workflow infrastruc-
ture spans over the business partners taking part in a workflow
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Fig. 15. Architecture

instance. A local workflow engine developed on top of BPEL
[8] is in charge of handling, for each involved business partner,
the workflow management and control tasks which mainly
consist of:
• receiving and forwarding workflow requests
• issuing discovery requests
• invoking the appropriate local services to execute work-

flow tasks
In order to support the execution of pervasive workflows, we
implemented in the fashion of the WS-Coordination initiative
[19] a transactional stack composed of the following compo-
nents:
• Transactional coordinator: this component is supported by

a critical zone initiator. On the one hand it implements the
transaction-aware business partner assignment procedure
as part of the composition manager module and on the
other hand it is in charge of assuring the coordinator role
of the transactional protocol relying on the set TS(Cd)
outcome of the assignment procedure.

• Transactional submanager: this component is deployed
on the other partners and is in charge of forwarding
coordination messages from the local workflow to the
appropriate subcoordinator or coordinator and conversely.

In the remainder of this section, we focus on the implemen-
tation of the transaction-aware partner assignment procedure.

A. OWL-S transactional and functional matchmaker
To implement the assignment procedure presented in this

paper we augmented an existing functional OWL-S match-
maker [20] with transactional matchmaking capabilities. In
order to achieve our goal, the matchmaking procedure has
been split into two phases. First, the functional matchmaking
based on OWL-S semantic matching is performed in order
to identify subsets of the available partners that meet the
functional requirements for each workflow vertex. Second, the
implementation of the transaction-aware partner assignment
procedure is run against the selected sets of partners in order
to build an acceptable instance fulfilling defined transactional
requirements.

Composition manager

R

Device
manager

Transactional
composer

Functional
matchmaker

Transactional
matchmaker

Registry

R

R R

R

Fig. 16. OWL-S transactional matchmaker

The structure of the matchmaker consists of several com-
ponents whose dependencies are displayed in figure 16. The
composition manager implements the matchmaking process
and provides a Java API that can be invoked to start the se-
lection process. It gets as input an abstract process description
specifying the functional requirements for the candidate part-
ners and a table of acceptable termination states. The registry
stores OWL-S profiles of partners that are available. Those
OWL-S profiles have been augmented with the transactional
properties offered by business partners. This has been done
by adding to the non-functional information of the OWL-
S profiles a new element called transactionalproperties that
specifies three Boolean attributes that are retriable, reliable
and compensatable as follows:

<tp:transactionalproperties retriable="true"
reliable="true"
compensatable="true"/>

In the first phase of the selection procedure, the business
partner manager is invoked with a set of OWL-S profiles that
specify the functional requirements for each workflow vertex.
The business partner manager gets access to the registry, where
all published profiles are available and to the functional match-
maker which is used to match the available profiles against
the functional requirements specified in the workflow. For
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each workflow vertex, the business partner manager returns
a set of functionally matching profiles along with their trans-
actional properties. The composition manager then initiates
the second phase, passing these sets along with the process
description, and the table of acceptable termination states to
the transactional composer. The transactional composer starts
the transaction-aware business partner assignment procedure
using the transactional matchmaker by classifying first those
sets into six groups:
• sets including only business partners of type (url,rt)
• sets including only business partners of type (rl,rt)
• sets including only business partners of type (rl,p)
• sets including only business partners of type (rl,c)
• sets including business partners of types (rl,rt) and (rl,c)
• sets including business partners of type (rl,rtc)
Once those sets are formed the iterative transactional com-

position process takes place as specified above based on the
table of acceptable termination states. Depending on the set
of available services and the specified acceptable termination
states, the algorithm may terminate without finding a solution.

IX. RELATED WORK

Transactional consistency and correctness of distributed
systems such as database systems has been an active research
topic over the last 15 years [21], [22], [23] yet it is still
an open issue in the area of distributed processes within the
Service Oriented Computing paradigm (SOC) [24], [25], [26],
[27]. In this paper we specified a transactional protocol for
the pervasive workflow architecture presented in [4] and our
solution uses and extends the results proved in [9].

The execution of distributed processes wherein business
partners are not assigned at design time raises new require-
ments for transactional systems such as dynamicity, semantic
description and relaxed atomicity. Existing transactional mod-
els for advanced applications and workflows [5] do not offer
the flexibility to integrate these requirements [28]. Our solution
allows the specification of transactional requirements support-
ing relaxed atomicity for an abstract workflow specification
and the selection of semantically described business partners
or services fulfilling the defined transactional requirements.
In addition, we provide the means to compute a coordination
protocol suited to the workflow instance resulting from our
business partner assignment procedure.

In [10], the first approach specifying relaxed atomicity
requirements for Web services based workflow applications
using the ATS tool and a transactional semantic is presented.
Despite a solid contribution, this work provides only some
means to verify the consistency of composite services but it
does not take into account transactional requirements at the
composition phase. This work therefore appears to be limited
when it comes to the possible integration into dynamic and
distributed business processes. In this approach, transactional
requirements do not play any role in the component busi-
ness partners selection process which may result in several
attempts to determine a valid workflow instance. As opposed
to this work, our solution provides a systematic procedure
enabling the creation of valid workflow instances by means
of a transaction-aware business partner assignment procedure.
A transactional web service composition framework is also

presented in [29] yet this approach does not allow to define
coordination strategies as fine-grained as the termination state
model underpinning our composition algorithm.

The transactional protocol we propose offers suitable means
to respond to the constraints introduced by environments
where heterogeneous business partners share resources in a
collaborative manner. Using relaxed atomicity features, the
protocol indeed offers the flexibility for business partners to
release their resources as soon as their participation to the
workflow is no longer required. Moreover using a flexible
semantic, business partners are able to advertise their capa-
bilities so that they can assume a role suited to any workflow
in which their resources can be used. Current efforts in the
design of transactional framework supporting the coordination
of business processes [14], [15], [30], [31] do not offer such
flexibility. They suffer from the lack of tools for the specifi-
cation of transactional requirements and their integration into
a dynamic business partners’ selection process. As opposed to
our solution the WS-BA specification and its implementation
[32], for instance, do not provide designers with the adequate
means to specify the business logic associated with their long
running transactions. Furthermore, no recovery procedure is
specified as part of the protocol for the replacement of partners
in case of failure.

X. CONCLUSION

We presented an adaptive transactional protocol developed
in the scope of the pervasive workflow model [4]. The
contributions of the paper are threefold. First we provide
a transactional model that captures the typical transactional
properties associated with Web services and make it possible
for business partner to advertise the latter as a non functional
attribute to potential clients. This transactional model and
its associated semantic are actually the core of the overall
approach and consider the transactional properties offered by
business partner as part of the SLA. Second we propose a
composition algorithm whose goal is to mix the transactional
properties offered by business partners in order to meet some
transactional constraints identified by workflow application
designers. This algorithm does not only build consistent work-
flow instances but also provides the coordination rules to
adequately coordinate the workflow execution. These rules are
directly derived from the requirements set by designers in the
first place but also from the composite application outcome of
the assignment procedure. Third we propose a transactional
protocol that meet the dynamicity requirements introduced by
a flexible execution environment. We believe that our approach
can be used to augment recent specifications [19] in increas-
ing their flexibility to incorporate transactional properties of
business partners in the definition of adaptive coordination
rules. Besides, a complete transactional framework has been
implemented as a proof of concept of our theoretical results.
Future work will focus on the design of security solutions for
the pervasive workflow model.

XI. APPENDIX
Table of notations

ti Vertex
di Business partner assigned to ti
W Workflow
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Wd Workflow instance
C Critical zone
Cd Instance of C
ats Acceptable Termination State
ts Termination State
mk Vertex that modifies only volatile data
vk Vertex that modifies data other than volatile ones
dv

k Business partner assigned to vk

dm
k Business partner assigned to mk

rl Reliable
rt Retriable
url Unreliable
p Pivot
c Compensatable
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