UNIVERSITE DE NICE-SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC

SCIENCES ET TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION

THESE

pour obtenir le titre de

Docteur en Sciences
de I'Université de Nice-Sophia Antipolis

Mention : Informatique

présentée et soutenue par

Fabio PIANESE

Systémes Pair a Pair Pour la Diffusion de Données V. idéo
PULSE - Un Systéme Adaptatif pour le Streaming en Direct sur Internet

soutenue le 3 Décembre 2007

Jury :

Dr. Walid DABBOUS Président

Prof. Dr. Ernst BIERSACK Directeur de Thése
Prof. Dr. Wolfgang EFFELSBERG Rapporteur

Prof. Dr. Pascal FELBER Rapporteur

Dr. Joaquin KELLER Examinateur

PULSE
An Adaptive Practical Live Streaming System

(PULSE - un Systeme Adaptatif pour le Streaming en Directisi@rnet)

Fabio Pianese

October 31st, 2007

Final Version 1.0 - January 31st, 2008 - Library Version

Copyright(© 2007-2008 by Fabio Pianese (fabio.pianese@eurecom.firjights reserved.
Typeset inATEX by the author using theyX Editor, by Matthias Ettrich and the LYX Team

Cum sit enim proprium
viro sapienti

supra petram ponere
sedem fundamenti
stultus ego comparor
fluvio labenti

sub eodem tramite
numqguam permanenti

— Carmina Burana

Abstract

Live Streaming consists in distributing live media (videmlaaudio) to large audiences over a
computer network. Providing a live streaming service okierihternet presents many challenges:
the application must respect the timing and quality coimssamposed by the nature of live
media and by user expectations while struggling with thetozal limitations due to théest
effort properties and unpredictable dynamics of the InternetaBse of the limited deployment
of native IP multicast, an Internet-based live streamingfiaption with a global scope can only
rely onend-to-enchetwork primitives, such as unicast connections. Theti@thl client-server
approach to live streaming has a serious scalability liastthe upload capacity requirement
at the server grows linearly with the user population. A P@Ritson has the big advantage of
seamlessly scaling to arbitrary population sizes, as emede that receives the video, while
consuming resources, can at the same time offer its own dfdaadwidth to serve other nodes.
In theory, if every node contributed on average at least ashnag it consumed, the P2P system
would have enough resources to grow indefinitely.

This work presents and evaluates PULSE, a practical P2Pstreaming system intended for
large-scale deployment over the Internet. PULSE uses anughigred mesh-based design and
relies on local pairwise incentives as its peer selectionlrarism. The most innovative feature
of PULSE is the unique coupling of incentives with feedbaekwkd from data reception, which
leads to the emergence of clusters that regroup nodes witlasiresources. By exploiting this
intrinsic clustering phenomenon and by leveraging latemeasurements to estimate network
locality, PULSE is capable to successfully operate in a wadwe of resource-constrained real
world scenarios and to support dynamic user populationdatefogeneous node upload capac-
ities.

V4

Réesumeé

Le live streamingconsiste en la distribution d’un flux de données multimédiateo et audio)
en direct vers une large audience par le biais d’'un réseaulidateurs. Offrir un service de
streaming live sur I'lnternet présente plusieurs défispeeter des contraintes de délai et de
gualité, imposées par la nature des données audiovisuetiagilisant un réseabest effortau
comportement aléatoire. Par ailleurs, le support pour I#ioast IP n’a pas été déployé de fagon
suffisante, ce qui oblige toute application qui vise un dgghoent sur échelle globale a utiliser
des connexiongle bout en bout L'approche traditionnelle client-serveur souffre d’uaujot
d’étranglement au niveau de la bande passante remontargerdeur, dont la consommation
augmente de facon linéaire avec le nombre d’'usagers. Unecpppair-a-pair (P2P) al'énorme
avantage de permettre le passage a I'échelle du systeme&gusee taille arbitraire, puisque
chaque nceud qui recoit le flux vidéo peut apporter ses ress®au réseau au méme temps qu'il
en consomme. En theorie, au cas ou chaque nceud apporteraiiy@mne la méme quantité
d’upload qu’il consomme, le systeme pourrait s’accroitiéfiniment.

Ce travail présente et évalue les performances de PULSEysianse de streaming en direct
adapté aux exigences pratiques d’'un déploiement a largdiéslur I'Internet. PULSE utilise un
réseau maillé non structurar{structured megtet appliqgue des mécanismes locaux d’incitation
au partage en tant que critéres pour le choix des noeuds av&ablir des associations. L'aspect
le plus innovant de PULSE est I'introduction d’'un mécanistaecombine l'incitation avec une
boucle de rétroaction basée sur les délais de réceptiomepue a la formation de clusters parmi
les noeuds qui partagent la méme quantité de ressource®itarptette organisation émergente
et utilisant des mesures de latence de bout en bout pourazdéiqroximité entre nceuds, PULSE
peut supporter un large éventail de scénarios réels oudssueces sont rares et distribuées de
facon hétérogene, avec une large population d’'usagersmapartement dynamique.

Acknowledgments

The last time | had the opportunity to compile a list of peoyblat | felt deserved recognition
[84] | ended up with two pages full of names, in-jokes, anddfomemories. This time | will be
more sober and to the point - mainly cutting down on the irepok but still strive not to forget
too many people.

Thanks to my family. It's been a long time since | left you tdidav this unusual path - almost
five years, 18% of my whole current lifetime, give or take. ,Yetonstantly feel your love and
support, and hope you feel mine, as strong as ever. Wheréaare been, wherever | will be, |
wish you to know that | have ever been - and ever will be - grdtef you: for all that you have
been to me, for what | am, thanks! | owe you everything.

| spent the first two years of my thesis in Paris. A wonderfalcgl, a city | deeply love: | love
your streets and boulevards, your gardens, your bridges, pyonuments. | love your immortal
spirit, this strange feeling of being in the heart of histand humankind. | love your restaurants,
too! Maybe one day | will have the chance to live there again..

Thanks to my friends in Paris. It has been a pleasure to megtgdang out with some of you,
to drink fine wine with some others of you, to have fun with gxere of you. Let’s celebrate the
wine-drinkers! | want to especially thank Thierry Baudomot only is he a great friend, he is
also the one who provided some of the best wine bottles | hasetasted. Thanks to Nicolas,
my roommate in Paris for more than two years. How do | miss ddirapartment in the 15th
arrondissement! | wish you both well and to your familiesd@ew-born children!). Andbonne
chancefor you life in China,ma poulé

Thanks to my colleagues in France Telecom R&D, Issy: the tisent with you has been so
precious to me. I’'m most grateful to Dr. Joaquin Keller fag guidance, support, and friendship
over these years. Thanks to Dr. Gwendal Simon, it has beesasynle to work with you. Also
thanks to Dr. Frederic Dang Ngoc, the third member of our ErNETOFPEERSteam, | wish
you the best for your North-American adventure. | feel tteet,a ridiculously small team (of
which | was the fourth and - unfortunately - last member), \@eehachieved a lot, and am proud
of our work. If perhaps not in the right place, we have beemgdhe right things at the right
time, and as well as we could do.

Thanks to my interns! It is with emotion that | acknowledge tble of Diego Perino, my first
student, a person who has contributed a lot to my work, andd §eend. Diego wrote the code
of the prototype PULSE node and helped with the testbed aamteRlab measurements. Thanks
for your tireless devotion to the task: you went well beyowdiy(not-so-simple) duty of intern,
and | hope that the results we could get have fully paid yolarehack.

Thanks to all the people | met in France Telecom R&D, to naraegudew: my friend and fellow
PhD student Franck Shen, Olivier Gachignard, Olivier BpGte Fabien Mathieu, Dr. Patrick
Brown, Jean Béhue. Many thanks to my secretary in Paris, @@lea@ouvert.

10

| then had to leave Paris, and spent my last year in Sophig#ligibetween the Institut Eurecom
and the local branch of France Telecom R&D. While | had to mdie loss of my Parisian social
life, which - to be honest - was replaced by no social life tldhad the opportunity to work
in close contact with many brilliant people. | wish to thardose of them here: Prof. Pietro
Michiardi, Prof. Guillaume Urvoy-Keller, Dr. Damiano CatrDr. Taoufik en-Najjary, Moritz
Steiner, Matteo Varvello, Daniele Croce. Thanks to Kriskn&amachandran (“¢ca va?”), it was
really a pleasure to meet you here. Also, many thanks to Banedirector, Dr. Ulrich Finger,
and all of the Eurecom staff.

No social life, however, does not mean no human interactiaila Even if remotely, | could
count on the support of my dear old friends. They say: “yeasspthings change”. | firmly
believe that most people do not. At least, you didn’t, and ithamkful for that.

And here | am. These three years have been long, and | am kaatragt sad as | approach the
end of this venture. Of all the outstanding people who sugggome during my work, | want
to sincerely thank my advisor, Prof. Ernst W. Biersack. Ewdren in Paris, 900 Km away
from your office, | have always felt backed by your knowledgesdom, and human support. |
remember with fondness our evening meetings, held in Padk #éme you happened to spend
some time there, when we would discuss our work in unlikeicpb such as Frendlistrotsor
Scottish pubs... Thanks for teaching me how to do reseaitanks for allowing me the freedom
| needed to manage my thesis project. Thanks for understgride delicate compromise | had
to strike between the academic and corporate worlds. THankeing there when | needed you,
with advice, criticism, and praise.

This dissertation is the final result of three years of spatoah, hypoteses, and experiments
about a practical system that targets a very specific problso, it is an attempt to look in a
comprehensive way to the problem itself, from its histdricats to its current incarnation, and
to build a systematic framework of the existing approacbesotve it. | hope that the reader will
find this work - if not enjoyable - at least interesting and tmayseful. And | fully claim my
responsibility for any mistake or inaccuracy hereby camgdi

Saturday, July 14th 2007

Fabio Pianese

Contents

1

Introduction

1.1 Why Peer-to-Peer Live Streaming?
1.1.1 A Potential 'Killer Application”
1.1.2 Beyond the Limits of a Centralized Approach
1.1.3 Advantages of P2P Live Streaming
1.1.4 Challengesin P2P Live Streaming

1.2 IssuesNotCoveredin ThisThesiso ..

1.3 Thesis Contributions e

1.4 ThesisOrganization e

Related Work

2.1 ABrief History of P2P Live Streaming
2.1.1 Live Streaming, or the Internet Television
2.1.2 The Long Wait for Native Multicast
2.1.3 On Current Peer-to-Peer Networks

2.2 Basics and Requirements of Media Streaming

2.2.2 MediaQuality AlsoMatters

2.2.3 Application Design: AnOpenDebate
2.3 P2P Live Media Streaming Applications

2.3.1 Current P2P Live Streaming Systems

2.3.2 Analysis of P2P Overlays for Media Distribution

2.4 CoNncClUSIONS

25
25
25
27
28
28
29
30
31

12 CONTENTS
3 The PULSE System 57
3.1 IntroducingPULSE e 57
3.1.1 ThePULSEManifesto 58
3.1.2 Background 59
3.1.3 Fundamentallnsights 60
314 Claims 62
3.2 Terminology e 64
3.21 ThePeers e 64
3.22 TheStream 67
3.2.3 ReceivingtheData 8 6
3.3 Structureofthe PULSENode 69
3.3.1 DataBuffer 69
3.3.2 Knowledge Management 3 7
3.3.3 TradinglLogiC. 74
3.4 Algorithms e 57
3.4.1 Joiningthe Network 6 7
3.4.2 InitializingtheBuffer. 76
3.4.3 Bandwidth Allocation L. 76
3.44 PeerSelection. 8 7
3.45 Chunk SelectionandRequest 79
3.5 Implementation 81
3.5.1 PracticalDetails 82
4 Understanding the Behavior of PULSE 85
4.1 Modeling Static Systems e 85
4.2 Analyzing Incentive-Based Systems L 86
4.2.1 IntrinsicIncentives 87
4.2.2 ExternalIncentives 88
4.3 Simulating a Distributed System e 88
4.3.1 Background 89
4.3.2 Pulsim-The PULSE Simulator 90

CONTENTS

4.4 Large-Scale Emulation

4.4.1
4.4.2
4.4.3

45.1 The Potential of Measurement Studies o«

5.1 Introduction

5.1.1
5.1.2
5.1.3

5.2.1
5.2.2
5.2.3
5.24

5.3 Behavioral Metrics: the Role of Incentives
Class Affinity
Class Friendliness

5.3.1
5.3.2
5.3.3
5.3.4

5.4 Conclusion

Implementing a Prototype Node

Emulating a Large-Scale System
PlanetLab
4.5 Deploying on the Internet

Metrics For Performance Evaluation

Dealing with a Data-driven System

“Mesh Overlays” and Performance Metrics
Outlook
5.2 Performance Metrics for Data-driven Systems
Data Reception Delay atthe Nodes
Bottlenecks and Bandwidth Efficiency

Understanding the Data Distribution Process

Locality Awareness of Data Exchanges

Soft Fairness

Toward a Better Concept of Fairness for PULSE

6 Simulation Results

6.1 Methodology and Expectations

6.1.1
6.1.2
6.1.3
6.1.4

6.2 A Set of Scenarios for Simulation
6.3 PULSE Parameters: How to Set Them?

Choice of SimulationStep
ModelingDataTransfers
Model of Knowledge Propagation

Expectations and Limits of Our Modeling Approach

14

CONTENTS
6.3.1 Initial TransitoryPhase 127
6.3.2 Critical Parameters 130
6.3.3 Long-term System Stability 131
6.4 Effects of the Peer Selection Algorithms 133
6.4.1 Varying the Number of Connections134
6.4.2 Lag Performance across Bandwidth Scenarios.136
6.4.3 Understanding Node Interactions137
6.5 PULSE: a Quantitative Analysis eu... 145
6.5.1 Analysis of Data Distribution Performance 146
6.5.2 Asymptotic Behaviorof NodelLag 148
6.6 Results under Dynamic Membership, 150
6.7 Conclusions 152
Experiments and Real Measurements 155
7.1 \Validating the SimulationResults 155
7.1.1 Convergence and Evolutionof NodelLag 157
7.1.2 Bandwidth Classesand DataPaths 158
7.1.3 Interactions between BandwidthClasses 159
7.1.4 PULSEunderChurn 161
7.1.5 Results of PlanetLab Deployment162
7.2 Evaluating Latency Awarenesso e e e 163
7.3 Conclusions 165
Conclusion 167
8.1 Contributions 167
8.2 Outlook 816
Synthése en Francais 171
9.1 Introduction 171
9.1.1 Définitionduprobleme Lo 172
9.1.2 Contributions 741
9.2 PULSEetsesalgorithmes 176

CONTENTS 15

9.2.1 Objectifs 176
9.2.2 Principesetinnovations 00 177
9.2.3 Fonctionnementdusysteme 179
9.24 Implémentation 801
9.3 EBvaluation 181
9.3.1 Propriétés des systemes non-structurés.181
9.3.2 Simulation 182
9.3.3 Emulationsurlargeéchelle. 183
9.3.4 Résultatsdel'évaluation 183
9.4 Conclusions e 185

Bibliography 187

16

CONTENTS

List of Figures

3.1
3.2

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

The Bufferofa PULSENode 70

Internal Organization of the PULSE Node and DataPaths 83
Histogram of the Number of Nodes per Lag Value by Class §1) 100
Plot of Average Class Lag and Lag Variance over Time 101
Average Node Lag vs. Chunk ReceptionDelay103
Amount of Data Transmitted versus Transfer Locality 109
Soft Fairness Plot for a Given Bandwidth Class (in thenegle: RICH) 114

Transitory of a PULSE System (1000 peers, HH-EB+ 16 chunks/sT'W = 64)128

Snapshots of Chunk Reception Lag vs. Node Lag During €&igewice 129
Typical Pattern of Instability due to a Small Trading Wiav (I''W =32) 130
Impact of Sliding Tolerance on Efficiencywitt/ =1 133
Snapshot of Data Exchanges duringan EPOCH (HH-LB) 134
HH-LB Scenario: PULSE with Standard Parametena (8 F, TW =64) 135
HH-LB Scenario: Reducing the NumberrfRWARD Connections 136
Examples of System Evolution in Various Bandwidth Sceisa 137
HH-LB Scenario: Class Affinity vs. Number BbRWARD Connections 139

6.10 Weight of Data Exchanges over Different Connections-(HB Scenario, 8, 4v) 141
6.11 Weight of Data Exchanges over Different Connections-B Scenario) 142
6.12 Total Duration of Unilateral/BilateradISSING Interactions (100 nodes, HH-LB) 145
6.13 Comparison of Max Depths and Average Widths of DistidniTrees (1000 nodes) 146
6.14 CDF of Average Node Class Distribution at Steady Ste20@ nodes) 147
6.15 Asymptotic Dependence of Average Node Lag on System Siz. 149

17

18

LIST OF FIGURES
6.16 Effects of Node Transience on Global Lag Performar@€®RQWARD) 151
6.17 Effects on Soft Fairness of Sudden Disappearance of desl(HH-LB) 152
7.1 Testbed Validation of the PULSE Prototype Node: Claggdxaer Time 156
7.2 Analysis of Average Chunk Distribution Tree Proper(@80 nodes) 159
7.3 Average Cumulative Data Exchange Outcomes by BandwWikdiss (G5K, HH-LB)160
7.4 Average Class Lag over Time for HH-LB under SPIKE and SQUI 161
7.5 Results of an Uncontrolled PULSE Run on PlanetLab (2@&sp 163
7.6 Effect of Latency Bias on Cumulative Connection Latency 164
7.7 Effect of Latency Bias on Overall Data Exchange Locality. 165

List of Tables

2.1
2.2

3.1
3.2

6.1
6.2
6.3
6.4

6.5
6.6

7.1
7.2

9.1

Outlook on Video Streaming Applications 44
Summary of Main Approaches to Live Streaming b2
Summary of System-Wide Parameters 67
Other Parameters Appearing in the PULSE Algorithms 75
Composition of Bandwidth Class Scenarios (distribytigpload) 125
Buffer Reset Statistics: Unstable Peers by Class atlp®@ate 135
Comparison of Normalized Affinity and Friendliness 140

Soft Fairness: Comparing HH-LB and HH-HB Scenarios it withoutror-
WARD & o v vt e e e e e e e e e e e e e 144

Average (Std. Dev.) of Max. and Average Tree Depth atdyt&ate (1000 nodes)147
Average per-Layer Distribution of Node Classes in thetfiayers (1000 nodes) 148

PULSE Protocol Parameters Used for Testbed Experiments. 157
Effect of Latency Bias on Average Node Lag (inchunks) 165
Applications pour la DiffusiondelaVidéo 172

19

20

LIST OF TABLES

List of Algorithms

~No o b~ wWDNPRE

Buffer Initialization: Condition to Set Initial Window 76
MISSING Selection Algorithm 78
Optimistic Peer Selection Strategy 0. ... 79
FORWARD Selection Algorithm 80
Chunk Scheduling atthe SenderPeer. 80
Chunk Schedulingatthe Source 81
Chunk Request Scheduling at the ReceiverPeer 82

21

22

LIST OF ALGORITHMS

List of Main Variables

Upload capacity of the access link at nade
Download capacity of the access link at nade
Connection bandwidth between nadand nodej
Network round-trip time

Number of nodes in the system

Nodei (uniquely identified)

Node degree

Stream bit-rateKbit/g]

Chunk rate ¢hunks/$

j-th chunk in the stream

Average node lag

Node playout delay

Size of node Sliding Windowchunk$

Size of node Trading Windowchunk$

Time between two subsequent peer selections
Latency bias coefficient for peer selection

Local value of History score about nod®

23

24

LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Why Peer-to-Peer Live Streaming?

We decided to concentrate our attention on the problem efdiveaming for several reasons.
First, scalable data distribution is a fundamental neeternnternet today: while the distribution
of static (i.e. pre-stored) content has been a topic of varks] interest during the last decade,
the attention to live content distribution has been moreméc The rise of peer-to-peer (P2P)
architectures in the context of static content distributias provided a definite improvement in
scalability over the previous server-based architectlEatending a P2P approach to live media
streaming allows to address the scalability issues of abm#d systems, presents interesting
challenges, and still constitutes an open research problem

Second, the understanding of live media distribution is Imless consolidated than the classic
case of static file distribution, as it is subject to timingdasrdering constraints. Third, live
streaming is a problem with clear boundaries and requirésnes new data are constantly gen-
erated(i) all the viewers are loosely synchronized in receiving rdygiie same stream segment,
(ii) the system as a whole has a short memory(@ndt can operate with a larger independence
on the user behavior patterns than bulk data distributiovio@. Fourth, scalable live streaming
applications have today a huge practical interest, as thgeent required (powerful comput-
ers, digital cameras or web-cams, Internet connectionsyagable off-the-shelf and is usually
cheap: this constitutes a fundamental premise for the camatesuccess of a new application
or service, enabling it to spread and succeed among theagragulation. Finally, we believe
that there are several aspects of the existing practicallk@RBtreaming systems that can be
improved, and we make several contributions in order to do so

1.1.1 A Potential 'Killer Application’

In the beginnings of the Internet, the only type of data tlmatld be exchanged and displayed
by users was text. Images were then introduced: initiallyhiem form of large uncompressed

25

26 CHAPTER 1. INTRODUCTION

bitmaps, then compressed using formats with an ever-isgrgafficiency since the beginning
of the 90’s. The continuous growth in the access bandwidth@RU power has allowed to
integrate and display complex combinations of text and esag the form of WWW pages.
Web-aware scripting (Javascript) and programming langsddava, ActiveX, Flash) have added
an interactive dimension to otherwise ’static’ web pagesll &pplications that are able to run
inside the ubiquitous web browsers allow today to perforaksahat once required the installa-
tion of platform-specific binary executables. The seamdi#fssion and reception of live media
streams to arbitrarily large audiences could well be the sagcessful killer application of In-
ternet technology.

A Long-Awaited Development For a long time, video over the Internet has actually been con
sidered by many “the next big thing”. During the last 20 yednsernet service providers and
telephone companies have devoted exceptional resourties study of the impact of video dis-
tribution over their networks, both in technological terthew to transport the media data to the
home users, how to guarantee appropriate levels of qualitg)from an economical perspective
(how can we make money from it). The research in networkirggfblowed the expected needs
of the industry, providing insights on the theoretical fbdiy of the transmission of video and
on the technological limitations that had to be overcomdltmean efficient distribution of data
from one source to many destinations.

The Shadow of lllegality Quite recently, a formidable interest for streaming tedbgg has
also been expressed by the well-established content gnsvidlong with equally formidable
concerns about how to protect their valuable content, obits distribution, and avoid to en-
danger their existing market. Having realized the inhedamger of the free flow of information
allowed by the Internet to their current business modely theve set in motion a titanic effort
to protect their interests by way of technical measureslggjal litigation [2], propagation of
FUD (fear, uncertainty and doubt) over the press and the anexhid lobbying efforts toward
lawmakers and regulatory bodies.

The success of this multi-pronged effort menaces the ssafdsrge-scale media distribution
applications. The danger comes especially from the leysland regulatory fronts: the en-
actment of laws that set arbitrary limits on purely techigotal matters, or the introduction
into hardware and software standards of technical meashaéprevent the “unauthorized” use
of the capabilities of general-purpose computing equipgmevhile in the regulatory front the
manufacturers have shown to be hostile to restrictions at@adby standards, as they decrease
the usefulness of the products and thus their value for thestomers, there is no such market
pressure on the lawmakers. Several countries have beenirzgltgovs that not only sanction
copyright infringement as a civil offense, but that punistpanal offenses th@rcumvention of
technical restrictionge.g. Digital Millennium Copyright Act [7] in the USA, Eurgan Union
Copyright Directive [1] in Europe) or the conception use amstribution of peer-to-peer appli-
cations (e.g. the “Droits d’Auteur et Droits Voisins dansSaciété de I'Information” law [4]

in France), and assimilate to theft the fact of downloadiogytighted data (e.g. Italian and

1.1. WHY PEER-TO-PEER LIVE STREAMING? 27

German law).

A solution to this heated controversy between the ownerspiifar content and the general pub-
lic does not seem to be in sight yet, as it would probably neqaifull rethinking of established
juridic concepts such aopyrightandintellectual property

1.1.2 Beyond the Limits of a Centralized Approach

It is quite interesting to notice that the distribution of aiee over the Internet has not taken off
thanks to the explicit intervention of the industrial or deenic world. Rather, the small play-
ers - such as single individuals, start-up ventures, anthieally educated Internet users as a
whole - have often been the first to explore the possibilibethe existing network infrastruc-
ture, anticipating the so-callednovationslater introduced by the established players of the
telecommunications field.

The development and success of P2P systems is as a good exanuger-driven innovation.
These small players were in fact the ones confronted witloggipractical issues, such as lack
of economic resources, unreliable hardware and limitecheotivity - they could not afford
powerful server machines, nor large data storage fadlitior fast Internet access. For them,
P2P was more a necessary evolution than an incremental inption over the server-based
architectures.

In a world where servers were required to support every kirghtine activity - from data down-
load, to search, to instant messaging, etc. - the adoptianstributed approach that enabled the
exploitation of the resources provided by the users was aiteeireakthrough. Initially, there
was widespread skepticism over the effectiveness of P2Ronlet as a replacement of server-
based technology. Especially the earliest P2P software asdhe first iterations of Gnutella
were not meant to support large scale systems [91], and w@ected to be deployed in local
contexts with small user populations.

The astonishing growth in popularity of these applicati@mmipled to the reduced need for re-
sources at the “server”, quickly spurred a considerablergst. Suddenly, P2P became a sort
of buzzword which was supposed to grant either the immediate succegseiv application,
enormous cost savings at the service provider, or both. @hesomenon sometimes reached un-
reasonable and hilarious proportion&€t’'s do <anything> using P2P! QuicK! before finally
giving way to more rational behaviors.

Today, the design of large-scale services and applicabensfits from a large body of lessons
learned from the evolution of P2P applications. The mostirtgnt insightis that a P2P approach
works well to solve few specific issues but is impracticaldome others. Problems such as large-
scale data distribution [33], data storage, keyword-basepattern-matching search [73] can
enjoy significant benefits when distributed techniques dopted. On the other hand, features
such as user presence tracking and authentication arev@®{yrehallenging to reproduce in a
pure P2P fashion.

28 CHAPTER 1. INTRODUCTION

1.1.3 Advantages of P2P Live Streaming

Live streaming is a challenging application because ofriténig constraints. However, it is also
particularly interesting because these constraints aselenough to leave a significant degree of
flexibility in the architectural choices available to thessm designer. While few tens of seconds
are allowed between the generation of data at the sourcehane@production at the receivers,
this short time frame can still be sufficient to process thta d&ream and to distribute it through
multiple “hops” over the networkThanks to the non-negligible amount of tolerance to playout
delay, the live streaming application allows the adoptid@a ¢arge range of technical solutions,
including P2P techniques

A P2P approach has the big advantage of making the systel®a seamlessly to arbitrary sizes
every node in the P2P network, while consuming system ressuwill at the same time offer its
own resources to serve other nodes. In principle, if evedenmontributes at least as much as it
consumes, the P2P system will be able to grow indefinitelis property, callecgelf-scalability

is the first compelling reason for the research in P2P livesasting.

Moreover, in a client-server architecture the cost of mesfiaaming is completely bestowed

on the content provider, as it requires the allocation of moeant of resources at the server side
directly proportional to the expected peak audience. Théiamource in a P2P streaming system
just needs a constant (and small) pool of resources, as eaclcan contribute to the system.

Theeconomic benefitof this property are especially relevant for large user pajpons.

1.1.4 Challenges in P2P Live Streaming

In recent years, a number of P2P systems for live streamihgthaadopt several different archi-
tectures, have been proposed. While Chapter 2 will be ddvot¢éhe analysis and comparison
of the systems in the literature, we anticipate here the madstvant issues that are driving the
research activity in this field:

Scalability While resources may scale without limits, a theoreticalardgund of the system
size exists for time-sensitive applications such as liveashing. This limit is due to the delay
introduced by each “hop” that is traversed by the media dAga consequence, the primary
challenge of P2P live streaming is to devise a data distdhuechnique that guarantees the
constant propagation of the media data through the system awbids an excessive delay
build-up as the user population increases.

Bandwidth Awareness Many practical issues arise when switching from the clasbent-
server paradigm toward a P2P approach. Another challengehieving self-scalability comes
from the questionable assumption that all nodes will coote sufficiently to the system. Indeed,
nodes may contributkess than what they consumar evennothing at all either because of
inherent technical limitations (lack of resources, preseaf a firewall) or on purpose, having
made the explicit choice to defedtdeloading.

1.2. ISSUES NOT COVERED IN THIS THESIS 29

Fairness If the assumption of cooperation does not hold, severallpm® (such as the rejec-
tion of new users or the loss of data) can compromise the ifumality of the system and the
playback quality. This problem can be approached from twmrpaints of view: as a matter of
resource allocation i.e. how to place the peers in the system and distribute the datalar to
to efficiently exploit the available resources, andraentivation (or access control),e. how to
discourage or ban from the system the nodes that do not batgrenough.

Locality Awareness Another widespread concern in P2P content distributioneofrom the
fact that the data are replicated in a non-optimal way coegbao native IP multicast, as the
application is not aware of the underlying network topolodyhe lack of locality awareness,
namely higher media reception delay and redundant linkzatibn in the network, can degrade
the performance of time-sensitive applications such &sdiveaming.

Resilience In addition to the best-effort and unreliable nature of tleéaork, using interme-
diate nodes as functional elements of the system increhsgzrdbability that the service will
be disrupted by transient changes in the system membeiSimipe a large-scale P2P streaming
application relies almost completely on ordinary usersrtavjale the service, the original media
provider has little control on the way data is distributed an the quality perceived by the users.
Unlike the underlying network infrastructure (i.e. rowggecables, etc.), which has an extremely
high availability and fault tolerance, the applicative dag built by the nodes of a P2P system
(i.e. software processes running on user hardware) offesioh guarantees [14]. Any peer can
be expected to join the system, leave the system, misbetiafed!, at any moment: to provide an
uninterrupted service, the system must hide the effect®dénransience and manage to restore
as soon as possible its correct functionality.

Accessibility The ease and freedom of access by potential broadcastdrs live streaming
infrastructure can be seen as a further technical challemggstem design: the application
should not require a large amount of resources (upload dgpat the media provider, so that
users with broadband Internet access can still act as stigauurces. The application should
be easy to set-up and use, so that casual users will not beudiged from participating in the
system. In a system where the content is generated by thg, @eeessibility is the key factor
that boosts the user-perceived value the application.

1.2 Issues Not Covered in This Thesis
There are several related issues that we do not investig#tésithesis:

e Security IssuesSecurity is a fundamental aspect in every system, espeeiaen large-
scale computer networks are involved. Besides the problgpnatecting the integrity of

30 CHAPTER 1. INTRODUCTION

the media data, which is briefly touched on in Chapter 3, aad#ed to protect the system
from users who do not contribute sufficiently to the systerhicl is a central aspect of

this thesis, all other security issues, such as robustoedsrtial of service (DoS) attacks
and to blatantly malicious behavidmyfzantinepeers sybil attacks [39], collusion between
nodes, manipulation of protocol information, etc.), lig ofithe scope of this work. Due

to the partial reliance on altruism to improve and stabitlze system performance, we do
not guarantee either that the algorithms and protocolsepted in this thesis are capable
to withstand strategic exploitation by greedy players [88]

e Optimality of Chunk SelectiorPeer selection and chunk selection algorithms are the two
core elements of data-driven P2P live streaming systemshigdrthesis we focus on sce-
narios where nodes are non cooperative and their capaargelsighly heterogeneous, as
required by our practical approach: we argue that, in th@semostances, peer selection
is the most important algorithmic component and, as sudleserves to be the primary
focus of our attention. Our choice of chunk selection alidponi, while carefully reasoned,
was largely based on empiric considerations.

e Comparison with Other System&n evaluation of PULSE against live streaming systems
in the literature is not included in this work. We are con@dwf the usefulness of this
study, as it is the logical fulfillment of a practical studill it work better or worse?”
Unfortunately, as far as we are aware, there is a sore laculafghed experimental results
or data traces from other data-driven systems that can lekassa basis for comparison
(i.e. verifiable and obtained under reproducible condg)orOur motivation in releasing
the prototype code and publicly documenting the algorittats provide to the community
a reference for future comparisons.

1.3 Thesis Contributions

This thesis makes several contributions. It first approsthe problem ofive media streaming
from a practical point of view. The requirements of large-scale P2P streaming applitatoe
presented and discussed starting fromgeeof challengeenumerated above, which reflect the
current technical limitations of Internet technology (ahdir likely evolution in the foreseeable
future). An in-depth survey of the related work is then parfed, whose aim is to evaluate the
existing live streaming architectures in light of theirtatility to a large-scale deployment over
the Internet. Insights on the architectural features tef toward this goal are also provided.

The second contribution is thaesign of PULSE a P2P live streaming system that satisfies the
previous requirements. The PULSE system is among the fiss¢s)s to rely on an unstructured
mesh-based design, and introduces an incentive-basedmisgts for the selection of neighbor
nodes. By leveraging an intrinsic resource-based clusiddue to the pairwise incentives) and
by exploiting the loose synchronization between peers@uaifeedback mechanism based on
reception performance), PULSE is capable to operate in @& vadge of real-world scenarios.
The advantages of PULSE over existing systems can be suaedans:

1.4. THESIS ORGANIZATION 31

Support for very high levels of churn (node arrivals and dtpas)

Support for strongly heterogeneous distributions of pgdoad capacity

Efficient use of the available upload capacity, especialigar scarcity of resources

Fast adaptation and recovery from abrupt changes in neteaditions

Implicit awareness to network locality through latency s@@&ments

Attention to the quality of media playback, striving to minize degradation

The third contribution is a comprehensive sehwdtrics for generic data-driven systemscom-
plemented by additional metrics that are useful to assesbahdwidth and latency awareness
of adaptive live streaming systems such as PULSE. A smaleyuon the current techniques
that allow to describe the behavior of data-driven systamgering both theoretical models and
empiric methods, is also included.

The fourth contribution is thenplementation of asimulator that models the complex behavior

of a PULSE system. Based on the insights obtained by expetingewith the simulated algo-
rithms, a stand-aloneode prototypewas also implemented. These pieces of software have been
used to improve our understanding of the emergent globa\hehof PULSE systems that oper-
ate under a variety of bandwidth distribution scenarioslenmembership patterns, and network
environments.

The fifth and last contribution is the qualitative and qutantitre analysis of PULSEbased on
simulation and emulation results. We first validate thatRit# SE algorithms are operating as
expected, and then assess their performance in a large chuafpallenging scenarios in which
structured systems would hardly be able to operate. We fegadlyi evaluate the awareness of
the resulting overlay mesh to resource availability in th&tem and to pairwise network latency,
and describe the average characteristics of the data pethsannect the source to the nodes.

1.4 Thesis Organization

The rest of the thesis is structured as follows. Chapter 8qmis live streaming over the Inter-
net in an historical and technical perspective. The cursehitions for P2P live streaming are
then introduced: after restating in better detail the mé&iallenges of this problem, the various
available design options are compared and conclusionsainAhbility are drawn. Chapter 3 de-
scribes the PULSE system in its entirety - the basic insjghésterminology, the algorithms, and
the implementation. Chapter 4 approaches the problem arstahding a dynamic mesh-based
system like PULSE: after a survey on the most recent theaetnodels and on their current
limits, we illustrate the empirical techniques that we hacdopt to study our system. Chapter
5 introduces an original set of performance metrics to deedhe behavior of a generic data-
driven system. An additional set of metrics that correl&ie availability of node capacity and

32 CHAPTER 1. INTRODUCTION

data reception performance is defined: these metrics withedundamental tools of our sub-
sequent analysis of PULSE by way of simulation in Chapterdemulation on medium-scale
network testbeds in Chapter 7. Chapter 8 concludes this.work

Chapter 2

Related Work

This chapter approaches the subject of live streaming imadperspective. Section 2.1 briefly
traces the evolution of modern-day streaming from its eardts in radio broadcasting. Section
2.2, presents the requirements and the main challengeppbding large scale data distribu-
tion under timing constraints. Section 2.3 follows the clological evolution of Internet-based
streaming systems during the last decade, with an analf/#ie @roperties of the main overlay
architectures and a study of their practical advantagedimamitations. Section 2.4 concludes the
chapter.

2.1 A Brief History of P2P Live Streaming

Human beings have a distinctive trait in that they can leammfother people’s experiente
Communication is the principal vector through which infa@tmon is conveyed to others. The
human society can be seen on many levels as a “communicagioredork”, which allows the
replication and transmission of knowledge both across {ieng. from parents to children) and
across space (e.g. among individuals of the same popujation

Looking back in history, we can notice how the means used teaspknowledge to larger and
larger audiences have closely followed the growth of the émupopulation. Also, we can appre-
ciate how the available means of communication have bedhtimas functional to the structure
and the needs of the predominant social organization.

The demographical increase of the human race, togetherthgtiestablishment of dense com-
munities living in limited spaces, has introduced the nedéw methods to effectively deliver
information to people. The long way from the early beginsimng human organization - when
men supposedly began to aggregate in small groups of norhadters-gatherers - to the current
globalized post-industrial mass society has been paveédnblogical breakthroughs, which
have then become the necessary basis for the subsequaltesmtution. We can think about

v[and] are also remarkable for their apparent disinclioatio do so.” (Douglas Adams)

33

34 CHAPTER 2. RELATED WORK

carved signs on the stone and the invention of alphabetgvblation of writing supports, from
clay tablets to parchment, papyrus, and then paper; the fusaals, replaced by codices and
books; the printing press, which made possible the diffusiditerary works on a broader scale,
such as pamphlets and newspapers; the mechanical prinéicgines, capable to generate thou-
sands of copies of a single text in a short time.

In the last two centuries, the technological breakthrougleted to human communication have
occurred at an ever increasing pace, thanks to our imprasiedtsfic understanding of physical

phenomena: the discovery of the laws of electricity andtedemagnetism, the telegraph, the
telephone system, the birth of radio communications, theldpment of computing machines,
the advent of long-distance computer networks, the tremesddvances in digital electronics
and optoelectronics. All these technologies distincyiwtlape the evolution of the human soci-
ety, revolutionizing in large part the way people live, befahink, and perceive the reality.

The20™ century has been profoundly influenced by the advent of thetfio forms of real-time
mass-media: radio and television broadcasting. Suddiaglyjorizon of the knowledge available
to common people, previously limited to a small geogragdtscape, was expanded to a national
or continental scale, and the speed at which informatioridcepread among the population
became nearly instantaneous. The public opinion was thus Bbe art of harnessing the power
of the masses also began to develop. Information and mrsiaion started to become tactical
weapons, called intelligence and counter-intelligencear3Mere fought, won or lost with the
help of AM radio waves and TV shows. Political speeches, neleslogy, moral values, fashion,
religion, social trends, education, advertisements haisé (and more!) started flowing each day
into every household by the small TV screen.

Television does not only allow 'to see far’, as its name iraplilt creates and distributes popular-
ity, it forges a background of well-known concepts, andgdbat will be shared by people over
an enormous spatial scale. Radio and television have noantean unprecedented source of
human synchronizatigras they regularly dictate, through their schedule and aggessa single
and common dimension of time and culture.

2.1.1 Live Streaming, or the Internet Television

An inherent property (and limitation) of radio and telewaisis that they are a one-to-many broad-
casting schemes. The access to these technologies byepritiaens is restricted by many fac-
tors: the cost of the equipment necessary to produce, mpeesl transmit information over
a meaningful distance, the regulatory rules, the limiteglability of licensed radio frequency
bands, and the difficulty of gaining popularity startingrfr@ complete anonymity.

Cable Television and Direct-to-Home satellite televisi@ve begun to emerge in America and
Europe in the 1970s, offering a much larger choice of telewishannels and service providers.
They did so using either a wired medium (fiber/coaxial cablenicrowave frequency channels
(C band around 4 GHz, Kband between 12 and 18 GHz), which are subject to less strin-
gent regulations. The recent and widespread push for digit@strial television broadcasting

2.1. ABRIEF HISTORY OF P2P LIVE STREAMING 35

will probably further mitigate the limitations due to theascity of UHF/VHF frequency bands.
However, the use of different frequencies and signal emgsddoes not eliminate any of the
fundamental restrictions on the open access to the medium.

The availability of high-speed computer networks and pdweommodity hardware has opened
new possibilities for the distribution of video and audidalalf we transcend the classical im-
plementation of television, which uses a closely-regdatedium to convey information, we
can easily imagine a system where another medium of commtimn; for example a public

computer network, is used to replace the radio channel.

The Internet: An End-to-End Paradigm The advent of the Internet as an open and vendor-
neutral world-wide communication infrastructure has deg@eparked the end of the last century.

It is quite interesting that the enormous growth in size andartance of the Internet initially
went largely unnoticed by the masses, until around 1996 nwihe “Internet phenomenon” sud-
denly emerged: in a few years, the general population beeavaee of the Internet, that started
to be a prominent factor in the culture and lifestyle of mastfivorld countries.

The evolution of Internet applications has closely folloWtke technological development of the
medium: from the earliest program;mail which was intended to deliver short text messages
between users of different machines - followedftpy to perform reliable file transfers - to the
world wide web(in origin just HTTP+HTML), for the retrieval and presentat of interlinked
structured data, and to a plethora of other applicationsdbal with new data typologies and
address specific user needs. This evolution has only beearbpmbecause of the basic technical
and philosophical foundation of the Internet: #red-to-end principle

On the Internet, packet switching supported by a routingqmal is used to propagate the data
over the network. Data are cut into small segments cdfedatagrams and source and des-
tination addresses are associated to the individual dategybefore they are sent out into the
network; the core of the network is made of routers, computdrose main task is to send the
datagrams hop after hop toward the correct destinationjmgdkrwarding decisions based on
the content of their routing tables. A small numbetm@insport protocoloffer the basic func-
tionalities required by the majority of the applicationack as reliable, ordered, at most once
data delivery (TCP) and unreliable data delivery (UDP).

The Internet is built so that the network itself is basicallynh as it only provides a way for
information to reach its final destination. Thetelligenceof the network only resides at the end
points, where applications are run by the users and dealthétlusers’ data. The network does
not cares neither about the data format, nor about the pobtioat an application uses. The end-
to-end principle has given a precious freedom from techrmioastraints to Internet users, and
it has made (and still makes) it possible to deploy and testapplications without the need to
make modificationssidethe network, and with no supervision or regulation from anfitg.

A Fast-paced Technical Evolution The first thoughts about real-time distribution of live data
as a major Internet application are certainly very old, pidlp dating back to the early vision

36 CHAPTER 2. RELATED WORK

by its founders. The introduction of IP multicast, in the ol of the '80s, is already motivated
in part by the practical need of streaming applications: FCRO66 (December 1985) we can
in fact read that multicast can Beseful to several applications, including.] conferencing
and that one of the strengths of multicast over unicast is‘ttransmitting multiplefunicast]
copies of the same packet makes inefficient use of netwodwldth, gateway resources and
sender resources. For instance, the same packet may rejheat@verse the same network links
and pass through the same gatewayBhese early mentions of “streaming” applications were
mostly speculative at the time, as many other technicalireopents to the transmission of video
and audio on the Internet were still missing.

The Internet, in fact, has become a viable medium to transeait-real-time audio and video data
only over the last decade. This was due to the concomitargldgments in several technical

and social domains: the development of powerful and aftfaedpersonal computers and media
acquisition hardware, the advances in the video/audiongpaligorithms and standards, and the
widespread improvement in speed and in affordability ofdetault commercial Internet access
technology.

The hardware was one of the first limitations to be overcomPUE started to be powerful
enough to decode an MP3 stream only around 1995, but the waprent in CPU designs (super-
scalar architecture, branch prediction, multimedia esi@ms, integrated vector computing, mul-
tiple cores, etc.) and building technology (constant fistos miniaturization, steady increase
of clock frequency, improvement in semiconductor qualiby alesign) was then so fast that
high-quality video playback became possible on high-endhimes since around 2000. Coding
algorithms also saw huge improvements during the same temedf. Improving on the MPEG-1
specification (1988), which required a 1.2 Mbit/s bitrateddelevision-quality stream, the sub-
sequent MPEG-2 (1994) and MPEG-4 (1998-2005) standardséaloon better compression and
subjective quality.

Meanwhile, the Internet was undergoing a rapid evolutiomfia non-commercial network used
for research and educational purposes to its current ‘imé&tion superhighway” status. After
the ban on commercial activities was lifted (mid-1994), coencial Internet service providers
(ISPs) began to develop their access networks, gradualhieg a pervasive coverage of the
world’s richest countries. Internet began to be known aigtsif the academic circles, and started
to gain an ever-increasing role on the day-to-day life of yna@ople, both for work and leisure
purposes.

The feasibility of live streaming over the Internet wasiadly limited by the small access band-
width that was available to most users: ten years ago dialnpe&ctions at a nominal rate of 28
to 56 Kbps were still the most common access technology)ybar®ugh to send or receive a
single media stream of low quality. The advent of privateleadetworks, of the DSL family of
access technologies, and more recentljitzér to the homéFTTH) has solved the problem of
download bottleneck on the users’ side. Today, the ISPs &t cmuntries provide connectivity
at downstream speeds between 2 and 20 Mbps.

2Today, a 500 Kbit/s stream is commonly rated as televisiaality for all practical purposes.

2.1. ABRIEF HISTORY OF P2P LIVE STREAMING 37

2.1.2 The Long Wait for Native Multicast

As we said above, the end-to-end paradigm around which teenlet was built has been critical
to its success. Because of this paradigm, many new endetg#rocols were created, some
of which succeeded and became the standard protocolsnstillde use today. On the other
hand, the inherent limitation of the end-to-end paradignima the number of ends involved in
each protocol transaction is two: each node on the Interagtahname and can reach (and be
reached by) any other notJéout nogroupinteractions (e.g. point-to-multipoint, multipoint-to-
multipoint) are made possible by the IP network layer.

End-to-end worked very well in supporting the 'connectionétaphor, a direct link between
named ends, an old idea that was deeply rooted in the legabye ¢élephone. But some appli-
cations do not need named ends, nor single pairwise coonectihis is the typical case data
diffusion applicationsyhere the focus is not on who provides the data, but on thettata-
selves. This class of applications includes live medisastiag, video-on-demand streaming,
and bulk content distribution, which all suffer from thewetk-layer limitation to point-to-point
connections. If it were someway possible to synchronizesthge of more than two peers that
are interested in retrieving the same information, andefuhderlying physical resources could
be allocated in an appropriate way, then a 'group commuioicacility’ could be introduced at
network level to provide seamless support for data diffasipplications.

The thoughts of the proponents of native IP multicast in tiee1880s went probably along those
lines. A multicast network primitive implemented at eachitey would have been the optimal
solution to the diffusion problem in terms of backbone lirtkization, since at that layer there
is full visibility on the local links and on the global routirtables. Advantages could have been
significant also on the limited scope of individual domagspecially for the efficient distribution
of locally-relevant information to the customers of a sai®B, Ithe students of a same university,
etc.

A large amount of research on IP multicast has been condéicied1985 to 2000. By 2000,
most of the technical issues had been sorted out [17], sustedable algorithms for reliable data
dissemination [43][79] and multicast routing [35]. The plems that could not (and will never)
be solved were mainly in the fields of multicast congestionticd ([22] proved that the maxi-
mum throughput of a one-to-many transmission veitlupledcongestion control decreases with
the logarithm of the number of nodes in the multicast groung) @ multicast group management.

It is @ common opinion [38] that the native IP multicast istracture failed to be widely de-
ployed because of several concurrent reasons, including:

¢ the standardization by IETF of an open, unmanaged multicissstructure composed by
a multitude of alternative protocols that covered the saimetionalities;

e Mmany security concerns, especially about the resistanaétdoks targeting the multicast
routing infrastructure, the ability to guarantee the imiiggof the distributed data, and the

3Actually, this is no longer the case today, as the introductif NAT and other packet-manglingiddle-boxes
has had the side effect of disrupting the origipatfectend-to-end connectivity.

38 CHAPTER 2. RELATED WORK

issue of controlling of the actual scope of a multicast sesée.g. by authenticating its
participants and by performing access control in a distedumanner);

e probably the most important reason, the lack of a commengiatest by ISPs in invest-
ing money to provide a native multicast facility when popugplications that require
multicast do not yet exist.

We agree with the statement that most ISPs are not enabliegdomain multicast routing
likely because the bandwidth savings they can expect areu@veighted by the prospective
costs of deploying and supporting the multicast functidpdtiespite the hardware support for
IP multicast is available out-of-the-box in recent netweruipment and operating systems).
Few ISPs support the full inter-domain multicast specifogtwhose scope is however limited
by the fact that most other ISPs do not support it. Some 1SEkm@own to just implement
intra-domain multicast (e.g. Orange France), so the scbprutiicast sessions is limited to the
customers of the same ISP.

We conclude that, today, the deployment of native IP mudtisanot adequate to make it a viable
world-wide multicast infrastructure.

Napster and Its Legacy While IP multicast was being studied and improved by academi
world-wide, the Internet was undergoing an enormous d@veént and many things were evolv-
ing at a fast pace. The end of the ban to commercial activitiasked the death of the ’elitist’
Internet (mostly used by students and researchers) ancedpeto the ‘common people’. To
the dismay of the purists of yore, e-mail spam started toH# once sacred mail boxes and
the newly-born World Wide Web rapidly became a shopping mpalluted by animated GIFs,
HTML <BLINK> tags, annoying Javascript, and ubiquitousdasiow!) Java applets and Ac-
tiveX controls. To the enjoyment of the new dwellers, Intfrwvas gaining appeal as a lot of
opportunities for fun and profit were rapidly unfolding.

Among the plethora of software and services available orriternet, a low-profile website -
called Napster - began offering in June 1999 a program to timawdand share music files. The
interesting feature of this program was that the music wasnitmaded directly from the other
users: this provided fast access to the music files (as theg m& located on an overloaded
central server) and allowed a user community to develop awvipg the ability to find a large
body of rare content.

Technically, Napster was a centralized search index wHeusers published the availability of
their music for download and where they could search for nemtent. The results of a suc-
cessful search on the Napster server allowed the Napstert ¢t connect and directly download
the music from another client. Nonetheless, Napster isrdeghby many observers, along to
SETI@Homé, as the initiator of the so-called “peer-to-peer revolatias it contributed to de-

1SETI@Home (http://setiathome.berkeley.edu/), a prdmotched in May 1999, is another early example of
distributed application. The SETI@Home clients harnesiseghower of idle CPUs to search for radio signals from
extra-terrestrial sources.

2.1. ABRIEF HISTORY OF P2P LIVE STREAMING 39

velop the awareness about the power of distributed appitatrunning on a huge number of
computers around the world.

While Napster was already in trouble due to several pendamguits (it was eventually shut
down in late 2002), Justin Frankel (Nullsoft) released inrtha2000 an early prototype of
Gnutella, a generic file-sharing program that overcame amegakness of Napster - the central
indexing server - by replacing it with a distributed searahdtion. The Gnutella protocol and
software immediately started to be extended and developkaboratively by enthusiast pro-
grammers around the world, with the eventual creation of3hatella Development Forum. By
then, several other peer-to-peer file-sharing protocaisldegun to emerge, such as KaZaA, and
new applications with a peer-to-peer architecture had amok such as Freenet [32] (anonymous
and censorship-resistant information distribution),TBitent [33] (large-scale bulk content dis-
tribution), Skype (Internet telephony), PeerCast [14] draestreaming), etc.

The Peer-to-Peer (r)Evolution Distributed systems and algorithms, however, are nothavg n
neither in theory nor in practice. The study of distributégbaithms was introduced a long time
before, during the early 1960’s, as the issues of concupegram execution on multiple local
processors and/or distant computers began to arise. Therastical instance of a distributed
system on the Internet (then still known as Arpanet) wasastythe SMTP mail delivery system
(RFC 821, 1982): its root ideas can be traced back to RFC 5243)1 which denounced the
limits of the earliest FTP-based mail protocols. The keyoamt of the protocol is the distributed
message relaying performed by local servers toward thedestination. Another early example
was the USENET protocol, in which the news servers exchamgestevant newsgroup data - as
requested by their users - in a distributed way without redyon a central entity.

2.1.3 On Current Peer-to-Peer Networks

The main differences between the older 'distributed’ pcote and the new peer-to-peer (P2P)
applications can be especially seen in the following aspect

e the functionality they offer: SMTP and USENET are limiteda®tore-and-forward data
distribution model. Current P2P applications span a largege of possible applications,
from distributed search [106][73], to store-and-forwaludilk data distribution [33][32], to
live data distribution [27], to networked virtual enviroemts (NVES) [63], etc.

e theinterest of end-users in running the application andgequently) the potential scale of
their deployment: end-users are seldom interested in ngn8MTP/news servers, which
require a relatively high availability and give relativeligtle advantage over using the
POP/IMAP/NNTP servers provided by their ISP (or by a thirdtpa For this reason,
in general, each Internet domain has no more than a coupleabfservers and a news
server: this fact limits the number of entities that papate in the distributed system to
the order of thel0*-10° nodes. A successful P2P application can attract about otveoor

40 CHAPTER 2. RELATED WORK

orders of magnitude more simultaneous users (e.g. more4than® for the kKAp DHT
used by thee-donkeyfile sharing application [105]).

e the sophisticated techniques used by P2P applicationsdid aependence on Internet
infrastructure: while SMTP performs lookups thanks to iggt integration with the hi-
erarchical DNS system (MX records), peer-to-peer systesaslly rely on their own ad-
dressing space and routing system, exploiting the DNS jesasionally and for standard
functions such as IP address lookup and reverse-lookup.

We believe that the true revolutionary aspect of P2P liee@mractical impact that such systems
have had on the mindset of both computer science reseammhelsiternet users.

For the researchers, it was a confirmation about the expedtectiveness of distributed algo-
rithms. The success of early P2P systems motivated newrobsabout scalability issues with
an increased awareness of real-world constraints. We h#wesged during the last five years
a definite trend of convergence between theoretical (grapbry, game theory) and system re-
search (performance analysis, optimization) that hasd¢lde development of many delicate and
interesting trade-offs between the two traditional camfpsoonputer science.

For the users, apart from the immediate advantages broygthtebuse of P2P systems (“free”
music, “free” movies, “free” software), we can argue thatgb applications contributed a lot
to the development of some sort oer awarenesabout their new role in the “information
economy” and of higheuser expectationBom the “Internet experience”. These aspects have
recently evolved into the “Web 2.0” fad, which has more to dthwhe way users interact with
Internet-based applications than with the technologyfitdgowever, it cannot be denied that
the increased focus on user interactions and user-cotedliata has opened many interesting
technical developments, which would have hardly been ptessiithout the widespread success
of P2P networks.

General Principles of P2P Networks A peer-to-peer network is a system composed two or
more peers(or node$ that exchange information over a computer network. Peersaftware
processeshat “speak and understand” a common protocol, and may rudisimct pieces of
networked hardware.

A peer-to-peer system does not need to rely on a fixed infictsiie, as long as its primary
functionality is concernedrhis definition concedes that, for the correct operatiorhefdystem,

it may be sometimes necessary to rely on a centralized mesrhaon overcome few specific
problems which would be difficult to address in a purely déxadized manner. A typical difficult
issue is thenode bootstrap problepwhich is common to all peer-to-peer systems because of
their very definition: since there is no fixed infrastructtinat supports the system, and with no
initial knowledge about the current members of the esthbtisetwork, how can a new peer ever
join the system? The solution adopted by most peer-to-pestess is to rely on some external
infrastructure or on a known reliable source of informatiamich allows to collect up-to-date
bootstrap information. For this reason, a distributedeyst solution to the bootstrap problem
does not usually count as to determine whether it is pe@etr-or not.

2.1. ABRIEF HISTORY OF P2P LIVE STREAMING 41

Peers operate autonomously based on their local knowle@ye of the main concerns about
distributed systems is scalability, that is their abilibyreach large sizes without suffering from
excessive overhead. In P2P applications, overhead magplgrals on the amount of computa-
tional resources and information that is required by eaaterio correctly execute its algorithms:
thus, scalability requires both a small number of connesti other peers and the access to a
partial viewon the whole system. The main challenge of distributed &lgoss is providing the
same features as a centralized algorithm, while just rglgim a subset of the global knowledge
which isneither guaranteed to be consistent nor up-to-date

Peers are functionally equivalent, at least potentiall (somewhat weaker) requirement for
a distributed system to be called peer-to-peer involvesrmatation of equality between the
entities that participate in it. This does not mean thattadl éntities have to provide the same
function or cover the same rola the same timeit rather prescribes that every peer, under
appropriate environmental or internal conditions, cowlklet up any of the roles or functions.
For example, a P2P system might well adopt a hierarchicajdge.g. the 2-tier Gnutella 0.6
network, in which nodes are eithpeersor super-peerswhere nodes behave in different ways
depending on their current role in the system, as long as readh is allowed to assume either
role.

An Interim Solution, here to Stay Whether a true revolution or a simple evolution of old con-
cepts in the new Internet landscape, P2P networks are tagtgysuccessful, as they definitely
offer practical advantages in a number of applications. fféffic generated by P2P has become
one of the strongest components of network traffic at the &ElI(ISPs and other souréeste
BitTorrent and other P2P traffic taking up about 80% of thaltbindwidth near the backbone)
and their popularity keeps increasing: despite the diseaigactics employed by media, record-
ing companies, and film studios, despite technical intdreaa by ISPs aimed to selectively
degrade the performance of P2P applications, and desgitadbption by technically ignorant
lawmakers of draconian laws introducing bans on a vague tB&@thology” and punishing copy-
right infringement as a felony.

The success of P2P systems can be explained with the easaratéployment, which usually
requires nothing more than the installation of a single @ietsoftware by the end-users. This
requirement has been so light that, during the last dechdesuolution of the Internet and P2P
networks has been largely symbiotic: on the one hand, thegrisopularity of Internet has
contributed to the growth of these systems, as the numbeswfusers with Internet access has
grown and still grows at a fast pace; on the other hand, thetifumality offered by the P2P
programs has fueled the growth of the Internet user baséeamwareness of the advantages of
having an Internet access at home (“free” music, etc.) exfaspreading, especially among the
youngest.

What in our opinion suggests that the P2P architecture isggtm be a permanent part of the

5A 2004 Cachelogic study (no longer available) was oftendcite the press. A copy can be found at
http://web.archive.org/web/20041114005733/http: Mweachelogic.com/research/slidel2.php . These measure-
ments largely match the results reported by CAIDA in [61].

42 CHAPTER 2. RELATED WORK

future Internet landscape are the impressive achievenoérsisveral families of distributed al-
gorithms. The study of distributed hash-tables (DHTS) leastd the development of practical
systems (likekAD, an implementation of Kademlia [73]) that can withstandscgeble churn
and perform key-based search witl{log/N') or better latency [52]. BitTorrent [33] has proven
a simple and powerful method for distributing large filesdaayke user populations with little re-
sources at the original publisher. The study of random ggdyas made possible great advances
in probabilistic data diffusion protocols, e.g. gossiptpowls like LPBcast [41], SCAMP [47],
and Swaplinks [115], and has also given birth to efficienturcsured keyword-matching search,
as the recent Bubblestorm [109]. Finally, we must acknoggetthat the recent versions of the
Gnutella 0.6 protocol, which is based on partial floodingrav@-tier overlay, keep operating in
a satisfactory way well beyond the initial expectations.

Most important, all these achievements were possible withwodifying the existing Internet
infrastructure, without the need or even the expectatidmagk/forward compatibility, without a
complex public standardization process, without the bagkiom big companies and industrial
interest groups. Compared to the hurdles required to inrechew functionality in the core
of the network (IP multicast, IPv6, etc.), operating at tpplecation layer grants P2P systems
a much faster development and deployment cycle, sinceatvallan immediate experimental
validation on a small and medium scale, that can be followed Beamless transition to the
actual deployment.

This aspect makes P2P an interesting approach for algadttesearch and evaluation: as “ex-
periments” can be performed in realistic environments asidgilarge numbers of networked
machines, it becomes relatively easy to obtain resulty-@ar] which allow to test the working
hypotheses and help with a successful theoretical modeling

2.2 Basics and Requirements of Media Streaming

The concept omedia broadcastings a familiar one: distributing the same video/audio data in
tended forimmediate consumpticinom a single sourcdo alarge audience The best-known
examples of this transmission model in our everyday lifetagetelevision and the radio net-
works. As commodity electronics available today are wayenoowerful and flexible than in
the past, the user of a traditional broadcast system carceapeariety of options for the con-
sumption of the received media that goes far beyond the inateedonsumptiorglive) model
allowed by television and thstore-and-playbacknodel allowed by VHS systems. Thanks to
the presence of large quantities of shared-access datgstand CPU power, personal video
recorders (PVRSs) introduced new consumption models su¢imasshifting i.e. the possibil-
ity to seamlessly pause, resume, and rewind/fast-forwdigeaevent while it is broadcast on
television. The wordtreaminghas been coined quite recerftlp describe the analogous act of
broadcasting multimedia data over a computer network, asdhe Internet.

5The first uses of the tersireamingappear to date back to around 1995, when RealNetworks begaarket
its RealPlayer program. The probable etymology of the werdn old logging term: it derives from the common
practice by lumberjacks of using rivers and streams to prarishe tree logs cut into pieces to the processing facility

2.2. BASICS AND REQUIREMENTS OF MEDIA STREAMING 43

Transmission of data being the primary purpose of a commaewrork, there is nothing par-
ticular about transmitting media streams - rather than, &y or pictures - over the Internet.
The network is supposed to treat all kinds of data in an unifaray’ as they actually are noth-
ing more than mere strings of bits (cut and packed into datagy that have to be forwarded
to their final destination. Contrary to the transmissionrdbrmation by radio waves, which is
subject to administrative oversight in terms of physicabpaeters (power, frequency spectrum,
type of modulation, signal encoding) and thus strictly tidli in terms of the maximum rate it
can achieve, streaming supports a wide range of arbitransport formatsandcoding formats
Thus, the most important and defining parameter foretlia streanis the data rate at which it
is encoded, also called tlstream bitrate which corresponds to the amount of data per second
required to reproduce the original media.

Internet-based streaming offers all the options that apeeted from traditional broadcast sys-
tems. In addition, they can offer a much wider choice of megiality, live channels and stored
contents. Compared to other applications that performdiatabution, the peculiarity of stream-
ing systems lies in the time-sensitivity of the data theydi@nwhich in turn derives from the
user expectation of continuity, quality, and timelinessha reception and reproduction of the
media stream.

2.2.1 Time Matters!

The expression “streaming systems” encompasses a wholly fainapplications that deal with

the distribution of multimedia content: the distinction@mg the various applications stems from
the different amount of timelinedbat is expected by their users as they receive and reproduce
the media stream. We enumerate these systems in ascengiaciex timeliness order, that is
from the least to the most time-critic@lable 9.1).

Bulk Media Distribution In bulk distribution, the media is actually treated as a tegfile.
Files have dinite size and a content that cannot change over titney are considered opaque
data objects and there is no special order (sequentialjtyrimased, etc.) following which their
data have to be retrieved. We may assimilate the requirestadrihis streaming application to
those found in file sharing or in bulk data distribution apations. Downloading a video via FTP,
participating in a BitTorrent session to get a recent madeieking up and retrieving a media file
on E-donkey, Gnutella or KaZaA: all these actions can beidensd as examples of bulk video
distribution.

Video on Demand (VoD) Video on Demand (VoD) describes the distribution of recdrdee-
dia data (e.g. video files) in a way that makes possible tlwgisemptionwhile they are being

"We are simplifying here for the sake of clarity. The adoptarDiffserv or traffic shaping techniques can
introduce differences of treatment between IP datagrametatork layer — which are usually based on applicative
requirements (QoS) or economical concerns.

44 CHAPTER 2. RELATED WORK

Name H Example App. Timeliness from Media Generatioh Timeliness of Consumption ‘
Bulk BitTorrent, E-donkey, None (stored file) Play media after complete retrieval
VoD Joost, Youtube None (stored file) Low - Play during reception (1 min
Live Peercast, PPLive High (10 ~ 30 s) High - Play as soon as possible (10s)
Interactive || Conferencing, Skype Highest ¢~ 100 ms) Highest - Play immediately

Table 2.1: Outlook on Video Streaming Applications

retrieved The media data are agastatic just like in the case of bulk data distribution: stored
files of finite and known size. VoD introduces a first loose ¢@ist on the way the data must

be delivered to the player application: the user of a VoDa&yséxpects to be able to begin the
reproduction of the contershortly after he initiates the data retrieval. The consequenceisf th
constraint is that data must be made available to the playsgquential order to be reproduced:
if the required data are not available the playout will beuji¢ed &tarvatior).

In VoD, while data from the whole media filean be retrieved out of order, the data that are
needed for playout have to be recovered with higher prior&yso, thebuffering delay i.e.

the time between the beginning of data retrieval and thenmégy of media playout, must be
chosen with care: it must be large enough to compensataliftihe temporary starvations that
will be encountered during the entire streaming processsioort enough to be acceptable to the
user. The smoothness of the data playout process depegdby/lan the choice of both playout
delay and data distribution policy, and is not directly tethto the instantaneous speed of data
reception.

The simplest VoD application can be conceived as a cliemneserotocol, suchas FTP or HTTP,
which provides the media file to a player application at a tamtsrate: if the average download
speed is equal or higher than the stream bitrate, the playayt start few instants after the
download is initiated. If the download speed is lower tham stream rate, the stream length
comes into play to calculate the optimal initial delay reqdito avoid starvation for the entire
(expected) playout duration. More advanced VoD schemesloamload data in different parts
of the file at the same time and from different sources: indgleses, the data that are nearest
to the playout deadline are given priority over the otherg.(@s in BiToS [116] or RedCarpet
[10]).

Live Media Streaming Live streaming is the first application in the data distribatfamily
that deals withpractically infinitestreams of data and introduces a constraint on the maximum
tolerable data reception delay. Live streams are diffeéfrent the recorded VoD streams because:

e The current stream content is being distributed by the vimarceonly right now and
will cease to be available in a short time

e The total duration of a streamm®t known a prior the usergoin the system in the middle
of a streaming session, afehve before the endlhe time spent by a user in the system

2.2. BASICS AND REQUIREMENTS OF MEDIA STREAMING 45

can be considered negligible when compared to the durafitmeowhole stream (hence
the definition of practical infinity)

e The receivers of a stream are interested in reproducingtit a reasonable delayas the
interest for its data is highly volatile.

In addition to the two VoD requirements (sequential ordgiiri data to player, setting playout
to avoid starvation), the requirement kasonable reception timelinesbaracterizes the live
streaming application. Because of the inherent propesfitge streams, new data are constantly
being generated by the source and need to be played, whee adda quickly lose their interest
as newer data appear: live streaming thus introduces theepoofplayout delay, defined ashe
delay between the generation of the media by the source saretieption by the vieweContrary

to VoD streaming, where users are largely independent i liedavior, the reception of a live
stream becomeslaosely synchronousperation, since all the users are interested in roughly the
same segment of the stream data at the same time.

Interactive Video Interactive video is at the most time-sensitive end of thectpm of media
distribution applications. Its requirements are very &mio those of live streaming application,
as detailed above. The main additional challenge of inteawideo is brought by the low
tolerance to delay, which is typical of interactive applioas: for a system to be qualified as
interactive, the users should expect a very fast resportsgeba their actions and the reaction by
the system, with a latency not exceeding the 100+k50ange [26].

Conferencing applications are a typical example of intia&racnedia: as every listener can inter-
vene at any moment, the presence of larger delays may leahtertion between speakers and
degrade the user experience. Because of the hard constairgception delay, interactive video
requires a high synchronization between the users, is \@rgitive to packet loss and network
congestion, and makes it extremely difficult to implemestribution techniques that modify the

sequential ordering of the data.

2.2.2 Media Quality Also Matters

The purpose of media streaming applications is to disteilbime-sensitive data to several users
at the same time over a computer network. Several commoriggnsbcan however hinder the
correct and on-time delivery of the media data, for instapeeket loss in the network, possibly
caused by corruption, congestion (wired) or fading/shadgfinterference (wireless); excessive
packet delay due to network congestion and queue build-ugeatnediate routers; “route flap-
ping” due to temporary instability of the inter-domain rimgf tables. The temporal granularity
of these transient events can produce delay oscillaticatscdn reach several hundredsnoi-
liseconds When the application imposes a media playout delay in tlieroof magnitude (e.g.
in real-time interactive client-server applications)cket losses are not recoverable with an Au-
tomatic Repeat-reQuest (ARQ) scheme, and even an exceesayein the reception of a packet
makes it no longer useful for playout - with the same net ¢iéa@ loss.

46 CHAPTER 2. RELATED WORK

This rather extreme example illustrates the fundamengaletioff betweemedia qualityand
reception timelineswhich is common to all streaming applications: the concéplata lossand
thus ofquality degradatioris mostly determined by the timing constraints that can erated
by the application. When the timing constraints are strcirathe interactive case above, it
is very difficult to recoverfrom data losses, so it becomes reasonable to tpyréoentthem
by usingforward error correction(FEC) or other redundant coding techniques. On the other
end of the spectrum, in the case of bulk video distributitveré is no reason why the media
received without any timing constraint should be incomgléh the middle of the spectrum, for
VoD and live streaming applications, there is a substantegin of tolerance to delay that can
be exploited by the designer of streaming systems: by chgasgppropriate timing constraints
and loss recovery and prevention strategies, it becomeslippeso elaborate innovative system
designs that offer both acceptable delay and adequateyquali

Startup Delay as an Aspect of Media Quality For a long time, minimizing the playout delay
was implicitly assumed to be the critical challenge of P2ZE §itreaming [14][29]. While this is
true forinteractiveapplications, such as conferencing, the distribution\a Btreaming media
allows much looser bounds on the playout delay, which is re@@&/mear to the interactivity
threshold. Instead, an aspect of live streaming that is rikely to influence the perception of
the user is théime required by the application to start displaying the maestream This delay,
known asclick-to-play delay(C2P) orstartup delay is the time lapsed between the instant a
user launches the streaming prograstick) and the instant at which the playout begiptag).
The startup delay is far more important in practical termentthe playout delay: while the user
has no means of evaluating 'how fresh’ is the data he is reagifunless he can relate it to an
absolute time reference or to external events), he canysteklhow long he has been waiting
for the player to start to produce its output.

2.2.3 Application Design: An Open Debate

To perform data dissemination in a network without supportrfative multicast functionality
(one-to-many; it becomes necessary to build several application-l&fennels” between pairs
of nodes énd-to-enfl. A centralized approach to dissemination involves hawing node, the
central sever, maintain a connection with every other nodéé system. This scheme implies
a linear increasewith respect to the number of nodes in the system of the uplb@ediwidth
required at the server that provides the streaming servite server-based approach also in-
troduces a hard limit to the size of the streaming (no moresusan be served than the server’s
upload capacity allows) and the problem of adequately groring the server infrastructure
according to the expected audience size.

Distributed approaches can successfully reduce the tpla&d capacity needed at a single node.
The use of a distributed architecture not only lowers thescios the publisher, but it also confers
self-scalability to the system: as long as each user “giae&’to the system at least as much as
it requires to be served, the size of the streaming audiesatédheory increase without bounds.

2.2. BASICS AND REQUIREMENTS OF MEDIA STREAMING a7

However, so far no consensus has been reached about theexaicements of a practical In-
ternet streaming application, and the debate about howdigr®2P live streaming applications
for large scale deployment is far from being settled. Whil@nyauthors agree about most of
the challenges, there is still no widespread agreement a avhhitectural design offers the best
performance for a large range of applicative scenarios. ddimte is still open on fundamental
points as:

1. Basic features of a live streaming systemTraditionally, low latency has been consid-
ered the primary property needed for a viable streamingstfucture. The first practical
distributed applications [14], however, showed that tretahility of software nodes (e.g.
compared to routers) had a largely negative impact on tleasting performance, as the
failure of single peers had cascading consequences ovezghef the system. Resilience
to churn and failures have thus been recognized as a furtlyeirement: the acceptable
trade-off between latency and robustness for the diffeapptications is still an open topic
of discussion.

2. Efficiency of a streaming system In the early work about P2P live streaming (better
known back then as “application-layer multicast”) the tesfrcomparison for efficiency
was native multicast: metrics as link stress or stretch weutinely used to evaluate the
latency/data replication overheads of application-ldyegs with respect to network-layer
IP multicast trees. The appearance of mesh-based systamartkered such comparisons
more difficult, as data do not keep flowing over the same pati @hile the node mem-
bership remains stable. Research is still ongoing on optimearetical schemes for chunk
scheduling and bandwidth allocation [103][34][72].

3. Robustness under real-world scenaris. How to characterize the behavior of a live
streaming system under churn? How to fairly compare theroboverhead of mesh-based
systems, which is almost constant with the churn rate, agttie overhead for tree repair,
which instead is very sensitive to churn? What is the ciiitbairn threshold at which each
system stops operating correctly? How does content degpadaappen in each system
once this threshold is reached?

4. Optimality of streaming under capacity constraints. How is optimality defined in net-
works where the node upload capacity is not uniformly aledacross the system and/or
where the resources are globally scarce? How will P2P likeasting systems perform
under an arbitrary bandwidth distribution? How will a P2Psteyn behave in a non-
cooperative environment?

5. Topological awareness How can the awareness of a system to the underlying network
conditions be evaluated? How can its latency overhead beoived compared to native
multicast?

48 CHAPTER 2. RELATED WORK

2.3 P2P Live Media Streaming Applications

Early P2P Designs Three landmark works can be seen as the most influential fm@suof
more recent live streaming systems. The first [99] descridbesning, a simple technique to
allow the distributed replication of streaming media to #ftmmedium audiences. Data are
replicated by each user to the next in a linear chain: whiéiesystem offers a way to achieve
self-scalability for the first time, its delay performanesea poorO(/NV); moreover, node arrivals
and departures have a strong negative effect on data rengps the entire chain is broken at
some point.

Yoid [44] is a proposal by Paul Francis for a generalized applieahulticast infrastructure. The
structure of Yoid is twofold: it consists of a mesh of conmets between the nodes, which is
optimized for robustness to avoid network partitions andrisure member reachability, and of
a tree, built to offer optimal performance in terms of delag dandwidth, that actually conveys
the content: these two topologies are largely independenhey have different goals. Yoid
explores a peculiamesh+treeapproach, where a primary concern is to avoid loops in the tre
an evolution of this design has resulted in the recent deveémt of Chunkyspread [113].

Narada [30] is a system designed to support multipoint-to-mulitifp@ommunication such as
small-scale video conferencing. Narada organizes thesimda mesh, over which a distance-
vector routing algorithm allowed to build spanning treesttbupport the actual data distribution.
The mesh overlay is updated over time by establishing newextions to random peers: the
decision whether to keep the new neighbor is made on the basie improvement in the
average cost to reach all the other nodes. The use of paitategcy between the nodes as the
cost metric allows to optimize the trees for minimum delayheTimprovements to the initial
design introduced in [29] add the link bandwidth as a secagptihwzation criterion for tree
construction. Narada suffers from scalability issues vasyepeer has to keep state for each one
of the N other peers in the network.

Two-Tiered Streaming Systems Several designs of large-scale live streaming systemsawith
distributed component but based on infrastructure werediuiced in the same years [59][25][24].
These proposals were made with a service-oriented sceimamdnd, in which an organization
such as a telephone operator or an ISP would provide videadbests tats customergver the
Internet (or rather, on their internal network): as the emtproviders would operate both the
infrastructure and the streaming application, they wowdble to retain control over the system
and possibly offer a guaranteed level of service quality.

The common feature of these systems is the usetafoatier model, comprised of geer-to-
peer core where all the nodes are server-class machines operatdeelsetvice provider, and
the clients which receive service by the core network without provgdemny resource. The
core network can be connected by either unicast conneabiolegally-scoped multicast. Users
establish connections to the servers under the supervidiarioad-balancing mechanism that
can be either internal or external. Data are transferred swgle connections between each
client and its assigned serving node.

2.3. P2P LIVE MEDIA STREAMING APPLICATIONS 49

Overcast [59] builds trees between the servers that aim tomize the bandwidth availability
from the source to the leaves. This algorithm also allowssthape of the tree to loosely fol-
low the underlying network topology. Load balancing andrus#mission are performed in a
centralized way by the root node of each tree, but these ifumetould possibly be distributed
to improve the global robustness against failures. Scate{24] is a system conceptually very
similar to Overcast, with an additional feature: the nodethe core network, called SCX (Scat-
terCast proXies), can adapt the quality of the content tlediyer to the download bandwidth and
to other requirements (such as particular real-time cairg®) of the nodes they serve. RMX
[25] adds features on top of the Scattercast framework, asdhe use of locally-scoped mul-
ticast by the proxies to serve clients in a same location,igsmadeant better support bandwidth
heterogeneity and data losses.

2.3.1 Current P2P Live Streaming Systems

Single-Tree Overlays The subsequentapproaches to P2P live streaming [12][a&6}it much
from the earlier research on application-level overlaysitiomed above. A single-tier tree over-
lay was chosen as the simplest topology to convey data te lesgr populations: the good scaling
properties of trees and the relative similarity to nativdtioast motivated the earliest approaches,
such as Spreadlt [14]. To improve scaling and resilienc€BNIL2] later proposed a hierarchical,
cluster-based single-tree overlay, which allows to optanthe average delay through appropriate
node management policies and cluster-head selectiomiarii®dGZAG [110] further improves
on this design by adding redundancy to the cluster managamerhanisms to better cope with
node churn.

The fundamental shortcoming of all tree-based systemsadalthe limitations imposed by the
tree structure: single trees artificially limit the avail@lservice capacity as the leaf nodes, which
make more than half of the population, are prevented frontrimriing bandwidth to the system.
Moreover, in a real-world context, there are no guarantbesiethe resources brought to the sys-
tem by nodes involved in a streaming session. Nodes can litedimm their contribution by the
access technology they use (e.g. slow ADSL uplink), by ctipgtications that compete on their
upload bandwidth (e.g. other file-sharing applicationeyl/ar by IP connectivity issues - such
as the use of network address translators (NAT) or packgieshaat the ISP. Other limitations
may be voluntarily introduced by the user, e.g. applicaterel bandwidth limiting.

Multiple-Tree Systems Multiple-tree overlays were proposed as a solution to tleficient
use of upload capacity by single trees. By encoding the rstr@s several independeltDC
stripes[50] and distributing them over different trees, these eys can exploit the upload ca-
pacity of leaf nodes and spread the load uniformly acrossvti@e population. CoopNet [80]
first introduced this approach: while still relying on a rasmeful central server, the client nodes
could cooperate to the content distribution in case of higivey load. Splitstream [21] is the
first P2P system that uses interior-node-disjoint treegrfgeer is an interior node in no more
than one tree: this mitigates the incidence of the data $odse to node failures, as isolated

50 CHAPTER 2. RELATED WORK

failures result in the interruption of at most one stripe,iahhcan be masked by the encod-
ing method. On the other hand, the control overhead is hitjfeer in the single-tree case: in
general, multiple-tree systems must rely on an underlyibty Bubstrate for tree-building and
maintenance purposes. Further research has however shedimits of a DHT-based overlay
multicast protocol: in [16] the authors observe the shortitgs of Splitstream under churn and
in presence of upload heterogeneity, as its trees becomé odeeper than the expected theo-
retical depth and rely on non-DHT links for a large number ofigections. These phenomena
noticeably degrade the system performance and scalaljil&yargues that DHT-based schemes
cannot easily support heterogeneity and churn, becausediihdamental mismatch between
node constraints (unknown a priori) and randomly-assidodd identifiers.

Splitstream had a major influence on the subsequent develapai P2P live streaming: a
large number of systems quickly adopted the multiple-trehitecture, developing original tree
topologies in order to improve the properties of the treéelng algorithms [46][97]. More
recently, Chunkyspread [113] has removed the requirenuerd Structured substrate such as a
DHT by adopting a clever non-hierarchical approach to treiding. Using a gossip protocol,
nodes exchange the list of the data stripes they currertsive along with a compact Bloom fil-
ter representation of the list of their ancestors for eadpest Bloom filters are used to constrain
peer selection and assure that the resulting stripe disitito paths will be free of loops. Peer se-
lection is based on thead advertised by the neighbors and on tHatencyin receiving specific
stripes. The unstructured architecture of Chunkysprelaavalthe use of other policies for peer
selection, such as tit-for-tat: however, preliminary fes{l12] show a decreased performance
when TFT-based approaches are used.

Data-Driven Systems Mesh-based designs aim to reduce the structural consti@fitive me-
dia streaming systems. These systems break up the streara gdries oflata chunks the
chunks are generated by the source, which then transmitstiha small number of nodes. Af-
ter that, the nodes must autonomously exchange the chudketi®eve a complete and ordered
sequence before the expected play-out deadline. Bull¢ig&t early approach that combines
a single-tree and a mesh: the tree is used to convey both datks and control information,
while the mesh is created independently by the nodes bas#uearontrol information and is
used to exchange the bulk of the data among peers that arevdgria the tree hierarchy. An
advantage of this scheme is that the control protocol rugnioim the tree can have a very low
complexity and bandwidth overhead. On the other hand, ndvamesm to encourage bandwidth
contribution was implemented in the system.

The emergence of unstructured mesh-based P2P live strgaystems begins in 2004: some
examples are Coolstreaming, Chainsaw [81], PULSE [85)dKaedia [121] and, later, PRIME
[70]. Chainsaw [81] is a proof-of-concept example of a sienplesh-only system that uses ran-
domized peer- and chunk-selection algorithms. Howevhgstnot been tested on scenarios with
heterogeneous bandwidth. Coolstreaming/DONet [122pthices a smarter chunk scheduling
algorithm that takes into account the expected play-oue tohthe individual chunks, gives
higher priority to the locally-rarest chunks, and disttisithe chunks based on an estimate of

2.3. P2P LIVE MEDIA STREAMING APPLICATIONS 51

the available capacity at the sender nodes. GridMedia [0243$ a combination @ull and push

to supposedly improve the efficiency of chunk distributidPRIME [70] proposes a peculiar

mesh-based design which is actually more similar to a neHifge system: several separate
tree structures are present over which different data isibiged, and mesh-based “swarming”
is achieved by making the leaves of each tree serve datada@adom members of the other
trees.

In presence of upload heterogeneity or non-cooperative@mwments, however, chunk schedul-
ing and peer selection are subject to additional const@uaé to the uneven distribution of node
upload capacity. While the optimal node placement can baet by having peers with higher

upload nearer to the source (as demonstrated in [103], Lef)maformation on the upload at

the other nodes is rarely available (or, if available, nayweliable). Distributed algorithms that

solve these issues in non-cooperative scenarios are sipi@of active research.

The Advent of Practical P2P Live Streaming Systems Meanwhile, the first working pro-
totypes of practical live streaming applications starteamerge. Peercast [36] was released
in 2002, and gradually attracted a small following of userd Aroadcasters of (mainly) radio
channels. End System Multicast [27] was the first largeese@leo distribution system based on
a single-tree multicast infrastructure to have been deggiaand for which measurements have
been collected. The authors of ESM preferred to use welkrstdod technologies (a traditional
single-rooted overlay tree, standard single-descriptimaing for the media streams) rather than
implementing more convoluted architectures, and were lgie@mcerned by real-world connec-
tivity problems (e.qg., firewalls and NAT). The main goals @M were to show that application-
layer overlay multicast over the Internet was already fdasat the time, to highlight the issues
and limitations of the basic single-tree system architegtand to gain a first practical experi-
ence to drive future research on the subject. While ESM doemitroduce theoretical models
nor proposes original distributed algorithms, fleesons learnedection of [27] contains very
helpful advice about creating distributed applicationd dascribes well the main problems that
have to be considered in the design of practical overlay$verstreaming. Thanks to its sim-
ple design, ESM has been used as a foundation in subseqggaeatak projects: for instance, the
ESM software was recently adapted to support multiple tapelcollaborative incentive schemes
[107].

Later, Coolstreaming [122] was the first practical P2P lireaming system to propose a com-
pletely unstructured, mesh-based design. Together withirGhw [81], it provided the earli-
est insights into the feasibility and advantages of thisre@gh. A working prototype of the
Coolstreaming software was released in 2004 and quicklarbecpopular: more than 30,000
users were counted, with as much as 4000 simultaneous @eweoolstreaming introduced
an interesting chunk scheduling algorithm (more complentthe random scheduling used in
Chainsaw) that takes into account the individual chunk bileesl for play-out together with the
estimated bandwidth intake from each of the serving neighbAlso, every node performs an
iterative long-term optimization of the mesh by replacitegjeast-contributing neighbor, in order
to slowly adapt the overlay mesh to the variations in banttwalailability inside the system.

52 CHAPTER 2. RELATED WORK

Control Plane & Data Plane
Knowledge Mgmt. Tree-Based ‘ Mesh-Based
Implicit NICE [12], ZIGZAG [110], ESM [27] =
Structured Splitstream [21] (Control: DHT) Bullet [65] (Control: Tree)
Unstructured Chunkyspread [112][113] DONet [122], Chainsaw [81], PULSE

Table 2.2: Summary of Main Approaches to Live Streaming

Coolstreaming does not seem to adopt any specific measudeltess the combined effects of
upload bandwidth heterogeneity and high churn. The use fidli Coordinates [77] has later
been proposed in [23] to improve the locality awareness afl§iceaming overlays. Initial user
reports about the Coolstreaming application seem to ingliteat it suffers from a high play-out
latency (up to several minutes), which is probably due tcseovative data buffering policies.

After Coolstreaming was shut down in response to legal terdaring 2005, many other ap-

plications with similar functionality quickly took its pt&: the more popular among them are
today SOPCast, TVAnts, PPStream, and PPLive [102]. Receasutement studies on PPLive
[55] have revealed the astonishing success and impresspleyanent status of this system, with
a daily average of 400,000 users and average measured ai@oilts audiences in the order of
100,000 viewers for the most popular individual channels.

2.3.2 Analysis of P2P Overlays for Media Distribution

An interesting aspect of live streaming is the large solugpace that this application presents.
The existing architectures adopt a number of original saeeaf data distribution overlay. Table
2.2 summarizes the main design choices adopted by receniiie2Rreaming systemsnesh-
basedor tree-basegdbased on the way data are exchanged by the naldés plane), andstruc-
tured or unstructured referring to the way control information and knowledge prepagated
(control plane or knowledge managemernt

Knowledge Management: Implicit, Structured, Unstructured An important factor in the
ability of a system to withstand transience is the way itglayeas built and maintained. We can
observe three prevalent ways of maintaining the connégtmong the nodes:

e Implicit connectivity: each node knows only about those estb which it is directly
connected. The earliest single-tree overlays were basettiisrscheme, which suffers
heavily from node transience. To increase the robustnagsmation about additional
nodes in the system has to be maintained: in [36] nodes dathiic grand-fatherupon
a parent failure, while in [27] all the ancestors on the patlthe source and some more
nodes chosen at random are known. We qualify their contemi@hsmplicit because it is
largely dependent on the geometric structure of these ayrl

2.3. P2P LIVE MEDIA STREAMING APPLICATIONS 53

e Structured membership management: the peers belong ta@mabinfrastructure (DHT,
tree, etc.) which either defines how the data connectiondeagstablished between the
nodes [21] or provides a channel over which the updates aheubuffer content of the
nodes can be propagated.

e Unstructured membership management: the peers use a raatbgossip protocol to
distribute and receive updates about their state and cooitémeir buffers [122][81][85].

To perform live streaming a peer also needs, in addition éoltasic information required to
contact other peers, some form of up-to-date knowledge ein trrent data availability. The
presence ointrinsic instabilityin the data retrieval process, as in data-driven systensjes

a reduced reliance on long-lived information about the odghe system. If we consider the
various random factors that can perturb the operation ofemsting system as sourcesentter-
nal instability, the presence of intrinsic instability can help to accomated certain level of
externally-induced transience. Therefore, when the stetargeted by the P2P application in-
volves a high instability, the use of less-structured anubdiyic systems will be more appropriate
than a structured and static architecture.

Developing ama priori assessment of the level of churn a real-world applicatidh lveive to
sustain is challenging, as the user behavior has a largeend@iover this parameter. A strong
interest has developed lately for measurement studiesd#lyvideployed streaming systems that
aim to characterize the user behavior in real-world syst&}is5].

Data Plane: from Trees to Meshes The traditional approach to P2P live media streaming
consists in creating a multicast infrastructure at the i@ppbn layer, over which data will then
flow [14][12][110]. Tree overlays, whose main property is the absence of loops, doeed
any exchange of control information once the overlay has lbedt. Control messages are only
required during the overlay construction phase and to repaitree after node disconnections.
During normal system operation, the information about \wtdata will be received in the future
is implicitly conveyed by the placement of a node in the ovedbsp, since no loops are present
and data are transmitted sequentially, there is no negdssiteconciliation mechanisms. We
can thus consider these overlays as permanent channets) ai@ constantly used to distribute
an ordered and steady data stream. The major drawback d¢¢ $iegs, as we mentioned above,
is that they artificially limit the available service capgcias the leaves cannot contribute any
upload bandwidth to the system. Moreover, each internaémo@ tree is a potential bandwidth
bottleneck for the subtree it serves, and packet lossexdemulatevhile descending the tree.
Finally, the maintenance, optimization, and recovery déthoverlay tree links can become a
daunting task under heavy churn. Data losses that occungltinie tree repair process can be
partially masked and attenuated by buffering and recovesghranisms, but - eventually - they
end up severely disrupting the play-out quality.

Mesh-based (odata-driven) systems [122][81][55][85] do not explicitly define fixedtdaaths
over which data will flow. The stream is no longer a continuseguence of bits: it is now split

54 CHAPTER 2. RELATED WORK

into chunks the basic units of data exchange, which are forwarded iexlggntly by each peer
to its local neighbors. Mesh overlays are connected, ditckgraphs generated by the local
connections between nodes, thus in general they do nofysatig specific property. The only
constraints that apply to meshes involve limitations onitfs®und and outbound degree of each
peer, which may vary from node to node. For this reason, a nbdedata-driven system does
not know anything a priori about the data it will receive frdns neighbors: in particular, it is
not able to predict the data rate it shall receive on eachection, nor can it foretell the order
in which he will obtain the data chunks. Moreover, the cotimes that make up the mesh must
be renegotiated periodically, to adapt the set of poteptainers for data exchange to the actual
availability of useful data throughout the mesh.

Tree or Mesh: a True Dichotomy? The tree and mesh approaches seem to be largely incom-
patible, as they deal with content distribution in antitb&tays:

e Trees require simple mechanisms to build and maintain pagisare loop-free. Assuming
that losses can be either tolerated or recovered at thepwariayer, data can flow over the
paths without need of any signalization. The main issuel tkte-based systems can be
summed up as: building a good overlay using appropriatetaaign policies, which in
general attempt to avoid to introduce slow nodes and/or\watild bottlenecks along the
data paths, and protecting the integrity of the overlay amdéometric coherency against
node failures and disconnections, which can become a biggmoin case of high churn
and node transiency in large overlays.

e Meshes are the global result of the local associations oéstothey do not follow any
global structural criteria. Frequent control exchangesraguired to avoid the redundant
duplication of the individual pieces of datahink3. The main issues with data-driven
systems are defining efficient algorithms for peer and chetdcsion, and providing nodes
with critical information about data availability at theieighbors in a scalable way.

The recent developments in the field have introduced sewdsmediate solutions, which - as
seen from the tree perspective - give up a certain amounttefrd@ism in the system structure
to introduce a better support for network dynamics, or - andeom the mesh point of view -
introduce some structural constraints in exchange for aatah of the control trafficMultiple-
tree systems like Splitstream can indeed be seen as an incarmdtibe former trend, since the
final result is a mesh based on geometrical rules (trees) @giti@nal constraints (tree disjoint-
ness, etc.): the existence of several independent dataipgtnoves the overall resilience to node
failures and data loss. The latter trend is evident inrttesh+treeapproach in Chunkyspread
[113]: by tagging the data forwarded by each node in an ap@tgpway, loop-free paths can be
dynamically created over the mesh which can be re-used faymabsequent pieces of data.

However, if we look closely, it becomes easy to realize that“philosophical” incompatibility
between trees (fixed structures, constant data paths) aslkesi¢no a priori organization, vari-
able data paths) is only apparent: indeed, the fundamedaldaf an efficient streaming system

2.4. CONCLUSIONS 55

is to transmit every individual piece of data to every nodaatly once. This means that in both
cases the data will follow a path which is an acyclic direagedph, i.e. a tree: this graph is
either built explicitly and re-used over a long time framedday trees) or built implicitly and
constantly changed in the data-driven meshes. From the pbinew of system performance,
multiple-tree and mesh-based architectures can attaisetime efficiency and scalability.

2.4 Conclusions

It is our opinion that the design space of P2P live streamppieations has been thoroughly
explored. We also remark that the existing architecture®ictne full range of possible com-
binations of structured and unstructured solutions in potntrol and data planes (see Table
2.2). Another fundamental observation is that, whethangisneshes or trees, the path taken by
any single piece of data always ends up to be a tree. Thisisndrsimilarity renders multiple-
tree-based and mesh-based system very similar from the pbinew of both efficiency and
scalability. The differences mainly reside in the granityanf the knowledge about the rest of
the system and in the expectations about future data receptther than on the way the data
distribution overlay operates.

We are convinced that knowledge and expectations, whictritbestheflexibility of a system,
should be the primary object of a system designer’s attent{diven a target deployment sce-
nario and its expected churn, a reasoned choice betweendustd or unstructured approach
is relatively easy to formulate: when churn is low, struetlioverlays are more efficient, as they
require a very small control overhead when repairs are shoaily needed. When churn is high,
unstructured overlays guarantee higher resilience witbrestant control overhead. For inter-
mediate churn scenarios, both choices are equally viabtettee implementers can often adjust
some parameters such as the frequency of control messagesmunt of information about
other nodes, etc., to best adapt to the operating scenario.

Mesh-based systems give an intrinsic advantage from thré pbview of topological optimiza-
tion over structured tree-based systems, since they ‘alturequire a larger base amount of
knowledge on the system. This advantage can however bedgged in a tree-based context by
introducing random gossiping and advertising a larger amotiinternal state [27].

The main argument that - we believe - gives a major advantagestructured systems is their
better suitability to non-cooperative environments, hiirectly translates into a better support
in heterogeneous upload capacity distributions as founaast real scenarios. By using the
received bandwidth to support some form of pairwise ineentsuch as tit-for-tat, meshes can
promote a form of intrinsic optimization and resource awass that is solely based on local
information and which is not possible in a tree-based seenanless an external mechanism
is introduced to certify the contribution of each node to system [89]. The most elaborate
mesh-based systems, such as Coolstreaming [122] and Cipmelyl [113], all recognize this

potentiality as an advantage over systems based on stéipaths. One of the goals of PULSE
is to explore a specific form of practical incentives thatrpiges to support both, resource and
locality optimizations, at the same time.

56

CHAPTER 2. RELATED WORK

Chapter 3

The PULSE System

In this chaptel, we describe the PULSE system. In Section 3.1 we introduegdhls of PULSE,
how it was born and evolved over time, which intuitions guidks design, and what we believe
are its original contributions.

Then, we present in full detail the inner workings of the PELS/stem. We start by illustrating
in Section 3.2 the notations and basic terminology we emipltlye rest of this work. We proceed
by describing the basic component of this distributed systhe PULSE node. Section 3.3 is
a top-down overview of the different functional componeotshe node. Here we define the
purpose of each component, its main data structures, andaheata are managed and updated
internally. In Section 3.4, we cover the algorithms used BA4.SE node and enumerate the
main parameters that affect its operation.

Section 3.5 contains a brief overview of the prototype of d.BH node, which has been im-
plemented to validate the algorithms and to test the behafithe application in real-world
settings.

3.1 Introducing PULSE

To introduce properly the main subject of this chapter - amchf point of this whole thesis -
we will begin from the name of our system. A long-standingieagring tradition prescribes in
fact that a project should be described by a self-explaiacrgnym, with bonus points for the
semantic value and recursiveness of the acronym.

PULSE is actually an acronym that standsReer-to-Peer Unstructured Live Streaming Experi-
ment This denomination includes some of the fundamental deghigices on which our system
is based: the fact that it is peer-to-peer, i.e. does notiredbe availability of a centralized
resource for its operation; the unstructured nature of yistesn, which does not rely on a fixed

1The contents of this chapter have been published in parts{tl [87].

57

58 CHAPTER 3. THE PULSE SYSTEM

topology for the exchange of data and control informatiamg ¢he fact that it was an experi-
ment, as the viability of this kind of approach was not cleanf the beginning. The acronym
was born during a hot day of July 2004, while the author wdlsistifting the early specifications
of what was - until then - an unnamed live streaming systenalaigao work in realistic network
environments.

3.1.1 The PULSE Manifesto

The primary purpose of the PULSE system, which was devisédkeitbeginnings but still holds

true today, is allowing an Internet hosany host- to either act as a distributor of its own live
media stream or as a receiver of a live stream from any othée .n®he technical challenges to
this applicative scenario are:

e Any hostmeans no guarantees on the stability of the peer. There eeeaseeasons that
urge us to consider peers as unstable and to design a sysietoldrates node failures:
Internet hosts are in general unreliable, as they may cnagb offline because of software
glitches or user activity; also, a peer is a software protesscan be activated and stopped
by the user at any moment; finally, the users of a live stregrsiystem are expected
to interfere with the application in an unpredictable fashifor example by 'switching
channel’ and associating to another streaming session. WWherefore assume thdhe
expected lifetime of a peer in the system is very short, iotther of hundreds of seconds

e Any hostmeans no guarantees on the bandwidth resources of the raddeg part in a
streaming session, including the source itself. We do nottva restrict ourselves to
largely optimistic scenarios, where all the nodes have @efit resources to receive the
stream and to replicate it at least once: currently, whigedbwnlink of commercial ADSL
Internet access is now sufficient to receive a TV-qualityeaicdtream (at 500 Kbps and
above), the uplink capacity is often much lower, typicaklygd than 500 Kbps. While
the connection speeds, both uplink and downlink, have bieaiy increasing in the last
decade and will probably continue on the same trend, we atsark that the video quality
and the bitrate it requires has kept growing [57]. Therefora medium-term perspective,
we still believe that the bottleneck will continue to be kackat the uplink for the majority
of the nodes

e Any hostmeans that there is no central access control facility thatwerify the perfor-
mance of a node and decide whether to allow or deny it acceke Bystem. Every node is
then allowed to enter enter the system, but the system fiaslfo cope with the balancing
and allocation of the available resources. The system ditbeh be expected twork in
a best-effort mode, with a graceful performance degradaticcase of generalized lack of
resources

This is the environment we are designing for: a strongly ayicaenvironment, with nodes
joining and leaving continuoushckurn), with peaks of arrivalsflash crowd}$ and departures,

3.1. INTRODUCING PULSE 59

where nodes have an asymmetrical access link, where thadiplEndwidth is not uniform but
largely spread (and often inferior to the stream rate), wimerdes are considered non-cooperative
by default. An additional 'extrinsic’ constraint that we miato introduce is the fact that the
algorithms and code for our system should be made public arehbily modifiable by anyone,
e.g. like the BitTorrent software.

Our choice of this kind of scenario is supported by severavipus studies:

1. A milestone analysis of the bandwidth availability in auBeila network [96], performed
in 2002, showed that node uplink bandwidths were distritbdiddlowing an approximate
power law. While five years have passed, we believe that thalteeof this study are
still valid as long as we factor in the increase of averagenection speed. More recent
studies confirm that bandwidth asymmetry and scarcity odusses are still a concern:
for instance [27], despite a more limited scope in comparied96], offers a rather bleak
outlook based on data from measurements of medium-scalstligaming sessions on the
Internet.

2. Studies about the role of churn in distributed live stremnsystems [14][104] estimate the
churn rate and its impact on tree-based systeomcluding about the need of appropriate
overlay construction techniques. In its insightful anaysf real traces from a number
of large-scale live broadcasts, [104] suggests the needvierays capable to withstand
transient peer behavior, such as multiple-tree forest$ agivises against predictive mech-
anisms based on past node lifetime.

3. Experiences from other applications suggest that catdipar should never be expected
from the members of a large-scale distributed system. Amgia is the well-known
seminal study by Adar and Huberman on free-loading on thet€éllaunetwork [8], which
showed the inherent lack of willingness of provide resosiritethe system, if no benefit
is expected in return. Similarly, it may be risky to rely onepg@rovided feedback about
resource availability or past performances, as this infiiram can be easily tampered with
by the user if, by doing so, some kind of benefit can be expécted

3.1.2 Background

Distributing live data to a large audience requires shota geths that grow slowly with the
number of nodes that have to be reached. Single trees andl uséfis context, as their depth

2A serious oversight that was quite common in the earlier wovlis to assume that the behavioral traces obtained
from any distributed application could be seamlessly etqubto any other: for example, traces from large scale file-
sharing systems such as Gnutella were used in [21] to destypiical membership of live streaming sessions. Later
studies have fully recognized that the type of applicatiod the way it interfaces with the user strongly influence
the actual user behavior, and by consequence the distibatinode lifetimes.

3In this document, we do not intend to consider advanced fémmedicious behavior, such as strategically tuning
the bandwidth contributions or willingly disrupt the furanality of the system. These concerns are more pertinent
to the field of security, which lies out of the scope of our disgion.

60 CHAPTER 3. THE PULSE SYSTEM

increases logarithmically with the population siz&og,N), if the degreel of each node in
the tree is constant and if the tree branches are balancedeéo, the dynamical growth of a
tree-based system heavily depends on the capacity distiibof the nodes in the system and
rarely leads to balanced trees [20]: in the real world, it @ possible to expect a fixed per-
node bandwidth contribution, as it depends both on uplaaddtions at each node and on its
willingness to contribute. In practice, this approach Ullguaads to poor performance, as very
few nodes can contribute a sufficient amount of excess ressuo the system. Also, a degree
d > 1 implies that a node is contributing more resources to théesyshan it receives, which
makes little sense in an economical perspettivéinally, a large share of upload capacity is
wasted, as the leaves are (by definition) prevented fronriboming.

In the hypothetical case where everybody contributes &gula¢ single tree degenerates into one
or morechains whose length i$)(/N) - not suitable for the timely distribution of live data. To
introduce timeliness in this context, the multiple-trepmaach has been devised: split the content
in k stripes, which are then distributed usihgnternal-node-disjoint trees of degrée= k. The
internal-disjointness requirement can be tuned by ap@atgpiree-building algorithms so that the
load on each node is not higher than what it would have beersingde tree withd = 1, while

the path length scales now much better than beforféog, V).

Again, the real world does not guarantee that each node wiltribute equally to the system.
It is a common occurrence that nodes will provide less uplmaadwidth than what nominally
required. Solutions to this issue include: preventing ipoodes from joining the system [21]
(access control), eliminating 'poor’ nodes by means of &l cryptographic records [89] or
complex tree+cluster/based organization where neighgarodes reach consensus on whether
to enforce punishing measures [46] (detection). Few meHiee based system accept the fact
that peers could contribute less than the stream rate. Asfae know, when they do, they expect
that 'poor’ nodes will either refrain from obtaining moresmurces than what they contribute
[107] or politely comply with the demands from richer pednatttry to push them towards the
bottom of the trees[97] (cooperation). The effectivenddb@se approaches is not guaranteed in
non-cooperative environments (users can actively interf@gth the correct node behavior, e.g.
by willingly disabling data upload) and when the softwardeds public and could be modified
and then recompiled.

What we expect from an Internet application is to work in befédrt mode as long as resources
are available, and to fail gently when resources are no losigfécient, based on locally-available
knowledge and without relying on explicit cooperation.

3.1.3 Fundamental Insights

The initial intuition that motivated our work on PULSE is ththere should be a better way of
organizing the members of a live streaming session thaguiees. “If we accept to break up the

4Actually, in a game theoretical perspective, it makes nsedar a greedy player to provideythingto the
system, as there is no way that its lack of contribution caddiected and retaliated against.

3.1. INTRODUCING PULSE 61

rigid tree structure - we thought - it would perhaps becomsspe to leverage local information
to optimize the overlay in a way that was not possible witditranal tree-based designs”.

We also understood that asymmetry in upload resourcesqetig lack of willingness to provide
them) is a fundamental problem that has to be taken into atezuly on, while defining the way
peers interact and choose their partners: a system whepeimn between users and resource
availability are expected would hardly operate in an envinent such as the Internet.

Finally, we considered churn as a natural consequenceliokapplication: users would be
joining, leaving, switching from one streaming session nother, rapidly zapping through a
number of channels. The reliance on static, stable ovetlatshave to be actively repaired in
response to churn appeared to us as an inappropriate chuich,less effective than renouncing
to the classic concept of overlay that (back then) was utngsiin the literature.

These intuitions suggested us to devote our efforts towatohatructured, data-driven, incentive-
based, dynamic system design.

Unstructured Systems - Resilience to churn Building tree overlays has several shortcomings.
When the incoming nodes proceed hierarchically (from that to the leaves) the source is
involved as a starting point [36]: this fact limits the fleity of the system, as repositioning
a disconnected node means recontacting the source antstrayagain the (log N) tree layers

to get to the bottom. The solution to this lack of flexibilitgquires an increase in the node
knowledge, to avoid getting back to the source every timértheerequires maintenance: keeping
the contact information for nearby nodes, such agtlaadfather{14], or maintaining the entire
list of ancestors [27] plus some random nodes, allows to sdraemask the effect of transience
on the playout quality. However, in presence of limited baiuth resources, a disconnected
node will rarely be able to reconnect on a higher layer, as#pacity of its ancestors is likely to
be completely allocated: several hops will be required foode to reach its final position in the
tree. The use of structured overlays, such as DHTs [21],ré& tonstruction and maintenance
solves theeconnectionissue, as the underlying overlay layer implements repdicies that act
transparently, ensuring the connectivity to the systenpitesof node transience. However, the
streaming application loses the control on peer selectohcannot be aware of factors such as
bandwidth availability and latency [16]. Unstructuredtgyss can support very high amounts of
churn without adding constraints to the streaming appbeoatMoreover, the less structured is a
system, the lower is the impact of external perturbationgsaperation.

Unstructured Systems - Flexibility in node placement The advantages of an unstructured
system lie in the fact that the streaming application has ahmarger degree of freedom in
the way it manages its connections: this freedom require®ader amount of information on
a larger subset of the node population, but if properly eigtbit can grant to the system the
capability of adapting itself to variable network conditg&d An example of these advantages
is provided by the recent Chunkyspread architecture [1Blpse unstructured tree-building
technique allows seamless switching between differentipaos in the same tree while keeping
into account both the load of the nodes and the network Istenc

62 CHAPTER 3. THE PULSE SYSTEM

Data-Driven Systems - Flexibility in resource allocation A data-driven approach imposes
less constraints on the contribution of individual nodesil/in traditional tree-based systems
each node would have to contribute an integer multiple ofstiheam bandwidth, and while in
multiple-tree systems nodes are supposed to cooperatadimg at least the same bandwidth
that they consume, in data-driven systems there is no fixedrdee that has to be maintained on
each connection. The free allocation of the node uploadaifgparings additional flexibility in
the establishment of peer associations and in the schedoflidata transfers.

Data Driven Systems - Dynamic overlay optimization The freedom from structural con-
straints allows unstructured systems to support non-getéstic optimization techniques to re-
cursively improve the overlay quality: this interestingiop was already implicit in the earliest
examples of unstructured data-driven systems, such asS€eaming/DONet [122]. The aware-
ness to pairwise node latency and to the availability of aplocapacity among the peers are
important features that can help lower the playout delayiamgove the efficiency of data dis-
tribution [27].

Incentive-based overlay optimization The live streaming problem has several features that
suggest the effectiveness of incentives to stimulate aatipe: first, it involves a pool of users
interested in roughly the same data, synchronizing thentidte of all the receivers on a small
segment of the stream; second, it requires that the usgrgdtae system as long as they wish to
receive the stream, introducing the possibility of long¥terepeated interactions among them;
third, it can provide a sort of “reward” to the cooperatingdes, in the form of better data
reception quality and lower playout delay.

Incentives have been mainly studied so far as a way of prexgefreeloadingin distributed
systems, enforcing a “fair” retribution. More recent se&l[45][75], however, acknowledge the
emergence of clustering behavior in incentive-based systes a secondary phenomenon, which
in some cases is deeply linked to the good performance ofytters in exam (e.g. BitTorrent
[67]). These results support our long-standing intuitiowt the usefulness of clustering by
resource availability as a way to achieve dynamic overlaynapation in P2P unstructured live
streaming systems: by allowing nodes rich in upload capdoiposition themselves near the
source, the higher fan-out they provide can hasten thalmistribution of data chunks. This
approach can shorten the average path lengths as it tendsiew@ an optimal node placement
[103].

3.1.4 Claims

PULSE introduced from its very beginning in 2004 [84] seVseminal design choices:

1. The use of a mesh-based organization of the streaming oveylawhen the only ap-
proach that was widely considered viable was based eithdrems or multiple-trees.

3.1. INTRODUCING PULSE 63

The first published studies that argued for the viability &fsin-based systems were about
DONET/Coolstreaming [122] (2005) and Chainsaw [81] (2005)

2. The deliberate choice - at all levels - of dynamic system orgazation over fixed over-
lay structures. This choice has very profound implications on the attitofl@ system
toward churn. Fixed-overlay systems react to churn as aepianal event, and perform
special operations to bring back the system to its 'norntates A dynamic system, on the
other hand, implies that a certain amount of churn is alwagsgnt even while it operates
'normally’, and its algorithms further contribute to thesnrdomness, paradoxically exploit-
ing it to improve the overall stability of the system. Theffjpsiblished work we are aware
of that introduced dynamism from churn as a normal compoaogtite system operation
was Chunkyspread [112][113] (2006).

3. The use of incentives to discourage freeloadingWhile incentive-based schemes have
received a lot of attention in the last few years, mainlyiattiable to the blazing success
of the BitTorrent [33] bulk data-distribution system, thgpéication of incentives against
freeloading to the live streaming context has been slow andery successful. Several
systems have been devised that include some kind of ineemt@chanism: for instance,
[89] (2004) described a multiple-tree architecture wheréot-tat was implemented to
prevent freeloading. The fundamental issue with such amsehs that, since exchanges
between nodes over several disjoint trees cannot be exptxtee reciprocal, it requires
an external tamper-proof decentralized debit/creditioggystem, that adds another layer
of complexity on top of the streaming system itself.

4. The use of incentives to promote the contribution of resouresby users of the system.
More often than not, when incentives have been implemeiited, goal was to prevent
freeloading by sanctioning nodes that contribute lesséxaected. Only recently, in [107]
(2006), a multiple-tree system is described where nodealieed to join a number of
trees which is proportional to their resource contributiasile the excess resources are
allocated to all the peers without restrictions. Anothettiple tree-based system, CROSS-
FLUX [97] (2006), uses incentives to establish a variablmbar of backup connections:
peers that contribute their fair share of resources are ndwdawith a better protection
against churn. In the context of unstructured live stregnsiystems, Chunkyspread [113]
(2006) gives the option of using incentives to bias the pekscsion process toward those
peers that contributed more.

5. The use of a feedback loop based on the present state of datattibution in the system
and on pairwise local incentives to provide dynamical adation to both heteroge-
neous upload capacity and network topologyThe approach we propose in PULSE aims
to exploit an underlying network where resources are ungwdistributed: when placed
near the source, the nodes contributing excess capacityredtly reduce the lag per-
ceived throughout the system as if the out-degree of theceonas much bigger of what
it actually is. On the other hand, peers that contributetleas the stream rate will still be
able to participate to the streaming session. This is thengisé mechanism that makes the

64 CHAPTER 3. THE PULSE SYSTEM

data-driven topology adaptive to the available networkueses. No other systems we are
aware of currently use this technique.

In addition to the original design of the application, weoatdroduced a series of metrics based

on buffer parameters such asode lag(see Chapter 4) in order to describe the instantaneous
state of data-driven live streaming systems. The use initeeature of similar metrics first
appeared in a 2006 measurement study about PPlive [55].

3.2 Terminology

This section describes the concepts and terminology useddghout the rest of this document.
The following pages will refer to definitions and abbreviais contained in Table 3.1.

3.2.1 The Peers

Similarly to all other peer-to-peer applications, a PULStem is constituted of a multitude
of peers (or nodes). We remember from the previous chapétratpeeris a software process
running on a networked machine: in the following pages, wiéwge the termsiode andpeer
interchangeably. As more than one node can be running onatine snachine, and as every
instance of the program must bind to a different network sbéér listening, each peer can be
uniquely identified by the tuple <IP address, port>. For kyein the following we will use the
notationP; to refer to the uniquaetwork identifier of peeri. We suppose that each pedras

a certain amount of bandwidth resources. We will ¢3lland D; respectively the upload and
download capacity, that is the maximum amount of bandwidéiable for sending or receiving
data. All the peers that are retrieving the same video straatime same time are part of the
samestreaming session

Peer Initialization A PULSE peer needs to obtain some information before it cam go
streaming session and receive the media data. This infammistusually provided by the pub-
lisher of the stream under the form of a short initializatfde: we refer to it as thepulsefile,
from its default file-name extension, exgdeol.pulseThis file contains:

e Metadata about the stream being diffused (title, authart state, indexing information,
etc.)

e Asetof one or more identifiers of peers that are part of tressting session at the moment
of the creation of the .pulse file (a.k.a. antry point to the system)

¢ Information on the parameters of the stream being broadcast

¢ Information on the protocol parameters that the peers nudmita

3.2. TERMINOLOGY 65

e The source’s public key for chunk integrity verification

e A signature by the source on the whole content of the .pulse fil

The .pulse file is named in the same spirit of its BitTorrenilatogous called .torrent file,
and it plays a very similar role. The main difference betwéss content of the two files is
that the.pulsefile does not contain the cryptographic hash of all the blaokthe data that
are being distributed. This difference is due to the fact,timthe live streaming context, data
are not available a priori to the node that distributes thdrar this reason, pollution attacks
by resourceful peer that distribute corrupted data are weungh a concern for practical live
streaming applications [37].

In the general case of live streaming, the checksum infaonab guarantee thiategrity of the
stream can only be generateah the fly and has to reach the nodes with a low delay, so that data
verification (and error recovery) can be perforntseforethe chunk is played. In a centralized
system, all the peers could retrieve the stream of chunkksheas from an authoritative party,
possibly the video streaming source itself. In a completigributed system, however, such

a solution is not acceptable, as it introduces a singleriaipoint in the system. While not

a bandwidth-intensive operation, centralized checksumer@l can limit the scalability of the
system.

In a distributed system, the least cumbersome way to gusealatta integrity is using asymmetric
cryptography and certificates The streaming source can specify its public key in the guls
initialization file, and then digitally sign the contentstbe .pulse file (making the .pulse file

a sort of self-signed digital certificé)e Then, the source can append to each data chunk a
cryptographic signature computed with its private key. Séhehunk signatures can be easily
verified by peers using the source’s public key.

Membership Management When a new node joins a streaming session, it needs to quickly
gather the contact information for a number of nodes alreadie system, and should at the
same time make other nodes aware of its presence. This probkeferred to in the literature as
membership managementand can be seen as an independent issue from the core fualittio

of the PULSE system.

Several examples of membership management can be found litefature. The simplest way
to approach the problem involves the use of a central ergity. the BitTorrent [33] tracker) that
keeps track of who is in the system and provides a list of bléteandidates for future interaction
to the incoming nodes. Distributed approaches to memhl@reshnagement have been the focus

SThis section is provided only for completeness, to indieapmssible solution of a related security problem in
the distribution of live streams. However, a complete asialgf security concerns lies out of the scope of this work.

61f we suppose that the .pulse files are retrieved from a troithw source, then a self-signed certificate will be
sufficient to guarantee integrity. Otherwise, a trust chaia well-known certificate authority would be necessary to
detect a .pulse file that has been tampered with (e.g. bydiapléhe source key and signature with someone else’s
key and signature).

66 CHAPTER 3. THE PULSE SYSTEM

of recent research on efficient primitives for group comneation: they involve the creation
of a suitable overlay network on which membership messagiésavel and reach a sufficient
fraction of the system population.

A naive distributed solution can be basedflmoding e.g. similar to the early Gnutella 0.4 pro-
tocol: nodes establish a limited number of connections tdwlzeir peers - the resulting overlay
is thus a “random” graph - and when a message is received bgains forwarded over all its
connections (except the one on which it was received). Taongthe efficiency of this basic
solution, other approaches have been suggested thatéwither the use cftructured overlays
(e.g. the control tree in Bullet [65], the DHT infrastruatun Splitstream [21])¢lustering(e.g.
the layered cluster infrastructure of NICE [12] and ZIGZAGLQ]), orunstructured gossiping
(e.g. the probabilistic broadcast in SCAMP [48], the randmaffling of neighbors in CYCLON
[117], the biased random walks in Swaplinks [115]).

In PULSE, we selected a gossiping approach based on the SGA&tbership management
protocol. Randomized gossip offers several advantagesidimg the good (logarithmic) scaling
of the local neighbor list size at each peer - calfgitial view - and the robustness of the
resulting connection graph, which can resist high levelshafrn. The membership information
messages convey summary information on the status of deg¢ptien at the individual nodes
and are propagated on the SCAMP overlay using fixed-lengithora walks: we will henceforth
call themBLUE messages In the context of membership management,ltdose distributed
synchronizationto the source clock is also performed (see 3.2.2 below).

Data/Control Connection Management After a node has gained a coarse grained knowledge
about other peers, it starts contacting them directly t@iobdetailed information on the con-
tents of their data bufférand to advertise its own buffer contents. The list of nodesiaiwvhich
BLUE messages have been recently received is calle8lti#E knowledge set A subset of
these nodes is chosen by each peer as the recipient of fimedtauffer information via PULSE
protocol messages, called from now RED messagesThe set of nodes selected for this pur-
pose is calleRED neighbor set The list of nodes about which fine-grained information has
been recently obtained via either solicited or unsolicittD messages is call®RED knowl-
edge set

As the primary goal of any peer is to retrieve useful data &suand recover a playable media
stream, each peer must contact neighbors in the RED knoe/lsetghat are able to provide use-
ful data chunks. At the same time, the node must in turn colad honor the chunk requests
coming from its neighbors. The neighbors that a peer semeesmganized in several groups,
callednode exchange lists These lists are based on the outcomes ofpier selection algo-
rithm , which is executed with a fixed periodicity (once E?OCH - which amounts in general
to few seconds) and on the behavior of partner nodes. Therthege node exchange lists that
are served with a decreasing level of priority: thesSING, NEW, and FORWARD lists. Their
complete definition is deferred to Section 3.3.

"The buffer collects and stores the received data chunksétiey are sent to the player application.

3.2. TERMINOLOGY 67

| Parametelf Typical Value| Description |
w 32 Length of buffer sliding windowdhunk$
W 64 Total length of trading windowdhunk$
SBR 256 FEC-encoded stream bit rat& pit/s]
R 16 Rate of chunk generation @source]
LR,z 25% FEC tolerance to chunk losses/window
S LR W Window sliding tolerancedhunk$
Tp 2—15%0 Min. node lag to trigger buffer resed][
EPOCH 2 Time b/w subsequent peer selectiogs |

Table 3.1: Summary of System-Wide Parameters

3.2.2 The Stream

The stream is a sequence of data that is generated by an\addmbource (e.g. camera, mi-
crophone, recorded media file). The stream is encoded usia@omoré codecs video/audio
compression algorithms that can take several parametgretince a coded output with the de-
sired properties. Codecs are definedsyif information is irreversibly lost during the encoding
phase,losslessotherwise. For the practical purposes of video transmissier narrowband
channels, lossy codecs are the preferred choice as thaeiwldihn requirement is lower.

The codec parameter that is most relevant to our discussidheinominal bit-rate, which
determines both the video/audio quality and the bandwidtuirement of the video stream.
Lossy codecs are further divided in two categories: condtiimate CBR) and variable bit-rate
(VBR), depending on whether the bit-rate of a stream remainsanggd over time or adapts
to the features of the video data: while the nominal bit-ta VBR codec can continuously
change, the average bit-rate achieved when compressivga giedia sequence is constant.

Streaming Source and Data Chunks In PULSE, all peers are identical pieces of software
implementing the same algorithms. However, one peer in siaehming session needs to behave
differently: this special peer is th&reaming source and is the only peer that introduces new
data from the stream into the system.

The streaming source receives an encoded video streamimgutsand turns it into a sequence
of data chunks The chunks are the basic unit of data exchange in the systdrara generated
by the source with a fixed rat&, the chunk rate. Chunks contain, beside the video data,
several pieces of control information, such as the cheetuence number;, a counter which

is incremented by one for each chunk, and ¢thenk timestamp 7(c;), the time at which the
chunkj was generated. This timestamp is generated using the |tz at the source, also
called themedia clock

8Each component of the stream (audio, video) is encodedahausing specialized codecs. Then, the audio
and video substreams are packed together, with the posslbigon of metadata, padding, and redundant informa-
tion for error recovery using eontainer format

68 CHAPTER 3. THE PULSE SYSTEM

While the chunk sequence number is mostly used for internderoperations (ordering the
chunks in the buffer, finding the missing chunks), the chumestamp is used by a peéy to
evaluate the “age” of a chunk upon its reception: we will call this delashunk lag, defined as
T,,(t) = t—7(c;) Vt > 7(c;). The use of lags (i.e time delays) that are relative to thegsion

of chunks at the source will be useful for the purpose of repméing the status of the system at
steady state, as we will better explain in the following mage

Chunk Loss Recovery The streaming source can also process the video data andfadda-
tion to enable the recovery of a certain amount of chunks(tbasome reason) have not reached
a node. In PULSE, we adopt a chunk-level forward error cdiweq FEC) technique based on
the classidN,K) Reed-Solomon codingrhich has often been used in the literature for similar
purposes [58][93][78].

The source applies FEC codthtp protect the stream from up to a specifieds rate (LR).
Coding is performed by first splitting the original videoestm into a block of’ chunks, and
then generating = W — K linearly independent parity chun¥s for a total number ofV/
chunks in each block: the coding rate is thus equzﬁ}toAfter this process, th&/” chunks are
made available to the nodes in the system: each node will ey to retrieve anyk”’ > K
chunks to be able to recover the original video stream datauarantee the full recovery of the
stream,) and K will be chosen so that the rate @dundant codings sufficient to compensate

the maximum amount of expected losses, ile- % = % > LRyar. LRn.. IS called the
maximum tolerable loss rate a system parameter that depends on the expected opelationa
conditions of the streaming application.

3.2.3 Recelving the Data

The streaming source delivers the most recent data chuntke toodes it is connected to in a
push-basedfashion (only considering their buffer information to agt@ending duplicates). On
the other hand, ordinary peers requeqatll) the missing chunks from their neighbors. Using
the collected buffer information from red messages, nodesssuechunk requestsfor one or
more individual chunks to the neighbors in the RED knowlesigte Chunk requests are assigned
to the nodes according to thequest scheduling algorithm

After receiving a chunk request, a peer stores it in the gmpate per-neighborequest queue
Chunks are served to nodes in a priority-based round-rolderoover the various exchange
lists (MISSING, NEW and FORWARD): for each node, the chunks are chosen usingsereler
scheduling algorithm among those that were requested, until there are no morekstarbe
sent or the bandwidth resources are fully utilized.

9For the sake of maintaining coherence with the notation énrtéxt pages, the (N,K) parameters of the Reed-
Solomon coding are henceforth renamed (W,K). Incidentdllyis used because the total number of chunks in a
FEC block will be equal to the length of the buffer sliding wow of the PULSE node.

OIncidentally again,S will be defined as theliding toleranceof the node buffer window, i.e. the number of
chunks that a peer can skip during data reception withoupromising its playout quality.

3.3. STRUCTURE OF THE PULSE NODE 69

Buffer Size and Data Reception An exchange of data between nodeand nodeB can be
performed wherA has in its buffer one or more chunks tHahas not obtained yet: we define
this condition auffer overlap. Since every peer keeps the chunks it has received in itebuff
for only a short time and is free to discard them once they baea sent to the player, the overlap
between the buffers of the two nodes is null or finite, and isscimum extent is determined by
the size of the node buffers. The synchronization of the rad&ers has to be encouraged to
obtain higher data transfer rates between nodes, as thepvemaximum when the two buffers
are perfectly aligned. Synchronization increases at theegame the likelihood of bi-directional
exchange.

The two basic conditions of live streaming, i.e. the contunsigeneration of new chunks by the
source and the need of their sequential delivery to the egipdin, do not imply an upper bound
on the node buffer size: in fact, the larger the buffers, tighér the chance that data transfers
will be possible between two nodes. On the other hand, theiewlal constraint of near-optimal
playout latency introduces an upper bound on the size of tifferb the larger the buffers, the
longer the time required for a complete series of chunks teebeeved and passed to the player
application. Therefore, the choice of a system-wide budiee also involves a trade-off between
playout latency and throughput.

3.3 Structure of the PULSE Node

The PULSE node contains a set of data structures and metmatdsnanage the different aspects
of its behavior: théata Buffer, which collects, reorders and transfers data chunks toldyep
application, theKnowledge Manager, which organizes the information that a peer holds about
the rest of the system, and tieading Logic, which executes the algorithms that determine the
node behavior using the information coming from the Dataf@&uwind the Knowledge Manager.

3.3.1 Data Buffer

The buffer of a PULSE node is more than a simple data struchaestores the data chunks
prior to their delivery to the application. Actually, it issmphisticated object that performs many
operations, and that actively influences the behavior ohtide:

¢ It determines onvhich set of chunkihe chunk selection algorithm will operate, based on
their playout priority and on the current buffer content.

¢ lItinfluences key aspects of the peer selection algorithrineagrofitability of a relationship
with other remote nodes depends on the presence of ovemntadpia ranges.

¢ It guarantees the integrity of the data stream sent to theplaxploiting the FEC encoding
performed by the source on the data chunks.

70 CHAPTER 3. THE PULSE SYSTEM

Trading Window
] ;ne; omer;st_ o _Sli(;ing_Winziow_] TQ T.
Source e :4 ------------ P D
(7B=0)
o 00 M 0 70 OO,
Most Recent Chunk \Buﬁer Edge Buffer Delay Range T, Oldest Chunk| Lag (T)
Bnst

Figure 3.1: The Buffer of a PULSE Node

e It measures the data reception quality, and enables the tootiimely react to transient
reception shortages.

Structure The PULSE buffer is designed to decouple the data retrieealgss from the deliv-
ery of the stream to the player (Figure 3.1).

The data exchange involves only a limited portion of the éwffalledTrading Window , which
contains2W contiguous chunks. The first (lower) half of the Trading Woiad which contains
chunks with smaller sequence numbers (i.e. older), is@&leling Window and contains?’
chunks. The other (upper) half, which contains chunks vitgger sequence numbers (i.e. more
recent), is calle@one of Interest The most recent chunk in the Sliding Window is caltedfer
edgeand is referred to as;.

The chunk lag of the buffer edge is used to represent the ruregeption status of the node:
the instantaneous node lags defined asl’,,, (t) = T.,(t) = t — 7(c). For instance, the
availability of chunks in the Trading Window is periodigalhdvertised by every node to its
neighbors in the form of a bitmap @iV’ bits, along with the sequence number of the buffer edge
3.

The delivery of the data to the application is performedratte data chunks reach a lag equal
to Ty, calledplayout delay. The value of7y, is decided during the initialization phase and,
once set, it is bound to remain constant during the wholeastheg session - unless the node
experiences severe reception shortage, as we will exgsdn IOnce passed to the application,
data can be discarded by the node, to limit the memory usatieetiyuffer: the lag value at which
chunks are discarded is call€@,. This lag value also conventionally marks tleeonnection
threshold of the node buffer, as the chunks are assumed to be too old&poy.

Operation A parametelS = W — K, calledsliding tolerance, defines the minimal amount of

chunks that can be missed by the sliding window while it mdeesard. The maximum chunk

loss rate tolerated during normal peer operation is thus\dday LR = % The system-wide

3.3. STRUCTURE OF THE PULSE NODE 71

parameterLR,,.. is equal to the amount of redundant coding performed by theceo The
value of S at every peer must be set so thak < LR,,.. to ensure the complete recovery of
the original data stream. If less th&h chunks are available, the sliding window cannot move.
The lag of all the chunks contained in the window increase&ms passes and as new chunks
are generated. Otherwise, the window will keep sliding fandvas long as it contains at ledst
chunks.

Let's suppose that at timethe buffer is operating at steady state, well after iniziafion has been
performed: the buffer contains a long continuous sequehahunks, the node is requesting
chunks in its Trading Window zone, and the Sliding Windowteams KX or more chunks. The
buffer delay rangeis defined as the sequence of chunks that spansTieto Ty, , (¢).

Because of the randomness of the data retrieval procesgalilne of the instantaneous node lag
Tg,,., fluctuates over time in an unpredictable way. At timewhen data chunks are received
and chunke; becomes the new buffer edge, the node lag valugsjs, (to) = T, (to) = to —

7(¢;). While chunke; is the buffer edge, the value 8%, , linearly increases with the time, i.e.
Tp, ., (t) =T, (to) + (t — to). When chunk;, VEk > 0 becomes the new buffer edge at time
t = t; > to, the value of node lag suddenly decreasgs; , (t1) = 1., (t1) = t1 — T(cipx) <
Te,(to) + (t1 — to)-

As new data chunks are introduced into the system at a cdnsi&, it is useful to study the
evolution of instantaneous node lag over time. In the exarapbve, while the value df,,
keeps changing, it is possible to make a short-term estimiatehether its average value is
increasing or decreasing (that is, whether its derivasveasitive or negative). Since the chunk
generation rate i®, we know that chunk; ., was first distributed by the sour%seconds after
the chunke;. We can then compute t¥g;, , differential between timegandt, as:

Tc: -(tl) - Tcz- (tO) (Tcz- (t) - ﬁ) - Tcz- (t)
ATp(ty, t1) = —* 1 — to = 1 t ito - =

_ (Te(to) + (81— to) —) -k
t — to R (t1 —to)

which is positive Wheqk— < R, i.e. lag increases because fewer chunks have been received
than the source has generated duringthe;] time interval, and negative wh(-;tnL > R. Ifno

new chunks are receivedy, , grows over time at a constant rate, and the window keepsdyift

on the lag axis (to the right in Figure 3.1) with a constantespeOnly when at least” chunks
overW have been collected, the window is allowed to slide and tacedts7, , (moving to

the left in Figure 3.1).

A Safety Margin between Reception and Playout Chunkcs — W is the most recent chunk
that can be played by the local node without any loss of gualitWe call Ty, the interval that

IAs FEC encoding is performed on blocks &f chunks and producdd’ = K + S chunks, the fact that all
chunks up ta:g — W have passed through the sliding window (with less tHarunks lost per window) guarantees

72 CHAPTER 3. THE PULSE SYSTEM

spans from the end of the sliding window to the playout deléy(t) = Ty, — (T, (t) +).
Continuous playout without quality degradation requifggo remain constant during the whole
streaming session: the duration@f indicates thenargin of safety that the system maintains
against data reception problems, as at l&gsteconds of playable media data have already been
retrieved by the peer. During system operation, it may thapplen that/;, drops to zero or
becomes negative due to an extensive reception shortegevtienls, ., (t) + % > Ty). Atthis
point, no more data can be copied from the buffer to the play#rout disrupting the integrity

of the stream.

If shortage persistsd s, ., may grow up tdlp, at which point the chunks the node is requesting
are no longer available in the system: the node is then faeelset its/'5, , value and repeat
the initialization procedure (detailed below). Abrupt njas in the duration of, (while it

is still positive) can also be used by peers to predict impendeception problem: nodes can
leverage this information to preemptively react to avoiaylack disruptiotf. The consequence
of reception shortage that are experienced by the user impaery interruption of playback,
with the loss of a segment of media stream.

The (Average) Node Lag We define thawode lag7p as the average of the instantaneous node
lag. The value of' 5, , is sampled by each node at regular time intervalg séconds. The aver-
age node lag can then be computed either as the simple moxengge (SMA) on a finite win-
dow of the last» samples ofl;,, , or as the exponentially-weighted moving average (EWMA)
over the whole sequence of samples. If the EWMA notationésiusode lag is defined as:

Tp(t)=(1—a)Tp, ,((kn—1)y)+aTp(ny) Vt € [ky, (n+1)7)

If we use the SMA notation, node lag computed over the windbth@n most recent instanta-
neous lag samples can be written as:

To(t) = 3" T, (1) (3.)
=0

Node lag is used to advertise the approximate range of chilngtsa node is able to provide.
Messages containing the valuesiof andT’, provide a synthetic and durable description of the
data content of a node: the choice of new partners for dathagge can be based upon this
information, as it is the result of a long-term averagingqess.

that lossless playout can be achieatdeastup to chunkeg — W.
12The current implementation of PULSE does not include angtieapolicy to anticipate or avoid buffer reini-
tialization.

3.3. STRUCTURE OF THE PULSE NODE 73
3.3.2 Knowledge Management

The Knowledge Manager organizes the information a peer hastahe rest of the network.
Its role is very important in an unstructured system, as moste decisions are based on the
currently available local knowledge. The information stat peer”; includes:

direct measurements of network parametéi${’, data throughput per connection)

information about th@etwork addresand buffer delay range of the other peers.

detailed accounts of the exact buffer content of the reme¢es) required to engage in data
exchange.

local records of previous trading interactions, in the faf@a cumulativehistory scored
for each of the peers that have had previous interactiorispaerp;.

Messages Nodes exchange two types of messages, BLUE messages and &sBgasBLUE
messagesarry summary information about the data available at thaeno the form of the ex-
treme lag values of th@'z, 7| interval in its buffer: these values do not refer to specifiareks,
but give a durable notion of which data range a node can beceegbéo provide, as the values
of TgandTp are expected to remain stable when the system operatesady State. These
messages are forwarded among all peers using a protoctl,asuandom walks with a finite
length [49]. RED messagesarry a timestamp, the instantaneous node positign,, 7p, the
bitmap summarizing the chunks present in the Trading Window (optionally) explicit request
bitmaps for data chunks in that range. These short messageabractly exchanged between
pairs of nodes, and it is possible to use them to estimateaineige network latency. Two ad-
ditional message$JELLO / HELLO REPLY messages, are only used when a node joins the
PULSE system to perform its insertion in the membership rganeent overlay.

The Node Lists While thenetwork addressesf all the nodes that have been contacted during
the life of a peer are stored in a list, similar to thest catcheiof a Gnutella node, only a small
number of nodes is contacted on a regular basis during thatme of PULSE in order to obtain
up-to-date information. Two lists are actively maintairiecsupport the needs of the streaming
application:

The BLUE Knowledge ListPULSE relies on an unstructured substrate to guarantéehays-
tem will stay connected and that every node knows and caracbahough peers. The substrate
currently implemented by PULSE is based on SCAMP [47], aoamnided gossip membership
management service that shows good asymptotic propestieB,as the logarithmic growth with
the size of the system of thgartial viewsat each nodeBLUE messages are periodically ex-
changed over this substrate: upon receipt of these messhgdscal peer records their content

74 CHAPTER 3. THE PULSE SYSTEM

in the BLUE knowledge list. This list currently has a fixededtz(several tens of nodes) and is
regularly purged from older records as new messages come in.

The RED Knowledge ListTo be able to perform data exchanges, a PULSE node requires a
up-to-date view of the buffer content of a subset of the sggtepulation. A number of peers
that sent a recent RED message are included in this list,evimaimum size is also currently
fixed to few tens of peers. To populate its own RED list, evergenperiodically chooses a small
number of peers from its BLUE list and sends them a RED mesaget its current situation,
without any chunk request. Also, a node responds with a REBsage (that may or may not
contain chunk requests) to the first RED message withoutertquit receives from nodes not
present in its RED knowledge list.

3.3.3 Trading Logic

Peer selection algorithms determine how the associatiehsden nodes are established and
maintained. In the global context of distributed systeins,droblem of selecting a subset of the
peers to exchange data and control information appearsasths the role of peer selection can
be more or less relevant depending on the applicative reoueints, the operating environment,
and the architectural choices made by the designers of amysdtive streaming systems, for
instance, require the rapid propagation of data acrossdde population. The three prevalent
architectures for live streaming - overlay-driven, mukiree based, and data-driven - all use
selection algorithms with different characteristics andgoses.

In single-tree systemthe purpose of peer selection is to incrementally buildl(avhen needed,
repair) a good overlay tree. The choices on the placememicoiming nodes are thus often per-
formed by the nodes already in the system, and the join proeechay involve the streaming
source or an external rendez-vous point [12]. The reasohaisitternal nodes have more in-
formation on the current overlay topology than the new pased, can optimize the placement of
nodes for several criteria such as lowest latency and hidteeslwidth availability. Irmultiple-
tree systemghe main purpose of node placement is to guarantee thab@lshhave an uniform
upload distribution. Additional goals can be overlay patledsity [21], improved resilience [80],
incentive support [97] and resource-adaptive load batanfi13]. The placement can be per-
formed using an additional structured overlay (such as a Dklying an external rendezvous
point or with the help of nodes already in the systemmiesh-based systentlse peer selection
algorithms are even more important, as, unlike trees, ngedbenot provide guarantees on the
flow of data across the system. This means that each node lchsdse - autonomously and
periodically, based on a steady exchange of control inftiona the peers it should associate
with. A chunk scheduling policy is also required in the mésised case to insure the timely and
steady delivery of the stream data.

The trading logic of a PULSE node controls all the aspectshoin& request, selection, and
scheduling. It processes the information coming from bbthlocal buffer and the knowledge

13The maximum size of the BLUE knowledge list could be adaptethe node population size based on the
estimates performed by the SCAMP substrate.

3.4. ALGORITHMS 75

| Name | Value | Meaning |
) %W Offset for initial chunk requestchunk$
T n1r - Margin of safety at buffer initializationg]
MAX_MISSING_SLOTS 4 Peers chosen w/ optimistic TFT incentiye
TFT_RESERVED_SLOTS 3 Max slots for pure TFT
MAX_FORWARD SLOTS| 8 Peers chosen for altruistic relationships
Rror 16 Max total outstanding requests
Raz 2 Max outstanding requests to same peer
H - A remote node’#istory score
C - Latency bias for opt. peer selection
latency Measured latency to remote node
NEARBY_THRESHOLD % Minimum AT}5 to selectP, aSFORWARD
FAR_THRESHOLD % MaximumAT}5 to selectP; asFORWARD

Table 3.2: Other Parameters Appearing in the PULSE Algorgh

logic to decide which and how many chunks will be requestd/gom/to which neighbor. Its
two main components are tieer Selectioand theChunk Schedulinglgorithms:

e The Peer Selection module maintains three exchange listshwontain the peers that can
receive service by the local peer during the current EPOQSE listsSMISSING, NEW
and FORWARD, contain nodes chosen with different criteria and are x&cservice with
different priorities.

e The Chunk Selection module decides which chunks will be estpd from which node
from the exchange lists, based on the information contaméte RED knowledge list.

The rationale and the algorithmic details of the tradingdaygll be explained in the next section.

3.4 Algorithms

This section describes the algorithms used by a PULSE peen its first connection to the
network to steady state operation. We will present the jbiage, when incoming nodes enter the
system and synchronize with the source clock, the iniédian phase, when the node receives
the first data chunks and chooses its buffer parameters,ateeexchange phase, where peer
selection and chunk selection are performed regularlytlamdecovery phase, in which the nodes
overcome the effects of a permanent download starvatidoleTa2 summarizes the parameters
that will appear in the following pages.

76 CHAPTER 3. THE PULSE SYSTEM

Algorithm 1 Buffer Initialization: Condition to Set Initial Window
foridxinrange(d + %, 6 — &, —1): #idxis the lag of a virtual sliding windowsw(idx)
if |[chunks in the SW ofsw(idx)|| > %* AND |chunks in the TW ofrsw(idx)|| > W
setlp, v,y = 1.

Cidx

3.4.1 Joining the Network

To join a PULSE session, the incoming peer has to know the tiead and port of at least
one node that already belongs to the system. This informaao be supplied by aryootstrap
mechanismin the current implementation, a file that contains the adskes of one or more nodes
(not necessarily including the source node) is used as énergf point for node bootstrap.

The joining peerP sends HELLO messages to the bootstrap nodes. The HELLO ge=saee
propagated throughout the network using the SCAMP algmst[# 7] until they reach a peer that
can accept the new neighbor: this peer will then directlydsBran HELLO REPLY message
and will add it to its local view. SCAMP guarantees that, fmgle node populations, the number
of nodes that will have® in their local partial view - and also the size of the partiggw of P -
will be in the order ofO(log N).

3.4.2 Initializing the Buffer

After a node has joined the system, it begins requestinglchimthe[0 + 6, W + ¢] fixed delay
interval*. As chunks are retrieved, they are put into the buffer: is thitial phase, the sliding
window is not yet enabled, and chunks are requested withdkod forming a nearly-contiguous
block. Att,, when at Ieasig overW chunks have been collected in the Sliding Window &ind
over the whole Trading Window (Algorithm 1), the sliding wliow mechanism is first enabled
around that block of chunks, and the initial buffering [Bg,,,,, = T5,,.,(to) value is set to the
lag of the current buffer edge. As soon as the window contammigh chunks to begin sliding
forward - unless the value afy meanwhile grows too large, in which case the initial window
is cleared - the buffer keeps operating as described abogaré3.1). The play-out delay;,

is determined after time,, when the node buffer at least contains a continuous sequefc
R-Tg,x,r Chunks. Only attime; > ¢y, whenTg, . —T,..,(t1) = 1o, . the media play-out
is allowed to beginTy, is then set at time; to be equal td's, ., (t1) + T, . + -

3.4.3 Bandwidth Allocation

At any given moment, each peer maintains several connect@arsending and receiving data.
To simplify the problem of bandwidth allocation, PULSE pe#y to establish a fixed number of

14The ¢ parameter introduces an offset in the initial lag intervhlne incoming nodes request their first chunks.
Requesting chunks with highérmay increase the speed of node initialization (when ressuace available) as
older chunks are usually better replicated in the system.

3.4. ALGORITHMS 77

outbound connections for data exchange, but do not eXpliictiit the number of incoming ones.
As node bandwidth is typically asymmetric, with the uploathtdwidth being much smaller than
the download bandwidth, it is mainly important to contra thumber of outbound connections.

The biggest challenge for the bandwidth allocation medraris the need to support upload
bandwidth heterogeneity: especially in a live streamingliaption, it is critical to make all nodes
contribute, since unused upload bandwidth reduces ov&ratem capacity. Opening multiple
connections has two benefits: a node is able to provide setwiseveral peers, and it obtains
more information to support its future exchanges. Howetler,more connections, the higher is
the control message overhead for each node. Also, when thadipandwidth can vary widely,
it is difficult to set a fixed 'number of connections’ paranreteat works for all the nodes in the
system.

In PULSE, we approach the bandwidth allocation problem imazfical way. Nodes populate
their MISSING and FORWARD exchange lists on every EPOCH using the peer selection algo-
rithms. A third list contains all nodes that have sent one orenchunks during the current
EPOCH and do not belong to the two previous lists: we refehi® list as theNew list. The

only difference in bandwidth allocation between the threehange lists is thathunk requests
received from peers in thiSSING list are honored with higher priority, followed in order by
peers in theNEw list and peers in th€ORWARD list.

On the Number of MISSING Connections We believe that a large number miSSING con-
nections can reduce the effectiveness of the tit-for-titcs®n: we must in fact remember that
at steady state, for eate-limited application such as live streaming, no more than SBR bytes
per second will be received on average by each node. Tockhig point, let us suppose that
MISSING connections alone are sufficient to sustain the receptioa pger of the full stream,
and that each peer opens exactlyiSSING connections to other nodes: each node will be se-
lected on average by peers as1ISSING partner. Intuitively, a large. means a lower expected
throughput from (and to) eaahiSSING connection: as the contribution threshold required to
gain a place in th&SSING list of the remote node becomes lower, associations becoone m
random and less related to the actual resource availahtlitye nodes and system performance
may suffer because of repeated sub-optimal choices. Fordhson, we decided to use a small
number of connections (e.g. four)MSSING partners, so that each peer can expect a meaningful
theoretical throughput on each connection (e.g. SBR/4).

On the Number of FORWARD Connections On the other hand, especially for the richer nodes,
opening more connections could improve the odds of findirguishunks and fully exploiting
their upload capacity. To take this fact into account, aaldle number of connections can then be
assigned tORWARD exchanges, depending on the available upload. We remeimdtemain-
taining an open connection to some node does not imply tiaagf ibe used for data exchange, as
that is determined by the chunk scheduling mechanism: hemvéwese connections may allow
resourceful peers to utilize their excess bandwidth to yts¢esn by providing a large number of
other peers with recent chunks.

78 CHAPTER 3. THE PULSE SYSTEM

Algorithm 2 MISSING Selection Algorithm

Old_Contributors # list of nodes that contributed during last EPOCH
TFT=]] # an empty list

MISSING list[] # list that will contain the MISSING peers

SortOld_Contributorsby decreasing data_contribution
for eachnodein Old_contributors
if nodés data_contribution > MIN_TFT_CONTRIB:
addnodeto TFT

orderTFT by decreasing data_contribution
while TFT is NOT empty AND length oMISSING_Lisk TFT_RESERVED_SLOTS:

take first element out ofFT, calledpeer
addpeerto MISSING_ List

3.4.4 Peer Selection

Peer selection is periodically performed by each nodejris period is calleEPOCHand is
constant. PULSE uses two peer selection algorithms: amndgiic tit-for-tat selection based
on the total amount of data received during the previous BRSmilar to BitTorrent) and a
lag-constrained selection based on a cumulative trusesddre two algorithms are executed at
the start of each EPOCH, and give as a result two lists of p#eFs11SSING and theFORWARD
list.

MISSING Selection: Optimistic Tit-for-Tat

This policy aims to identify which peers, among all thosewthehich a node has knowledge,
are currently interested and able to provide data in thetgkan. Two pieces of information
are relevant to this choice: the fact that a peer has prowidéa in the recent past and may be
expecting a short-term compensation to continue to do sbitapresence of a shared interest
in the same window of the stream which may lead to fruitfulifetexchanges.

The selection policy we employ in PULSE uses a tit-for-tadice based on information about
the amount of data received during the previous EPOCH ttél SSING list (Algorithm 2). At
least one place in the list is reserved for an optimistici@la, leading to the choice of a known
node with the largest trading window overlap. Network lateoan be taken into account to bias
this selection toward peers 'in the vicinity’ and improve thupport for topological locality: the
latency-aware optimistic selection algorithm is shown &gofthm 3.

3.4. ALGORITHMS 79

Algorithm 3 Optimistic Peer Selection Strategy
Candidates, Overlag]] # empty lists

Candidates—{ n | neRED_Knowledge_LisAND¢MISSING_list
Overlap<— { n| n € CandidatesAND have overlapping TW }

latency(x) returns the network latency between of node x measurdatiddpcal peer

C' is thelatency bias

for eachpeerin Overlap:
ComputeDistancesabgTz(local)-Tz(peer))+C'latencypeer)

orderOverlapby increasingistance

while Overlapnot emptyORlength ofMISSING_Lisk MAX_MISSING_SLOTS:
remove firstnodefrom Overlap
addnodeto MISSING _ List

FORWARD Selection: Round-Robin on History Score

Every node maintains a record of the previous interactioitls @very other peer as a numeric
value, which we called thkistory score H. This mechanism enables a peer to use data on past
behavior of its fellow peers to makeformed choicesvhen selecting future candidates fapRr-
WARD exchanges. The history score is computed as follows: eawh di previously unknown
peer is encountered, it is given an initial score. The scoredremented by a fixed value when-
ever useful chunks are received from a node while it does eloing to theMISSING/FORWARD

lists. The score is decreased by some fixed quantity wheiteggezthosen asORWARD partner

and receives one or more chunks from the local peer during2gR®CH.

As it is currently defined, the history mechanism can appatrer simplistic, but it proved
effective to evenly distribute altruistic contribution®iang the peers. We believe that the original
incentive model proposed by GnuNet [51] could eventuallyapplied to our system, further
improving the strength of the relationships among resdutecedes.

3.4.5 Chunk Selection and Request

A good chunk selection strategy is one that distributes thaks in an uniform way across the
nodes to avoid situations where some chunks are much lelgsated system-wide than others.
It should also ensure that the buffer content of nearby nigldgferent enough that they can
engage in mutual transactions and concurrently exploit theltiple connections. Finally, it
should prevent that several neighbors concurrently septiadie chunks to the same node.

Chunk Selection: Sending The chunks to be sent over a connection, regardlegsigING or
FORWARD, are selected comparing the requests received from eachqie chunks currently

80 CHAPTER 3. THE PULSE SYSTEM

Algorithm 4 FORWARD Selection Algorithm
Candidates, History[] # empty lists
FORWARD _list[] # list that will contain the FORWARD peers

Candidates—{ n | n € RED_Knowledge_LiAND ¢ MISSING_list
History <—{ n | n € CandidatesAND H # NULL}

SortHistory by decreasind?

while History not empty OR length ocFORWARD _lisk MAX_FORWARD_SLOTS:
remove firstnode from History
ComputeDistancesabqTz(local)-Tz(node)))
if NEARBY_THRESHOLD <Distance< FAR_ THRESHOLD:
addnodeto FORWARD _ List

Algorithm 5 Chunk Scheduling at the Sender Peer
ordered_list— list of chunks in the buffer sorted by decreasmeglica_count

for eachpeerin MISSING_listNEW _list FORWARD _list
if peer has outstandingequests
least_sent—chunks fromrequestswith the smallesteplica_count

if length(east_sent1:
randomly shuffldeast_sent
chunk=least_sent[0]
sendchunk to peer
updateordered_list

held in the local buffer (Algorithm 5). Requested chunkg tira available are then sorted using
local ordering criteria, and the first one is chosen for segdiThe criterion we are currently
using for ordering chunks at the sender is a “Least Sent,ARahdom” strategy. Each peer
keeps a counter of how many times it has sent each requested ¢kplica counj. The one
that has been sent the least number of times is chosen to birserin case of a tie, the chunk
is selected randomly. It is indeed possible to queue seevbtalk uploads toward the same peer
to benefit from the effects of transfer pipelining.

This scheduling strategy shows fairly good results, simeertewest (and thus rarest, from the
point of view of the sender) chunks to be received are amoeditst that are sent. Breaking
ties with a random choice, instead of e.g. selecting the knhose lag is lowest, aims to avoid
the preferential replication of a same single chunk whicly mgppen in situations where several
peers have their trading windows synchronized.

3.5. IMPLEMENTATION 81

Algorithm 6 Chunk Scheduling at the Source

for eachpeerin SOURCE_list:
ordered_list sort chunks by number of times they have been sent
least_sent select from ordered_list the least-replicated chunk(s)

if length(east_sent1:
random shuffle least_sent

chunk=least_serj0]

sendchunk to peer

Chunk Selection: the Source The streaming source adopts a sender scheduling mechanism
which differs from the normal nodes by the fact that the seuliscards all the requests it receives
from other nodes (Algorithm 6). Thus, the source is the ordgmin the system that adopts a
push-only scheduling strategy, i.e. a random round-rokar the newest chunks.

Chunk Selection: Requesting The algorithm for chunk requests is similar to the heuristed

in DONet/CoolStreaming [122]. Its purpose is to requestrérest chunks among those that are
locally available, and to distribute the requests acrofsrdnt possible providers (Algorithm 7).
Using the local knowledge gathered from the current neiglg chunks that are rarest across
the neighborhood are requested with higher priority thament@mmon ones. To limit the load
on any single peer, the maximum number of per-node requebtsinded.

3.5 Implementation

The first working version of the PULSE prototype node has liareloped during the summer
months of 2006 by Diego Perino, who wrote a detailed acco@iftisointernship activity in
[82]. The node was implemented following the PULSE simulatade as a reference for the
data exchange algorithms, while most data structures hlael tedefined and the interface to the
network had to be designed from scratch.

The internal organization of the node is depicted in Figutz 3The subdivision into classes
closely follows the scheme, and is also remarkably simdathe system diagram presented in
[122]. The solid arrows in the picture represent the flow afitcol information and data inside
the node, while the dotted arrows describe the intercoiorecbetween system modules. When
compared to the protocol description above, the tradinglagd knowledge manager functions
are jointly implemented by peer managerperforming peer selection, andcaunk scheduler
performing chunk selection, that rely on a common set of datactures. The central block,
system managemeiebordinates the timely execution of the various algorghm

82 CHAPTER 3. THE PULSE SYSTEM

Algorithm 7 Chunk Request Scheduling at the Receiver Peer
chunks_needed=[] # list of chunks the local peer needs (ftemw)

for eachpeerin RED_Knowledge_List
for chunk in chunks_needed:
if peer can offerchunk:
addpeerto chunk.providers

Order chunks_needed by chunk availability, with n_avadats the index:
ordered_same_rarityn_available, [chunk ID, [providers]])
Sort ordered_same_rarity’s lines from the less availabl@tchunks (rarest first)

for each row ofordered_same_rarity:
chunk_vec—vector of tuples [chunk ID, [providers]] with highest rarit
while chunk_vecis NOT empty:
selected_chunrkremove a random chunk froohunk_vec
providers=providers forselected _chunk

while providersis NOT empty:
sel_provider—remove a random element fropnoviders
if (sel_providerequests. R,,..)
addselected_chunto sel_providerequests
sel_providemrequests+=1
if num_requests Rror
return

3.5.1 Practical Details

The PULSE prototype is written in Python, an object-oriengeripting and programming lan-
guage that is well suited for quickly implementing simplepklgations. One of the main ad-
vantages of using Python for our purposes is the availghitftthe Twisted® framework, a
library that provides an event-driven networking back-¢nalt takes care of several low-level
issues (multiplexed socket accesses, management of hketwibers, etc.). The prototype node
also uses some external libraries and modules, notablyreoRytrapper to the fast C++ Reed-
Solomon FEC implementation by Luigi Rizzo [93]. Furthermahe node implements SCAMP
as it is defined in [47] (with the exception of the indirectimechanism). Some other minor
modifications (such as a message ID field) were required tpregp repeated loops in scenarios
with small node populations, as the use of variable-lengtidom walks with probabilistic ter-
mination criteria was generating a large amount of netw@Kit each time a node would join a
PULSE session.

STwisted by Twisted Matrix Labs, http://www.twistedmatgom/

3.5. IMPLEMENTATION 83

Player
3
<—— red messages
<—— blue messages
<<t+— data stream
................. <----- coordination messages
<

[Buffer preeenes Scheduler

: ———pp>| Manager, :

: A i)

Y :

System | :
Peer D Management

Manager

______________ —PPINetwork [Blue
Interface [Routing

$ A
$ LA /

Network

A

A

Figure 3.2: Internal Organization of the PULSE Node and [Patths

Choice of Transport Protocols The PULSE node maintains two transport sockets: a TCP
socket for data transfers and an UDP socket for RED and BLUErabmessage exchange.
The choice of TCP connections for data transfers is motivhtethe need of reliability, as data
chunks span over several IP datagrams, making an unreli@vlsport protocol such as UDP
unsuitable for the task. PULSE can adopt rather large chimds sand small chunk rates in
virtue of the less stringent timeliness constraints of §treaming compared to interactive video
distribution. For instance, typical chunk sizes will rarfgam few to several tens of kilobytes,
while chunk rates will range between 2 and 16 chunks per sedde remember that, given the
chunk rate, chunk size can change between PULSE sessiondeggends on the bitrate of the
stream being broadcast.

The use of UDP is motivated by the fact that loss of controlsagss is tolerable and does not
need recovery. The exchange of control data happens on @i basis, in order to update
the soft state kept by each node about the status of remderdiuhe loss of few messages is in
no way critical to system operation. The length of UDP cdntressages mainly depends on the
size of the buffer Trading Window, and is typically less tH&® bytes. The membership HELLO
messages, in the order of the few tens of bytes, are also gentU®P. In the original plan, all
network messages were meant to be encoded in the Bencodat foyrBram Cohen, but lack of
time and resources has imposed the provisional use of affessrd text-based protocol.

84 CHAPTER 3. THE PULSE SYSTEM

Bandwidth Allocation and Rate of Control Messages In a practical context, the way band-

width allocation is performed is critical as it often deténes the real efficiency of a data dis-

tribution application. While the algorithms specify whidata chunks have to be sent to which
neighbor, an application is supposed to perform the datesfeas using a network whose be-
havior is unpredictable: the application must carefullyn@ge sockets and buffers, especially
when sending out data, and be responsive to unexpectedsdwensing timeouts and triggers,

to mitigate the negative influence of churn and congestion.

As we described above, the PULSE node opens a small numbenpéctions to its neighbors
for data-exchange purposes. In practice, after the scimggailgorithm at the sender peer assigns
a chunk to a certain neighbor, the chunk enters a per-neigddraling queue. The presence of
the queue decouples the scheduling decision from the tiaagm of the chunk on the socket
interface. To avoid starvation, the queue can accept onipal amount of chunks (currently
two), and a new space is freed only after the amount of dateeiqiieue drops under a threshold.
This simple mechanism allows to avoid both inefficient lirdepas a fixed amount of data can
always be sent without having to wait for a new schedulinghthuand excessive queuing of
chunks on slow connections.

One of the drawbacks of data-driven systems is the need ftaaalg control traffic to support
data exchange. To limit the rate at which messages are deddyatween any two peers, we
introduce a self-clocking mechanism based on data exchdhge data are being transmitted
or requested, RED messages are sent with a minimum fixedthasehappens for the majority
of peers that currently are in the RED knowledge list. Theit@C peers (nodes with which an
exchange is in progress) have a message rate that incresisélevate of data exchange and is
upper-bounded by the stream chunk rate. Also, in order toaethe number of active neighbors,
the chunk request algorithm is slightly biased so that ceuarke preferentially requested from
peers which are currently active.

Chapter 4

Understanding the Behavior of PULSE

The previous chapter presented the PULSE protocol anditligs. The rest of this thesis
will be devoted to understanding how and why PULSE works|uatang its performance and
scalability, and - in general - validating whether the syst@chitecture we propose is able to
meet our stated goal, that is supporting a large-scale treasing application in heterogeneous
and dynamic environments.

In many respects, the biggest challenge about PULSE is Ipctwaderstanding its behavior

It is indeed non-trivial to predict the global propertiesaoflata-driven system from the simple
description of the algorithms that are executed by its iindigl nodes. We were unable to provide
a theoretical model of PULSE, as its algorithms are basedaimvige incentives coupled to a
feedback response from the data distribution process: rkgepce of a dynamic component as
the fundamental feature of our system has forced us to tuaitéonative forms of evaluation,
namely simulation, emulation, and limited deployment aa lthternet.

This chapter reviews the various techniques availableytdolainderstand data-driven systems.
Section 4.1 is devoted to theoretical modeling of stati@dhiven architectures. Section 4.2
describes the latest models for incentive-based streasyisigms. Section 4.3 introduces sim-
ulation tools and techniques, while Section 4.4 examine<ttallenges and the advantages of
performing an evaluation using emulation techniques. IinGection 4.5 gauges the feasibility
of large-scale system deployments and the potential of nneaent studies.

4.1 Modeling Static Systems

The literature on the theoretical analysis of peer-to-g&®aming systems has kept growing with
afast pace during the last six years. Most of the early wocki$ed on the study of overlay-driven
and structured systems, which posed no particular chadedge to the geometrical properties
offered by their explicitly-built overlays. Data-drivemstructured systems, on the other hand,
have not been the subject of a comprehensive theoretiahy siutil very recently: the available
techniques to model these systems in realistic conditiom®iat yet mature and still constitute

85

86 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

a vibrant research field. While the first models for data-ehigystems were introduced to study
practical bulk data distribution systems such as BitTarf@20][90], they have been quickly
extended to the domain of live streaming.

Fluid Models Fluid models, an application of markovian queuing theoayehbeen used ex-
tensively in the past to model the complex dynamics of coepaetworks at the packet level.
They have been recently applied to content distributiowogks and to P2P live streaming [66],
providing interesting results on the upper-bounds of theashing rate under simple bandwidth
distributions and node churn patterns. By their very alsstnature, however, fluid models are
not appropriate to describe data-driven systems, as teémaitstate of the nodes (buffer contents,
local knowledge) is never taken into account. The abseneawdre precise characterization of
the individual nodes makes it impossible to model the athors for peer and chunk selection
and the underlying network topology.

Packet-Level Models Another approach to fluid modeling [72] introduces a pad&eél marko-
vian model over an edge-capacitated network graph, whitteisextended to the node-capacitated
case. This model allows to introduce and evaluate simple rsetection and chunk selection
policies: among other insightful results, the paper evalsiand proves the optimality (limited to
complete network graphs) of a combined random-useful gass{ection with a most-deprived
neighbor selection. Unfortunately, the extension of thétlmd to generic fixed graph topologies
(and worse, variable topologies) is an open question. Alsopeer selection strategies that can
be currently modeled are rather simple and cannot rely omtikeenal state of the nodes.

Gossip Models Gossip-based modeling uses a randomized approach to clgtrikbwtion in
order to obtain probabilistic bounds on the performanceesrselection and chunk selection
schemes. In [95] several simple protocols that do not reqiata reconciliation between peers
are presented, and their efficiency is proved to be compatalfixed tree overlays. To the best
of our knowledge, gossip models haven't been evaluatednysténarios with heterogeneous
node capacity, peer churn, or when nodes do not spontarysmsberate.

4.2 Analyzing Incentive-Based Systems

Most live streaming systems were designed to operate ineratipe environments where node
contribute either homogeneously [21] or as much as they 6&}jJ7]. When heterogeneous
node capacities are allowed, few streaming systems int®thchniques that aim to increase the
social welfareof the system [28], sometimes giving advantages to nodeésctmribute more.
The “reward” to better contributors can be in terms of logaticreased media quality, e.g. when
nodes are attributed a higher number of stream descripfidig, or lower reception latency,
e.g. when more resourceful contributors preempt less restwl nodes and switch their positions

4.2. ANALYZING INCENTIVE-BASED SYSTEMS 87

[98]: the system-wide effects often include improvementthie system-wide performance and
efficiency of data distribution. Obviously, these techrigialepend on the willingness of all the
peers to abide to the protocol rules: typical ways of chegiticlude malicious nodes behaving
as if they were good contributors or ignoring preemptioruesis.

The adoption of incentive mechanisms can allow live stregrmystems to work in non-cooperative
environments: incentives provide a local source of infdioraabout node contributions, which

is usually leveraged to give back to the peers that con&ibat, conversely, to retaliate against
the nodes that do not contribute sufficiently.

4.2.1 Intrinsic Incentives

In the general context of data distribution, finding a goaeéiinal balance between fairness and
altruism is hard. Studies about BitTorrent have shown thstemce of a fundamental trade-
off between performance and fairness [42]. Moreover, tles@nce of even small amounts of
altruism, while boosting performance, opens the way to eagjoitation by greedy nodes [68].
In the context of live streaming, the presence of timing ¢@msts further complicates the issue,
as the incentive mechanism should not diminish the effigi@ficlata replication [31].

Pairwise Trust Pairwise trust incentives rely on direct assessments hyithhl peers about
the capabilities of other nodes. Live streaming applicetiare particularly suited by trust-based
incentives sincéi) all peers share interest for the same data at the same tim@)anddes have

to interact repeatedly over time as long as streaming isgopérformed. Examples of current
live streaming systems that integrate trust metrics usedetect and retaliate against freeloaders
[46] or to provide to better contributors a higher number atkup paths to mitigate the effects
of churn [97]. As far as we are aware, the effects of thesé poigcies on the global behavior of
large-scale streaming networks have not been evaluated.

Game Theory The use of game-theoretical incentives in peer-to-peeavarés has been intro-
duced quite recently [33] as a way of ensuring that the peeosleled as rational agents, have
a reason to voluntarily provide their resources to the sydtel]. Game theory (GT) provides
a framework to describe and evaluate P2P systenmoascooperative gamesiodes are mod-
eled as players, game decisions are mapped to resourcébatiotrs, and the game consists in
having nodes play against the rest of the system, strivimgawimize their owrutility function
The study ofNash equilibria defined as the global states of the system in which no plaer ¢
increase its own utility by changing its current strateggvides an analytic tool to determine
the existence of stable (pure) trading strategies of aatgdrgame.

Recently, [19] proved that, eventually, a system with défeial incentives converges to a Nash
equilibrium. In [108], several pure strategies includinggriding are introduced and their effects
evaluated. Games such as the “rate game” [90] and the “nktfeomation game” [75] have

been used to analyze the properties of the BitTorrent oyeslaowing the existence of a Nash

88 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

equilibrium for the cases of homogeneous and heterogememlesupload distribution. However,
the incentives implemented in practical distributed syst@re often analytically intractable as
they depend on a too large number of real-world parametedscanstraints The limits of
classic GT as a modeling approach for real-world incentarese from the very abstract nature
of game-theoretical models. Everything, from the systeigtewatility function to the acceptable
player strategies, must be arbitrarily set: while thelitative descriptiorof real systems may
be very accurate for specific choices of strategies and peteas) thepredictive valueof game-
theoretical models is quite low.

4.2.2 External Incentives

Systems that adopt external incentives relyseparate protocols and facilitie® help nodes
decide about their interactions with other peers. Becadigheir independent nature, extrin-
sic incentives are usually separate subsystems with aaregty limited interface to the inter-
nal state of the main streaming application. Incentive gsiiesns tend to manipulate values of
system-wide variables (such as a node’s “reputation”, tthéar performing micro-payments
and currency exchanges [114][74]) based on informatiomftioe local and remote nodes. The
use of reputation-based incentives has been advocatedsianice in [89], however without a
published evaluation. An analysis of systems based omesktrincentives lies out of the scope
of this thesis.

4.3 Simulating a Distributed System

As the current theoretical models does not offer the supperheed to evaluate the properties
of our system and to predict its scalability, we had to attdek problem in an empiric way.
Simulation, as usual, comes to the rescue when we need tol mqadeenomenon that is not
sufficiently understood. The main strength - and drawbatthesame time - of simulation is
that it relies on a simplified model of reality, where the nestthat better characterize the sys-
tem can be easily observed and measured. The predictive wéla simulation is lower than
mathematically-proved theoretical results, but nonetbetufficient to anticipate the behavior of
a system over a wide range of parameters and border conglit®n the other hand, simulation
results have a much lower generality and cannot be easilyreegbto different contexts. Simula-
tion, while unable to perfectly reproduce the dynamics af-«gorld systems, can provide useful
insights with limited requirement of human and computagiaesources.

1A relatively new branch of GT, calleelvolutionaryGT, studies the spontaneous emergence of dominant strate-
gies when each node in the population is free to evolve italrstrategy, e.g. by copying the strategy of more suc-
cessful peers or introducing random mutations: the goalafigionary GT is to develop empirical non-deterministic
strategies that can induce a desired global behavior [53].

4.3. SIMULATING A DISTRIBUTED SYSTEM 89

4.3.1 Background

A number of simulators is available to simulate the behawvibcomputer networks and dis-
tributed applications: as a thorough simulation performédhe lowest level (i.e. bytes on a
physical medium) would be very much time and resource-cmmsy, each simulator usually
concentrates on modeling a specific facet of the intereglir@gmomenon.

The most accurate packet-level simulatorin common usgdEL5]: its primary goals are provid-
ing a faithful representation of TCP protocol behavioremaction between routing and topology,
and effects of heterogeneous physical media on transpatdqwl performance. Other simula-
tors of this type but with somewhat more limited purposesRIEEAL [64], showing a specific
interest in TCP and packet scheduling (apparently disnaetl since 1997) and SSFnet [76],
focused on TCP/UDP and routing protocol performance.

Performing an accurate simulation, however, has its césese costs translate in high require-
ments of processing power, memory bandwidth, and RAM c&pagi the hardware on which
simulations run, and in long waiting times for the peopld@ening the simulation. An approach
such as the one used by ns2 can be viable when studying tteemparfce of data exchange be-
tween few nodes across a network, but shows clear scajgimittblems when analyzing the per-
formance of a distributed protocol, with thousands of nogleshanging data at the same time.
Nonetheless, the level of accuracy offered by this appraachd be required to successfully
model a specific protocol: simulators like P2PLP [54] act &oat-end to a network simula-
tor, transforming a high-level description of the distiéd algorithms into a series of network
events, which are then passed to ns2 for execution and wkedbdck is taken into account in
the subsequent phases of the simulation.

When highest accuracy is not fundamental to the applicdi®ing analyzed, it is possible to
lower the requirements of the simulation by adopting a senpketwork model: this typically
leads to a trade-off between upper limits in simulationseald accuracy of the results. Different
applications can withstand different amounts of simpltfma, so the system designers have to
use their own judgment when choosing an existing simulator:

e Few simulators strive to be as generic as possible: theymusgent-driven main loop and
just simplify the transport protocol algorithms to imprdaweir speed over ns2. An example
of such a simulator is GPS, the Generic P2P Simulator [118igRvwlaims a good accuracy
along with reasonable speed. GPS exposes all networkesn#i objects, giving great
flexibility to the implementer of new application protocotee example protocol provided
by the author models the BitTorrent protocol, which is a guiemanding application in
terms of information required by each peer to operate ctiyre©n the other hand, the
claims of accuracy are not supported by a thorough analysisalidation on a significant
scale.

e Some simulators give an option to replace the classigaht-drivermain loop, which is
used by most network simulators, with a simplieneslot-drivenstructure. This choice
usually means that the role of underlying topology and nétdatency is eliminated from

90 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

the model, but still leaves the freedom to experiment withdveidth allocation and peer
selection policies. For example, PeerSim [60] is a genémeikator that allows to experi-
ment with structured and unstructured distributed proisidoowever, it is not clear if the
limited set of parameters that are made accessible to thesraltbws to faithfully model
the complex internal state and local behavior of unstrectwistributed algorithms.

e Finally, most simulators purposefully restrict their apptive scope to be specific to a lim-
ited subset of system architectures: this usually impiiepkfications both in the network
model (time-slots) and in the range of actions availablerutated nodes.

Looking at the simulators that were available at the time wdqumed our analysis (January
2005), it was unclear whether they would be suitable to agk.tdhe main concern we had was
about whether the feature set they provided to implemeriv¢ihavior of a peer was sufficient to
support the complex internal state required by the PULSBralgns. This concern, along with
the fact that we did not know yet what would be the appropgaéaularity for a realistic yet fast
simulation, pushed us to choose the last option, writingragse-built simulator.

4.3.2 Pulsim - The PULSE Simulator

Simulating an experimental phenomenon requires that tbelpadoing the modeling first get
acquainted with the effects of the phenomenon, experimétitea play with its variables, etc.,

to gain a first insight on what is its ordinary behavior and dratstandard modeling technique
would work best. On the other hand, modelinguarknown systemfor which no experimental
data is available yet - immuch harder as the researcher typically has no idea of a) what the
normal behavior of the system is, b) on what timescale tlpgcat behavior is best visible, and
c) whether the system itself could actually exist as an ewpartal phenomenon. For these
reasons, writing a simulator for such a system is necegsarnécursive trial-and-error process,
based both on intuition and conjectures from partial rasult

In the beginning, we approached the task of simulating PUft8i& a realistic point of view:
we conjectured that the only way to properly model the comfdedback-driven algorithms that
each node implements was to take into account in the siroualatl the variables that appear in
the real system. This basically meant to emulate as deeglgsssble the network (link latency)
and transport (delay of data transfers), over which a gassimbership protocol would run (with
BLUE knowledge messages appropriately delayed), thataviouturn provide the information
required by PULSE to function.

We initially adopted an event-driven approach, with a mimimstep granularity o0~ sec

to ensure that the asynchronous nature of the system woypdeiserved (small probability of
concurrent events happening). The input accepted by trgrammoincluded the node bandwidth
distribution and a full pairwise latency matrix. This apach was found not to be viable because
of the extreme computational complexity of the simulatiand the difficulty debugging the
protocol activity at so many levels. However, this initiadperience suggested that the most

4.4. LARGE-SCALE EMULATION 91

relevant factors in the behavior of the network would be tekags due to data transfers, mainly
because of the size of the chunks (tens of KB’s), and the gatjmn process of knowledge about
data chunks among the peers. The dominant factor shouldwé been the fact that data was
traveling back and forth over a simulated network, but tleates had tdéake decisionbased on
their local view of the system

For these reasons, we chose a coarser granularity for odrdesagn, switching at the same
time to a timeslot-based approach: this emphasized theofalede buffers, peer choices, and
local knowledge about the data, while still allowing cohtoma the most important parameter
relative to users of the system, the node upload bandwidtko,Ahe emulation of the BLUE
gossip subsystem was abstracted out with an oracle-lidkeagimechanism: the rationale was
that, since the role of blue messages is significant onlyeretirliest phases of a node lifetime
- when there is no other source of information about the résh® system - its importance
significantly decreases near steady state. Moreover, @gingacle assures that no node will
find itself 'isolated knowledge-wise’ from the rest of thesgym due to an unlucky turn of events,
eliminating this negative interference from the simulatautcomes.

There are drawbacks to these choices: first of all, netwardtlity had to disappear from the sys-
tem. This was a loss that was difficult to accept, since prafag times of the messages appear
as a core parameter in the PULSE peer selection algorithtiisitSrelevance is arguably much
lower than the role of bandwidth in determining the choicépeers, as the tit-for-tat mecha-
nism only consider how many chunks have been obtained froodegnThen, the presence of
an oracle has a side effect in the fact that it exposes a paniset of private node data to the
whole node population: one consequence of this is the oWkation of the local view at each
peer. We verified that the ability to contact any other cotedtaode can dilute the effectiveness
of the peer selection algorithms, especially in the iniplaises when no past knowledge about
the performance of other nodes exist.

The full details of PulSIM, along with a more accurate dgsorn of the motivations, limits, and
strengths of its simulation model, are presented in Chdjpter

4.4 Large-Scale Emulation

Emulation techniques are very powerful, as they can givialskd and reproducible empirical
results about the real behavior of algorithms in distridusgstems. Emulation allows to de-
ploy a medium- to large-scale P2P network while retainirgftill control of all its operating
parameters. Also, the emulated behavior of an algorithmempntation can take into account
important practical factors which often are not easily tibte by theoretical analysis, as the

2Network latency has two second-order effects on the barttivittht is exchanged between peers: first, as
control messages take longer to propagate, if proper régipedining is not implemented the available bandwidth
could be exploited in a less efficient way; second, as contedsages that are in-flight for a longer time contain
older information about the remote node’s buffer, this daoelduce the probability that the remote node may provide
interesting chunks.

92 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

availability of knowledge at the nodes and the realistioadtion of bandwidth. Emulation of
data-driven systems is a fundamental step to gain a reliaiderstanding, as peer interactions,
data availability and bandwidth allocation can be modebedtfe first time in a realistic way, and
often allows to validate or invalidate the predicted bebasuggested by simulation models.

4.4.1 Implementing a Prototype Node

One of the first choices that must be made when starting aaddtproject is which language and
framework will better suit the needs of the project. In os&aa balance had to be found between
rapidity of the development phase, usefulness of exteitnarles, platform-independence of the
resulting software, and maintainability of the code. Thessons motivated our choice to use an
object-oriented interpreted programming language andtevased network library: in hindsight,
we believe our choice was right, as the prototype was comgbliet the expected timeframe and
could exploit a range of readily available software compuas¢hat accelerated the development
and debugging phases.

The drawback of choosing a high-level programming langusagkecomplex libraries is the rela-
tive loss of control on the low-level operation of the softejgespecially on the way it manages
network sockets and buffers. Implementations of applreaprotocols are often hard to com-
pare, as it is difficult to abstract the strict performanceha algorithms from the surrounding
implementation details. In order to facilitate comparisoeets of network libraries, such as
MACEDON [94] (for C++), have been developed to make it pogsib experiment with the var-
ious algorithms on a common ground. However, while this apph has been adopted to com-
pare tree-based systems (from NICE to Bullet to Splitstdeamthe best of our knowledge no
data-driven systems have been implemented using this Wvarke/et. Extending this approach
to data-driven systems could provide experimental datauppart more extensive theoretical
comparisons between data-driven and tree-based systamthh existing ones [71].

4.4.2 Emulating a Large-Scale System

Compared to simulation, emulation helps assess how theemmaitation of a set of algorithms
behaves. This means that the actual application code - eM#euself-contained, and capable
to interface to real networks - is operated under controtietivork conditions. Large-scale

emulation demands powerful computational resources, grtigmal to the target system size,
but has the advantage obt requiring a real network infrastructuretools such as Dummynet

[92] and Modelnet [111] help simulate in a local setting afurable internetwork substrate

with realistic pairwise latencies and link bottlenecksm8iating the network topologies while

leveraging the computational resources of a large scaéarels grid, such as Emulab [118] or
Grid’5000 [3], allows to extend the emulation approach twagter of magnitude of thousands
and tens of thousands nodes, which approaches pretty walkipected scale of an initial Internet
deployment.

4.5. DEPLOYING ON THE INTERNET 93

Since the conditions in which emulation is performed arénlwaintrolled and specifiea priori

by the researcher, emulation does not answer all the questibout how the emulated system
will fare in an uncontrolled real environment. While thewetk can be configured at will and
factors such as cross-traffic and geographic diversity efrtbdes can be added to the model
with relative ease, the fact that all the conditions are keater control means that the effects
of unpredictable real-world phenomena, such as random faildees user dynamics, could still
have an unexpected impact on the behavior of the application

4.4.3 PlanetLab

To better approximate realistic operating conditionssiinét-based testbeds such as the Planetlab
[5] can provide a practical way to experiment a limited-scdéployment in the order of few
hundreds of simultaneous nodes. While the traffic genelagetie deployed application travels
over the Internet, the experimenter has little knowledgauakhe state of the network and of the
computers, which may be used at the same time for an unknombeof other experiments:
this makes PlanetLab results non-reproducible and quisiited as a basis for performance
evaluation and comparison. However, the fact itself thatstesn can operate in these condition
is a partial confirmation of the practical viability of a netiking application.

Our experience with PlanetLab has suffered from well-kn@wartcomings due to the unrelia-
bility of many PlanetLab nodes and their high average systent while most measurement and
data distribution experiments may demand little procegssasources and be able to run without
any adverse effect from load, in our experiments with PULSEhave observed that CPU load
was in many cases so high to prevent the timely executionéaed protocol actions, leading
to problems ranging from time-outs to completely erratiftware behavior. Finally, recent stud-
ies argue that the placement of PlanetLab nodes is not egega/e of the typical connectivity
of Internet hosts, as they are mostly placed along the wellipioned international research and
educational backbone, and that their network diversitpvger than the average diversity in the
“‘commercial” Internet [13]. While this limitation mainlyfects measurement studies, it may
also have an impact on the behavior of application-layetquals.

4.5 Deploying on the Internet

A definitive answer about the practical behavior and viapif a large-scale network can only
be found by actually deploying a large-scale system and uniegsits performance. The chal-
lenge of deploying a live streaming system to users worldevis a quite impressive ofiethe
development effort required to test the software, fix itsqyumplement new features, monitor
the health of the system in real time, and recursively imprthe software and algorithms to
follow the growth of the system, all of this requires the condal effort of either an industrial
team or of a small development community. Then, to attraotigh attention and reach a large

3Gale Huang, PPLive Software Architect, Keynote at the 2i@EDMM P2P-TV Workshop, 2007

94 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

audience a marketing strategy is required, as rarely wordauth alone is sufficient to immedi-
ately reach a large user base: this task becomes incregsiiffigult as more and more players
enter the same “technological niche”. Clearly, such an anglerequires a lot of effort, and is
unlikely to reach the system scale and audience size igigalight.

45.1 The Potential of Measurement Studies

Once a system has reached a sufficiently large deploymenssiasuddenly becomes an in-
teresting object for measurement studies. The earliegeiacale commercial live streaming
systems have been steadily gaining popularity since 2005 t@day have reached impressive
sizes. Starting in 2006, measurement studies about SORGAEPLIive, two of the largest live
streaming systems, have begun to appear. These studieproaiaded performance results from
the perspective of the end-user [9], “black-box” analydak® external protocol behavior [102],
and led to the partial reverse-engineering of the PPLiveoea, which allowed the implementa-
tion of a crawler capable of capturing the full-scale dynesyof popular live streaming sessions
[55][56].

Measuring the behavior of a working system and the pattefranser activity provides extremely
valuable insights on the nature of the problem itself andhenpractical challenges that system
designers have to take into account. Measurement studuesahhigh practical value as they
allow to directly compare the efficiency and scalability e&l-world systems in similar environ-
ments: while they are not repeatable and do not provide gbimtfrmation on the state of the
underlying network during system operation, they give thestruseful information about the
performance of the application and on the overhead of thiesyander a real worklodd

4Another drawback is that the behavior observed on specifitiGgiions is often hard to generalize to different
applicative contexts. The results in [18] suggest that ewaror non-structural details - such as GUI modifica-
tions, addition of new “cosmetic” features, etc. - often danexpected effects on the way users interact with an
application.

Chapter 5

Metrics For Performance Evaluation

5.1 Introduction

This chapter focuses on two fundamental questions: howpigssible to measure and compare
the performance of generic data-driven systems, and hopisssible to successfully describe
and evaluate the behavior of the PULSE algorithms.

5.1.1 Dealing with a Data-driven System

In Chapter 2 we described in-depth the differences betwandriven and structured overlays:
in synthesis, tree-based systems have the advantage ditplefining a single path for data
distribution - which makes analysis easy and allows togttédrwardly introduce optimizations
(latency, bandwidth) - while in mesh-based systems the diatabution trees are an indirect
consequence of several mechanisms, such as peer seleadiohunk scheduling - which loosen
the control on the path taken by data over the network andehiddterministic optimization

techniques.

From an analytic point of view, data-driven systems are éatd describe and evaluate than
classic structured systems. The reasons are the following:

1. Data do not follow a constant path over the mesh, nor thectay of a data chunk in the
system is predictable, even given the complete knowleddbeostate of all the peers in
the network.

2. Local mechanisms for data reconciliation are needed eacdaynnecessary data duplica-
tion. Data reconciliation requires the exchange of coritrfdrmation about data chunks
carried by each node. Tracking the knowledge of the restetttstem and the decisions
made at each node is quite challenging, when looking fronoballperspective.

95

96 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

3. Connections between nodes can carry either controlrnmdtion only or both data and
control information. The existence of a connection betwennodes does not imply that
data are being steadily exchanged in either direction.

4. The mesh is frequently changing over time, as the cororesthat constitute it are rene-
gotiated locally among the peers.

5.1.2 “Mesh Overlays” and Performance Metrics

In the general data-driven case, we have seen that theaabdsfinition of “overlay” is stretched
to its limits. “Connections” in an unstructured mesh overdeie both functionally and seman-
tically different from those in systems with structureckdrbased overlays. Also, the resulting
performance of data distribution is not completely deteanli by the placement of nodes and by
their resources, but are also influenced by the availallityseful data chunks and up-to-date
knowledge about neighbor nodes. Lacking geometric stra@nd average per-connection ser-
vice expectation, a data-driven overlay does not offer anpgrty that could help predicting its
global performance.

While many structured overlay multicast systems can be (ewe thoroughly been) analyzed
starting from topological considerations, data-drivesteyns have so far proved impervious to
this kind of analysis. As the basic assumptions that are comlyrmade when dealing with
traditional, structured systems (such as single or matpstribution trees, etc.) do not hold for
data-driven systems, performing a satisfactmyriori analysis is very hard and still constitutes
an open field of research. We will have to adopt an empiric @gghr to performance evaluation
in order to deal with data-driven systems in general (and BEJin particular).

PULSE exhibits all the properties of a data-driven systam,-aadditionally - its mesh topology
evolves quickly over time and is influenced by feedback froendata exchange activity between
peers. There are no explicit rules or constraints for baddrepairing, and optimizing the over-
lay, only thepeerandchunk selectioralgorithms running on the individual nodes (which we
described in Chapter 3). These algorithms constantlyestawestablish efficient partnerships be-
tween peers, and to choose the chunks that need to be riedlistti However, their effectiveness
in a specific scenario (bandwidth availability, bandwidistidbution, latency distribution, etc.)
cannot be evaluated with the classic metrics used to desstibctured overlay topologies.

5.1.3 Outlook

In this chapter, we discuss the issues we encountered intemat to study the behavior of
data-driven systems and the solutions we devised to perdomanalysis. In Section 5.2, we try
to adapt some of the traditional performance metrics usstlidy live streaming applications to
make them suitable for generic data-driven systems. Sebtintroduces additional metrics to
evaluate the specific behavior of PULSE and to understanthémgens inside a running system.
All these different metrics will be the main tool at our dis@abto understand how PULSE fares in

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 97

different scenarios, how it responds to external pertuobat(such as node arrivals, departures,
variations in the available bandwidth, etc.) and how songhtsparametric changes of the core
algorithms affect its global performance. Finally, Sect®4 concludes the chapter.

5.2 Performance Metrics for Data-driven Systems

As we stated above, all the classical overlay performandeeaehat have been used to evaluate
structured systems cannot be applied to a data-drivenrmaysiace they would require a fixed
and predictable geometrical characterization of the ayerEven the most basic metrics, such
as data reception delay and data loss rate, cannot be udeelyaare¢, as the distribution of data
chunks does not follow a sequential order. We clearly needjaate empirical tools to describe
generic data-driven systems and analyze them in a compeaneatyl to structured overlays.

5.2.1 Data Reception Delay at the Nodes

One of the requirements of a live streaming application & tifie stream data must be received
in order before the media can be played. We can reduce this constivaiiné concept o€om-
pletenes®f the stream data at playout time: a data loss event invgliexses of data missing
their playout deadline, even if the missing data could beeadly retrieved afterward.

Remarks about Data Loss In general, the architecture of the streaming system détesnts
data reception requirements. For instance, the earliesés)s based on single-tree structured
overlays considered data as a continuous bit stream thareeas/ed from the parent node.
Buffers at the nodes were small and dimensioned so that thdyg absorb the delay jitter on the
connection with the parent.

In these systems, data loss is possible in case a servinghasda congested uplink or if an
ancestor node leaves the system: losses due to discomec#n usually be detected when no
data are received during a certain time interval (this tiotde usually set to a value around
E(delay) + k - o(delay), where the constarit allows to trade between detection sensitivity and
maximum response time), while losses due to congestiontrbgldetected if the data is found
to be damaged by the application or when an unexpected data@e. future, out of order) is
received.

The reaction of a node to data loss is system-specific andndspen the size of the playout
buffer, on the underlying transport protocol used by theliappon, and on the presence of loss
recovery mechanisms. In interactive and “almost real tisygStems, nodes often do not try
to recover the loss but - depending on its entity - either cemspte it using redundant media
encoding, try to hide the resulting video/audio artifaais,display the media with degraded
guality. Some systems also react to repeated loss eventgrianucally decreasing the rate

98 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

at which the media is encoded, either at the source or at trem{zaof those nodes which are
experiencing losses (e.g. down-sampling, transcodinp.[25

The definition of data loss is less clear-cut for data-driggstems, as the stream is no longer
treated just as a sequence of bits but is now a sequence dkshbach chunk has a sequence
number, and mechanisms are in place to ensure that its ¢erdem complete (e.g. reliable
transport protocols, application-level checksums). Itadfiven systems, chunks are normally
retrieved out of order. The definition of loss has thus to take account the deadline by which
the chunk has to be retrieved, e.g. the time left before thmkliplayout is scheduled. Chunks
that are received after that deadline, in addition to ctunstig loss events, also have the adverse
effect of wasting bandwidth.

Depending on the average playout latency targeted by theryslifferent mechanisms to avoid
losses have been devised. These mechanisms can range fsmprigte chunk scheduling tech-
niques [122] to more complex buffer management algorithesswe currently use in PULSE.
Redundant media encoding techniques [93][78] can agairsée, trading bandwidth usage and
CPU overhead for an improved resilience against chunk I@ssthe other hand, dynamically
reducing media quality in data-driven systems would be aofical, as the source has no way to
control the propagation of the data inside the system.

Continuity Index Two design options have become especially popular amongrtiigtects
of practical data-driven systems. The simplest option selaaround a data buffer that outputs
data to the application at a constant rate. The chunks thabtimeet the playout deadline are
lost altogether, but the playout advances with a constasd,@ven if the played media becomes
severely corrupted. A typical metric for data loss in thiswaxt is theContinuity Index(Cl),
which is defined as the ratio between the number of chunkssesten time and the total number
of chunks [122]. In formula, for a system witki nodes over the time interval:

C

I 1 i < number of chunks received by >
N4 RT

This metric is based on two silent assumptions: that the atoftdisruption introduced by
chunk losses is roughly proportional to the number of misdathks, and that any distribution
of a same amount of loss events over time roughly has a simifaact on the perceived quality.

The second option is based on a buffer that can selectivépubdata to the application, waiting
for enough chunks to be collected prior to playout in the httyae loss events can be avoided
altogether. With this approach, the playback may be frozail an adequate amount of con-
tiguous chunks has been received: in this case, the playsuption can be limited to the fixed
amount of losses the buffer is expected to tolerate. The drawback of this mechanism is that
every freeze increases the playout delay without any expipgper bound, as long as the media
playout is always performed at its nominal rate.

While theC'I metric could be extended in some cases to this second typysteinss (depending
on the way the buffer tolerance is implemented) we must atigattheC'I alone is not adequate

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 99

to describe the 'reception quality’ of a generic data-dniggstem. For instance in PULSE, since
we combine a loss-tolerant selective buffer with an appadeEC encoding of the stream to
guarantee that the playout quality will never suffer in cabehunk loss, the fact of receiving
less than 100% of the chunks does not imply a degradatioreiqulality perceived by the user.
The introduction of FEC allows in our case to seamlessly dbSo= W — K losses over each
window of W chunks. More thart losses, on the other hand, can have a strong non-linear
effect on playback quality and may render the whole windowtafnks unrecoverabiePULSE
responds by freezing the playback up to a maximum delay yahetthen resetting the buffer —
completely losing a whole segment of stream, rather tharodjing it with reduced quality.

The inadequacy of th€'] to describe the performance of PULSE encouraged us to laokrfo
alternative and complementary set of metrics that can beneetd to all data-driven systems.
These metrics are the playout and average chunk receptiapsdevhich will be the subject of
the following pages.

Instantaneous and Average Node Lag Using the reception delay, oiode lag(Chapter 3), to
describe data-driven systems allows us to overcome thé&slimhitraditional metrics that rely on
geometrical properties of the overlay. Whereas the pasiia node in a structured overlay was
clearly defined in terms of either number of hops or data reeepmlelay from the source, in an
unstructured context we can define fisition of a noden terms of node lag.

A drawback of this metric is that the information about theuatpath followed by the individual
chunks and about the provider nodes is not taken into accasnie do not rely on any topo-
logical information but only focus on data reception in arttecompute it. However, node lag
still conveys a stable and meaningful description of theaye “length” of the path that chunks
follow to reach a node from the source: at steady state, ite\@/nthesizes the average number
of hops that chunks traverse, along with the average delgyepties of each hop.

For these reasons, we will use node lag as the primary metrepresent both the position of a
node inside the system and the large-scale evolution of ardigoverlay.

Large-scale Evolution of Node Lag The value ofl; is the result of an averaging process over
a short time span: it is thus sensitive to the long and medemm-variations of the node lag,
such as those occurring when a nodes waits for specific chhgfkse its window can slide, or
when a node starts receiving data from a bandwidth-richhimg As we explained above, we
can trace the dynamics the data reception process of a nsid&yjlooking at the variations over
time of its average node lag.

Lag traces from individual nodes, however, just descrilgesvolution of individual peers inside
the system: if taken alone, they do not allow a full underditagp of the reasons behind the
observed global behavior. But if we manage to extend thifyaisao the entire node population

1The magnitude of the playout disruption depends on the waydefficients for the Reed-Solomon coding are
chosen and on which data chunks were lost, in addition to thie mbvious factors such as chunk size and media
format/codec.

100 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Tg distribution by class / data file 081 Tg distribution by class / data file 081
70 T T T T T 70 T T T T
Very Rich —— Rich ——
60 - B 60 —
w 50 B w 50 —
S S
S 40 - . S 40 .
< <
5 30 . s 30 -
* 20t 1 F 20¢f -
10 ‘ B 10 —
0 | | I‘ | | | 0 | | I‘ ‘MI | |
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Average lag (Tg) Average lag (Tg)
Tg distribution by class / data file 081 Tg distribution by class / data file 081
70 T T T N T | 90 T T T T IID T
orma B oor |
60 - _ 80
50 70 —
4 g 60 i
§ 40 - 1 '§ 50 b
s 30 - s 40 -
*= 0L | # 30 —
20 —
10 I~ N 10 - —
oL 1 1l L1 1 1 oL 1 ‘ ‘I‘ 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Average lag (Tg) Average lag (Tg)

Figure 5.1: Histogram of the Number of Nodes per Lag Value las€{ = 81)

and to appropriately correlate the individual traces, @rtlbecomes possible to investigate in
depth the reasons for the observed node behavior patterns.

Without loss of generality, we suppose that the node pojamas divided into a number of
subsets with different properties. For instance, we maijtpar the nodes into severbhndwidth
classesaccording to the amount of upload bandwidth that is avaslébeach node We can then
draw an histogram representing the number of nodes froretine €lass that have the same value
of Tz at a given time instant (e.g. as in Figure 5.1). By compargglag distribution of nodes
from the various classes visually, we can already get a fisght about the global behavior of
the system. It is easy to see, for instance, what are theeashalhd largest values of node lag in
the system, and how the lag is distributed.

Also, we can aggregate the lag information by class to genghsyic picture of the aggregate
behavior of similar nodes. This kind of analysis can idgnkibth the presence of widespread
problems in the data exchanges, such as massive discamsecind class-specific results in
reception performances. The average instantaneous valper-class’z, along with its dis-
tribution around the mean value (captured by statisticénegors such as the unbiased sample

2Grouping the nodes by their available upload bandwidth beéllespecially interesting when studying PULSE.
Since one of the fundamental aspects of the behavior of PUk 8t presence of correlation between the available
outbound bandwidth at a node and its reception performaritcesll be useful to evaluate separately and then
compare the average aggregate behavior of each bandwédth cl

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 101

TB,yq distribution by class over time
200 T T T T

T T
VERY RICH peers ——+—
RICH peers
NORMAL peers :--x---
POOR peers &

150 v .

100 | _ ; .

a1
o

o ot
)
Dpoopopooosd

Average Lag [chunks]

no2?
¥%¥¥¥¥¥¥¥¥§§%*%%%%xx*xxgx¥¥¥x

_50 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

Time [s]

Figure 5.2: Plot of Average Class Lag and Lag Variance overeTi

variance or appropriate percentiles) is an example of liseétric that can be easily computed
based on node lag information. It becomes therefore eagptesent the statistical evolution of
per-class node lag over the time domain: we can for instagqesent the values of the average
and variance of the per-class node lag over time, as showigimd=5.2.

Asymptotic Behavior of Node Lag Another interesting analysis we can perform using the
node lag metric focuses on the scalability of a data drivestesy. In tree-based systems, scal-
ability was more or less considered a fact - at least on gapgince in the case of a balanced

tree of fixed degred the maximum delay needed for data to travel from the sourcé tmdes

is O(logqN), as they must traverse at mdsy,N hops to get to the leaves at the bottom of the
tree.

When dealing with an unstructured data driven system, hewewderstanding how it performs
when it reaches larger and larger scales is a necessity. eAgata distribution process does not
follow predictable paths, it may be challenging to detemrtime relationship between the system
performance at steady state and the size of the node papuldtituitively, as the number of

3Scalability in this context becomes a matter of using apgadpmechanisms to re-balance the tree in response
to node churn, and to prevent nodes unable to serve a suffiaienber of peers from occupy an internal position in
the tree.

102 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

nodes in the system increases, the delay required for dgieofragate from the source to all
nodes will become higher and - consequently - the overalemesnode lag will also increase.

Average Node Lag vs. Chunk Reception Delay An interesting way to represent the status of
the node buffers in the system is to look at it from the perspeof a data chunk. In a structured
system, where the position in the overlay determines the @aieption delay, the average delay
for a given node is quite stable over time. In data-drivenesys, as we explained before, chunk
reception delay at a given node can fluctuate significantr &wne, and out-of-order chunk
reception is the norm. The average node reception delayefased above, describes the past
and current performance of the node but does not give infboman its future behavior. A
new metric can be devised to estimate the timeliness of cudaa reception with respect to the
average node lag, and again give a sort of prediction on thet-ggrm variation of a node’s lag.

For a chunke;, we can mark a point on a 2D graph when it is received by a peemwith
chunk lagT’”at timet - with coordinates 7 (¢), 7"). The diagonal ling/ = x represents the
theoretical behavior of a structured overlay system, whiggeaverage reception delay is constant
(i.e. T = TYF). Points above the diagonal represent nodes that receiwatke; later than their
average reception lag, while those below the diagonal semtenodes that got the chubhkfore
their current node lag.

As we did before, we can perform the usual partition of theasadto different classes. In Figure
5.3 we can see an example of plot comparing node lag with claghfor a population of 500
nodes in an early stage of a simulation, where the shape bftedcrepresents the bandwidth
class of each node. We can draw many interesting insights tings kind of graph. For instance,
we obtain:

e a snapshot of the position of the nodes by bandwidth claggeitke system with respect
to one chunk. This is equivalent to a simplified represenatif the chunk’s path inside
the system (where the links followed by the chunk are notieitlyl drawn).

e an estimation of the diversity of data buffers across theéesyswhich is given by the
horizontal width of the range of chunks that nodes are isteckin requestirfg(as seen on
the x axis).

¢ the highest lag value with which nodes managed to receivetthele, which corresponds
to the maximum lifetime of a chunk in the system (as seen ox thas).

e specific to PULSE: a glimpse on the state of the system. It neagdmverging, when
nodes are spread in a comet-like fashion (as in Figure 5t&bles when all nodes are
concentrated in a small area at a low lag value, or unstabth,nedes scattered around
the plot in clusters of variable size.

4We must however remember that this representation is nai@ssiot of the system’s state at a particular instant,
but rather a picture of the system as 'seen’ by a data chunk.
SObviously, not counting nodes that did not receive thatipaler chunk.

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 103

Node Tg vs. chunk age for Chunk 600

120 T T T T
VERY RICH peers
RICH peers
L NORMAL peer * i
100 POOR peers
)
c 80 B 1
>
< 2
L /
> 0 SR I
é DRI B K[BRK /’%
E 40 B *I***H**ﬁ*i; */ - _
O ey i a1
SRRRICHIIORIRIOK [oK
20 + " .
O | | | | |
0 20 40 60 80 100 120

Node lag (chunks)
Figure 5.3: Average Node Lag vs. Chunk Reception Delay

5.2.2 Bottlenecks and Bandwidth Efficiency

The primary bottleneck of a streaming system is given by thlead bandwidth of the source:
this bottleneck is a fundamental issue of all streamingesystfor which there is no actual so-
lution. Peer-to-peer systems alleviate this problem bgvalg the users to contribute their re-
sources, but the fact that the source is the only point fronthvidata is introduced into the
system still constitutes a bottleneck.

On Bandwidth Efficiency Let us consider a system witN nodes where each node has an
upload capacity ot/, and one sourc& RC' with an upload capacity disgc. The stream rate
is SBR Kbps, which in the case of a chunk-based system meanditlehiunks of size%
Kbytes are generated each second. The total availabledipégeacity of the system at any time
is NU + Usgrc: however, each node can use just a fractiod 9 < 1 of its available upload.
We will define thebandwidth efficiencypf a system ag = % va 9¥;. For instance, a node in

a single tree-based system can only have an integer nodeedegr | -5~ |, which leads to a
U
maximum efficiency (for an internal node) 6f= %, while leaves havé = 0. Nodes

SBR | _ MU

of a multiple-tree based system willf trees can reach a maximum efficiency= @

Finally, data-driven systems can achigve 1 by using an optimal scheduling algorithm.

104 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Bottlenecks in Structured and Unstructured Systems The connection bandwidth between a
pair of connected peers— b can be defined in a simple way as:

D, U,
in-degreg’ out-degreg

)

B, = min(

In structured acyclic overlays such as trees, the data tieceate of a node is upper-bounded
by the stream bit rate, and its lower bound is determined bysthallest connection bandwidth
on the overlay path to the data source, that is:

SR, i—>j6p{£flL?SRc,n}(i)

Given the current scenario of bandwidth availability onltiternet, the scarce resource is located
at the node uplink, which can be (in the case of ADSL links rttwst popular commercial access
technology)two to twenty timesmaller than the downlink of the same node. For this reason,
the main source of bottlenecks in structured overlays isaghbandwidth scarcity at an internal
(non-leaf) node.

In data-driven overlays, whil& is still defined for each connection, it becomes harder tandefi
a bandwidth bottleneck on the data paths, since there atgewlays of connecting the source
to each receiver and since the distribution of chunks do¢dallow a sequential order. This
situation is encompassed by the well-known Edmonds’ thedd69), which defines the min-
imum theoretical streaming rate from a single source ovexdge-capacitated overlay graph as
the sum of the edge capacities across the “minimum cut” oftiaph (the minimum cut is given
by the partition of the graph for which the sum of edge bandwadhat cross the cut is minimal)
[40].

Different chunks are commonly distributed over differgpésning trees: depending on the chunk
scheduling and node selection algorithms used in the sysiterbandwidth efficiency can be no-
ticeably improved and leads to an important reduction omthgimum chunk propagation delay.
Karpet al. have proved in [62] that centralized scheduling algoritlexist that can approach the
optimal propagation bound in the continuous-broadcadilpro: while these algorithms cannot
be applied to fully distributed systems, they suggest thatitandwidth efficiency of a system
that allows data paths to change over time is potentialliebet

However, the lack of an adequate link bandwidth (at leasakiqputhe stream bitrate) on the sys-
tem’s “minimum s-cut” is not thenly source of bottlenecks in a data-driven streaming system.
The state of the data distribution process also determimmgsvehunks a nodeeedsand which
ones itis able toretrieve: the actual bandwidth efficiency of the system ddod further reduced
because of an inefficient scheduling in the chunk distrdduamong the nodes. Therefore, the
bandwidth efficiency of the system can be used as a metricdlo@e the functionality of a set

of peer selection and chunk selection algorithms.

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 105

Bandwidth Bottlenecks vs. Content Bottlenecks We definestarvationas the reception of a
data rate lower than the bitrate of the stream by the receiv&his phenomenon happens when
> icrsmeighbors Bir < SBR, thatis when the neighbors ofio not manage to provide a sufficient
amount of stream data t0[69]. The reasons for this starvation include, as we said@bo

e Content Bottlenecks: the sender neighbors are not ablentb eseough chunks to the re-
ceiverbecause they do not have any chunks in their buffers thatdmilseful to.

¢ Bandwidth Bottlenecks: all senders combined can ofteta bandwidth which is too low
for the receiver to be able to retrieve the stream at a rateBiRSven if they hold chunks
which can be useful to.

The content bottleneck problem can be limited by choosing@propriate chunk selection al-
gorithm, which should make sure that data is uniformly sgramong nodes, so that they can
exploit at best their upload capacity. The bandwidth bo#tk problem can be addressed (within
the framework of the Edmonds’ theorem) by using an appréppaer selection algorithm and
adequate values for the node out-degree.

From an external point of view, the effect of both forms oftlatecks is the same: the stream is
delivered tor at a lower rate than expected. But the distinction betweeater bottlenecks and
bandwidth bottlenecks is a useful one to be made when stgdyid optimizing the performances
of a data-driven system, as it may allow to isolate the sbamings of a given chunk-selection
algorithm from those due to a poor peer selection strategy.

The Resource Index Describing the availability of bandwidth resources on a racopic
scale can be useful to quickly evaluate the overall servagacity of a system and to identify
excess or shortage in bandwidth resources. A simple way &ods to calculate th®esource
Index(RI) of a given streaming session [104]. TRe is defined as the ratio between the avail-
able serving capacity of the system and the capacity redjtaréully serve the node population.
In formula, when there ar& peers (excluding the source) with bandwidthand if the stream
rate isSBR:

R — Usrc + Ef’io Ui
N -SBR

We notice that, by its definitior2] > £ for any distribution of node bandwidth. A resource index
larger than one indicates a global bandwidth excess, whesgaes smaller than one indicate
that there are not enough resources to serve all the peeng isystem. The most challenging
bandwidth scenarios are those where the RI is only slightihdr than one, but every node is
expected to receive the full streaming service.

106 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

5.2.3 Understanding the Data Distribution Process

In data-driven systems, as stated above, data exchangaesrBmened among the nodes based on
local criteria, such as the current state of data distrdsufreconciliation of the buffer content at
neighboring nodes), the existence of established neigidpozlationships with other peers (data
connections and control information), and the local knalgke about the past evolution of the
system. For this reason, even a detailed knowledge of thé stascture - which gives only an
approximate short-term characterization of the systenviict is not sufficient to capture the
the details of the data distribution process.

A more precise understanding of a data-driven system camibedfrom the stochastic analysis
of the paths taken by data chunks. We recall that these peglspanning trees, that is acyélic
directed graphs connecting all nodes that received a spetitink. It is possible to look at the
data distribution performance in a different way by studyand measuring the average perfor-
mance of chunk distribution trees, such as the tree depthsh@maverage layer out-degree: this
kind of analysis is particularly useful when the environtierwhich the system runs is not fully
known a priori (for instance, if nodes have an unknown baxthwdistribution).

Average Maximal Depth of Distribution Trees Maximal tree deptlD(c;) is the number of
hops required for a chunk to reach from the sourcg the totality of the/N’ nodes that actually
received it (V' C N). In formula:

€
D(c;) = max hops(S — 1)

We must briefly emphasize here the difference between lagraaediepth: while the former also

takes into account the time required for chunk deliverye tlepth only deals with the maximum

number of hops that a single chunk travels. We remember #wdt BOde autonomously decides
the next data chunk to request using teink requestalgorithms based on locally available
knowledge. Since a chunk can typically only be sent follapérequest, the actual delay intro-
duced by a hop also depends on the timing with which the requas answered by a serving

node.

While small tree depths do not directly imply that data dlsttion is efficient (e.g. in the case
of widespread chunk loss), this metric can however give &a idf themaximum number of
exchangeseeded to distribute a chunk. To increase the meaningfailbfele observed value, it
is advisable to compute the average tree depths on se¥@i@iftiguous chunks. We define the
Average Tree Depth metric for chunksto ¢, ., as:

n+k

1
Davg(cna Cn—i—k) =]C—H ZD(CZ)

6We assume for simplicity that chunks are not unnecessaujichted, which means that there are no loops in
the distribution graph.

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 107

5.2.4 Locality Awareness of Data Exchanges

The fundamental strength of native network-layer multidias in the fact that the path taken by
the data is always the shortest: the routers taking part imléicast session are only those that
lie on the direct path between the source and all the degtimsat This results in two desirable

properties: the optimal latency of the data paths and thienaptise of the available capacity of

the network.

Application-layer multicast cannot match the optimal periance of network layer multicast.
In the previous sections, we have discussed at length abeuwlibcation of upload bandwidth
capacity at the access link. However, we must not forgetdht travel on the transport network
over multiple unicast connections between the nodes. Thasthathe network path between
the source and the destination is not the shortest dtmdes establish connections without any
knowledge of the underlying network topology, so it is notammon for data to travel multiple
times over backbones even if the shortest path between tiieesand the destination would not
cross the boundaries of a same AS.

The earliest application-layer multicast designs were vieuch concerned with this inefficient
use of the network [30][12][110]. The performance of thegertays was evaluated using metrics
such as tha@etwork stretchdefined as the multiplicative ratio between the length obagrlay
path and of the unicast path connecting a node to the sousteki@own as RDP relative delay
penalty, andlink stress defined as the number of copies of the same data that are \semt o
the same physical link. These metrics need the full knowdealfgthe network topology to be
computed, and are very useful to determine the scalabilitygiven static overlay architecture
by means of simulation.

However, these metrics are not applicable in a straightiodvwvay to data-driven systems, as
the overlay structure is not fixed. A possible solution wotdduire analyzing a number of
subsequent chunk distribution trees, from which the saadsstretch metrics could be computed,
and then averaging those figures to come up with the typidad\der of the overlay construction
algorithms. Problems arise though when the data-drivetesyss dynamic, as its evolution
depends both on the current status of the network and onnetéactors, such as resource
availability and distribution of node pairwise latencies.

We argue that the main problems data-driven systems inteadlve are the robustness against
node churn and the allocation of the available upload c@paeither than the achievement of

optimal delay performance: it does not make a lot of sensetapare a data-driven system to

a fixed-structure overlay to determine which system is bedte fixed-structure overlays surely

offer better performance in terms of delay.

Average Latency of Node Connections The main information available to an application
about network locality is thend-to-end latencgf a transport connection. Several techniques

108 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

exist to measure latency: the simplest is based opitiggprinciple, that is measuring the round-
trip-time (RT'T") required for a short message to reach another node and &trbasmitted back.
To improve the accuracy of the measurement, more complémigees are used which aim to
factor out the delay introduced by processing time at theotemode (for example, the NTP host
synchronization protocol uses this approach). A commomnag@mation to estimate the one-way
connection delay is to just divide tH&l"T" by two, even if the forward and backward paths could
well be asymmetric.

Nodes in data-driven systems associate to exchange bahaddt control information. The
choice of partner nodes is important for two reasons:

e control messages can be sensitive to delay, as they mayircamarmation that tends to
evolve rapidly over time. A control message can lose acgquifaits delivery is delayed
for too long, and the actions performed in response to anabetdmessage can result in a
waste of bandwidth (transmission of duplicate chunks) etc.

e data transfer over high-latency connections means angrezffiuse of the underlying net-
work, as it results in both high stretch and stress.

For instance, it can be interesting to evaluate the localitgreness of a data-driven system by
performing an analysis of the average latency of the commesthat a peer chooses to establish
when the system has reached steady state.

Amount of Data Transferred vs. Transfer Locality As the quantitative weight of data trans-
fers in a streaming application is much higher than the weagltontrol traffic, improving the
locality awareness of data transfers is a key requiremesntda an inefficient use of network re-
sources. We find it especially interesting to analyze, froendoint of view of a single node, how
many data were exchanged with “nearby” peers, comparedwonhany data were exchanged
with nodes located far away: this information is not adeglyatonveyed just by the average
latency of theconnections establishday a node, as there is no notion about the amount of data
transferred.

The technique we use to define the average locality of datsfees is the following: at each
node, we calculate the number of chunks sent to each of its peer a given time interval.
Then, based on the pairwise latency matrix (which can obthfrom measurements performed
while the system runs), each node defines a numblaterficy binsof uniform width. Each node
computes the value of the amount of data associated with lagstcy bin by computing the
total amount of chunks sent to nodes whose link latency falthe range of each bin. Then,
we aggregate the values contained in the same bin for alldbdesiin the system, dividing by
the number of the nodes. Finally, the value of the bins isragarmalized by the total amount
of data chunks generated by the source over the time intefve result of this process can be
represented as an histogram correlating the percentagerdrobdata exchanged in average to
thedistancet has traveled on the network (Figure 5.4).

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 109

Latency-Based Locality of Data Exchange C=0

5
g 47 -
o .
c
@
S 37 1
x
L .
S ~ M _
© 2 | AL My .
) 1 1
©
S 1
OI

0 500
Latency [ms]

Figure 5.4: Amount of Data Transmitted versus Transfer libca

Locality and Average Node Lag Finally, we can easily expect that the latency of the indreid
data transfers will have a cumulative impact on the overalhyg with which chunks propagate
through the system. However, as we said before, this ovéeddly cannot be compared to the
delay of the unicast path from the source to the node (i.e.otopuite network stretch): the
average chunk reception delay, or node lag, is not only dubdgerformance of individual
links, but its main component is made up by the schedulingsiets and node associations
independently performed by all the peers.

While a comparison of node lag to the “absolute” referenceirmtast delay is meaningless,
the fact that node lag is influenced by the awareness to nktwoality allows us to establish

“relative” comparisons between systems. By looking at therage lag, we can draft a rough
comparison of the locality awareness of different dataadrisystems that operate in similar
conditions. However, this metric is useful to evaluate tfiect of slight parametric changes
in the algorithms of a same system, giving the feedback reduio experimentally tune the

algorithms to better operate under real-world conditions.

110 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

5.3 Behavioral Metrics: the Role of Incentives

We now focus our analysis on PULSE-specific mechanisms apkepies. PULSE is basically a
data-driven system, but its algorithms present addititestures that this general definition does
not capture:

e First, the choice of partners for data exchanges is deteunby the concept dfg, a
metric that describes the stream reception status of eats i the data retrieval process
is restricted to a small continuous segment of the streaeti@aling window, nodes use
information aboutag to discriminate between the nodes that may reciprocate lzogkt
that cannot.

e Second, being an incentive-based system, the recentyhistdhe data distribution pro-
cess contributes to the choice of possible targets for neslecaations. Also, the optional
altruistic mechanism exploits long-term knowledge abemote node behavior as a bias
for peer selection.

In this section we introduce three new metrics to better tstdad the behavior of PULSE,
analyzing it under a different point of view. While the mesiwe described above capture the
external aspects of the system - such as the shape of its itsadbserved loss rate, or the average
reception delay - we now start correlating the system perémce and the decisions taken at the
individual nodes to their own and their partners’ resources mainly to their upload bandwidth.

The first metric,affinity, deals with the effectiveness of the peer selection algorifor the
MISSING connections. The seconfitiendliness tries to portray the role of altruism inside the
system. The last onspft fairnessaims to capture the reaction of the system to the bandwidth
conditions in which it happens to run.

5.3.1 Class Affinity

A useful way to capture the behavior of a given bandwidthstzen be the frequency at which
its nodes establish MISSING links toward nodes of the sam&schbr to any other class.

The choice of neighbor nodes for MISSING data exchangesfacircritical to the good behav-
ior of the system, as MISSING partnerships should conveyalgest share of stream data to
most resourceful nodes. It is thus very important for thesenerships to be establishedth
resourceful nodes that share a common data interest ratogemaximize the reciprocal benefit
both peers can obtain from the relationship.

We thus define the concept of “Class Affinity” between clasad class’ as:

2nea |

n’s MISSING links toward nodes of clags|

(e, H)(t) = > ca IS total MISSING linkg

(5.1)

5.3. BEHAVIORAL METRICS: THE ROLE OF INCENTIVES 111

We will also represent in our plots a normalized version ef@ass Affinity metric. The purpose
of normalization is to take into account the different caedity both for the different bandwidth
classes and for the different scenarios. To this end, weldithe value ofb by the fraction of
the total population belonging to the target class. In otands, this amounts to comparing the
choices performed by a node with theiformly randonrmode selection policy.

N
151l

An interesting way to represent the internal cohesion ammaags from the same class can be
captured by the “self affinity®(«,)(¢) of any given class. Intuitively, this coefficient will be
higher when most nodes from one class have many connectiotgles of the same class. This
would be an indicator of a heavy reliance of any group of naztesodes with a similar band-
width capacity. Affinities toward other classes, richer ooper, are also interesting to analyze
under a different light how nodes tends to negotiate theinmay of obtaining chunks.

(e, B)(t) = (e,) (1) (5.2)

Interpretation We expect rather high “self affinity” results for classeswibnsiderable excess
resources in highly heterogeneous simulation scenarias.th® other hand, results showing
that the affinities between different classes are very sinubuld indicate that tit-for-tat is not
the dominant criterion impacting MISSING peer selectiogpitally, this should be the case
in scenarios with little resource heterogeneity betweamdbadth classes. Also, by comparing
these plots with theode laggraphs we can correlate variations in the affinity metriocstanging
system conditions (e.g. convergence, steady state, etc.).

5.3.2 Class Friendliness

Another interesting piece of information is the behavioF&IRWARD connections. We recall
that the purpose of FORWARD connections is to better utifiee capacity of richer nodes to
help other nodes in the system, while avoiding to negatiralyact their MISSING exchange
performance.

We thus define the concept of “Class Friendliness” betwesssal and classs as:

n’s active FORWARD links toward nodes of class
Y nea lI's total active FORWARD linki

As we did above, we will again normalize the metric againstftaction of the nodes belonging
to the target bandwidth class:

2 nea |

U(a, B)(t) = (5.3)

V(e B)(t) = W(a, B)(t) - 7= (5.4)

112 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Class Friendliness is similar to Class Affinity in that it dabes the likeliness of interaction
among node classes, but since FORWARD connections areallyt aetive until a node actually
sends data over then¥, has to be computed at the end of each peer's EPOCH.

Interpretation We expect that normalized friendliness at steady stateheilhigher toward
classes with decreasing bandwidth resources. We are tterested in analyzing the evolution
over time ofW (), especially during the system convergence phase and fiolljpwajor changes
in the network configuration (spike of arrivals, etc.).

5.3.3 Soft Fairness

The wordfairnessis often employed to describe a vague desirable propertysystem that is
somewhat along the lines of 'who gives shall receive’.

This definition may be enough for conveying a general idealudtviairness is about. However,
when comparisons have to be made between the fairness of/stenss (or of the same system
for different initial conditions), this definition is clelgrinsufficient. How fair is a system? How
can fairness be measured? And then, what to do when a nodexdbggve’? If a system - in
presence of a sufficient service capacity - does excludeddeswho give less than required, is
it 'more fair’ than a system that serves them anyways?

About the Meaning of Fairness We feel that giving a clear definition of what fairness means
is a problem in itself, one that has deep roots outside thpesob computer science. We do
not wish to deal here with the underlying philosophical dises of “what's the right/wrong
behavior and how right/wrong deeds are rewarded” appliedrtional agent’s behavior inside
a generic cooperative system. We will however observe tiedefinition of fairness used by
each author is deeply influenced by his “moral” evaluatiohef fairness problem, within the
specific constraints of the application at stake.

Some authors thus understdadnessas“equal contribution by each node in the systemhich
has to be either expected [12][110], required [21], or erddrreactively [89][107][46]. This
concept is sometimes expressed in a different (but closddyad) form, “the service received
from the system is proportional to the node’s contributjang. in BitTorrent [33].

Contributions may consist in actions performed by a nodeatral§ of another one (e.g. forward-
ing a message to a third party), services offered directth&requesting node (e.g. upload of
a requested file), and/or offers of future service (e.g.yieglto a query). Finally, enforcement
can be performed on the short term (bit-torrent’s tit-fat-tit-for-bit) and/or on the long term
(cumulative tit-for-tat, reputation, trust).

“Game theory allows to reduce a game with more than two plapeise same game between one player and
“the rest of the system”.

5.3. BEHAVIORAL METRICS: THE ROLE OF INCENTIVES 113

This understanding of fairness is well-suited to applmagi with an implicit incentive folong-
term abuse of the systeifror example, in a file-sharing system, it may be reasonalitenter the
priority of requests coming from nodes that share fewer fieprevent them from clogging up
the service queues at the other nodes — thus protecting tfegrpances of those peers that share
more. Another example can be a large-scale content distsibnetwork: it may be reasonable
for nodes to serve data to peers that do likewise contribeeéice capacity than to peers that
never give back.

The applications that are well-suited by this type of fagm@ften share one or more of the
following aspects:

e The service performed has a finite duration (e.g. transfarfoé), after which the request-
ing node is no longer interested in staying in the system.

e The gain a node can achieve from the network, is inversely propoalida the time it
spends in the system.

e Thegainof a node is not upper-bounded as a consequence of the typsafrces that are
served (e.g. a huge number of different files vs. a single file)

e The value of the objects served by the system does not decosas time, so that it be-
comes possible to “profit” by accumulating them.

Defining a Metric for Fairness To measure fairness following the above definition, we need
a metric that can take into account both the contribution nbde (i.e. its available outbound
bandwidth) and the local outcome it experiences. In PULSEcan consider the local outcome
as the inbound bandwidth a node manages to obtain from its.pdeve take into account the
fact that the streaming application is rate-limited, we taen describe the amount - and the
steadiness - of a node’s incoming bandwidth by phsition(i.e. the average node lag) that it
occupies inside the system.

Our definition of “Soft Fairness” (bandwidth class versitefween any twdandwidth classes
a andf, whose upload capacity i, < Ug, is:

_ Dnea 2mep UTp(n)(t) < Tp(m)(2))

EHE (5:5)

F(a, B)(t)

where the indicator functiof(z) is defined as

I(z) = 1 if zistrue
1 0 otherwise

andT}y is, as usual, the average node lag measured atitime

114 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Soft fairness of the system over time

1 I I
o WERY EICH
to IORMAL
to, POGR[|--------
_ 0.8 ,
— 4 ' ' i i
= 0.8 EEERRT L AR LR O e
t . i ' iy .
s]
q
£ 0.4
-~ II: A
" : Unfair
0.2 -
0 | | | | |
0 50 100 150 200 250 300

Time [=z]

Figure 5.5: Soft Fairness Plot for a Given Bandwidth ClasgHis example: RICH)

Should bandwidth classes not be defined (for instance, ialaystem where the possillefor
each node can take a wide range of values) the same “SoftelBairfor this general case would
become:

E:neAf§3m¢n;UBQQSUBOn)H(IE(NJ(Q < Tp(m)(t))
N(N —-1)/2

F(t) = (5.6)

Values of F nearl mean that the system is “fair”, since the near totality ofemthat contribute
more to the system get a steadier incoming bandwidth thardestributing ones, allowing them
to settle on a lower lag value than poorer classes. On the bdred, values near zero indicate
that the system is “unfair”, since those who contribute lems systematically get in return the
needed data chunks with a better lag performance. Finallgrmediate values could suggest
that there is no strong correlation between the capacityigea by a node class and the lag it
manages to obtain.

Graphic Representation We will represent the class-based fairness values on aigéothe
one shown in Figure 5.5. In this kind of plot, to include theverse fairness’ relationships
between classes with higher-to-lower upload, i/g.> U, we will represent the function:

. _ Yonea 2omes U TB(n)(t) > T(m)(t))
F (o, B)(t) = a1

(5.7)

5.3. BEHAVIORAL METRICS: THE ROLE OF INCENTIVES 115

Applying this convention, we can obtain pictures where pigssible to grasp immediately the
amount of soft fairness relative to a pair of bandwidth atgssThe plot can be then read as
if divided into two horizontal stripes that correspond totaones of “prevalent fairness” and
“prevalent unfairness”, as we explained above.

Interpretation Soft Fairness is an useful metric to describe a running PUsy&iEem. It allows
to compare the average performances observed by nodesiféttedt resources. This can offer
an empirical description of the effectiveness of the tittft retribution mechanism in a given
operating scenario. Intuitively, we expect tit-for-tati® more effective when operating in highly
heterogeneous conditions and with scarce bandwidth &gya and less relevant whenever
bandwidth is abundant.

5.3.4 Toward a Better Concept of Fairness for PULSE

We introduced thesoft fairnessmetric to assess the relationship between a peer’s bartdwidt
contribution to the system and its lag. This metric is esgfcrelevant when the resources of
the system are scarc&(close to 1 or even lower). On the other hand, when there is aucity,

the retribution mechanisms will be less effective in disgeg the nodes that give more from
those that give less. This is also what we intuitively exfiennh a rate-limited application

However, we must not forget that fairness as “just retritmitiis not our primary interest. Af-
ter all, a live streaming application is primarily meant tistdbute streaming data. Incentive
mechanisms are important to make the system resilient ts pe® are uncooperative - either
for technical limitations or deliberate choices - sincer#poeous cooperation should never be
expected. However, their role and usefulness of an incemtigchanism is subordinated to the
system’s main purpose, thatdglivering a live stream to large audiences with low delay

In the context of our target application, we feel that fagmeescribed as in Section 5.3.3 - either
same contribution for all nodes, or service provided to eantie by the system is equal to the
node’s contribution - is still not totally appropriate toadwate a live streaming application, for

the following reasons:

e Live streaming is a rate-limited application, meaning tthegre is little interest for each
node in obtaining at steady statere data(i.e. at a faster rate) than other nodes.

e No node can in any case receive data faster than the sourdaga®them. The interest
function (i.e. reception delay) is now upper-bounded.

e Live streaming deals with “ephemeral” content, whose vadunels to zero over time.

Moreover, some constraints of live streaming and some ptiegeof the current Internet also
show the limits of that fairness concept:

116 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

e Studies about the availability of bandwidth resources &triret hosts show how their
distribution is not uniform throughout the entire popubetj but more similar to a truncated
power law [96][104].

e Systematically enforcing strict limits on the instantangdandwidth (e.g., because of
long-term considerations) can hurt the short-term pertoroes of the system, especially
when the usefulness of the content is so short-lived. As wevkiandwidth may be
“infinite” over time, but it is limited at any given moment: wean thus think at unused
available bandwidth as if it wasst service capacitj107].

e And finally, using up a larger share of the bandwidth avaéadila node does not imply (in
most cases) an additional cost.

We will therefore suggest our own concept of fairness, wihscmore oriented to the common
interest and survivability of the whole system rather tHaminhterest of the individual nodes. We
attempt here a definition dflobal fairness' as the property of a system where 'good’ actions
of its individual components give origin to 'good’ local gotnes and 'good’ global outcomes,
and where 'bad’ actions of its individual components mayegwigin to 'bad’ local outcomes,
but also lead to 'good’ global outcomes

Applying this definition to PULSE, we can say that a good (keatjon is (not) offering enough
upload bandwidth, i.e. less than the stream bit-tat&?. A good (bad) local outcome at each
node is receiving (less than) an average stream bit-rateB®. The good global outcome is
thatas many nodes as possible are served by the systegardless of the serving capacity
distribution across the population. This new definitionaifriess better translates, in the specific
context of our application, to the need for the system to tgrbitself against exploitation”,
specifically by nodes that cannot / don’t want to contributewggh. As long as there is enough
serving capacity, we do not feel that “poor” nodes or fredkra should be penalized. On the
other hand, when the service capacity becomes scarce, shadites to be penalized should be
those that are contributing the least, in name of the “comguwd” of the system [83].

5.4 Conclusion

In this chapter, we provided two sets of metrics to evaluadshrbased live streaming systems.
The first set, based on the conceptlag, is intended as a common framework that may be
used to describe and compare the performance of generiddeaéan systems. The second set is
designed to study the macroscopic relationships betweéde resources, their placement in the
system, and their data reception performance: while plyssgeful in a more generic context,
these metrics specifically aim to capture the internal dyinarof the PULSE system and to
monitor the evolution of node placement inside the network.

The metrics we presented in this chapter are in no way medrg txhaustive. We believe that
other new metrics could be introduced to study certain $igegspects of data-driven systems:

5.4. CONCLUSION 117

for instance, further insights could be gained from the raeament of graph properties of the

mesh overlay (e.g. clustering coefficient, diameter, eWg decided, in the context of our study
of PULSE, not to focus too much on the full overlay graph, dseigps changing rapidly over

time, but rather to privilege the study of data exchangegasiipported by the statistical analysis
of node relationships.

118 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Chapter 6

Simulation Results

In this chaptef, we evaluate the performance of PULSE algorithms throudbresive simula-
tions. We introduce in Section 6.1 the simulated model indetail, underlining its strengths and
shortcomings. In Section 6.2 we describe the simulationates used, while in Section 6.3 we
analyze the stability and efficiency of the simulated systesr a range of structural parameters,
such as length of the Trading Window and amount of FEC addatidgource. In Section 6.4
we apply the metrics we presented in Chapter 5 to understandlobal behavior of the peers
and to describe the internal dynamics of the PULSE systerrttid®e6.5 examines the behavior
of PULSE under the various scenarios we introduce in thiptrawith a specific interest for
the quantitative performance of the system. Section 6.6&es the effects of churn and sud-
den variations in the membership and in the available ressuwhile the system is operating.
Finally, we conclude our analysis with additional commentSection 6.7.

6.1 Methodology and Expectations

PulSIM, the simulator we implemented and used to obtainetesults (Chapter 4), is a sim-
ple time-slotted simulator. The first design choice whiclfuisdamental in order to perform a
realistic time-driven modeling of any phenomenon is theetimit (orstep duratiof of the sim-
ulation: while atoo small time unit makes the simulation s|omcreases the volume of the data
produced, with little benefit on the accuracy of the datdfitsboosing a&oo large timescale can
give inaccurate resultsThen, the accuracy of the model has to be perfected depgodithe
selected time scale: this includemadel of data transfer at the chosen time scaid thedefini-
tion of a knowledge propagation modétese rules basically regulate what pieces of information
are available to which node with how much propagation defagally, based on the modeling
choices, it is advisable to formulate arpectation about the overall accuracy of the motiak
should give a clear idea of what will be the limited scopedesivhich results will be valid, and
some predictive reasons on why and when the model could té€vian reality.

1The contents of this chapter have been published in part7s [8

119

120 CHAPTER 6. SIMULATION RESULTS

6.1.1 Choice of Simulation Step

Simulating a system at a certain timescale implies thetghii sample its state with a period
that cannot be smaller than the simulation step. By NyciiBtieorem, the lossless sampling
of a system requires a frequency which is at least twice theass frequency. However, we
must not forget that the simulation step also determinesrtagimum frequency at which the
simulated system can act: therefore, the simulator freqehould be a multiple of the double
of the actual rate at which things evolve in the system. Arreymate timescale can usually
be chosen by selectirgystep value about one order of magnitude smattemn the actual time
constant of the phenomenon.

The best way to choose a correct time unit is to examine thiesythat has to be modeled
and recognize the frequency at which important events happePULSE, the peer selection is
performed at regular intervals of several seconds, calR@EHS. Peer selection is based on
the actual performance of data exchange during the pre BR@QCH, so the simulator has to
allow for repeated exchanges to take place between two gubstpeer selections. The rate of
data exchanges will be on average in the same order of malgnifithe data generation process,
as live streaming is a rate-limited application. Therefave believe that a time step in the order
of the tenths of seconds would be a good choice. In our simaktwe used a value 6f25 sec.

6.1.2 Modeling Data Transfers

We now concentrate on the way to model data exchanges in aldagg system at the chosen
time scale. We remember that the basic unit of data exchangericontext is thehunk new
chunks are generated by the source at a constanCRité/e suppose that the size of a data chunk
can range between few KB to few hundreds KB, depending ondtuakrate of the stream and
on the amount of error correction protecting the stream.dEt@ issues then becomes: how can
we allocate node capacity to simulate data transfers inlestiedut lightweight fashion?

First, we can introduce one of the traditional hypothesdsclvhas been used thoroughly in the
modeling literature: that the bottleneck link is alwaysdted at the edge of the network, i.e.
each node is bandwidth-constrained but the network doesthetwise affect the data exchange.
This results in a simple transit-stub network topology, vetithe transit has an infinite bandwidth
and the stubs are dimensioned to approximate realisticsaditek capacities. We also suppose
that download capacities are always higher (e.g. twiceast)ehan the stream rate.

Then, we have to face the problem of how to model the behavioupnetwork: we are espe-

cially concerned about the transfer delays between nodislaout pairwise node latency. The
network should then introduce an initial delay for any conmication to be possible between
two nodes, on top of which it adds the delay required to trantme data payload. But how

can we model data transfers, which in reality are a contisyghenomenon, in the context of a
time-driven simulator?

The typical EPOCH length that we used in our simulations s $aconds.

6.1. METHODOLOGY AND EXPECTATIONS 121

To simplify things, we can think about having data transfemgtially synchronized across the
system, so that they always respect the boundaries of a tepeBhis can be done (for instance)
by limiting the total number of chunks that a node can geeedating each step. The amount
of upload/download bandwidth at each node determines tlmuanof chunks that can be ex-
changed by a nodeluring each time step. Having introduced this further apjpnation, we
can be sure that all the chunk transfers will be completedroe (if the full capacity is used) or
before the end of a step (if spare capacity remains), butriates.

The simplification above leads us toward the conceptafdwidth slotwhich constitutes the
practical unit of measure to represent data transfers immgdel. A bandwidth slot is defined as
the amount of bandwidth required to transmit one chunk imglsitime slot. Node capacities
are then defined in terms of multiple bandwidth slots: thiargization of bandwidth capacities
can approximate quite well the average behavior of TCP ucdlegestion at the edge, since the
available upload node capacity during a time step is eqsaléred by all the competing chunk
transfers.

When dealing with latencies, the relatively large time ssaé selected for our step value comes
into play with a positive outcome. If we consider the typipairwise latency values measured
over the Internet, which range from few tens to few hundrediseconds, we can approximate
the maximum time a message requires to reach another nodehgiduration of a whole time
step. This is especially useful for control messages, whrehquite short (tens of bytes) and
whose transfer delay is mainly dominated by the pairwiseney between nodes. The fact of
expressing pairwise latencies in terms of single simulstieps helps us to model the evolution of
the internal state of the system, as state changes induceohinpl messages become effective
with an uniform delay of one iteration.

6.1.3 Model of Knowledge Propagation

Under the above assumptions for data and control exchangesan build a knowledge model

which is suitable to simulate the internal state of PULSEea®odn the real application, nodes
obtain knowledge about the rest of the system by randomiassliging and by direct exchanges
of control messages. On the other hand, we do not wish to immgai¢ a simulated gossiping
process, as this would increase by far the complexity of aaukator (the interactions of the

gossip protocol with the actual PULSE control exchangeslavbe difficult to understand and

debug).

For this reason, we approximate the propagation of infoionan the system in the following
way:

1. BLUE knowledge: at each iteratioall nodesare aware of thd’z,,, at the previous iter-
ationfor all other nodes This oracle-like source of knowledge replaces in the satioih
model the actual gossip protocol. We argue that, when systanohes steady state, as the

3This limitation holds both for uploads and downloads.

122

CHAPTER 6. SIMULATION RESULTS

values ofl'z,,, are substantially stable, the fact of having an updated ledye of average
remote node positions approximates what happens in reiadityow-frequency updates of
aTlj,,, value that is slowly changing over time.

RED knowledge: it is critical for the realistic modeling the system that the detailed
knowledge of each peer’s buffer be available only to a smel]-chosen subset of the
entire node population. In this case, we need to roughly sitathe inner workings of the
PULSE protocol and cannot rely on an oracle-like mechaniswedid above. For this
reason, we have to specify few simple rules that constraiD Riowledge propagation.

A node P is aware of the full buffer state of another no@eat the previous time step,
including any chunk requests it may have expressed, if ahdion

() @ appears in th@1SSING / FORWARD neighbor list of P
(b) P appears in th@ISSING / FORWARD neighbor list of()
(c) @ has chosen to send a RED control message &b the previous time step
(d) P has chosen to send a RED control messagg &b the previous time step

DATA knowledge: nodes become aware of the chunks theyuwaddérom their neighbors
at the iteration following the data transfer. Moreover, ach@nism is in place to prevent
the synchronous transfer of the same chunk by several éifterodes at the same iteration:
in these cases, either the next queued chunk is sent (instelae potential duplicate), or
the node is skipped altogether, when there are no more chalke request queue.

6.1.4 Expectations and Limits of Our Modeling Approach

The choices we made while formulating our model of the PUL§gesn are all aimed to provide

a faithful description in terms of internal dynamics andagbbehavior at steady state. However,
the compromise we had to reach between simplicity and faitbEs has several consequences
on the kind of results we can expect from PulSIM: we try to bgsize our choices in the pages
that follow.

e Since all nodes are modeled as having an independent ihg¢aite, and since each of them

has to apply the PULSE algorithms on its data structures;ahgputational complexity of

the simulator is rather high. While we haven't performedatiugh study of the exact de-
pendence between every system parameter and the timegedoiira complete simulation
run, we can say that the overall complexity roughly scales:

1. linearly with the duration of a simulation run
2. quadratically with the size of the buffer windédAi?” and the chunk rat&
3. linearly with the total number of nodes in the system

6.1. METHODOLOGY AND EXPECTATIONS 123

While the memory footprint of the simulator can be easily teamed in the RAM of a
recent computer (e.g. about 1GB of memory used by our lagjestlations with10?
nodes), the actual bottleneck was given by the available g&®tkr. We had to resort to
run several instances of the simulator in parallel to miggnwaiting times: on the machine
we managed to obtain to run simulations, a dual dual-com Xeon server clocked at
2.8GHz and with 7GB RAM, a “simulation unit” made of 16 diféeit scenarios (serially
run over four independent threads) would take from less thandays with10® nodes, to
more than one week with*.

e The bandwidth granularity of the simulation is implicitheérmined by several parame-
ters. There is a relationship binding together stream &ferf), chunk size ('S), chunk
rate (R), time step duration{7 F P), and maximum bandwidth slot siz&§,,..):

BSa: = SB;R -STEP=R-STEP
csS

The smallest bandwidth granularity should be dimensiondakta fraction of (or at least
equal to) the smallest possible peer upload bandwidth. Asoitant consequence of our
design choices is that the simulation results depend onlghomk rate, simulation step,
and bandwidth slot size. It is thus possible to rescale thelt®of a single simulation to
fit different values of these parameters through this refeinip. Typically, we can scale
up the stream rate by scaling up the chunk size, double thekctate by halving the
time duration of a simulation step, etc., but we must be chtefalways stay within the
reasonable range of operation given by the other simulaturaptions detailed above.

The model works very well to study the behavior of the systésteady state. It is conceived to
evaluate with particular accuracy the impact of differemmtwidth scenarios on the evolution of
the system as a whole. However, there are also some drawbacks

e The simulation model does not include a way to define lateceparios other than the
uniform latency distribution. This does not allow us to exak through simulations the
behavior of the PULSE algorithms with respect to pairwisdandelay and network locality
in general.

e The simulation model is also not suitable to predict the amadi bandwidth overhead
brought by control traffic, nor its possible interactionsgtwthe actual streaming traffic and
its impact on the operation of rest of the network.

e Another weakness of the model is in its simplified knowledgealsi, which overestimates
the likelihood of chunk exchanges between nodes and théeeifizin the use of available
upload capacity when compared to reality.

e Since the evolution of the simulation is not tunable by therafor once a run has been
launched, and since the simulator relies on randomizedestike mechanisms to model

124 CHAPTER 6. SIMULATION RESULTS

less-relevant aspects of the system, simulations may soeeproduce artifacts. Espe-
cially when modeling concurrent node arrivals, it is not amenon to encounter a certain
degree of artificial transitory instability.

e The node reception lag results, as output by the simulabayld not be expected to be
faithful “in absolute” to measured results from real-woslgstems, as they do not take into
account with sufficient accuracy the delays induced by tlob@&mxges of control informa-
tion which always happen before the transmission of theastrdata. Also, as the real
throughput of data exchanges depends on TCP and on the yindenetwork topology,
the worst-case duration of a chunk exchange is not limitetthéctime step duration. Fi-
nally, the real system is asynchronous, so its actual pedace will surely be inferior to
its synchronous approximation attempted by this model.

The primary goal of our simulation model is to preserve slgstem-wide ordeof the nodes in
terms of reception lag. This goal is motivated by our maindtiipsis, namely that the lag of
the members of each bandwidth class is in some way dependehédotal (system-wide) and
relative (class vs. class) availability of resources atrthées. The PulSIM simulator will be our
main instrument to validate whether this conjecture holoth lat steady state and during system
convergence.

6.2 A Set of Scenarios for Simulation

We now set out to evaluate the behavior of nodes that condilynein the PULSE algorithms.
As the algorithms are designed to adapt to the bandwidthitond in the system, choosing
appropriate bandwidth scenarios that represent a wideerahgossible operating conditions
will be crucial to understand how they work. Also, we want tivé get some clues on how the
system is able to react to churn: for this reason, we applgreggynthetic arrival and departure
patterns to the node population, to test the system'’s regptinslow and sudden membership
variations.

Bandwidth Scenarios The simulator parameters and bandwidth distribution rargee been
chosen to model the diffusion of a 1 Mbps FEC-protected strda all the scenarios we use, the
source’s maximum upload bandwidth is set to 3*SBR. The \sati¢he Resource index (RI) for
each scenario do not include the source’s bandwidth simeautd make the RI dependent on the
population size. However, if we consider a population of@@0des, the RI increase introduced
by the source is jugi.003. The various scenarios are also summarized in Table 6.1.

High Heterogeneity, Low Bandwidth (HH-LB) This scenario encompasses four bandwidth
classes: 4% of VERY RICH peers, with 4*SBR upload and 4*SBRimoad bandwidth; 20%
of RICH peers, with 2*SBR upload and 2*SBR download bandi@tl% of NORMAL peers,

6.2. ASET OF SCENARIOS FOR SIMULATION

125

| ClassName | HH-LB | HH-HB | LH-LB LH-HB |
VERY RICH (VR) | 4%, 4*SBR | 4%, 10*SBR = =
RICH (R) 20%, 2*SBR| 20%, 3*SBR| 20%, 2*SBR| 20%, 4*SBR
NORMAL (N) 21%, SBR | 21%, SBR | 80%, SBR | 80%, SBR
POOR (P) 55%, SBR/2| 55%, SBR/2 = =
Resource Index (RI)] 1.045 | 1485 | 12| 1.6
| ClassName | UNIFORM-LB | UNIFORM-HB |
| NORMAL (N) | 100%, SBR | 100%, 1.5*SBR)|

| Resource Index (RI)

1 |

15

Table 6.1: Composition of Bandwidth Class Scenarios (ithstion, upload)

with SBR upload and 2*SBR download bandwidth; and 55% of P@@&s, with SBR/2 upload
and 2*SBR download bandwidth. This amounts to a resourcexiofi R/ = 1.045.

The HH-LB scenario aims to show the system’s behavior whenlwalth resources are scarce
and asymmetrically distributed throughout the populati®he total serving capacity is barely

sufficient to provide every peer with a complete stream.

High Heterogeneity, High Bandwidth (HH-HB) This scenario encompasses four bandwidth
classes: 4% of VERY RICH peers, with 10*SBR upload and 10*$B®nload bandwidth; 20%
of RICH peers, with 3*SBR upload and 3*SBR download bandwi@tl% of NORMAL peers,
with SBR upload and 2*SBR download bandwidth; and 55% of P@@&s, with SBR/2 upload
and 2*SBR download bandwidth. This amounts to a resourcexiofiR [5_gp = 1.485.

Here we noticeably increase the upload capacity of the taloest bandwidth classes. As a
consequence, the total available bandwidth exceeds thenommamount required for the com-
plete stream distribution by nearly 50%. The resulting scenaims to approximate the hetero-
geneous bandwidth distribution observed by recent sty8@§27] on resource availability in
peer-to-peer file-sharing networks.

Low Heterogeneity, Low Bandwidth (LH-LB)

This scenario encompasses two bandwidth

classes: 20% of RICH peers, with 2*SBR upload and 2*SBR doasbandwidth, and 80% of
NORMAL peers, with SBR upload and 2*SBR download bandwidihis amounts to a resource

index OfRILH_LB =1.2.

The main challenge in this scenario is the small differereterben the bandwidth capacity of the
two classes of nodes, together with the presence of a rebatow excess of overall resources.

Low Heterogeneity, High Bandwidth (LH-HB) This scenario encompasses two bandwidth
classes: 20% of RICH peers, with 4*SBR upload and 2*SBR doashbandwidth, and 80% of

126 CHAPTER 6. SIMULATION RESULTS

NORMAL peers, with SBR upload and 2*SBR download bandwidihis amounts to a resource
index OfRILH_LB =1.6.

This scenario is designed to examine the behavior of nodad$wo-class scenario where band-
width resources are abundant.

Uniform Scenarios, High and Low Bandwidth These simple and self-explanatory scenarios
are useful to provide results to support comparisons tastrad systems. The low-bandwidth
version (unif-LB) encompasses a single class of nodes vBiR 8pload and 2*SBR download
bandwidth. The high-bandwidth version (unif-HB) encongessa single class of nodes with
1.5*SBR upload and 2*SBR download bandwidth.

Churn Scenarios We experimented with few synthetic arrival and departurgpas, to intro-
duce a way to evaluate the impact of user activity on the sy&tehavior. We tried to approxi-
mate conditions that could be encountered in real-worldrenments, such as flash crowds and
sudden departures. The arrival patterns we adopted are:

e ATONCE: all the nodes join the network at the instant 0

e SPIKE: 25% of the nodes join the systenrat 0; the remaining 75% come in together
after the system reaches stability

The duration of the life of a node in the system is assigneterfallowing ways:

e NOLEAVE: nodes never leave the system until the end of theikition
e SQUIT: sudden departure of 50% of the nodes

6.3 PULSE Parameters: How to Set Them?

When we launch a PulSIM run, we would like to just provide théval pattern and bandwidth
distribution of the nodes. However, several protocol patars have a decisive role both on the
initialization and on the evolution of the system. It is nesazy to correctly set these parameters
before actual results can be obtained from the simulator.

Node initialization, for instance, is an especially semsiphase, as new incoming nodes have
an empty buffer and must execute the various buffer synehation algorithms before they can
operate normally. Especially when several nodes join in alldime frame, the odds that a node
manages to fully initialize its buffer depends on many fextthe available excess resources are
an important factor, but several buffer parameters (widthliding windows, sliding tolerance,
initial window position) also play a critical role. If a siffated system does not initially converge,
then we will not be able to get any meaningful result from tnate.

6.3. PULSE PARAMETERS: HOW TO SET THEM? 127

Problems in the initial system convergence are caused Wy thetsimulation artifacts and by
the intrinsic properties of the algorithms. We remembet BldLSE is a dynamic system based
on positive feedback: this means that the initial condgican have a decisive weight on the
short-term stability of the system. In simulation, the digbproblem is harder to address, since
the “inertia” of simulated peers is lower than in the real lddbecause of the fixed propagation
delay, oracle-like sources of knowledge, synchronizedkhransfer, etc.) and consequently the
randomness of their actions is higher.

In the following pages, we explore a limited subset of theiqgol parameter space by way of
practical heuristics and trial-and-error. Our goals heesta begin to understand the fundamental
system dynamics and to settle on a small range of possibteqmiovalues that will give useful
simulation outcomes.

6.3.1 Initial Transitory Phase

The simulations always begin with several nodes joiningRbiSE system: depending on the
churn scenario, several hundreds of nodes can appear dhdrsgme time-step or within a short
interval. Initially, joining nodes have an empty bufferdamust start to fill it by interacting with
other nodes. We also remember that, until the buffer has hdbninitialized, a node cannot
start to advertise real average lag measurements abouifiies iChapter 3, Algorithm 1).

We recall that in the simulator the knowledge model allowsiarestricted access to the average
node lag information. When they join, nodes do not have advatide lag value, since their
buffer is not initialized yet. As a consequence, all the rsod#l randomly choose their partners
during the first EPOCHs. Also, the widespread initial lackcbtinks at the nodes at the begin-
ning requires some time before node buffers begin to setid ¥al and peer selection becomes
effective.

The initial transitory phase should be of short duratiog(ffe 6.1): it is indeed common for most
nodes to either initialize their buffers at the first attejrgatto retry the joining procedure once
or twice before their buffer reaches the initialized stdtke sudden increases in the variance of
class lag, which are visible in Figure 6.1a at 12 and 33 secangldue to several starved peers
resetting their buffer as they reach the maximum allowedeafT; = T),. The bandwidth
traces in Figure 6.1b confirm that,iat 33s, all the peers are actively exchanging data. After
33s, we notice that the average download bandwidth of all thesga ishigherthan the stream
rate, as the nodes reduce their lag from the source thanksetpresence of excess capacity.
After the average system-wide node lag drops to a stablenmaimi, which approximates the
mean delay required for the propagation of each chunk thrahg system, the class download
rates become equal or slightly lower tha® R: this event marks the beginning of the steady
state phase, where nodes reach an equilibrium and keepirgcdata with a stable lag.

Interesting insights can be obtained by examining the ti@mysevolution of the relationship
between node lag and delay of chunk reception (introducé&himpter 5, Figure 5.3). In Figure
6.2 we can see a sequence of nine snapshots of an HH-LB systemadt regular intervals of

128

Figure 6.1: Transitory of a PULSE System (1000 peers, HH-EBs 16 chunks/sT'W = 64)

[chunks]

Average Lag

[chunks/s]

Bandwidth

[chunks/s]

Bandwidth

TBavg distribution by class over time
160 T T T T
[VERY RICH peers
| RICH peers
| NORMAL peers -
140 } POOR peers &]
120 . ‘ -
100 | T § i i
I
80] + | 1
I ‘
i I} | :
I ‘ ‘ oo
{ x Ff i o i
60 1= x % I ! . 0o 7
i o F % * oo
Pl A A - A
40 | = I \ f f £ 0Lt . N
. L] b1 SR TRV SR
4 { T ¥ TOX % x
| i B T E+ x
20 + l : I 1 T F 3 oz
0 1 1 1 J‘ 1 1
0 10 20 30 40 50 60
. Time [s]
(a) Evolution of node lag, averaged by class
Average node bandwidth use (by class) Average node bandwidth use (by class)
70 T T T T T — 35 T T T
Used OQUT BW (Ver Rich) 0 Used QUT BW (Rich)
60 F ~Used IN BW (Very Rich) il S 30 F Used IN BW (Rich)]
i~
50 b g 25 1
el
40 b o o200 1
30 — < 15 F 1
5
20 . = 10 F .
2
10 F 4 2 s} s
‘ ©
o L 1 1 1 1 1 m 0 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
Average node bandwidth use (by class) Average node bandwidth use (by class)
35 T T T T T — 35 T — T T
,,,,,, Avail - QUT BW..(Normal) ———_.]Avail QUT BW.(Poor) ———— ..
30 F Used OUT BW (Normal - ~ 30 | Used OUT BW (Poor B
Used IN BW (Normal 2 Used IN BW (Poor
25 b g 25 1
s
20 b o 20 r 1
15 F B < 15 F 1
5
10 N -~ 10 | -
% e - _ B
5 T s 5 N
@
0 1 1 1 1 1 m 0 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s Time [s]

CHAPTER 6. SIMULATION RESULTS

]
(b) Bandwidth utilization by class

6.3. PULSE PARAMETERS: HOW TO SET THEM?

150
120
90
60

Chunk lag

30

150
120
90
60

Chunk lag

30

150
120
90
60
30

Chunk lag

Chunk Lag vs. Node Lag during Convergence (chunks 10 to 460)

‘?(-

30 60 90 120 150
Node lag

150
120
90
60
30
0

150
120
90
60
30

150
120
90
60
30

i

30

60 90
Node lag

120 150

150
120
90
60
30
0

150
120
90
60
30

150
120
90
60
30

129

60 90
Node lag

Figure 6.2: Snapshots of Chunk Reception Lag vs. Node Lagn@@onvergence

50 chunks during the first thirty seconds of convergencegm@d from top left to bottom right.

The evolution of the “system cloud” shows the gradual andirahtemergence of a group of
resourceful nodes from the VR and R classes: they first coalesthe midst of the other nodes

(Figures 2 to 5); then, nodes that did not manage to conndbeinfirst attempt rejoin the system

after a buffer reset (Figure 6); because of the local excesede capacity, the more resourceful

nodes in the system slowly overrun the others, “gaining gditand gradually reducing their

node lag (Figure 7). We notice that, during the whole proctss most resourceful nodes are
normally located below the diagonal line= =z, that is they receive chunks with a lower lag
than their current node lag, while the poor nodes stand obeasy spread along and above the
diagonal. The two last Figures show the gradual stabibratif the system: once the resourceful
nodes have aggregated at the front of the cloud, the resedfytstem begins to collapse toward
them, and the cloud reduces slowly but steadily its averdgjeatjlag until it reaches a stable

equilibrium around an average of 24 chunks as in the sinaniabove (Figure 6.1).

130 CHAPTER 6. SIMULATION RESULTS

Tg distribution by class over time

180 T T T T T
VERY RICH peers ———
160 | .
iy NORMAL peers
% 140) POOR peers = |
S L & [; L Ed
% 120 ; ;: Ev g@i = ;ﬁ " % f i 5
— - ® g . ¥ B B s W
g 100 B EQ % EE\E ® . %» ,g' i .m * ﬁ 1
® T = X e :] L
PR R U S N PO A NP
SN A AR
o LI . F o gl
20 .
0 1 1 1 1 1
0 50 100 150 200 250 300
Time [s]

Figure 6.3: Typical Pattern of Instability due to a Smalldirey Window ("W = 32)

6.3.2 Ciritical Parameters

We definecritical parameters those system parameters that appear to have a strong ream-lin
effect on the initial outcomes of the simulation. These paaters affect both the initial chance of
the system converging to a stable state, and can also datelomg-term instability phenomena.
The critical parameters are the Trading Window Sizél{) and its Window Sliding Tolerance
(S). Our earliest experiences with the simulator have showhttiese parameters are the most
important factors during the initial transitory phase:hétTrading Windows are too short, nodes
do not manage to obtain enough chunks in a timely manner dnd tievelop a significant trad-
ing window overlap with their peers and the whole system megpme stuck in the initialization
phase. The second critical parameter is the loss tolerarbe sliding window: in general, the
lower this value, the longer it takes for the nodes to begioranal exchange activity, as trading
windows tend to become stuck just after the initializatibiage is completed.

The failure of the system to settle in a stable state givetsasutcome a characteristic node lag
evolution: all the nodes in the system appear to reiterage thitialization attempts in a syn-
chronous way, producing a periodical sawtooth plot (FiguB). Interestingly, the frequency of
the peaks appears to be inersely proportional to the widtheofrading windows: under similar
bandwidth scenarios, the larger the windows, the less é&etjilne massive re-initializations. In-
stability stops altogether once a threshold window size¢lwmainly depends on the bandwidth
distribution scenario) is reached. For instance, for papaihs of up to 1000 nodes, instability
appears to cease when the trading window is larger than 4&kshWe experimented with val-
ues of 'V ranging from 16 to 256 chunks: we noticed that, once a systestabilized, further

6.3. PULSE PARAMETERS: HOW TO SET THEM? 131

increasing the window size leads to higher average nodedad<o a slower execution of the
chunk selection algorithm (in addition to the larger sizecohtrol messages, a more practical
concern).

The external variables that come into play in a simulatioreben important role in determining
the sensitivity of the initial transient phase to the twdical parameters above.

e The capacity of the sourcés especially critical with respect to the outcome of system
initialization. We observed that, when the source bandwisliess than twice the stream
bitrate (for initial populations larger than 100 nodesg ttansient phase either lasts longer
or does not settle, resulting in an unstable system. Incrgdke source bandwidth has
a dramatic effect on system convergence: starting fronettirees the stream bitrate, the
likelihood of experiencing initial convergence problenecbmes much lower even when
global capacity is scarcer(~ 1).

¢ A high level of heterogeneity coupled to a low resource inftexa given scenario also
results in increased chances that the initial transiens@hdll last for a longer time, as
the initial connections among nodes are established abrantigh asymmetry and low
global capacity imply that, if several resource-rich nodesa bad initial placement, the
resources of the rest of the peers are not sufficient to sustaisystem initialization.

We also noticed that the initial population size impactsdineulated system convergence. Even
given a sufficient source capacity, we observed that th@imibnvergence tended to be slower
or less likely for small initial populations (under 50). Wdrdoute these convergence problems
to the increased weight on the initial system behavior oflcen choices and concurrent actions
by the simulated nodes.

6.3.3 Long-term System Stability

Arguably, a system that does not reach convergence atlirétiin could still manage to operate
on the brink of instability: at the beginning, the uploadaeipy required by the system is higher
than at steady state, as nodes have to fill their empty Tratfindows, and the upload bandwidth
of each node is further limited by the lack of chunk divergtyong the node buffers (content
bottleneck).

We have however encountered several scenarios in whichtensybat initially converges does
slowly diverge over time: this usually happens when thelalée upload capacity is scarce and
uniformly distributed across the population. The lack ofosg capacity in the system usually
results in a subset of the nodes that start to increase #wgarid eventually reach theffer reset
threshold. If this subset is small, the effect on the glolyatem of few nodes resetting their
buffer is negligible, and upon one or more re-connectiors¢hnodes may be able to reach a
stable position. However, if this subset contains a larggntg of the nodes, then the entire

132 CHAPTER 6. SIMULATION RESULTS

system may become unstable, with a periodical behaviosted almost every node re-initialize
its buffer at the same time (similar to Figure 6.3).

The critical parameter, in the case of long-term stabilgythe total bandwidth capacity of the
system. When resources are sufficiently availablé ¢ 1), the other parameters that come into
play and can determine the speed of system convergencerdpjiea

o Asymmetry of bandwidth scenario: counter-intuitivelyethigher is the bandwidth asym-
metry in a given scenario, the faster stability is reached W analyze this phenomenon
in detail in the following pages.

e Trading Window Size (TW): while somewhat slowing the nod#iafization process, a
larger TW gives the system an improved “inertia”, since tohatent diversity between
nodes becomes large and the probability of finding nodes antloverlapping window
increases.

On the other hand, when resources are constraiRéd~ 1), the Sliding Tolerancé& emerges
again as an additional critical factor: even if a system i8%efficient, that is all the available
upload capacity is exploited, the delays introduced by &melom propagation of the chunks will
hinder the progression of the sliding windows: if chunk Essre not allowed by the sliding
window, and without an excess of bandwidth that could be tseelcover the ’lost’ chunks, the
node lag is bound to increase and eventually reach the bnefet threshold.

The use of an appropriate amount of FEC can improve the gyabilthe system, at the price of
an effective reduction in the media bitrate: defining an appate amount of FEC that balances
stability and efficiency is an interesting challenge. If vamsider the worst-case scenario, an
uniform capacity distribution witlR/ = 1 (UNIF-LB), we can observe the relationship between
% and the bandwidth efficiency: in Figure 6.4 we plot the measured efficiency for simulated
systems ranging from 100 to 1600 nodes using valu% &fom 3.125% to 50%. For compar-
ison, measurements have also been performed for an hymatheise of% = 100%, i.e. with

no sliding constraints ('Free’).

From Figure 6.4a, we notice that, the smaller the amount &,REe faster efficiency decreases
with increasing system size. Efficiency is affected becadse to the fact that chunks have
to traverse more nodes, buffer windows become less and yesti®nized as the average lag
increases. In turn, a lower efficiency further accelerdteggrowth of average node lag. Remem-
bering the basic constraint of lossless media receptioigiwh the case?l = 1 requires an effi-
ciencyé > (1— %), we can deduce from the observed efficiency whether a sydtamiven size
may achieve or not a stable reception. For instance, a sysi#n3.125% FEC for a population
of 200 nodes has a measured efficiency of 0.962, which is |twaer the minimum efficiency
required for stabilit§; a system with 6.25% FEC hgs= 0.951 for a network of 400 nodes,
which is more than the minimum, but becomes unstable at 8d@s6 = 0.9250 < 0.9375).

4As throughput depends in turn on stability, once a systets E®yond the required efficiency threshold, the
measurements become only indicative, as the system wibmgdr be in a stable state.

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 133

Bandwidth Efficiency for Various FEC Rates and Population Sizes Bandwidth Efficiency for Various FEC Rates and Population Sizes
(UNIF-LB, SRC upload=3*SBR, sliding threshold=FEC) (UNIF-LB, SRC upload=3*SBR, sliding threshold=FEC)
1 b] Free mmmmm 1 [_ _ - -] Free mmmmm
1 50% 50% o
25% m— 250 m—
12.5% m— 12.5% —
0.8 r 1 6.25% /= 0.8 1 6.25% /=
Iy 3.125% — I 3.125% —=3
5 &
o o
£ 061 £ 06
o}]
s S
h=} b=}
£ 04t £ 04t
= j=
I <
0 o4}
0.2 0.2
il | | il 0 | il | |
N=100 N=200 N=400 N=800 N=1600 N=100 N=200 N=400 N=800 N=1600
(a) TW=64 (b) TW=128

Figure 6.4: Impact of Sliding Tolerance on Efficiency withi = 1

The use of larger Trading Windows improves stability anccefficy regardless from the amount
of FEC: in Figure 6.4b we can remark that, witd'® length of 128 chunks (twice the size), the
efficiency for all% ratios is improved and stability starts to decay much later.

We can also observe that, when the windowree and slides without constraints, the efficiency
for small population sizes is in many cases lower than wheldang threshold is set, as an
unspecified amount of chunks may have been lost as the windeanaes. However, we notice
that the average efficiency freewindows is more or less stable under increasing system sizes
(& ~ 0.92 for TW = 64, £ ~ 0.95 for TW = 128), while in the case of constrained windows
efficiency tends to drop as instability arises. This resoiftftms that PULSE is ill-suited for use

in cooperative scenarios Witk ~ 1 and where node upload capacity is uniformly distributed:
in these cases, any data-driven architecture that(ilsasarge Trading Window angi) a small
amount of FEC will obtain better scalability without introducing any bttty concern.

6.4 Effects of the Peer Selection Algorithms

In this section, the macroscopic effects of the variousipatars involved in peer selection are
evaluated. We first experiment with the main system paraisietiefining a protocol reference
for comparing all subsequent results. Then, we investigaeole of the two peer selection
mechanisms by inspecting the behavior of the metrics defim&hapter 5 under a number of
protocol variants.

SLarger amounts of FEC in this context can only increase #edyhood of lossless media reception.

134 CHAPTER 6. SIMULATION RESULTS

AT A

= 7
=5

AR
»5?{_/,4 N

*“‘\&s\\wv%
N
|

W

"Peer3g 'Peer13

Pajek

Figure 6.5: Snapshot of Data Exchanges during an EPOCH (BH-L
Figure 6.5 offers a sample snapshot of PULSE, taken durimgallsscale simulation (40 nodes), visualizing all the
data exchanges that have happened during an EPOCH periotkadly state. In this picture, nodes are ordered
from top to bottom by increasing node lag (the source is atapeof the graph). We can notice the prevalence (in
number and volume) of horizontal connections, establistetdieen nodes with approximately the same lag.

6.4.1 Varying the Number of Connections

The parameters we define as standard to sinfuRWLSE include aI'W of 64 chunks (i.e.
four seconds worth of data) with Sliding Window toleranceSf= 25%, and an upper limit
of 8 FORWARD connections and #1SSING connections. In Figure 6.6, which like Figure 6.1a
represents the time evolution of the average class lag, welsg a system containing 1000
nodes under the HH-LB scenario manages to quickly stakaliaand a small average lag value

8In all our simulations, the chunk rate is set to 16 chunks peosd, that is 4 chunks per simulation step.

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 135

Tg distribution by class over time

200 . : . . |
VERY RICH peers
RICH peers
NORMAL peers
150 7 POOR peers =]
1

100 f]

Average Lag [chunks]

0 50 100 150 200 250 300
Time [s]

Figure 6.6: HH-LB Scenario: PULSE with Standard Param€iers, 8F, TWW = 64)

\ \ NO FWD \ 4 FWD \ 8 FWD \
Scenariol VR | R | N P VRIRIN| P |VRIR|IN|P
HH-HB | O | 0 |23|181] O |[0|0O0]| O 00|00
HH-LB | 13 |53|/59|242| 0 {04183, 0 |0O|O|O

Table 6.2: Buffer Reset Statistics: Unstable Peers by GlaSseady State

of about 30 chunks (i.e. about 2 seconds) with a low, constance.

In Figures 6.7a and 6.7b we see how the removal of (respégtifer and eightrORWARD
connections impacts the performance of the previous sigen@fe notice how the presence of
only a few FORWARD connections has a strong stabilizing effect on the wholéegysgreatly
reducing the variance of lag for the three richest classesidure 6.7a the poorest class is the
only one that begins to suffer from starvation, with per@ode-connections of a small part of
its nodes. It is interesting to notice that the repeatingaenections of these poor nodes do not
affect significantly the performance of the remaining atsss

When we altogether remove all tF®@RWARD connections,we can notice how convergence still
takes place, but the overall system stability is much weakéthe classes are visibly disturbed

by the fact that buffers are frequently reset (e.g. mass&uennection at = 120s, leading to a
massive disconnection at 200s) and many nodes either have an unstable lag values or become
stuck in the initialization phase (Table 6.2).

There are several common factors that emerge from the pgtlvove:

136 CHAPTER 6. SIMULATION RESULTS

Tg distribution by class over time Tg distribution by class over time
200 " ; T 200 ‘ ‘ .
VERY RICH peers ——+— VERY RICH peers ——+—
RICH peers RICH peers
& NORMAL peers = 7 NORMAL peers -
< 150 ¢ i POOR peers - = < 150 POOQOR peers =
2 : | 2
O, o O, |
o o o |
S 100 f o S 100 f
(]]
[D
o o ‘
$ £ s5o0¢
< < §
i
i i il
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time [s] Time [s]
(@) 4 FORWARD (b) No FORWARD

Figure 6.7: HH-LB Scenario: Reducing the NumbeFaRWARD Connections

e The different bandwidth classes appear to settle at diffevalues of average lag, with
richer classes being nearer to the source than poorer ogs.isTin agreement with our
intuition that the coordinated effect of incentive-basiefgr-tat) and performance-based
(lag-based feedbackpeer selection would allow the generation of clusters @&rpavith
similar resource availability.

e The initialization of the simulated system is relativelyicky even despite the lack of a
significant amount of excess bandwidth and the limits of th@Wedge model used by the
simulator. In the three plots, which are typical realizai@f the system behavior in this
scenario, system convergence is achieved between 50 ansirhQated seconds, that is
about 25-50 rounds of peer selection.

¢ Richer classes achieve their convergence before poorsrade the poorest class suffers
the most from global bandwidth scarcity.

6.4.2 Lag Performance across Bandwidth Scenarios

In Figure 6.8 we present four realizations of simulated PBLsystem under the bandwidth
scenarios presented above. In these plots we can apprseiarl qualitative properties of the
PULSE system, which confirm and integrate our previous r&mar

e The RI of a scenario influences convergence speethparing the HH-LB and HH-HB
scenarios, the time required for nodes to reach a steadyigrosi the system is much
lower when excess bandwidth is abundantX0s for RIyy_yr = 1.485) than when it is
scarce ¢ 60s for RIyy_gp = 1.045). An analogous observation can be made to a lesser
extent for the LH-LB and LH-HB scenarios.

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 137

Tg distribution by class over time Tg distribution by class over time
100 T ; T T 100 T ; T .
VERY RICH peers ——+— ‘ RICH peers ————
+ RICH peers | NORMAL peers
@ 80 F | NORMAL peers - @5 80t | ,
< [POOR peers -~ < [
2 Feaio 2 Il
S 60| T S 60]
ST RS T
i g g il
- the0 ESRAN i
% 40 |3 ;j‘%jn % 40 Ly
9] foo o
S 1‘%%??@ T NLm S Ko gk ka kg KRRk kR KRRk AR KT R AR EA R A KK A KEEHE
Z 201t RSt i b LR EH ELAL EEL LEED z 20t]
0 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time[s] Time [s]
(a) HH-LB Scenario (b) LH-LB Scenario
Tg distribution by class over time Tg distribution by class over time
100 T ; T T 100 ; T .
VERY RICH peers ——+— RICH peers ————
RICH peers NORMAL peers
o 80 r NORMAL peers x| = 80 |]
=< POOR peers = =
=} =}
ey _ =
S 607 KER 1
g L g
$ 40 g j |
g s f g
9] o
2 L s]z _— I
< 20 EEERL bbbt L L L B LT L L L LR fleh bl L L LT weE - B
0 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 40 60 80 100 120 140
Time [s] Time [s]
(c) HH-HB Scenario (d) LH-HB Scenario

Figure 6.8: Examples of System Evolution in Various Bandtvificenarios

e The RI of a scenario influences the average systemnthagavailability of excess resources
reduces the average node lag. Average lag ranges from abafiuhks for the HH-LB
and LH-LB scenarios to about 18 for HH-HB and LH-HB scenarios

e The presence of bandwidth heterogeneity reduces the avsyamiem lagcomparing the
HH-LB and LH-LB scenarios, we see that they settle on a smaNarage lag, despite the
fact that theR[for the former is much lower than the lattar @5 vs. 1.2).

e Upload capacity influences the order of average class lagesilt is possible to see that
the average class lag increases as the upload availatabtgdses in the HH-LB scenario.

6.4.3 Understanding Node Interactions

To shed more light over the global behavior of a running PUIs$&em, we are going to apply
the behavioral metrics presented in Section 5.3. We hemtnllrthe definition of these metrics,

138 CHAPTER 6. SIMULATION RESULTS

namely Class AffinityP(«, #) and Class Friendlinesg(«, 3):

Y _nea In's MISSING links toward nodes of clag|
D (o, B)(t) = Y nea lI7's total MISSING links| ©.1)
neo |I7's active FORWARD links toward nodes of clas
W(o, B)(1) = Lz b 62

2nea

n's total active FORWARD link$

Affinity and Friendliness With and Without Altruism We compute Affinity and Friendli-
ness values for the previous simulation scenarios and geavsample of the results in Fig. 6.9.
We first observe the evolution over time of Class Affinity ietHH-LB scenario with a) neor-
WARD connections and b) BORWARD connections. The plots suggest that there is a correlation
between the system’s convergence status and the value éffthgy metric: when instability

is present, as in Fig. 6.9a, the Affinity values tend to widelgtuate, especially when node re-
connections take place. Looking more closely, we can cless that especially the self-affinity
of the resourceful classes becomes higher during instglsliggesting that tit-for-tat plays a
critical role in the initialization phase and whenever glbkhortage appears, but somewhat loses
its relevance when the system operates without constragseadirces.

Comparing Figure 6.9a and 6.9b, we see that only the Affiratyes for the two richest classes
show meaningful quantitative differences during the cogeece phase. We also remark that
the poorest classes show similar Affinity scores acrosswlescenarios. We can notice that
self-Affinity for the richest class is initially much highe&hen FORWARD connections are al-
lowed. This is a side effect of the interaction between atruand tit-for-tat selection, which
improves the relationships among peers with extra ressurtefact, data contributed over the
FORWARD connections is also taken into account for the tit-for-&déstion at the receiver. This
increases the likelihood that the receiver will want to tesad establish &1SSING connection
on the following EPOCH. As richer peers have more spare ressuthey gain morsissSiNG
relationships over time. Self-Friendliness (not showrglso very high, as targets preferred for
FORWARD links by the richest classes are mainly peers from the ma@ureeful classes.

Affinity and Friendliness in Different Scenarios We performed a full comparison of the av-
erage steady state values of Affinity and Friendliness wainbd from simulations of HH-LB
and HH-HB scenarios where nodes are allowed to establisb eghtFORWARD connections
(Table 6.3). Again, we did observe meaningful differencgseeially in the Affinity values be-
tween Very Rich (VR) and Poor (P) peers: in HH-LB the self-Aify of the VR class is much
higher in the low bandwidth scenario, while the affinity beem P and VR is much lower. Re-
lationships between the other classes do not seem to beeaffby the presence GlORWARD
connectionsMISSING connections are established by richer classes toward pones more or
less with the same probability in both scenarios. Moreother,high Affinity value between P
and VR peers in the high-bandwidth scenario is due to thetif@ttpoor peers receive from the

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS

Affinity Score [0,1]

Affinity Score [0,1]

Affinity Score [0,1]

Affinity Score [0,1]

Average Class Affinity from VERY RICH

Self-Affinity ——
to N gi/t h

0.7
06 -

Affinity Score [0,1]

0.6

Average Class Affinity from RICH

to \/éE

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time [s] Time [s]
Average Class Affinity from NORMAL Average Class Affinity from POOR
0.55 T 0.7 T
i to VERY L
0.5 } _______
0.45 Sel A E =
-
- o
- 5
AT B
¥ 2
&
<
0 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time [s] Time [s]

(a) Class Affinity, no FORWARD

Average Class Affinity from VERY RICH

o=

O 1 1 1 1 1
0 50 100 150 200 250 300
Time [s]
Average Class Affinity from NORMAL
0.6
; ' to \/ERY]SH _—

AR (e
‘l:" RN

0.1

0 1 1 1 1 1
0 50 100 150 200 250 300
Time [s]

Affinity Score [0,1]

Affinity Score [0,1]

0.6

05 |

0.4

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 50

Average Class Affinity from RICH

‘ " to \/SE?\TY ﬁ@g —]

¢
i
]

7]

..',v,

1 1 1 1 1
100 150 200 250
Time [s]

300

Average Class Affinity from POOR

| e =

_ Ito \/E(';F{}8 Xsl‘n !

e, ~\‘
4 NS :‘ PP SR Ny

150 200 250
Time [s]

300

(b) Class Affinity, 8 FORWARD

Figure 6.9: HH-LB Scenario: Class Affinity vs. NumberrdRWARD Connections

139

140 CHAPTER 6. SIMULATION RESULTS

Normalized Affinity |

HH-LB HH-HB
VRIR|N]P|VR|R|[N]P

VR | 6.70| 1.12| 0.63| 0.77 || 3.77| 1.33 | 1.39| 0.55
R || 256|1.93| 1.06| 0.53| 2.74| 2.48| 1.57| 0.17
N || 195|177 1.19| 056 3.71| 2.00| 1.40| 0.32
P | 267|093 081|101 7.77| 0.63| 0.35| 0.82

Normalized Friendliness |

HH-LB HH-HB
VR|R|[N]P|VR|[R|N]|P
VR || 11.18| 2.15| 0.47| 0.18 || 5.55| 3.20| 0.51| 0.03
R 143 | 2.71| 1.10| 0.29|| 2.13| 3.68| 0.68 | 0.02
N 0.56 | 0.62] 143|060 1.69| 2.75| 1.63| 0.12
P 0.58 | 0.60| 0.83]1.24} 1.39| 0.80| 1.01| 1.03

Table 6.3: Comparison of Normalized Affinity and Friendkse
Comparison between HH-LB and HH-HB Scenarios withoRWARD connections The values highlighted in bold
are significantly higher for HH-HB. The values highlightedtalic are significantly higher for HH-LB.

richest class more data than before in return for each ssftdesxchange, and thus tend to re-
ciprocate to them with higher probability. We conclude oasth observations that thReRWARD
exchanges do no interfere on the outcomes of the tit-fosebgction, but help the richest nodes
to fully exploit their bandwidth potential.

Friendliness results show another interesting trend: th Boenarios, the self-Friendliness value
for each class is the highest on each row (except in a single chl peers, HH-HB Scenario),
meaning that nodes with a similar level of contribution teéadhelp each other out. The differ-
ences between the two scenarios can be explained by theediffealues of average class lag on
which the nodes settle: while in the LB scenario the nodesadrer clustered around different
lag values, in the HB scenario nodes from different classesath mixed up in a smaller lag
interval.

Data Weight of Relationship Types We investigated Class Affinity and Friendliness, which
describe the likelihood of the establishment ofesSING or FORWARD connection between

nodes that belong to two bandwidth classes. Since in a dataadystem the existence of a con-
nection does not guarantee that it will be actually used tharge data, nor how many chunks
will pass during an EPOCH over that connection, we are nowgtm observe how much data is
traded between pairs of bandwidth classes, and what argghe bf connections that convey the
largest amount of data. In Figure 6.10a we draw the cum@atwount of data chunks exchanged
between the four bandwidth classes during a five-minute HHsimulation, normalized by the

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 141

Cumulative Data Distribution Results by BW Class (all exchanges)
Cumulative Data Distribution Results by BW Class (MISSING)

3500

3000

2500

2000

1500

300
1000

N
=1
S

500

Avg. # of chunks Received per Peer

0

=
o
S

Avg. # of chunks Received per Peer

VERY RICH

o

RICH VERY RICH

NORMAL VERY RICH
VERY RICH NORMAL

NORMAL

POOR NORMAL POOR
POOR POOR
Receiver Class Sender Class Receiver Class Sender Class
(a) Total Exchanges (b) Only MISSING

Cumulative Data Distribution Results by BW Class (OTHER)
Cumulative Data Distribution Results by BW Class (FORWARD)

2500 600

500
2000
400

1500 300

1000 200

100
500

Avg. # of chunks Received per Peer

0

Avg. # of chunks Received per Peer

0

VERY RICH
VERY RICH

RICH

NORMAL
NORMAL VERY RICH VERY RICH

POOR NORMAL POOR NORMAL
POOR . POOR
Receiver Class Sender Class Receiver Class Sender Class
(c) Only FORWARD (d) Only NEW

Figure 6.10: Weight of Data Exchanges over Different Cotines (HH-LB Scenario, B 4m)

size of the receiving cladsWe can remark that the VR and R classes provide to themsiges

majority of the data, while receiving very little from thehatr classes. Conversely, the N class
relies heavily on the contribution of the R class, while thel&ss also receives an important
amount of data from both R and N classes.

When we observe the amount of data exchanged ovemtlgsING connections alone (Figure

"Nodes can receive at most the total number of chunks thattese distributed by the source (SBR*t, in this
case 16*300=4800). Hence, in the “total exchanges” histogr the sum along the x (receiver class) axis is equal to
the average number of chunks received by a class duringrtindagion, which is roughly the same for every class.

142 CHAPTER 6. SIMULATION RESULTS

Cumulative Data Distribution Results by BW Class (all exchanges) Cumulative Data Distribution Results by BW Class (MISSING)

3000 800

600
2000
400

1000
200

g. # of chunks Received per Peer

<
%vg. # of chunks Received per Peer

>
VERY RICH
VERY RICH RICH

Y RICH

RICH VERY RICH

RICH
NORMAL NORMAL
POOR POOR POOR

. Sender Class . Sender Class
Receiver Class Receiver Class

RICH

NORMAL NORMAL

POOR

(a) Total Exchanges (b) Only MISSING

Cumulative Data Distribution Results by BW Class (FORWARD) Cumulative Data Distribution Results by BW Class (OTHER)

2000
1500
1000

500

%vg. # of chunks Received per Peer
%vg. # of chunks Received per Peer

<
<
Y
o
I
<

VERY RICH VERY RICH

RICH
NORMAL NORMAL
POOR POOR POOR

. Sender Class . Sender Class
Receiver Class Receiver Class

RICH

NORMAL NORMAL

POOR

(c) Only FORWARD (d) Only NEW

Figure 6.11: Weight of Data Exchanges over Different Cotines (HH-HB Scenario)

6.10b), we first notice that they convey only a small part & stream data to the two richest
classes (35% for the VR class, 18% for R). Then, we can obdemwereciprocation is not ex-
actly proportional to the amount of node capacity: for ins&, the contribution by the R class
is not reciprocated evenly neither by the N peers nor by the Mi®king at theFORWARD con-
nections (Figure 6.10c), we see that their role in data exgbs is quantitatively preponderant.
Surprisingly, we observe a high degree of symmetry in theltarhof data exchanged usirQR-
WARD connections, with peaks in the self-contribution for mdasses. These results confirm
the fact that altruism, when applied on a system which has loesely organized by the repeated
action of tit-for-tat peer selection, is useful as it helpssolidate the relationships between the
more resourceful nodes. Finally, thew connections (Figure 6.10d) contribute a small amount
of data: it is interesting to observe that a significant 10%hefstream is exchanged inside the VR
class, as this is probably due to retributions to optimiséiections in the1SSING connections.

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 143

In Figure 6.11, we conduct an analogous analysis on a HH-HBlation trace. The most strik-
ing observation that emerges from these results is the fag$avance in the system economy of
the VR class, despite its very high upload capacity (10*SBR3} fact suggests that the upload
capacity of the VR nodes is not fully utilized. The R classpa#upload is now 3*SBR, becomes
the most important provider of data for all the classes. Beeaf the widespread presence of
excess resources, thessING mechanism loses much of its importance: in Figure 6.11b, we
see that VR nodes do not send many chunks swesING connections, while R nodes increase
their contribution compared to HH-LB. ThHeORWARD exchanges (Figure 6.11c) maintain their
guantitative importance and the degree of symmetry obdexbeve, except for the role of VR
nodes, which receive from R peers much more than they givelllyj we observe that the weight
of NEw exchanges (Figure 6.11d) is higher than in the previous ¢thsextremely large amount
of chunks sent by VR nodes (which have no longer a lag subaligiower than R, N, and P)
to N and P nodes can justify for the higher amount of data sgi bnd P nodes to VR nodes
usingMISSING connections (in Figure 6.11b).

Soft Fairness between ClassesSoft FairnessF(«, () between classes and 5 (with upload
capacitylU,, < Ug) was defined in Section 5.3 as

_ EnEQ Zméﬁ H(TB<n> (t) < TB<m)(t>)

Fla 5)(1) T A ©3
while, whenU,, < Ug, its definition becomes:
Fla)t — Dnce Znes UTa()(t) 2 Tulm)(t)) 64)

e[18]

In Table 6.4 we compare the Soft Fairness results from thelBH¢cenario, sampled at steady
state every 3 seconds and averaged over the last 90 secattushese from an HH-HB sim-
ulation, with and withouFORWARD connections. The differences in the Soft Fairness values
between the two scenarios wiHDRWARD connections allowed are quite impressive: we see
that, under global bandwidth excess, the Soft Fairnessedf#b poorer classes is very low with
respect to all other classes. This means that, more oftennba NORMAL and POOR nodes
obtain a slightly lower lag than their richer counterparts.

This observation quantitatively confirms that, when resesrare abundant, the tit-for-tat in-
centive mechanism becomes less relevant and is preemptia ajtruism present in the peer
selection algorithms. To further investigate the role afuaém under excess of resources, we
turn to the results obtained wh&oRWARD connections are disabled. We notice that there is
a much smaller deviation in Soft Fairness values betweenvibescenarios. We believe that
this is due to the lack ofORWARD connections, the primary altruistic mechanism. Also, some
degree of unfairness is present in both cases, for all dasssept VERY RICH, probably as a
consequence of the altruistic discovery mechanism usea $§ING peer selection. Finally, we
can appreciate how the presenceeORWARD connections enhances the clustering effect of the

144 CHAPTER 6. SIMULATION RESULTS

Soft Fairness between Different Bandwidth Classes \

HH-LB, 8 FWD HH-HB, 8 FWD
VRIR|[N]|]P|VR|[R|N]|P
VR| = [081]081]/0.80] = |0.75]0.66] 0.36
R ||0.63] = [065[071]055] = [051]0.23
N [[0.69] 053] = |0.65]0.46]030] = |0.30
P |074]064]058] = [021]012|0.16] =
HH-LB, NO FWD HH-HB, NO FWD
VRIR|N|P|V|R|N]JP
VR] = [0.82]0.76]064] = |0.86]0.67]0.53
R 076 = [0.42]041]081] = |[0.25/0.35
N | 068]034] = |048] 056|020 = |0.45
P | 055/032]038] = [[046|0.34]0.38] =

Table 6.4: Soft Fairness: Comparing HH-LB and HH-HB Scersawith and withouFORWARD

tit-for-tat incentive, especially when the total availalblandwidth is scarce (highlighted in bold
in Table 6.4).

Impact of RepeatedMIsSSING Choices Finally, we examine the outcomes of the TFT-based
peer selection algorithm. Our goal here is to obtain moraitéet insights about the role of the
two types ofMISSING connections as the internal conditions of the system evole time.
Figure 6.12 shows the cumulative duration of thissING interaction§ between nodes in HH-
LB scenario (P to VR from 1 to 100) over a time span of 300 sesdt80 EPOCHSs) and 30
seconds (15 EPOCHS), differentiating thessING relationships betweamilateral (established
toward a partner which is not currently reciprocating) ailhteral (both nodes have a link
open toward the other) connections. We can see in Figurea@Hz&t nodes from all classes
maintain few long-term relationships (peers selected ntioae forty times over 150 EPOCHSs
are rare), with a strong prevalence of one- or two-time nadecsions. If we concentrate our
attention to the convergence phase (Figure 6.12b), we dacereslight advantage for the richer
classes in the number of medium-length interactions. Degysgghts can be obtained from
the analysis of bilateral relationships: in Figure 6.12c see that bilateral relationships are
established in prevalence by the richest classes (VR and/iBjeover, when comparing the
amount and duration of long bilateral relationships in 30d 80 seconds (Figure 6.12d) we
can see that they are mostly unchanged for the VR and R clagkés almost all the bilateral
relationships among P nodes occur after the system hasa@atdady state.

8To reduce the vertical scale of these plots, all the relatiqs that last less than ten EPOCHs have been purged
from Figure 6.12a, and those less than two EPOCHSs from Fgaub, ¢ and d.

6.5. PULSE: A QUANTITATIVE ANALYSIS 145

Peer [D# vs. total number of UNILATERAL TFT selections of the same peer (first 149 EPOCHS) Peer ID# vs. total number of UNILATERAL TFT selections of the same peer (first 15 EPOCHS)

of unique peers

of unique peers

40

60 40
Peer ID 80 100”80 15 7 20 Peer ID
(a) Unilateral - First 300 seconds (b) Unilateral - First 30 seconds
Peer ID# vs. total number of BILATERAL TFT selections of the same peer (first 149 EPOCHS) Peer ID# vs. total number of BILATERAL TFT selections of the same peer (first 15 EPOCHS)

6

of unique peers

of unique peers

40
A 100
Cep
/ 60
(o] 40

100 30 18 20 Peer ID

(c) Bilateral - First 300 seconds (d) Bilateral - First 30 seconds

Figure 6.12: Total Duration of Unilateral/BilatemalSSING Interactions (100 nodes, HH-LB)
In this figure Peer IDs are assigned to bandwidth classeserfahowing way: POOR from 1 to 54, NORMAL from
55to 76, RICH from 77 to 96, VERY RICH from 97 to 100.

6.5 PULSE: a Quantitative Analysis

This section presents a comprehensive set of results aheupdrformance of the standard
PULSE algorithms and parameters. We first describe the databdtion performance from
the point of view of the average properties of the data paffisen, we observe the average
placement of the nodes in the steady-state chunk distoibatees. Finally, we investigate the
asymptotic scalability of PULSE up to medium-scale nodeutetjpons to confirm our conjec-
ture that the random distribution paths actually scaleeestrwith a logarithmic dependence on
system size. Finally, we observe the average compositidmeodlistribution tree layers in term
of node bandwidth class.

146 CHAPTER 6. SIMULATION RESULTS

Tree Depth Distribution (chunks 5 to 1200) Tree Width Distribution (chunks 2000 to 4000)
20 | [HH-HB ——— UniHB " LH-LB --=-- |
L R T T — HH-LB g URILB --own-
z S 400 |
g ! g
= c
= = 300 |
=] <
2 10 5
o
< i 200 |
= . E .
100 | o,
HH-HB UniHB LH-LB "
o L_LH-HB —— HHLB _UniLB - 0| PR
0 200 400 600 800 1000 1200 10 12

) ChunkID . . Tree Layer)
(a) Maximum Depth of Chunk Distribution Trees (b) Steady-state Analysis of Average Tree Layer Width

Figure 6.13: Comparison of Max Depths and Average WidthsisfrDution Trees (1000 nodes)

6.5.1 Analysis of Data Distribution Performance

Even if PULSE is a mesh-based system, the path that each ldat& éollows on the overlay
mesh is a tree. Trees will typically differ from chunk to clklepending on the current orga-
nization of the overlay: as the overlay connections areinantsly renegotiated by each node
in an independent way, one could expect that the propertidsedlifferent trees will vary a lot
across different chunks.

Actually, this is not the case: Figure 6.13a shows the marirtree depth for the first thousand
chunks. It can be easily noted that subsequent trees hailarsitepth, and - more importantly
- that tree depths tend to decrease over time, settling dranrasymptotic minimum value. We
can explain this observation with the aggregation processng resourceful nodes, as described
in the previous pages. Thanks to the effects of the incefiased peer selection, nodes with
excess bandwidth manage to get data earlier than pooresndte presence of altruism speeds
up the data distribution process, as it increases the anubulaita that rich nodes will exchange.

We observe that, according to our expectations, the trees HB scenarios do converge faster,
are usually shorter, and have top layers that are wider orageghan those from the HH and LB
scenarios. The scenarios that haven't yet reached comageward the end of the 75 seconds
of the simulation above are HH-LB and Unif-LB: this fact confs the importance of bandwidth
excess during system initialization.

We recall from Chapter 3 that the stream source tends to giuaks to nodes with lower lag
values. Hence, the rich nodes will be either directly serigdhe source, or receive recent
chunks after few hops: in both cases, the likelihood thadueseful nodes will be placed close
to the root in subsequent chunk distribution trees is higlke akpect that this node placement
will originate trees which are initially larger, and thusawerage shorter than balanced trees with
fixed degree. This is confirmed by Figure 6.13b: we can sedltbatH-LB scenario generates
trees with much better properties than the Uniform-LB scendespite the smalk/ difference.

6.5. PULSE: A QUANTITATIVE ANALYSIS 147

| Max. Tree Depth R | HH | LH | UNIF |
HB 6.30 (2.04)/1.488] 6.15 (1.59)/1.603 6.30 (0.47)/1.5
LB 10.10 (5.07)/1.048 7.75 (2.78)/1.203 11,10 (4,44)7 1.0
| Avg. Tree Depth IR | HH | LH | UNIF |
HB 4.62 (0.31)/1.488 4.59 (0.27)/ 1.603 4.81 (0.25)/1.5
LB 5.67 (0.56)/1.048 5.53 (0.23)/1.203 7.57 (0.64)/1.0

Table 6.5: Average (Std. Dev.) of Max. and Average Tree DepBteady State (1000 nodes)

DF of N Pl |
CDF of Node Placement by Class c ; o od‘e acemiznt byf s
100 T T T T T — Se— —

90r

801

701

601

501

—&— VERY RICH
RICH

—#— NORMAL
POOR

% of Nodes
% of Nodes

—&— VERY RICH
RICH

—F— NORMAL
POOR

a0t

301

201

10

i
1 1 2 3 4 5 6 7 8
Tree Layer Tree Layer

(a) HH-LB Scenario (b) HH-HB Scenario

Figure 6.14: CDF of Average Node Class Distribution at Syeite (1000 nodes)

Moreover, the average width of the first five tree layers in HBland LH-LB scenarios is also
very similar, despite the largR! difference: on the other hand, the tail of the HH-LB tree is on
average few layers deeper.

Tree Depth at Steady State We can also notice how, once convergence is reached, the maxi
mum and average tree depth remains largely stable: in Table® show the average and stan-
dard deviation of both maximum and average tree depth (sathgdlery three seconds during one
minute). As we expected, scenarios with higlidrhave shorter maximum path lengths, while
bandwidth heterogeneity only seems to slightly increagevliriance of maximum tree depth.
On the other hand, the presence of heterogeneity has a rabt@sdfect in reducing the average
depth of distribution trees: this is particularly evidertten comparing HH-LB to uniform-LB
scenarios, as theiR/ values are close, yet the average path length is much loweesence of

a heterogeneous bandwidth distribution.

Node Class Distribution across Layers Figure 6.14 shows the cumulative distribution func-
tion (CDF) of the average node placement in chunk distributrees for HH-LB and HH-HB

148 CHAPTER 6. SIMULATION RESULTS

[HH-LB] L1 [L2 [L3 | L4 | L5 | L6 | L7 |
VR [0.027] 0.202] 0.210] 0.150] 0.066] 0.019] 0.007
0.157] 0.343] 0.397| 0.406] 0.344] 0.181] 0.057
0.189] 0.212] 0.196] 0.200| 0.237| 0.265] 0.176
0.626] 0.242[0.195] 0.242] 0.351] 0.533] 0.760

‘ HH-HB ‘ L1 ‘ L2 ‘ L3 ‘ L4 ‘ L5 ‘ L6 ‘ L7 ‘
VR 0.037| 0.213| 0.108| 0.073| 0.018| 0.006| 0.003
0.144| 0.396| 0.444| 0.339| 0.119]| 0.034| 0.015

0.323| 0.190| 0.212| 0.260| 0.220| 0.054| 0.017
0.494| 0.198| 0.234| 0.326| 0.642| 0.904| 0.964

[LHIB| L1 [L2 [L3 [L4 | L5 | L6 | L7 |
R]0.185] 0.373] 0.481] 0.464] 0.304] 0.100] 0.021
N | 0.814] 0.626] 0.518] 0.535] 0.695] 0.899] 0.978

[LH-HB] L1 [L2 [L3 [L4 [L5 | L6 | L7 |
R] 0.142] 0.432] 0.581] 0.409] 0.068] 0.010] 0.059
N | 0.857| 0.567| 0.418] 0.590] 0.931] 0.989] 0.940

vl ”4pwv)

vl 4]

Table 6.6: Average per-Layer Distribution of Node Classethe First Layers (1000 nodes)

scenarios. We can see in both cases that the position of tdEses is on average always bet-
ter than poorer classes: in the HH-LB scenario (Figure §.id@re than 70% of the VR and R
nodes are concentrated in the first five tree layers, whilaénHH-HB scenario (Figure 6.14b)
the first four layers in average comprise nearly 80% of the ViR R classes. This observation
again validates our hypothesis on the relationship betvmeele capacity and the placement in
the system, justifying the fast growth of distribution tfee-out we observed above.

Finally, we collect in Table 6.6 the average proportion lwnodes from each bandwidth class
in the HH-LB, HH-HB, LH-LB and LH-HB scenarios. We can remdHhat, in each scenario,
the proportion between the node classes found in the firgtrl6ye. the peers chosen by the
source) approximates quite well the global scenario tistion, as we would have expected,
since the source adopts an uniformly random peer selectiategy. Subsequent layers (from
L2 to L4-L5) show a definite bias toward the richest classab waspect to the base scenario
distribution: in further layers, the likelihood of findingsourceful nodes decreases and becomes
quickly negligible.

6.5.2 Asymptotic Behavior of Node Lag

Figure 6.15 represents on a semi-logarithmic scale theageeglobal node lag and its standard
deviation, sampled and averaged over thirty seconds dftesystem reachs steady state. We
can see that the lag values for systems with > 1 are placed on straight lines: this indicates

6.5. PULSE: A QUANTITATIVE ANALYSIS 149

Scalability of Average Node Lag with Population Size
(SRC upload=3*SBR, TW=64, sliding threshold=FEC=25%)

70 s T
60 | |
> 50 L |
3
S
S 40 | |
o]
m ',.
g 30 + .
%) p 7/7”7{’”7 = -
0 e HHAB =
R e TR LH-LB
10F -
Unif-LB TW=128 =
L Unif-LB
ol .., o .
100 1000

Population Size

Figure 6.15: Asymptotic Dependence of Average Node Lag @te®y Size

that PULSE has indeed a logarithmic scalability over theyeaof system sizes we considered.
Interestingly, the logarithm base depends on the bandvedtiiability in each scenario, with
higher base values - i.e. lower angular coefficient of thedinfor systems where more excess
bandwidth is present. The presence of heterogeneity atkaes the average node lag: as we
see, the average lag of HH-LB scenaridd (= 1.04) is slightly but consistently lower than the
lag of LH-LB scenariosRI = 1.2).

In the same Figure, we provide for comparison the scalgbiisults of uniform systems (Unif-
LB scenario) and TW values of 64 and 128. We notice that, tkeespe small difference in
system capacity compared to HH-LB scenarios, systems witforun bandwidth distribution
behave much worse in terms of scalability. The system Withh = 64 does not settle on a stable
lag for population sizes larger than 400 nodes: while thgaihconvergence is successful, the
average lag slowly but constantly increases. On the othed,haith T = 128, the system
manages to settle on stable lag values until 2000 nodes.

The results from the Unif-LB scenarios confirms that largéy $izes improve efficiency, as we
observed above, but also suggests that the condjtion1 — F EC aloneis not sufficienfor
system convergence. We believe that stability is negatiiécted by the incidence of chunk
scheduling delays that can add up and result in a disconisiadvancement of node buffer
windows. WhenRI = 1, because of the lack of excess resources, the growth ratesd tdelays

150 CHAPTER 6. SIMULATION RESULTS

as the system grows past a certain scale can no longer be neaipd by FEC alone. Non-
homogeneous node capacity distributions alleviate tlublpm: as resourceful nodes are placed
near the source and have a very stable lag, they can benefithtble network by reducing the
randomness of the chunk distribution process, making tharamement of other nodes’ buffers
smoother.

6.6 Results under Dynamic Membership

We have thoroughly experimented with a variety of arrivatl @eparture patterns. We imme-
diately remarked that the impact of exponential churn onaiftgnary dynamics of the system
was hard to remark, even at high rates. To obtain noticedfdete of node churn, bursts of
simultaneous arrivals or departures were required. Infeigul6 we show the outcome of four
such churn events, again in resource-constrained banusognarios.

Sudden Node Arrivals In Figure 6.16 we see three sample lag traces of the reactitmeo
system to node transience. In these plots, nodes can sstaplio eighEORWARD connections.
We first present the effect of anstantaneous spikarrival on our usual bandwidth scenarios.
With this arrival pattern, 750 nodes join the networktat 120s, when the initial 250 nodes
should have reached steady state. In Fig. 6.16a, we show anB-8¢enario absorbing a spike
of arrivals: it can be noticed that most nodes from all thes#s (including the richest ones) are
affected and forced to reconnect, but the perturbatiors fasta very short time. By = 150s,

in fact, all the classes have reached again convergencee ilievease the available bandwidth,
however, the impact of the spike is much reduced. This is éise of Fig. 6.16b, where the HH-
HB scenario is shown. Here we can notice that all classesdgarily increase their average lag,
but there are no disconnections. The lag increases up to@tikston average but is absorbed
very rapidly (in about ten seconds). In this case, the noaheslia play-out is not affected.

Sudden Node Departures Figure 6.16¢ shows the effect on a HH-LB scenario of the dianul
neous departure at= 120s of 50% of the nodes, chosen at random. We see that the impact of
random node departures on the system performance is even tban from sudden arrivals, as
the increase in average lag is minimal and fades away in dabowgeconds.

Sudden Resource Shortage To assess the robustness of the system against more extreme
forms of churn, we devised a churn scenario where the mosuresful 4% of the HH-LB
population, the 40 nodes from the VR class, would suddenlyafat = 120s and not be re-
placed. This failure event affects the/, reducing it t00.888 (including the source capacity).
With RI < 1, the system cannot support its current population, whagstiats to drift linearly.

It can be seen, however, that nodes from R and N classesadhstéollowing the mass of starv-

ing P nodes, begin a new convergence phase byl60s, regaining ground toward the source

6.6. RESULTS UNDER DYNAMIC MEMBERSHIP 151

Tg distribution by class over time Tg distribution by class over time
200 T T T 200 T T T
VERY RICH peers —— VERY RICH peers ———
RICH peers RICH peers
NORMAL peers :--x-- NORMAL peers :--*---
POOR peers POOR peers =

150 150

100 | ||} 100 | |

Average Lag [chunks]
Average Lag [chunks]

T
e

o
50 50 i
Ly b ﬁ%
ki
0 L L L L L O L L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
. . Time [s] . . . Time [s] .
(a) Spike arrivals (t=120s), HH-LB Scenario (b) Spike arrivals (t=120s), HH-HB Scenario
Tg distribution by class over time Tg distribution by class over time

200 200

" VERY RICH peers —— " VERY RICH peers ———

RICH peers RICH peers
NORMAL peers - T NORMAL peers :-x-—

POOR peers & | N POOR peers =

150 150

100 | 7

Average Lag [chunks]
Average Lag [chunks]

50 F

P
O L L L L L 0 L L Il It L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time [s] . Time [s] .
(c) Burst departures (t=120s), HH-LB Scenario (d) VR Departure (t=120s), HH-LB Scenario

Figure 6.16: Effects of Node Transience on Global Lag Paréorces (8 ORWARD)

as they reach average lag values similar to those they hadebiéfe departure of the VR class.
While the subsequent reconnection by P peers do perturtetiowered system equilibrium, the
entire R class and most N peers keep receiving the streamawitasonable lag. We can also
observe in the data trace that a small number of P peers is@kéep its position along the two

other classes: however, the majority of P peers that resetlthffers have very few chances of
finding again a stable position in the system.

We can appreciate the system evolution under sudden skdotafpllowing the value of Soft
Fairness between node classes (Figure 6.17). Before tha @went but after convergence
(80s < t < 120s), the system operates with a certain degree of unfairnessalthe slight
excess of capacity{(P, N) ~ F(P,R)~ F(P,VR) < 0.5). Att = 120s, as the VR class
disappears, the Soft Fairness values of P peers versusheeatasses get quickly back to the
fair region (F ~ 0.8), while the R class keeps only a slight fairness advantagevas the dif-
ference in node capacity is quite small, these nodes aragpmere or less uniformly in the same
lag interval. Soft Fairness for the R and N classes notigeddtreases (while still remaining in

152 CHAPTER 6. SIMULATION RESULTS

Soft fairness as seen by RICH nodes

1 PN T o T
= i
=)
” i
(%]
()
g i
'cLTE RICH to VERY RICH ——

. ¥ RICH to NORMAL 7]
0 ‘ . i . RICH to POOR -
0 50 100 150 200 250 300
Time [s]
Soft fairness as seen by POOR nodes
T T \l T
= i
=)
" i
(%]
Q
g i
K POOR to VERY RICH ——
‘) POOR to RICH 7
0 . . . FI’OOR to NORMAL —————————
0 50 100 150 200 250 300

Time [s]

Figure 6.17: Effects on Soft Fairness of Sudden DisappearahVR Nodes (HH-LB)

the fair region) in correspondence of the reconnectiomattedoy P peerst(> 250s).

6.7 Conclusions

The simulation results presented in this chapter allow ukaev the following conclusions:

Tit-for-Tat as an Optimization Mechanism Our results confirm that the use of a pairwise
incentive such as tit-for tat, combined to a performanceeddeedback metric such as node lag,
provides a powerful mechanism for overlay optimizationtigut any explicit knowledge about
the capacity of the other nodes, and despite the short avdragtion of node relationships, each
peer reaches and maintains a rather stable lag positiateitise system, which in turn results in
the timely reception of a steady supply of recent chunks fitsmeighbors. The analysis of the
steady-state data distribution paths indicates that tidesirom resourceful bandwidth classes
have the highest chance to be traversed early on during sitbdition of each chunk.

Node Lag as a Discrimination Mechanism If we examine a system undergoing resource
shortage, we observe that the more resourceful nodes hexgbrience any performance degra-

6.7. CONCLUSIONS 153

dation. We argue that using the node lag as a discriminagici@f for the attribution of altruism
helps a running system to withstand the influence of nodesctiveribute less than the stream
rate. Also, serving neighbors from tivessING list with higher priority than those from the other
lists ensures that altruism will not affect the ability of ade to maintain its current lag even if
the altruism is not reciprocated.

The Critical Role of Altruism FORWARD connections, while being established out of altru-
ism, have a clear importance as they reinforce the effechetit-for-tat incentive. While the
history-based selection process biases the altruism tbimase nodes that contributed the most
during the past interactions, it does not exclude pooreesahd free riders. Our simulations
show that, by adding few more connections to peers thatwikemwould not qualify for tit-for-
tat selection, the overall system performance and stalmtiprove dramatically. Richer classes
use more of their available upload, overall efficiency iases, and the risk of chunk losses
decrease significantly - almost disappearing with eight oreRORWARD connections.

Altruism as a Rational Choice (for both, Own and Common Good) WhenFORWARD con-
nections are disabled or reduced, we notice that espethallfichest peers are often contributing
less than what they could actually offer to the system. Thégbause of their capacity, while
allowing them to maintain regular relationships with othesourceful peers, exposes them to the
risk of starvation, caused for instance by transient cdrbettlenecks. Starvation happens for
two reasons: a direct issue of competition between restuncedes, which makes the outcome
of future peer selections unpredictable, and an indiregblem of availability of new chunks,
which are spread to only a small number of nodes chosen ubmgjttfor-tat criterion. By
spreading additional copies of recently generated chuhksticher nodes can solve these two
problems at the same time: competition is eased, as the mahpeers that are eligible to select
the richer nodes becomes larger, and starvation becomedikey, as new chunks are made
available much faster.

154 CHAPTER 6. SIMULATION RESULTS

Chapter 7

Experiments and Real Measurements

This chapter completes the evaluation of PULSE with additional resulistained from the
emulation of PULSE systems over large-scale network testbe

7.1 Validating the Simulation Results

We used the Grid’5000 [3] large-scale testbed to perform aitative validation of our simu-
lation results. Grid’5000 currently offers 700-800 hosabdut 1200 CPUSs) physically located
in several French research institutions and connected lagtabfickbone network. We tried to
approximate on this testbed the model used in PulSIM, i.gligible and constant latency be-
tween nodes, no bottlenecks in the core network, and cdedirattribution of access capacity to
individual nodes. As the pairwise latency between the tsbtindes was very low (in the order
of several milliseconds) and uniform, we performed our expents using the bare underlying
network topology of the testbed. We implemented configwalpload bandwidth caps into the
node prototype software, in order to emulate the effectptfad bottlenecks at the access links:
we use a token-bucket algorithm where a variable numbelkeit® (depending on the bandwidth
class of the node) are replenished every 25

We managed to reach a maximum scale for our experiments d &@0ultaneous nodes by
running up to two peers on each testbed machine. The prgtacameters used in the Grid’5000
testbed evaluation are listed in Table 7.1: having redusedhunk rate? to 8 chunks per second,
that is half rate compared to the simulations, the lengtimie tof the node TW is now doubled,
that is 8 seconds of media. Because of technical limitatittnemulate the initial simultaneous
node arrival we sequentially launched the nodes in para#lsethes of 200. The time required to
launch 1000 nodes with this technique was usually less tBae@onds.

155

156 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

Tg avg and std deviation by class over time (HH-LB)

100 . .
_VERY RICH peers e
9 1 o e o8 R RICH peers - -
7 80+ r\{)RMAL p\,.. S
V4 ot af g 5 HiHH
= ok :
)
e
©,
(@]
@
-l
Q
(@]
©
2
<
0 |) 1 1 1 1 1
0 50 100 150 200 250 300
Time [s]
(a) HH-LB Scenario
Tg avg and std deviation by class over time (LH-LB)
100 T T T T T
RICH peers —————
NORMAL peers -
) 80 r 1
4
c
>
<
O, 60 r .
(@]
@ -
-
L 40 il
@ il
g] i
< 20 it Il
0 | 1 1 1 = 1 1
0 50 100 150 200 250 300

Time [s]
(b) LH-LB Scenario

Figure 7.1: Testbed Validation of the PULSE Prototype Nddlass Lag over Time

7.1. VALIDATING THE SIMULATION RESULTS 157

| Parametelf Value | Description |
%% 32 | Length of buffer sliding windowghunk$
W 64 Total length of trading windowdhunk$

LR,z 20% FEC tolerance to chunk losses/window

Tp & Minimum lag to trigger buffer reset]
EPOCH 2 Time b/w subsequent peer selectioss |
Nrpr 4 Peers chosen asiSSING neighbors
Nrwp 8 Peers chosen &ORWARD neighbors
R 8 Rate of chunk generation @sourge]
SBR 256 FEC-encoded stream bit rat& pit /s]
Rro 0.5 Timeout of chunk request messagsks |
Ronax 2 Max outstanding requests to same pegr

Table 7.1: PULSE Protocol Parameters Used for Testbed Enrpats

7.1.1 Convergence and Evolution of Node Lag

We launched extensive simulations of PULSE systems, maorigentrating on the HH-LB and
LH-HB scenarios. In Figure 7.1 we show two sample traces ftewm 800-node deployments
under the HH-LB (a) and LH-LB (b) scenarios. As we expecthd,impact of the initial transi-
tory on the emulation results is much lower than what we oleem the simulated outcomes:
in fact, no massive “reset and reconnection” event was estcted during the earliest phases
of every deployment. If we check in the peer logs the amoumpieeirs that reset their buffer in
the HH-LB scenario, we notice that only a handful of resofuicpeers get disconnected early
on during initialization (2 RICH and 2 NORMAL), compared teveral POOR peers (about 40
in the first 50 seconds). Few POOR nodes happen to reguladguinect during steady state, for
a total of 100 reset events during the 300 seconds shown above

Figure 7.1 confirms the strong relationship we had obsenmvéidd simulations (Sections 6.4 and
6.5) between the available upload bandwidth of a class amdwvarage lag of its members. The
peers with the highest bandwidth contribution reach in Isac#narios a steady-state lag of about
20 chunks (that is, less than 3 sec) from the media source h©nther hand, the less a class
contributes, the worse its average lag: the POOR class irLBlgets the highest average lag
among the four, at nearly 60 chunks (slightly more than 7.s&ually, the plot for HH-LB

is especially telling, as the four classes appsated by resources and layered one after the
other, with a meaningful difference between the average lag pmdoce of each class: also,
we notice thathe difference in node lag between classes becomes highesr thle available
upload capacity of a class is smaller than the stream banthwithe same remarks can be made
regarding the LH-LB scenario, as the difference in averageoff the two classes is smaller but
still evident (18 chunks or 2.2 sec for RICH, vs. 30 chunksesslthan 4 sec for NORMAL).

Figure 7.1 also shows the standard deviation of node lag ri€aldines. Here we can notice

1The contents of this chapter have been published in part&s [8

158 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

more clearly than in the simulations how nodes have theirdiatributed around the average
class lag: the variance @iz appears as strongly dependent on node contribution andrissco
higher as the upload bandwidth available to each class asese This phenomenon can be
observed both in the HH-LB and in the LH-LB scenarios: thexd#ad deviation of the lag is
4-10 chunks for VERY RICH and RICH classes, vs. 10-25 chupnk$\fORMAL and POOR

in HH-LB; 4 chunks for RICH vs. 11 chunks for NORMAL in LH-LB.his fact suggests that
having more bandwidth not only reduces the average lag, lsat #nds to give nodes a more
stable performance in the system

We can in fact appreciate how the averafye for each class is very stable over time in both
traces, with minimal fluctuations. The biggest event thatlmaobserved (between= 160s and

t = 190s in the LH-LB plot, a point where the standard deviation of RIE€H class increases
and then falls back to the previous values), is caused by pdeary increase in the lag of eight
RICH nodes, with two of them reaching a peBk of 80 chunks before recovering their previous
lag value. In this scenario, no node suffered data loss.

7.1.2 Bandwidth Classes and Data Paths

After validating the main qualitative properties of PULS&havior in a realistic context, we are
now interested in observing the distribution process oividdial data chunks and in comparing
these results to our expectations. To this end, we will agiidy the paths taken by data chunks
as they are replicated by the nodes

Figure 7.2 contains the analysis of the average properfiebunk distribution trees from our
traces shown above. We notice that the maximum tree deptbps for individual chunks is
short and quite stable over time. In our system with 800 nodeximum tree depths are in
average between 11 and 14 hops, for both bandwidth scen®vemsan also notice how HH-LB
trees are on average as deep as LH-LB trees and equally wigethip6™ layer, despite the fact
that the Resource Index for the HH-LB scenario is much lowantfor LH-LB.

Comparing Figure 7.2 with Figure 6.13 in the previous chgpte can validate the fact that the
first few layers of the trees are in average very wide, everoifas wide as in the simulated
systems, and that the relative system behavior for the tenastos is quite similar in both cases.
We also confirm that the paths taken by the chunks are conisg@od, even under widespread
bandwidth scarcity and while the data connections betwedesare continuously renegotiated.

The tree depth values observed in the emulation are sliginglyer than predicted by our simu-
lations, but still in the same order of magnitude (for 800 emdhe average maximum depth of
HH-LB trees would have been in average about 9 hops and lass#itnops for LH-LB). The
difference with respect to simulation is likely due to thdueed efficience of chunk exchanges
in an asynchronous environment with additional delays @mtml message exchange. Finally,
the rare chunk losses, revealed by trees significantly shtiran the average, appear to be more
frequent here than in the simulated cases, but do not resplayback disruption.

7.1. VALIDATING THE SIMULATION RESULTS 159

Tree Analysis

2 17

Z ¥

= 11}

Q. 9

(D)

g 7

5 3

= 200 600 1000 1400 1800 2200
Chunk ID

é 150 T T T T T HH LBI 777777777 I”

2 1207 % i LHLB e]

= 907 % ? :

> O P g ‘* | | | | %@ (O)

< 0 2 4 6 8 10 12 14

Layer

Figure 7.2: Analysis of Average Chunk Distribution Tree pedies (800 nodes)

7.1.3 Interactions between Bandwidth Classes

We now examine the consequences of peer selection in terthe afmounts of data exchanged.
We keep track, for each chunk, of the class of its sender atglver peers, and of the type of
the connection, i.e. whether iti8ISSING, FORWARD, or NEW, as determined by the sender. In
Figure 7.3 we display the data we collected over a typical lHB¥un, as seen from the point of

view of both the uploads and the downloads.

The first finding is that, for every class except POOR perssiNG exchanges in upload do
convey on average more or less 80% of the stream bandwidtén #&en nodes may be able
to provide much more, their capacity is not used MsSING exchanges, and would probably
be wasted to a large extent if ®@RWARD connections were present. We also notice a striking
similarity between the amounts of data uploaded and dowlelddy each class usingssING
exchanges. This observation suggests that increasingithber ofMISSING connections could
only marginally increase the amount of data they can coragetfje stream rate is a natural barrier
for reciprocal contribution.

A second result is tha#ORWARD connections are especially important to distribute theesxc
capacity of the richest classes to the poorer om&sRWARD exchanges from VR and R peers
alone to nodes in the POOR class provide, in average, almtsifttheir stream rate, while they
obtain the rest fronmiSSING exchanges, largely with other POOR peers. On the other liaad,

160 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

Very Rich (VR) DATA UPLOAD PER CLASS Rich (R)

vTZzo<

BW (wrt stream rate)
vz

BW (wrt stream rate)

Normal (N) Poor (P)

0.35 |
0.3 |
0.25 |
0.2 |
0.15 |-
0.1 |
0.05 |-

vzZzou<
vzZzo<

BW (wrt stream rate)

BW (wrt stream rate)

Very Rich (vR) PATA DOWNLOAD PER CLASS iy, ()
e 0.8 [
0.7 |
0.6 |
05 |
04 |
0.3 |
0.2 |
0.1 |
0

0.8 |

vz
vZz<

BW (wrt stream rate)
BW (wrt stream rate)

0.4 e
0.35 |-
0.3 |
0.25 |
0.2 |
0.15 |-
0.1 |-
0.05 |-

vz
vzZzo<

BW (wrt stream rate)

BW (wrt stream rate)

Figure 7.3: Average Cumulative Data Exchange Outcomes loglBalth Class (G5K, HH-LB)
Amounts of data exchanged are broken down by connectionMp#&1ssING, F=FORWARD, and N=New) and
normalized by the stream rate.

7.1. VALIDATING THE SIMULATION RESULTS 161

Tg Avg. and Std. Deviation by Class over Time under Churn

SPIKE SQUIT
100 . . . 100 . : .
R L,,iiyr,i;,#' ' R RN
g s N+ & gof N
5 i .
S, 60 } 60 g 5= . o
(@) i i
@© e 1
40 b o bl
@ susanai] L
S it ggi%?%if%*f@%% e L
5 Lot el
é 20 7 izl j:»:i; K j
it . e
0 R | | | O 1 'J
200 240 280 320 360 200 240 280 320 360
Time [s] Time [s]

Figure 7.4: Average Class Lag over Time for HH-LB under SPa¢E SQUIT

scarce bandwidth of the two poorest classes is rarely ddddaFrORWARD or NEW connections.

These results validate the fact that the PULSE algorithraarrectly exploiting the available
capacity: tit-for-tat basesiSSING exchanges are important under bandwidth scarcity to ensure
a proportional exchange reciprocation, whereaRwWARD exchanges based on node lag and
History score allow to distribute the unused resourceslguerthe entire system.

7.1.4 PULSE under Churn

We have reproduced the churn scenarios we used in our sionulatthe context of our testbed
experiments. In Figure 7.4 we show the effects of the SPIK&E SQUIT churn scenarios on
the average lag of each bandwidth class of an HH-LB systene Chlurn event is scheduled
att = 230s. We can observe how the system handles gracefully both ®vetith a visible
increase (decrease) @f; over the seconds immediately following the arrival (depia} that
quickly leads to new stable average lag values. We rematkieaesponse of real systems to
massive arrivals is very fast, while departures requirees¢ime for the system to reach a new
stable configuration: the time constant of the SQUIT scenlgtely depends on the presence

162 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

of excess capacity in the system, which nodes can exploitdardo reduce their average lag.
Visually, the effect of both churn events is completely absd after about 150 seconds from
their occurrence.

7.1.5 Results of PlanetLab Deployment

Next, we performed experiments on PlanetLab in order tomiese behavior of PULSE under
uncontrolled network conditions. In fact, PlanetLab défés users little control on the node re-
sources, not only in terms of an unknown available bandwiglthalso because of the high CPU
load of machines. This problem makes it especially diffitaltest a time-sensitive streaming
application that requires low response times. For thismease only managed to find about 200
hosts with semi-acceptable CPU load conditions, while wettbdower the chunk raté to 4
chunks per second to reduce the amount of processing pextbboy the nodes. We conducted
experiments with bitrate values ranging from 64Kbps to 51 and performance appeared
to be rather insensitive to the stream rate up to 256 Kbpsedsimng for further bitrate values.
This phenomenon may be due to traffic shaping or other couméaisures adopted by PlanetLab
nodes to limit a steady bandwidth consumption by individusgrs. As we could not collect
enough data for an in-depth analysis of this issue, we ratbeided to avoid it altogether by
using a “safe” low bitrate: therefore, we set the streamabgtin our experiment to 128 Kbps.

Furthermore, we resolved to not artificially constrain nbdedwidth, but rather chose to leave it
naturally limited by the resources available at each hasti{@ high CPU load in most PlanetLab
nodes would often interfere with the execution of the sofena unpredictable ways). As band-
width classes were not defined for this experiments, we aast®llect information such as the
cumulative amount of data uploaded, which will be usefuetmnstruct the relationship between
node lag and contribution. As we see in the lower plot of Fegiu5, no node contributed alone
an extraordinary amount of resources to the system: r&@Bés, of node contributions (averaged
on the whole system lifetime) ranged between zero and 2*SBé&argue that these values can
be considered a reasonable approximation for an Interastddstreaming event.

Looking at Figure 7.5, it can be noticed that 90% of peers manaregularly obtain &z lower
than about 100 chunks (25 seconds), and that 50% presenedagplbwer than 30 chunks (less
than 10 seconds). Thg; distribution is a consequence of the upload bandwidthibigion, as
about 60% of peers offer less than the full stream rate whaeother 40% upload at a rate lower
than twice the stream rate. By correlating the total bantiwidntribution with the average lag
of the nodes, we can obtain in Figure 7.5 a clear inverseioelstiip between the two variables:
the more a peer uploads, the lower is its lag. The results wadrma from this experiment show
that PULSE behaves reasonably well even a difficult enviemnsuch as PlanetLab, proving
again a high level of resilience and adaptiveness.

7.2. EVALUATING LATENCY AWARENESS 163

Node Lag over Time (from 10th to 90th percentile)

— 180 T T T T T T T
% 150 N i l J; T
> 120 B uﬁ“ﬁ |41 I ,1,\““ %IH | N f,"/!i*"\
% 28 ! w}} R Wl,.mw,u f‘ !\u\’mu b mek H’ler,:y“}‘ﬁ%ﬁ v*\;»“n’l‘”jw ,‘/i o " el }-i“lw (Lﬁvj“t“\«\,\w "”"'Wt‘ M,{
= e g ' ol TR o ,
(@)
3 ,‘
-
800
Time [s]
Relationship between Node Lag and Average Upload

£ 180 ——

120 + bl .
O T
o 90 % +W+%;% + N +
o e + + ‘t F
3 60 Sy R L e+ + 7

30 + T et i

(@) + +4ﬁ+ o+
> 0 1 1 1 1 1
<

0 0.5 1 1.5 2 2.5 3 3.5
Data Uploaded (wrt stream rate)

Figure 7.5: Results of an Uncontrolled PULSE Run on Planz(2&0 nodes)

7.2 Evaluating Latency Awareness

After examining the macroscopic effect of tit-for-tat peetection on the global system organi-
zation, we now study the impact of a weighted latency biasersystem in terms of awareness
to network locality. These experiments were performed @am@iab using a population of 100
peers, again without any artificial upload limitation. Wesebved the behavior of the PULSE
system as thé€' latency weight parameter was set to 0 and 1. We used the gaimade la-
tencies measured during our experiments with exponeywsglaceding probes § = 10s) as a
practical network locality metric.

Average Latency ofMISSING Connections Figure 7.6 shows thaverage total latencgf the
incentive-driven connections in function of the averaggdé each peer. Average total latency
is computed for each single node by adding together thedetsf the four connections that it
established using the biased TFT incentive, and averafiay#lue over time. It is possible to
notice how the introduction of the latency bias can sharptjuce the average TFT connection
delay, especially for those peers whose lag is low. We cartlsste whenC' = 0 (i.e with
no latency bias), all peers show an average cumulativedgteniformly distributed between
45 ms and 60 ms, regardless of their average lag. With thdiaddif a latency biag’' = 1,

164 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

Lag vs Average TFT Connection Delay

C=0 C=1
60 —= . 60 .
55 18, . ¢ 55 | .]
+f+ﬁ§¥ t i :tr * + "
B 10 B S0 -]
wn L . + o+ ++++ +
é 45 ‘+ ’ 7 45 B I++i + ++ 4 7]
% i ﬁ* ++ + it
o) 40 . 40 ++ v + i
&) ¥,
— 35 B y 35 'Hfj 4
LL &
T 30} - 30 f . :
25 | : 25 |+ .
20 : 20 :
0 100 200 0 100 200
Lag [chunks] Lag [chunks]

Figure 7.6: Effect of Latency Bias on Cumulative Connectiatency

the minimum average cumulative latency goes down to 22 m#e st few nodes maintain a
cumulative latency of about 60 ms. Also, the average cunvel¢tency of all nodes becomes
lower for non-zero values af'.

Estimating the Locality of Data Exchanges In Figure 7.7 we correlate the percentage of data
being uploaded by each peer with the latencies of the colmmsdhat it is using, again averaged
over the time. The histograms clearly show that locality afedexchange definitely increases if
we add a latency bias: whett = 0, the data is sent to other peers in an almost uniform way
(we remember that the latency distribution of the peers tsundorm). On the contrary, when

C = 1, the amount that has to travel on shorter distances is mugiehi the stream data are
prevalently exchanged between peers with pairwise lagsrower than 125 ms.

Other Advantages of Locality Optimization Finally, Table 7.2 shows the effects of latency
awareness on the global performance of data reception isy$tem, in terms of percentile node
lag. As we expected, with the latency bias peers achievghtblilower reception delay, thanks
to the fact that chunks are sent more often to peers whiclelaserlocality-wise. The extent
of this reduction is quite small, however, as the skew in tbdenlatency distribution is quite
limited. We expect that, by introducing the latency bias iscanario with larger difference

7.3. CONCLUSIONS 165

Latency-Based Locality of Data Exchange

C=0 C=1
5 T 5 T
o 4r . 4 .
(@)
c
@
S 3¢ 1 3 1
x
L
o
T 2 . 2 | .
)
©
X 1 1t i
0 500 0 500
Latency [ms] Latency [ms]

Figure 7.7: Effect of Latency Bias on Overall Data Exchangedlity

| Lag Percentilé] 10% | 30% | 50% | 70% | 90% |
C=0 12.31| 18.10| 26.18| 37.70| 61.08
C=1 10.53| 14.47| 18.89| 27.22| 49.39

Table 7.2: Effect of Latency Bias on Average Node Lag (in dt®)n

between pairwise latencies, the reception delay reduetmuid also be bigger.

7.3 Conclusions

In this chapter, we validated our analysis of the behavidPOLSE using emulation: we ran
a number of controlled experiments on a large-scale gritbéels reaching a population size of
1000 nodes, and reproduced the same scenarios we previgeslyfor our simulations in or-
der to make a direct comparison. We could observe a substamiilarity between simulation
results and the actual behavior of emulated systems: ttseipce of network delays and asyn-
chrony in the emulated environment greatly improves thibility of aspects such as stability of
node class lag and system-wide response to churn. We thenlsissour results from PlanetLab
experiments, which are quite encouraging as they confirnstisistence of a definite relation-

166 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

ship between node lag and upload contribution even in unalbed environments, where both
the RI and the node capacity distribution are not known a priori.

Finally, we evaluated the effectiveness of introducingwsie latency as an additional criterion
for peer selection: the use of a sima¢éency biasn the optimistic choice of1ISSING neighbors
led to noticeable improvements in the overall locality asveass ofMISSING connections and
total data exchanges. Furthermore, we could measured iaxp@riments a net decrease in the
average node lag of at least 20% when latency awareness @&hkednthis result suggests that
building some form of locality awareness into data-driviee lstreaming systems can provide
great practical advantages in terms of both, efficient nekwisage and performance gain.

Chapter 8

Conclusion

Internet-based peer-to-peer live streaming systems havace several technical challenges.
They must be capable to scale to large populations, supjgityhasymmetric distributions
of node capacity, and withstand arbitrary user behavioris Tinesis presented and evaluated
PULSE, a practical unstructured data-driven P2P systerivomedia streaming. The PULSE
algorithms exploit the relative flexibility in the timelise requirements of live streaming in or-
der to improve the performance and the robustness of thersyist real-world conditions. The
results we obtained from simulation, testbed emulatiod, Rianetlab experiences confirm that
PULSE can meet the challenges of a full-scale Internet gepnt.

8.1 Contributions

PULSE makes several contributions: its design combinesatructured mesh-based architec-
ture, which grants the nodes great freedom to associath, paitwise incentive mechanisms,
which are used as peer selection strategies. Thanks to ¢hefuscentives to optimize band-
width allocation, combined to dynamic peer selection sgyags that rely on implicit feedback
from data reception, PULSE is capable to support a operat®mcooperative environments.
The presence of a global control loop basednmule lagallows PULSE to quickly react to
changes in both, node resource availability and system ragship.

While the incentives in PULSE do not aim threctly enforce fairnessas the common-sense
interpretation of the word “incentive” may suggest, theg areant to redistribute node capacity
in an useful way and, in case of system-wide resource st@rtagavor the nodes that contribute
more to the system in order to preserve the health of the sylséem. We also argue that the risk
of buffer starvation during live streaming, which becomaghlfor peers that offer an insufficient
upload contribution, is amdirect incentiveto cooperation that should be appealing to rational
nodes/players.

The simulation results we presented show that an altruistientive-based peer selection fos-
ters cooperation among the nodes and leads to the emergeaoksters of peers with similar

167

168 CHAPTER 8. CONCLUSION

resources. The presence of resource-aware clusteringhasidnal to the efficient and timely
distribution of data throughout the system: we observetithRULSE the number of hops that
a chunk takes, on average, is comparable to the height af imdeee-based architectures, while
the first layers of the chunk distribution trees can be sigaifily wider.

The experiences we performed using large-scale testbethBamiand PlanetLab deployments,

in addition to validating the simulations, indicate thatlF8E is capable to operate in a harsh en-
vironment such as the Internet. Also, they show that PULSEeeaily take into account network

locality when establishing node relationships, introdgca further performance improvement.

Our results also confirm the ability of unstructured meskedohasystems to withstand the high
levels of transience that can result from user and netwontadhics (churn, failures, congestion,

etc.).

Finally, we have collected and elaborated a number of nsetocevaluate both generic and
resource-aware data-driven systems. Besides their inateeiditerest for the analysis of PULSE,
we hope they will help to reach an improved understanding resftructured streaming sys-
tems and to develop a more comprehensive comparison betsteertured and unstructured
approaches to live data distribution.

8.2 Outlook

The lessons learned from the design, simulation, impleatemt, testing and initial deployment
of the PULSE system suggest thdtiquitous P2P live streaming on the Internet is indeed pos-
sible — and does not require a large amount of resources anti@ved Internet noded he first
practical streaming architectures have shown the feigibii the end-system multicast concept.
The current generation of large-scale P2P systems indithse audiences of several hundred
thousand users can be served by an adequate provisionihg sbtirce (upload capacity from
tens of Mbp$ up to several hundreds of Mbf)sand using advanced peer selection and chunk
selection algorithms. The next wave of live streaming aggpions could realistically involve

a multitude of broadcasters that serve media to populatimaiscan range in size from few to
tens of thousands of users, just leveraging standard cangpequipment and broadband Internet
access.

The Road Toward Optimality The search for an optimal strategy to distribute live datarov
networks with arbitrary upload capacity distribution istraver yet: while PULSE is among
the first to explore pairwise incentives as a non-determinigptimization technique, the re-
cent developments of theoretical models [72][34] and th@ieation of graph theory [45], game
theory [75] and gossip algorithms [95] will certainly leamldn improved understanding of the
live streaming problem and to the design of new, more efftcagorithms and solutions. It is
our opinion that the improvement of live streaming techegwill also benefit applications for

1Gale Huang, PPLive Software Architect, Keynote at the 2r@&ISDMM P2P-TV Workshop, 2007
2Qian Zhang, Hong Kong University of Science and Technolidmgem

8.2. OUTLOOK 169

large-scale data diffusion, such as video on demand andfiteiltlistribution. The deliberate
introduction of loose synchronization between receiverge seen as an undesirable constraint
of live media, could actually prove an effective method toréase the efficiency and data distri-
bution performance of these systems.

More Focus on Non-Cooperative Scenarios The live streaming problem has mostly been
studied in cooperative contexts so far, which implied eifiaé compliance by the nodes to sys-
tem policies(e.g. providing as much upload as required, connecting tpeaiic number of
“entitled” sub-trees), or at leakbnest reporting of protocol informatide.g. correctly describ-
ing the number of children served, providing a truthful ascof the content a node buffer).
PULSE is one of the first practical systems for live streantmgnitigate the consequences of
non-cooperative behavior (as freeloading or insufficigoibad contribution): the support for
bandwidth heterogeneity naturally implies the ability éact to purposeful lack of cooperation.

Nevertheless, many avenues of attack emerge when the legietf policy-compliant behavior
is rejected: an interesting example is provided by the tatdempts to defeat other incentive-
based mechanisms, such as the BitTorrent protocol [68]88lile the tit-for-tat strategy has not
been surpassed yet by any other strategy and thus appea®ardto-optimal, its implementa-
tion in a distributed protocol for data exchange opens uprsdweaknesses [100]. In the case
of deliberate tampering with protocol information, howewhe problem becomes way more
complex, reaching to the realms of practical and theoretimaputer security: furthermore, the
assumption of player rationality may no longer hold if notlgsto actively disrupt the system
without seeking any benefit from it. The conceptaithfulnes4101] of an application as a form
of resilience to misleading external information and betiahas been recently introduced to
support the design and analysis of P2P systems.

The Future of PULSE The software for the PULSE node has been released to thecpubli
France Telecom R&D under a LGPL Free software license inye&dD7. The current code-
base for our node prototype (v. 0.1.1) is substantially Hraesthat we used to obtain the traces
for our latest published papers [86][87] with some added-ixes. The future development of
the public branch of the PULSE node software shall be comgas a part of the European
project (STREP) NAPA-WiNe. Moreover, the use of a Free Ismallows and encourages the
contribution by individual developers around the world.

170 CHAPTER 8. CONCLUSION

Chapter 9

Synthese en Francais

9.1 Introduction

Cette thése est dédiée a I'étude du probleme de la diffugidiud vidéo en direct sur Internet,
mieux connu sous le nom anglais de "live media streaming'usNavons choisi de concentrer
nos efforts sur ce probléme pour plusieurs raisons.

Premiere raison, la distribution de données sur Internet gle grands nombres de récepteurs
est aujourd’hui un besoin fondamental: les efforts dédefsdant les dix derniéres années a la
diffusion de contenu statique (i.e. fichiers) ont laissé lEc@ a une attention accrue pour la
distribution de flux de données dynamiques. L'émergencesgs®mes pair-a-pair (en anglais
peer-to-peerabrégé eP2P) dans le contexte de la distribution de données a permismpert
tante amélioration des performances par rapport aux aathites basées sur serveurs central-
isés, surtout en termes de réponse a la croissance de éadiaiflystéme (aussi défipassage a
I'échelle provenant du mot anglagcalability). Le principe fondamental des architectures P2P
est I'équivalence de rélea(priori) entre toutes les entités qui composent le systeme, qui sont
appelées pairs ou nceuds.

Deuxiéme raison, I'extension d’une approche P2P au stragtivie est une étape conséquente
de I'évolution des techniques pour la distribution de daméjui ajoute de nouveaux défis au
probleme initial, notamment le respect de deux contrairitesdre de réception et le délai de
reproduction (en anglaigjayout delay du flux vidéo. Troisiéme, le probléme du streaming live
est clairement défini: puisque les nouvelles données saréir§és constamment par la source
(i) tous les recepteurs sont a peu pres synchronisés dans paioecdu flux, (i) le systéme a
une faible mémoire des événements passéhi)eses performances peuvent se révéler moins
dépendantes du comportement des utilisateurs par rappartiatribution de fichiers ou a la
distribution de vidéo a la demandéoD). Quatrieme, I'interét commercial pour des solutions de
streaming live qui puissent passer a I'échelle avec dedgaibb(ts est a présent tres fort, puisque
les conditions nécessaires pour le succes et la diffusiared@pplications sont désormais sat-
isfaites (ordinateurs personnels avec puissance de calffisante, appareils photographiques

171

172 CHAPTER 9. SYNTHESE EN FRANCAIS

‘ Type H Application d’Exemple| Contraintes de Distributioﬁ Contraintes de Reproduction ‘
Bulk BitTorrent, E-donkey | Aucune (fichiers vidéo) Video reproduite aprés réception
VoD Joost, Youtube Aucune (fichiers vidéo) | Reproduire pendant la réception (1 min)
Live Peercast, PPLive Court délai (0 ~ 30 s) Reproduire au plus tot (10s)

Interactive Conference, Skype Immédiate & 100 ms) Reproduire tout de suite (100 ms)

Table 9.1: Applications pour la Diffusion de la Vidéo

et webcamgeux codteux, facilité d’acces a I'lnternet avec hauts @¢bEnfin, nous sommes
convaincus de la présence de plusieurs aspects qui peureah@liorés dans les systemes P2P
existants, et du fait qu’il nous est possible de contribueuaamélioration.

9.1.1 Deéfinition du probleme

La Table 9.1 présente une vue globale sur 'ensemble descapphs pour la diffusion des
données multimédias. Tandis que la vidéo a la demande (VoDyiste en la distribution de
données qui ont été enregistrées (par exemple des ficht@s)vile facon qu’il soit possible les
reproduire pendant qu’ils sont récupéres, le streamirgydst la premiéere application pour qui
les données constituent un flux qui n'a pas de début ni de firs guécontinue d’evoluer au fil
du temps. Les flux video en direct sont differents des flux Vab c

e Les données d’'un flux en direct sont distribuées par la sotid# uniquement pendant
un e courte période, aprés laquelle elles cesseront d'Bpenibles

e La durée totale d'un flux en direct n’est pas connue a prigpiquement, les utilisateurs
vont rejoindre le systéme quand une session de streamingegsten cours et vont la
quitter avant gu’elle soit terminée. Le temps passé par lisateur dans le systeme peut
étre considérée comme négligeable par rapport a la durale i flux (d’ou la définition
de durée pratiguement infinie d’un flux de streaming live)

e Lesdestinataires d’un flux sontintéressés a le reprodu@e an délai raisonnable, puisque
I'intérét pour ses données courantes est tres volatil.

Le streaming live est une application qui pose plusieurficdifés dues a la présence de con-
traintes de délai. Au méme temps, ces contraintes laisseoémain marge de liberté au con-

cepteur de systémes par rapport au cas des applicatiomaditites, ce qui rend le probléme

intéressant par la variété des choix possibles au niveaiaahitecture: les quelques dizaines
de secondes qui découlent entre la génération des donnéesoarte et la reproduction aux

récepteurs peuvent étre suffisantes pour que les donnéss Baitées entre temps par plusieurs
pairs et redistribuées avec une série de sduapq sur le réseau.

Grace a cette marge de tolérance au retard, le streamingdimeet I'adoption de nombreuses so-
lutions techniques, notamment les architectures P2P. pim@ehe P2P a l'avantage de permettre

9.1. INTRODUCTION 173

au systeme de passer facilement a I'échelle, puisque clmgud du réseau P2P, au méme temps
gu'’il consomme les ressources du systeme, peut aussi rsengropres ressources au service
d’autres nceuds. En principe, si chaque participant cardiilau moins autant de ressources qu'il
consomme, le systeme P2P pourrait atteindre des taillé@saanks. Cette propriété, appelée en
anglais “self-scalability”, est la raison fondamentalejgstifie I'application d’une approche P2P
au probléme du streaming live. De plus, dans une archiedlient-serveur, le colt du stream-
ing est totalement au frais du fournisseur du contenu, peisgla demande l'allocation d’'une
guantité de ressources du coté du serveur quiregiortionnelle a I'entité maximale prévae la
population a desservir. Au contraire, dans une archited®2P, la source du contenu ne requiert
gu’une faible quantité de ressources, qui est largemegpeadante de la taille du systéeme. Les
avantages économiques de cette propriété sont aussi &jidentout quand les populations a
desservir sont tres larges. Au cours des dernieres anniésseyrs architectures P2P pour le
streaming live ont été proposées. Le Chapitre 2 de cette tbmt dedié a I'analyse et a la
comparaison entre les architectures principales desmgstéans la littérature du secteur, nous
nous limitons ici a énumerer les défis techniques auquetsy/kgémes P2P pour le streaming live
doivent se confronter.

Passage a I'échelle Bien que les ressources augmentent avec le hombre de nomgl$eda
systéme, une limite supérieure théorique de taille existe [@s applications sensibles au temps,
tels que le streaming live. Cette limite est due au retardéhtit par chaque "hop" qui est traversé
par les données du flux. En conséquence, le principal défrelansing P2P est de mettre a point
une technique de distribution de données qui garantit wstdlalition continue et permet d’éviter
une excessive accumulation de retard quand le nombreidaigurs augmente.

Adaptation aux ressources Un autre défi par rapport au passage a I'échelle dérive dpdthese
gue chaque nceud contribue suffisamment de ressources amsydtn realité, les nceuds peu-
vent contribuer moins que ce qu’ils consomment, voire rienadit, soit en raison de limitations

techniques inhérentes (scarcité de ressources, préesenqeade-feu, etc.), soit par malveillance,
ayant fait le choix explicite de trichefréeloading.

Equité dans le service Si I'hypothése de la coopération spontanée n’est pas nmaietele
nombreux problemes (tels que le rejet de nouveaux utilisateu la perte de données) peu-
vent compromettre la fonctionnalité du systeme et la gii@lé reproduction. Ce probleme peut
étre abordé typiquement de deux fa¢ ons: un probléme dtaffea de ressources, c’est-a-dire
comment placer les pairs dans le systeme et distribuer leséds afin d’exploiter plus efficace-
ment les ressources disponibles, et un probléeme d’inaitgtiu de contrdle d’acces), c’est-a-dire
comment décourager ou éliminer du systéme les noeuds quintrbcent pas suffisamment.

Adaptation a la topologie du réseau Un autre probléme qu’on rencontre dans les systémes
de streaming P2P dérive du fait que les données sont répBqa¥ les nceuds suivant un chemin

174 CHAPTER 9. SYNTHESE EN FRANCAIS

non-optimal par rapport au multicast IP natif, puisque piisgation P2P ne peut pas connaitre
la topologie du réseau sous-jacent. Le fait que la locak# abnnections ne soit pas prise en
compte a des effets négatifs, comme un retard supérieuptiénedu media et une utilisation
redondante des liens du réseau, qui peuvent affecter lesm@nces des applications sensibles
au temps tels que le streaming en direct.

Robustesse L'usage de nceuds en tant que éléments fonctionnels du syaiggmente la prob-
abilité que le service sera perturbé par des changemendsissudans la composition du réseau
P2P. Puisque une application de streaming P2P de grandéeégeipese presque entiérement sur
les utilisateurs ordinaires pendant son fonctionnemenfipuirnisseur original du service ou du
contenu a trés peu de contréle sur la maniére dont les dosnéedistribuées et - par conséquent
- sur la qualité percue par les utilisateurs. Contrairengehinfrastructure réseau sous-jacent
(c’est-a-dire des routeurs, des cébles, etc), qui a unehaate disponibilité et tolérance aux
pannes, I'overlay applicatif construit par les nceuds dystéme P2P (c’est-a-dire des processus
logiciels tournant sur du matériel contrdlé par les uttksas) n'offre pas de telles garanties [14].
Chaque nceud peut, a tout moment, entrer dans le systemier dgiisysteme, mal-fonctionner
ou tomber en panne: pour fournir un service sans interraptesysteme doit étre capable a la
fois de limiter les effets des perturbations et de rétahlipas tét son fonctionnement correcte.

Simplicité d'utilisation La simplicité d'usage et la liberté d’accés au systéme dmsting
live pour tout émetteur potentiel peuvent étre considécdesme des défis techniques supplé-
mentaires: I'application ne devrait pas nécessiter d’'uaede quantité de ressources (surtout en
termes de bande passante remontante) au niveau du foumikseontenu, afin que n'importe
quel utilisateur qui se connecte a Internet par un commuesaahaut-débit puisse jouer le rble
de la source. L'application devrait ensuite étre facile afigurer et a utiliser, de sorte que les
utilisateurs occasionnels ne soient pas découragés aipartill est important de souligner que,
dans un systéme ou le contenu est généré par les utilisakesisplicité d’acces est I'un des
facteurs clé qui participe énormément au succes et a lanadellapplication pour les usagers.

9.1.2 Contributions

Cette thése apporte plusieurs contributions. En prengar &lle aborde le probleme dtream-

ing live d’un point de vue pratique. Les exigences des applications P2P pour le streaming live
a grande échelle sont présentées et discutées a partitisie ldes défissnumérés ci-dessus, en
considérant les limitations techniques de la technologierhet actuelle et leur probable évo-
lution dans le futur immédiat. Une étude détaillée de I'état’'art du streaming live P2P est
ensuite proposeée, dont I'objectif est d’évaluer les aetltitres pour le existantes par rapport a
leur capacité de supporter un déploiement a grande échglldrdernet. Notre avis a propos
des propriétés désirables des systemes qui aident a ré@adtsabjectif est également présente.

La deuxieme contribution est taonception de PULSE un systéme P2P pour le streaming live
qui satisfait aux propriétés précédentes. PULSE est I'isygtemiers systemes qui est basé

9.1. INTRODUCTION 175

sur un réseau maillé non structuré, et introduit un mécamibasé sur l'incitationifcentive-
based pour la sélection des nceuds voisins. En exploitant le tgggment spontané des nceuds
selon la disponibilité de ressources (qui apparait en mais mécanismes d’incitation) et en
profitant de la faible synchronisation entre pairs (a I'aiiene boucle de rétroaction basée sur
les performances de réception), PULSE est capable de émmeti dans une large gamme de
scénarios du monde réel. Les avantages de PULSE sur lee@gsa€tuels peuvent étre résumées
ainsi:

e Support pour de hauts niveaux deurn(nceuds qui arrivent et quittent le systeme)

e Support pour des distributions de ressources (et notamaedrdnde passante remontante)
tres hétérogénes parmi les pairs

e Utilisation efficiente des ressources du systéeme, en péigien cas de pénurie

e Capacité de s’adapter rapidement aux changements souldais$es conditions du réseau
et du systeme

e Adaptation implicite a la topologie du réseau en utilisaed thesures de localité

e Attention a la qualité de la reproduction du flux chez 'ugageec le but de minimiser la
dégradation causée par la variation des conditions darysterse au fil du temps

La troisieme contribution est uensemble d’outils d’évaluationempirique pour les systemes
de streaming live P2P non-structurdaia-driver), avec d’autres outils qui permettent d’évaluer
la présence de ressources dans le systeme et la qualiteddptbdéion a la topologie du réseau
sous-jacent par des systemes adaptatifs comme PULSE. Urte d@ression sur les techniques
qui sont actuellement utilisées pour décrire le comportdrdes systémes data-driven, couvrant
I'état de I'art des modeéles théoriques et des méthodes &ues, est également incluse.

La quatrieme contribution est la réalisation d’'smulateur qui modélise le comportement
complexe d’'un systeme PULSE. Ensuite, en nous basant swotesmissances acquises par
I'expérimentation par simulation, on a également implér@aem prototype software de nceud
PULSE. Ces logiciels ont été utilisés pour améliorer notsengréhension du comportement
global de PULSE quand le systéme opere sous une variétémrmsade distribution de ressources,
d’arrivées et départs des nceuds, et de conditions de réseau.

La cinquiéme et derniere contribution €ahalyse qualitative et quantitative de PULSEbasée
sur les résultats de simulation et d’émulation. Nous avangi& d’abord que les algorithmes
de PULSE opérent comme prévu, et ensuite évalué leur peafazendans un large éventail de
scénarios “critiques” ou les systemes P2P structurésipiedans la littérature ne seraient pas en
mesure de fonctionner. Nous avons concentré notre attesiid’étude de la qualité de I'overlay
maillé généré par PULSE, en fonction de la disponibilitéesources dans le systéme et de la
distribution de la latence du réseau, et sur I'analyse dextéistiques moyennes des chemins
gue les données empruntent dans leur trajet de la sourcecaudsirécepteurs.

176 CHAPTER 9. SYNTHESE EN FRANCAIS

9.2 PULSE et ses algorithmes

PULSE est un systeme de distribution de flux multimédias eectui utilise un mécanisme
innovant pour I'adaptation de I'overlay a la disponibiliélle de ressources dans le systeme. Le
nom PULSE est un acronyme (en anglais) pour “P2P UnstrutiLive Streaming Experiment”.

9.2.1 Objectifs

L'objectif concret du systeme PULSE est de permeitteut héteconnecté a I'Internet de dis-
tribuer des flux multimédia en direct et/ou de recevoir des flublies par d’autres hotes. Les
défis techniques de ce scénario applicatif sont les suivants

e Tout hétesignifie qu'il n’y aaucune garantie sur la stabilitédes noceuds PULSE. Plusieurs
raisons pratiques nous incitent a considérer les pairs ammstables, et qui rendent néces-
saire la conception d’'un systeme qui tolére les défaillandes hotes Internet sont en
général peu fiables, car ils peuvent planter ou mal-fonogo cause de bogues logiciels
ou des actions des utilisateurs; ensuite, un nceud P2P eggigiel qui peut étre activé
et arrété par I'utilisateur a tout moment; enfin, les uttiésas d'un systéme live streaming
doivent pouvoir interagir avec I'application, par exemptaur faire du “zapping” ou pour
s’associer a une autre session de streaming, ce qui peubck@ngrde maniere imprevisi-
ble. Nous allons donc supposer queliaée de vie moyennal’un nceud dans le systeme
esttrés courte, dans I'ordre de plusieurs centaines de secondes.

e Tout hotesignifie gu’il n’y aaucune garantie sur la présence de ressourc@sotamment
en bande passante remontante), ni chez les nceuds prerantiparsession de streaming,
ni chez la source Encore une fois pour des raisons pratiques, nous ne vopEssous
limiter a considérer des scénarios optimistes ou tous lasdeadisposent de ressources
suffisantes pour recevoir et reproduire au moins une foisube faujourd’hui, alors que
la bande passante descendante des acces Internet ADSL moaurest désormais suff-
isante pour obtenir une qualité comparable a la télévidiar yidéo a partir 500 Kbit/s),
la bande passante remontante est souvent beaucoup ples éaigpgenéralement inférieure
a 500 Kbps. Bien que la vitesse moyenne d’accés a Internaitémie@ aussi bien que
descendante) n’ait cessé d’augmenter pendant les dixedesnannées, et bien que cette
tendance soit destinée a continuer dans le futur, on reraagsisi une augmentation par-
allele de la qualité vidéo et du débit [57]. Par conséqueanrisdine perspective a moyen
terme, nous continuons de penser que le goulot d’étrangiepoair la majorité des nceuds
sera toujours situé au niveau de la liaison remontante.

e Tout hétesignifie qu’il N’y aaucun mécanisme centralisé de contrble d’accegli puisse
vérifier les performances d’'un nceud et décider s'il faut asgo ou refuser son acces
au systeme. Cependant, chaque nceud sera libre d’accédgstams, mais pour que le
fonctionnement soit garanti le systéme dans son ensemiblsedcharger de I'équilibrage

9.2. PULSE ET SES ALGORITHMES 177

de lacharge et de la répartition des ressources disponlidesystéeme devra donc travailler
enmodalité “best-effort” , favorisant une dégradation graduelle des performancean
de pénurie généralisée de ressources.

Tel est I'environnement dans lequel notre systéme est aguesder: un environnement tres dy-
namique, avec des noeuds qui arrivent et partent sans adas®)(avec des pics d’arrivées
et de départs importantfigsh-crowd}, ou les noeuds ont un lien d’acces asymétrique, ou la
bande passante remontante disponible aux nceuds n’estifasngmmais largement variable (et
souvent bien inférieure a la bande passante du flux), ou lesi:ie®nt considérés comme non-
coopératifs par défaut. Un autre contrainte que nous valltrnoduire (peut-étre moins critique
pour I'application en elle-méme, mais dont I'impact sur nception globale du systeme est
tres fort), c’est le fait que les algorithmes et le code de BBldevraient étre rendus publiques
et pourraient étre modifies par les usagers (p. ex. commaieiéd Bit-Torrent, dont plusieurs
implémentations avec d’'importantes différences sontatigges).

9.2.2 Principes et innovations

L'intuition initiale qui a motivé notre travail sur PULSE tequ’il il est possible organiser les
membres d’'une session de streaming en direct d'une meailiaigon qu’en utilisant des arbres
figés: "si nous acceptions de briser cette structure rigldeerait peut-étre possible d’utiliser
davantage les informations localement disponibles afiptdiaser I'overlay pour la distribution
des données”. Ce genre d’optimisation n’est pas enviségeasabc des arbres traditionnels, car
le mantien de leur structure rend tout changement dansalfos@tion des nceuds tres colteux.

Aussi, 'asymétrie entre les bandes passantes en uploanvei@hd et la pénurie de bande pas-
sante remontante (due aux limitations techniques et / odlédeion explicite par 'usager de ne
pas contribuer ses ressources) constituent un probléndafoental qui doit étre pris en compte
des le début, méme avant de définir la fagon dont les nceudemeimeragir et choisir leurs
partenaires: en effet, un systéme dans lequel la coopgratitre les utilisateurs et la disponi-
bilité de ressources sont postulées a priori et non pasescént poursuivies ne pourrait guére
fonctionner dans un environnement tel que I'Internet.

Enfin, nous devons prendre acte du fait que le churn est upeigr®intrinséque au streaming en
direct: les utilisateurs peuvent arriver, partir, changemne chaine de streaming a une autre, et
méme “zapper” rapidement a travers de plusieurs chainesilisation d’'un overlay statique et
figé, qui doit étre réparé activement en réponse a tout clma@gegénéré par I'activité ordinaire
des usagers du systeme, nous paraissait comme un choixopagp beaucoup moins efficace
gue de renoncer a la notion classique d’overlay qui étaitipraaent dans la littérature.

Ces intuitions nous ont motivés a consacrer nos efforts ausysteme non-structur@dgta-
driven), dynamique et utilisant des mécanismes d’incitation ataga. Cependant, on a introduit
depuis le début du projet PULSE en 2004 [84] plusieurs intioma par rapport a I'état de I'art:

178

CHAPTER 9. SYNTHESE EN FRANCAIS

e L'utilisation d’un overlay maillé non-structuré dans un systéme de streaming live, prenant

les distances d’'une approche basée sur les arbres (simphasltples) qui était consid-
érée comme la seule viable. Les premiers études publiesdaga@sultats en support des
systémes non-structurés ont été DONET / Coolstreaming] [(2ZZ®5) et Chainsaw [81]
(2005).

Le choix délibéré - opéré atous les niveaux - d’'enganisation dynamique de I'overlay.

Ce choix a de tres profondes répercussions sur le compantatium systéme en présence
de churn. Les systémes structurés considerent les démartscduds comme des événe-
ments exceptionnels, et doivent effectuer des opéragatraordinairespour ramener le
systeme dans un nouvel état stable. Un systeme dynamigueredpart, implique qu’une
certaine quantité de départs et d’instabilité sera togjpuésente méme en un régime de
fonctionnement normal: les algorithmes contribuent aassiigmenter le caractere aléa-
toire, et sont paradoxalement en mesure de I'exploiter pméliorer la stabilité générale
du systeme. Le premier systéme publié (& notre connaissgquicerend en compte le dy-
namisme produit par le churn comme un aspect du fonctionneandinaire du systeme a
été Chunkyspread [113][112](2006).

L'utilisation de mesures incitatives pour décourager le freeloadingAlors que les sys-
temes basés sur des régimes d’incitation ont recu beaucattprdion ces derniéres an-
nées, principalement attribuable au succés du systemestiodiion de contenus BitTor-
rent [33], I'application de mesures incitatives contre eefoading dans le contexte du
streaming live a été lente et pas trés réussie. Plusieusgs ont été congus qui incluent
guelque sorte de mécanisme d’incitation: par exemple, [B8%04) décrit une architecture
multiple-tree ou un schéma de tit-for-tat a été mis en ceuote prévenir le freeloading.
Le probléme principal de cet approche est que, puisque lenées entre nceuds organ-
isés en plusieurs arbres disjoints ne peuvent pas étreuisujéciproques, il demande la
présence d’'un systéme extérieur (décentralisé!) qui &darcomptabilité des crédits et
des dettes de tous les nceuds du systeme: cela ajoute uneunit@ouche de complexité
au dessus d’un systéme de streaming.

L'utilisation demesures d’incitation a la contribution des ressourcegar les utilisateurs
du systeme. Le plus souvent, lorsque les mesures d’irmitatit ét€ mises en ceuvre, leur
objectif était de prévenir le freeloading en sanctionnastriceuds qui contribuent moins
gue leur quota prévue. Ce n’est que assez récemment, dafjs(PID6), un systeme
multi-arbre est décrit ou les nceuds sont autorisés a adaénercertain nombre d’arbres
qui est proportionnel a leur contribution de bande passaatelis que les ressources en
exces sont allouées a I'ensemble des pairs sans restsction autre systéme a arbre
multiple, CROSSFLUX [97] (2006), utilise des mécanismegaitation pour créer un
nombre variable de connexions de backup: les pairs quiibometnt leur juste quantité de
ressources sont recompenseés par une meilleure proteotivrede churn. Dans le contexte
des systémes non structurés, Chunkyspread [112] (200&)ipk& possibilité d'utiliser des
incitations pour biaiser la procédure de sélection desin®ien la faveur des nceuds qui
contribuent davantage.

9.2. PULSE ET SES ALGORITHMES 179

e L'utilisation d’'uneboucle de rétroactionbasée surétat présent du progres de la dis-
tribution des donnéeset surdes incitations localegpour obtenir a la fois une adaptation
dynamique a I'’hnétérogeneité des capacités d’'upload ebptddgie du réseau. L'approche
gue nous proposons dans PULSE vise a exploiter les propd&ié réseau sous-jacent ou
les ressources sont inégalement réparties: lorsqu’ils@anés a proximité de la source,
les nceuds capables de contribuer de la capacité en excésnpeé@siuire considérable-
ment le retard de receptiotaf) percu dans I'ensemble du systeme, comme si la capacité
de service de la source était plus grande que ce qu’elle réeBement. D’autre part, les
nceuds qui contribuent moins que le débit du flux seront tagjen mesure de participer
a la session de streaming. C’est le mécanisme essentietmplila topologie de PULSE
adaptative a la distribution des ressources dans le régemun des autres systemes dans
la littérature n’utilise a présent cette technique.

Contextuellement a la définition de I'architecture de PUL&&LS avons également introduit une
série de techniques de mesure basées sur des parametmpsetédslag des buffers des nceuds
(décrites dans le®FChapitre) afin d€) permettre aux noeuds I'acquisition d’'informations a
propos de I'état de leurs voisins Bt pouvoir analyser et décrire de facon synthetique I'état
global d’'un systeme de streaming live. Lutilisation deheiques similaires a celles qu’on a
dévisé a paru pour la premiére fois dans une étude sur lesrperhces de PPlive [55] en 2006.

9.2.3 Fonctionnement du systeme

Les nceuds rejoignent le systéme en contactant un nceud gge&qui fait déja partie de la ses-
sion PULSE. La facon dont cette information est obtenue ptratadaptée selon les exigences
de l'application: a présent, le point d’entrée du systemescifié dans le fichier de configura-
tion de chaque session PULSE (fichipulse dont la fonction et le contenu sont similaires aux
fichiers.torrentde BitTorrent).

Control Plane Les nceuds échangent deux types de messages, appelés REDEt IBis
messages BLUE contiennent des informations sommairesadisponibilité de données chez
un nceud sous la forme de l'intervalle de lag des extremitésotiebuffer de reception. Les
messages RED contiennent une description détaillée demoxtune partie du buffer de chaque
noeud (laTrading Window voir le Chapitre 4, Fig. 3.1) qui est encodée sous forme ttedp.
Suivant la quantité d’information disponible au sujet desuals voisins, ceux-ci sont organisés
dans deux listesBlue Knowledge List, Red Knowledge listes nceuds qui font partie de la
Red Knowledge Ligteuvent étre choisis pour effectuer des échanges de données

Data Plane Les échanges de données entre nceuds sont déterminés patgtaitkmes fon-
damentaux: I'algorithme de selection des noepeg(selectiopet I'algorithme de selection des
pieces ¢hunk selection Sans trop déscendre dans les détails, la selection dedsrestubasée

180 CHAPTER 9. SYNTHESE EN FRANCAIS

sur des critéres de rétributiom¢entive$ et sur la disponibilité de pieces utilesh(ink availabil-

ity). Les deux mécanismes principaux pour le choix des nceuddasmImssING selection, qui
permet les échanges réciproques entre nceuds partageam¢dt pour une méme sequence de
pieces du stream, et FDRWARD selection, qui permet I'exercice de I'altruisme entre neequi

ne partagent pas d’interét réciproque. Le critére de deledes piéces est basé sur la rareté des
chunks parmi les voisins de Red Knowledge Lisde chaque noeud: périodiguement, tous les
pairs envoient des requétes pour un ou plusieurs chunkg adeins utilisant un criterearest-
first; ensuite, les nceuds qui recoivent les requétes choisigselstchunks seront envoyés a quel
voisin, utilisant un critérdeast-sent-firstjui vise a rendre homogene la réplication des chunks
(evitant, par example, que les chunks les plus rares sommalyés trop souvent par un méme
nceud a dépit des autres chunks).

9.2.4 Implémentation

Une premiére version fonctionnelle du prototype du noeud $Jh été mise au point pendant
I'été 2006 avec I'aide de Diego Perino, qui a écrit un comptelu détaillé de son activité dans
son rapport de stage [82]. Le noeud a été mis en ceuvre prasranmie référence le code du sim-
ulateur PULSE pour les algorithmes d’échange de donnéadistgue la plupart des structures
de données ont dU étre adaptées et l'interface au réseauteedinplementée. L'organisation
interne du nceud est décrite dans le 3éme chapitre.

Le prototype du nceud PULSE est écrit en Python, un langageatdggmmation et scripting
orienté-objet qui est bien adaptée pour développer ramdémtes applications simples. L'un
des principaux avantages d’utiliser Python pour notrediegjiest la disponibilité du frame-
work Twisted, qui offre plusieurs fonctions de bas nivealeatpour une application de réseau
(acces au sockets en multiplexing, gestion des buffer® exgplication et réseau, etc.). Le
prototype utilise également d’autres modules externetanmment un wrapper Python pour
'implémentation des codes FEC Reed-Solomon en C++ crééyigr Rizzo [93]. En outre,

le nceud PULSE integre une implémentation du protocole SCANIBU'il est défini dans [47]

(a I'exception du mécanisme d’indirection). Quelgueseaimodifications mineures (comme un
champ ID de message) ont été nécessaires pour limiter Felevmessages redondants dans des
déployements de petite taille, ou l'utilisation dendom walksde longueur variable (avec des
criteres de terminaison probabilistes) produisait unexdeaquantité de trafic réseau a chaque
fois qu’un nouveau nceud se joignait a une session PULSE.

Le nceud PULSE utilise deux sockets dans son fonctionnemessbcket TCP pour les transferts
de données et un socket UDP pour I'échange de messages déledRED et BLUE). Le
choix des connexions TCP pour les transferts de donnéesatsténpar le besoin de fiabilité
(reliability), car les données des chunks vidéo s’étalent typiquemeplissieurs datagrammes
IP, ce qui rend le protocole de transport UDP non approprig i@dhe. PULSE peut en effet
utiliser des tailles de chunks assez larges, et des débiggmkration assez faibles, grace aux
contraintes de temps moins strictes du streaming live pgoaid a la distribution interactive de la
vidéo. Par exemple, la taille typique d’un chunk pourraralie quelques a plusieurs dizaines de

9.3. EVALUATION 181

kilo-octets, alors que des débits raisonnables vont de 2chdlks (environ) par seconde. Nous
rappelons que, une fois le débit fixe, la taille des chunkedéjplu débit du stream diffusé et peut
donc changer d’'une session PULSE a I'autre. L utilisatidgi@P pour les messages de contrble
est motivée par le fait que la perte occasionale de ces messagtolérable et n’impacte pas le
fonctionnement du systéme. La taille des messages de P dépend principalement du

nombre de chunks dans la Trading Window du buffer (qui déiteeria taille de la bitmap), et est

généralement inférieure a 100 octets.

9.3 Evaluation

La partie la plus importante de cette thése est dédiée duidian du comportement du systéme
PULSE. Tout d’abord, le premier probléme auquel nous avéds@nfrontés a été le manque
d’'un cadre théorique bien défini pour I'évaluation des @ayslinon-structurés. Le Chapitre 5
contient une analyse des caracteristiques des systenaedrilagn et propose une sériemetrics
gui peuvent étre utilisés dans un cas général. Ensuite,élaberons des metrics originales pour
étudier spécifiqguement PULSE, qui permettent de mettre latioe la présence de ressources
aux nceuds avec leur comportement et leur performance deeélgtién du flux.

Le deuxiéme probleme a affronter était la question fonddalenest-ce que les algorithmes de
PULSE peuvent réellement fonctionner? Et, dans ce caslegusint les propriétés globales du
systéme? Pour repondre a ces questions, nous avons choistilie en ceuvre une analyse basée
sur la simulation et sur I'émulation d’un réseau PULSE. Leafitre 6 contient la description
des methodes de simulation utilisées, leurs limitationgvantages, ainsi que les résultats de
simulation que nous avons obtenu. Ensuite, le Chapitre iitdésdeployements expérimentaux
du prototype de nceud PULSE que nous avons réalisés ennitifiea testbeds a large échelle
comme Grid’5000 [3] et PlanetLab [5].

9.3.1 Propriétés des systémes non-structurés

D’un point de vue analytique, les systemes data-driven glostdifficiles a décrire et a évaluer
gue les systemes structurés classiques. Les raisons saufivantes:

1. Les données ne suivent pas le méme chemin sur I'overliytnajectoire d’'un morceau de
données est prévisible, méme avec une connaissance cerdplBétat de tous les nceuds
dans le réseau.

2. Des mécanismes locaux de réconciliation des donnéesggogtalement utilisés pour

éviter tout risque de duplication redondante. La récoatiiin nécessite 'échange d’informations

de contrdle qui décrivent les chunks contenus dans le bd&erthaque noeud. Tenir en
compte I'état de la connaissance que chaque nceud a du resystdme pour expliquer
les décisions que les nceuds prennent est tres difficile seonobserver le réseau d’'une
perspective globale.

182 CHAPTER 9. SYNTHESE EN FRANCAIS

3. Les connexions ouvertes entre les nceuds peuvent tramspeulement des messages de
contrdle, ou bien soit les données soit les informations aterdle. L'existence d’'une
connexion entre deux nceuds n'implique donc pas que des dermagent régulierement
échangées dans les deux sens.

4. Loverlay évolue au fil du temps puisque les liens qui lestibbent sont renégociés locale-
ment parmi les nceuds.

PULSE possede toutes les propriétés d’'un systéme datandriZn plus, la topologie de son
overlay évolue tres rapidement et de facon chaotique datesrips, puisque elle est influencée
par la rétroactionfeedback basée sur I'état des échanges de données entre nceudd. rioeigai

a pousseé a utiliser un approche empirique (plutét que theejidans I'étude des systemes data-
driven et de PULSE.

9.3.2 Simulation

La simulation des algorithmes de PULSE a été la premiereeédamotre analyse. Apres avoir
décidé d’implementer un simulateur ‘'maison’ pour décrgesysteme avec un niveau de détail
approprié (le raisons de ce choix sont expliquées dans |pith4d), on a opté pour une approche
utilisant une division du temps en unités discréteag-slotsou simulation steps

Pour simplifier les choses, on a introduit une synchrorosgpiartielle des transferts de données
dans I'ensemble du systeme, afin qu’ils respectent toujesrbmites temporelles d’'ustepde
simulation. Cela peut étre implementé (comme dans notfeeramitant le nombre total de
morceaux qu’un nceud peut générer au cours de chaque timé-slmontant de bande passante
en upload / download détermine ainsi le nombreldta chunksgjui peuvent étre échangés. Avec
cette technique, nous pouvons étre srs que tous les triendéechunks seront achevés avec
un délai maximal d’un time-step (si la capacité totale esisae) ou avant la fin du step (si la
capacité n’est pas epuisée), mais en aucun cas apres oette i

La simplification ci-dessus nous amene vers le concefadelwidth slotqui constitue 'unité
de mesure pratique pour représenter les transferts de derdans notre modéle. Urand-
width slotest défini comme la quantité de bande passante nécessairegrmmettre un chunk
dans un time-slot. Les capacités des nceuds peuvent aledadinies en termes de multiples de
bandwidth slots: cette quantisation de la bande passantepproximer assez bien le comporte-
ment typique de TCP en cas de congestion au niveu du bord dauésar la capacité d’'upload
disponible est partagée équitablement par tous les trasisie chunks qui se déroulent au méme
temps.

Au sujet des latences de propagation introduites par leatgéda durée relativement large que
nous avons choisie pour notre time-step a des effets mosiif nous considérons les valeurs
typiques de latence entre deux nceuds mesurée sur I'Intemietont de quelques dizaines a
guelques centaines de millisecondes, nous pouvons appgoRar exces le délai nécessaire pour
gu’un message parvienne a un autre nceud avec la durée distegeuCette possibilité simplifie

9.3. EVALUATION 183

le modele d’échange des messages de contréle, qui sontasstz(quelques dizaines d’'octets),
et dont le délai de transfert est dominé par la latence. Reptér la latence de réseau par un
délai constant d'un seul time-step nous aide a mieux condpeelévolution de I'état interne
du systeme, puisque les changements d’état induits pardesages de contrble prennent effect
avec un retard uniforme.

Les choix que nous avons faits lors de la définition de notrééteodu systeme PULSE cherchent
a produire une description simplifiée mais fidele de la dygmiinterne et du comportement
global du systéme a I'état d’équilibre. 1l y a évidemment lilestes entrainées par ce compro-
mis entre simplicité et fidélité sur la portée des résultatem peut obtenir en utilisant notre
approche: ces limites sont examinées en détail dans leoBdxt.

9.3.3 Emulation sur large échelle

La deuxieme étape de notre analyse nous a amenés a validesUdtats produits par les simu-
lations en réalisant I'’émulation d’un systeme PULSE dansnuironnement contrélé. Utilisant
le nceud prototype sur des testbeds a large échelle, on agamant confirmer que le com-
portement global d'un systéme “réel” est bien représentdgaodele que notre simulateur
implémente.

Apres la phase de validation, on a mis en ceuvre un déployeameembyenne échelle sur Plan-
etLab, un testbed composé de machines connectées a Iltaraletées dans le monde entier:
ces conditions sont assez répresentatives de I'enviroenieréel qu’une application distribuée
rencontre lors de son déploiement. Ce testbed nous a petapigrécier de fagcon préliminaire

'impact sur le comportement de PULSE d0 a la présence datemte non uniforme entre les
nceuds. On a aussi confirmé que I'utilisation de la latencaringue critere sécondaire pour la
peer selectiompeut avoir un réle important dans I'optimisation de la giéadjlobale de I'overlay.

9.3.4 Résultats de I'évaluation

Nous avons évalué le comportement du systeme PULSE dansnd gombre de scenarios, en
observant les effets du changement des parametres sE\{pateni les autres):

e Disponibilité totale de bande passante dans le systemajpaont a la demande des noceuds.
Ce parameétre, introduit en [27], est connu sous le norRelsource Indekabregé erRl)
et permet de quantifier la présence de ressources en exces.

e Distribution de la bande passante en upload des noeuds. Moos atilisé des scénarios
avec un nombre variable de “classes” de bande passantejravegcstribution des capacités
d’accés plus ou moins hétérogéne.

¢ Taille du systéme et arrivées / départs de nceuds intengstifrn)

184

CHAPTER 9. SYNTHESE EN FRANCAIS

Les résultats des simulations nous ont permis d’appréesepthénomeénes suivants:

Le systéme réjoint rapidement un équilibre stable ergm@&sde valeurs d&/ > 1, méme
si I'exces de bande passante est assez faible et/ou en peasbatérogénéite.

La valeur deRk/ détermine les performances du systéme aprés convergengeegence
de ressources en exces, la distance moyenne en hops despaeragport a la source est
réduite, avec un gain en termes de délai moyen de réceptoohimks fode lag.

Les noeuds qui appartiennent a des classes de bande pakféregntes s’attestent sur des
positions différentes dans I'overlay: une corrélatiors tiégrte est présente entre proximité
a la source et disponibilité d’'upload, avec les nceuds les ‘piches” placés en moyenne
plus prés que les “pauvres”. Cette corrélation tend a fadlec I'augmentation de la

valeur deR1.

La présence d’hétérogénéité résulte en un overlay plmpaote, c’est a dire ou les nceuds
ont une distance moyenne de la source inférieure, par regporscénario homogene avec
le mémeR].

La dépendence entre la taille du systeme atdde lagmoyen de ses participants est
logarithmique, a condition que la disponibilité de ressesrsoit suffisante (toujourg/ >
1, les scénarios homogénes démandant un surplus de resstigesment plus élévé).

Le systeme offre une tres bonne résilience aux changersentlains (départs et arrivées
de nceuds), méme quand ces changements intéressent urgaldigdes nceuds présents.

On a ensuite analysé attentivement les trajectoires deskslau’intérieur du systeme et la contri-

bution de chacun des différents aspects des algorithmesetgion des nceuds voisins (Chapitre
6). Les points suivants offrent une synthese des résultagisau cours de notre travail sur
PULSE:

Le tit-for-tat est efficace pour optimiser la réception Nos résultats confirment que I'utilisation

d’'un mécanisme d’incitation réciproque tel que le tit-far, tombiné a une rétroaction basée sur
les performances de réceptiamofle lag, fournit un mécanisme puissant pour I'optimisation de
la qualité de I'overlay. Sans aucune connaissanpgori quant a la disponibilité de ressources

des autres noeuds, et en dépit de la courte durée moyennetélesiions entre nceuds, chaque
peer atteint et maintient une position assez stable afietedu systéme, ce qui détermine a son
tour la réception réguliere du flux de données. L'analysectiemins de distribution des données
dans le systéme a I'équilibre indique que les nceuds desesléss plus “riches” en bande pas-

sante ont une haute chance d’étre traversés tres tot audetasistribution de chaque chunk.

9.4. CONCLUSIONS 185

Le node lag est efficace comme mécanisme de discriminationSi I'on étudie un systeme
PULSE en pénurie de ressources, on constate que les ncewdsityibuent le plus ne souffrent
gue trés peu souvent de la dégradation des performancese dtoiclusion est que l'utilisation
du node lagdes voisins en tant que facteur discriminant pour la s@edles nceuds avec qui
coopérer permet au systéme de résister a I'influence negdtifreeloading(contribution de
ressources nulle ou inférieure au débit du flux).

L'altruisme a un rble essentiel La présence d’altruisme a clairement une grande importance
car il peut améliorer I'efficace de I'incitation par rapparfusage d’un mécanisme de “tit-for-tat
pur”. Nos simulations montrent que, par I'ajout de justelques connexions vers des nceuds
qui ne seraient autrement pas choisis en base au criteffriat pur”, les performances et
la stabilité globale du systéme s’améliorent de maniéreargmable. La meilleure utilisation
de l'upload assurée par I'altruisme favorise une diffugatus rapide des chunks au niveau des
toutes premiéres duplications (qui sont effectuées, oadpelle, par le nceuds les plus riches en
ressources). Le résultat global de l'altruisme est uneatalugénéralisée du délai de réception.

9.4 Conclusions

Les resultats offerts par PULSE montrent que un choix appaes politiques de sélection de
nceuds voisins permet la création d'overlays adaptatifsyeamiques, capables de fournir un
service best-effort dans un large éventail de scénaricscbaclusions qu’on a pu tirer de notre
travail d’analyse empirique nous ont permis de mieux comgire les avantages des overlays
data-driven, qui se revelent formidables dans le cas diegijbns destinées a fonctionner dans
des environnements réels avec des conditions aléatoinem eéhaitrisables et des noewdgriori
non cooperatifs.

Notre méthode, qui propose I'utilisation combinée d’iatibns réciproques et d’une boucle de
rétroaction basée sur le délai moyen de réception, s’estééadéquate par rapport & notre but
initial: définir une architecture pour un systéme de stregntive pouvant opérer sur Internet a

une échelle globale. Nous souhaitons que le résultats queawwns obtenu puissent alimenter
I'activité de recherche dans le domaine de la distributiertdntenus, surtout pour ce qui con-

cerne l'atteinte de I'efficacité optimale et le support &ieannements non-cooperatifs.

186 CHAPTER 9. SYNTHESE EN FRANCAIS

Bibliography

[1] Directive 2001/29/EC of the european parliament andhefdouncil of 22 may 2001 on the
harmonisation of certain aspects of copyright and relatgus in the information society.

[2] Electronic Frountier Foundation - list of lawsuits agsi P2P users and service providers
- http://www.eff.org/issues/file-sharing.

[3] Grid’5000 - grid platform testbed - http://www.grid500rg.

[4] Loi n. 2006-961 du ler aolt 2006 relative au droit d’auteuaux droits voisins dans la
société de I'information. J.O. n. 178 du 3 aolt 2006 page 2152

[5] PlanetLab - http://www.planet-lab.org/.
[6] The Trusted Computing Group - https://www.trustedcatipggroup.org/.
[7] USA H.R. 2281, DMCA (digital millenium copyright act).ct 20, 1998.

[8] E. Adar and B. Huberman. Free riding on Gnutella. Techhieport, Xerox PARC, 10
Aug. 2000, Aug 2000. First Monday, 5(10), Oct 2000.

[9] A. Ali, A. Mathur, and H. Zhang. Measurement of commelqaer-to-peer live video
streaming. IrProceedings of 1st Workshop in Recent Advances in PeezdoSreaming
August 2006.

[10] S. Annapureddy, C. Gkantsidis, and P. Rodriguez. Blingivideo-on-demand using peer-
to-peer networks. Internet Protocol TeleVision (IPTV) workshop in conjunatiwith
WWW '06 May 2006.

[11] R. Axelrod. The Evolution of CooperatiorBasic Books, New York, USA, 1984.

[12] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.aBt@ahpplication layer multicast.
In Proceedings of the 2002 ACM SIGCOMM Confereragy. 2002.

[13] S. Banerjee, T. G. Griffin, and M. Pias. The interdomainmectivity of PlanetLab nodes.
In Proceedings of PAM, Antibes Juan-les-Pins, Framqaril 2004.

187

188 BIBLIOGRAPHY

[14] M. Bawa, H. Deshpande, and H. Garcia-Molina. Transarfqeers and streaming media.
In HotNets-I, Princeton, NJ, USAages 107-112, 2002.

[15] Berkeley/LNBL/ISI. The NS-2 network simulator. httpwww.isi.edu/nsnam/ns/, 1989-.

[16] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, andardgZfhe impact of hetero-
geneous bandwidth constraints on DHT-based multicasbpotg. InProceedings of the
4th International Workshop on Peer-to-Peer Systems, Felpr005 2005.

[17] E. W. Biersack. Where is multicast todagPGCOMM Comput. Commun. Re35(5):83—
84, 2005.

[18] A. Brampton, A. Macquire, I. A. Rai, N. Race, L. Mathy,caM. Fry. Characterising user
interactivity for sports video-on-demand. Rroc. of the 17th International Workshop on
Network and Operating Systems Support for Digital Audio ¥iagto, (NOSSDAV 2007),
Urbana-Champaign, IL, USAlune 2007.

[19] C. Buragohain, D. Agrawal, and S. Suri. A game theorfacnework for incentives in
P2P systems. IRroceedings of the Third IEEE International Conference earRlo-Peer
Computing (P2P 20032003.

[20] D. Carra, R. L. Cigno, and E. W. Biersack. Fast stocleastploration of p2p file distri-
bution archite ctures. IRroc. IEEE GLOBECOM'06, San Francisco, US¥ov. 2006.

[21] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Reivon, and A. Singh. Split-
stream: High-bandwidth multicast in cooperative enviremts. InProceedings of
IPTPS’03 February 2003.

[22] A. Chaintreau, F. Baccelli, and C. Diot. Impact of TGRel congestion control on the
throughput of multicast group$EEE/ACM Trans. Netw10(4):500-512, 2002.

[23] B. Chang, Y. Shi, and N. Zhang. Refine DONet’s overlayhwietwork distance esti-
mation. InProc. of the First Workshop on Recent Advances in Peer-&p-B&reaming
(WRAIPS 2006)Waterloo, Canada, August 2006.

[24] Y. Chawathe. Scattercast: an adaptable broadcasibdison framework. Multimedia
Syst, 9(1):104-118, 2003.

[25] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: reliailglticast for heterogeneous
networks. InProceedings of IEEE INFOCOM’00, Tel Aviv, Israphges 795-804, March
2000.

[26] S. Cheshire. Latency and the quest for interactivityhit& paper commissioned by Volpe
Welty Asset Management, L.L.C., for the Synchronous Petseerson Interactive Com-
puting Environments Meeting, San Francisco, November 1996

BIBLIOGRAPHY 189

[27] Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkalicll. Zhan, and H. Zhang.
Early experience with an internet broadcast system basedertay multicast. IVSENIX
Annual Technical Conference, General Tragkges 155-170, 2004.

[28] Y. H. Chu, J. Chuang, and H. Zhang. A case for taxationei@rgo-peer streaming broad-
cast. InProc. of the ACM SIGCOMM workshop on Practice and theory oéfives in
Networked Systems (PINS’04), Portland, OR, UZX04.

[29] Y. H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case forsgattm multicast.
20(8):1456-1471, Oct. 2002.

[30] Y. H. Chu, S. G. Rao, and H. Zhang. A case for end systenticast. InProceedings of
ACM Sigmetrics’00, Santa Clara, Cpages 1-12, June 2000.

[31] Y.-H. Chu and H. Zhang. Considering altruism in peepter internet streaming broad-
cast. InProc of the 14th ACM International Workshop on Network an@@png Systems
Support for Digital Audio and Video (NOSSDAV’04), Kins&eunty Cork, IrelandJune
2004.

[32] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freengtdistributed anonymous
information storage and retrieval system. ImProc. of the ICSI Workshop on Design
Issues in Anonymity and Unobservability, Berkeley, gage 46, 2000.

[33] B. Cohen. Incentives build robustness in BitTorrentPfoceedings of the First Workshop
on the Economics of Peer-to-Peer Systems, Berkélee 2003.

[34] G. Dan, V. Fodor, and I. Chatzidrossos. On the perforreanf multiple-tree-based peer-
to-peer live streaming. IRroceedings of IEEE INFOCOM’'07, Anchorage, Alaska07.

[35] S. E. Deering. Multicast routing in internetworks andended LANs. INSIGCOMM '88:
Symposium proceedings on Communications architecturégastocols pages 55-64,
New York, NY, USA, 1988. ACM Press.

[36] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streanhireggmedia over peers. Tech-
nical report, Tech. Rep. 2001-31, CS Dept., Stanford Usitgr2001.

[37] P. Dhungel, X. Hei, K. W. Ross, and N. Saxena. The palutttack in p2p live video
streaming: Measurement results and defense®rdoeedings of the 2nd P2P-TV Work-
shop, in conjunction with ACM SIGCOMM 2007, Kyoto, Japz007.

[38] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balafsn. Deployment issues
for the IP multicast service and architecturleEEE Network magazine special issue on
Multicasting 14(1):78-88, January/February 2000.

[39] J. R. Douceur. The sybil attack. FProceedings of the IPTPS02 Workshop, Cambridge,
MA (USA) 2002.

190 BIBLIOGRAPHY

[40] J. Edmonds. Edge-disjoint branchingSombinatorial Algorithms, R. Rustin, Egages
91-96, 1972.

[41] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A. Minkaarec, and P. Kouznetsov.
Lightweight probabilistic broadcasACM Transactions on Computer Syste@ig4):341—
374, November 2003.

[42] B. Fan, D.-M. Chiu, and J. C. Lui. The delicate tradeaff8itTorrent-like file sharing
protocol design. IrProc. of the International Conference on Network ProtogtBNP),
Santa Barbara, USA2006.

[43] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhangrelfable multicast frame-
work for light-weight sessions and application level fragni[EEE/ACM Transactions on
Networking 5(6):784—-803, Dec. 1997.

[44] P. Francis. Yoid: Extending the internet multicastratecture. Technical report, ACIRI,
April 2000.

[45] A.-T. Gai, D. Lebedev, F. Mathieu, F. de Montgolfier, &yRier, and L. Viennot. Acyclic
preference systems in P2P networks.Piloceeedings of the 13th European Conference
on Parallel and Distributed Computing (Euro-Par 2002D07.

[46] A.-T. Gai and L. Viennot. PrefixStream: a balanced,lrest and incentive peer-to-peer
multicast algorithm. Technical report, Technical RepoR-B514, INRIA Rocquencourt,
March 2005.

[47] A. Ganesh, A. M. Kermarrec, and L. Massoulié. Peerd¢espmembership management
for gossip-based protocolfEEE Transactions on Computes?:139-258, 2003.

[48] A. J. Ganesh, A. M. Kermarrec, and L. Massoulié. SCAMPBerpto-peer lightweight
membership service for large-scale group communicatio8pringer-Verlag, editoPro-
ceedings of the Third International COST264 Workshpames 44-55, 2001.

[49] C. Gkantsidis, M. Mihail, and A. Saberi. Random walkspeer-to-peer networks. In
Proceedings of IEEE INFOCOM’'04, Hong Korizp04.

[50] V. K. Goyal. Multiple description coding: Compressioreets the networkEEE Signal
Processing Magazind.8(5):74-93, September 2001.

[51] C. Grothoff. An excess-based economic model for resewallocation in peer-to-peer
networks.WirtschaftsinformatikJune, 2003.

[52] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van ReeesKelips: Building an
efficient and stable P2P DHT through increased memory ankigbaignd overhead. In
Proceedings of the 2nd International Workshop on PeerderFSystems (IPTPS 'Q3)
2003.

BIBLIOGRAPHY 191

[53] D. Hales and S. Arteconi. SLACER: a self-organizingtpoml for coordination in peer-
to-peer networkslintelligent Systems, IEEE [see also IEEE Intelligent Systand Their
Applications] 21(2):29-35, 2006.

[54] Q. He, M. Ammar, G. Riley, H. Raj, and R. Fujimoto. Mapgipeer behavior to packet-
level details: A framework for packet-level simulation cégy-to-peer systems. Rro-
ceedings of the 11th IEEE/ACM International Symposium odéding, Analysis and Sim-
ulation of Computer Telecommunications Systems (MASQ@QAY, ®rlando, USA, 2003.

[55] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. Insighhto PPLive: a measurement
study of a large-scale P2P IPTV systemPimceedings of IPTV Workshop, International
World Wide Web Conferenc2006.

[56] X.Heli,Y.Liu, and K. Ross. Inferring network-wide qutglin P2P live streaming systems.
IEEE JSAC Special Issue on Advances in P2P Streaming:to be publi0ed.

[57] C. Huang, J. Li, and K. Ross. Can Internet VoD be profé&blin Proceedings of ACM
SIGCOMM 2007, Kyoto, Japag007.

[58] C. Huitema. The case for packet level FECPimceedings of IFIP 5th Int’l Workshop on
Protocols for High Speed Networks, Sophia Antipolis, Feactober 1996.

[59] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashpakd J. W. O’'Toole. Overcast:
Reliable multicasting with an overlay network. Rroceedings of the Fourth Symposium
on Operating System Design and Implementation (OSialjes 197-212, October 2000.

[60] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgafgersim peer-to-peer simulator -
http://peersim.sourceforge.net/, 2004.

[61] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and.Maloutsos. Is P2P dying or just
hiding? InIEEE Global Telecommunications Confereneelume 3, pages 1532-1538,
2004.

[62] R.Karp, A. Sahay, E. Santos, and K. Schauser. Optinoaldoast and summation problem
in the LogP model. Irin Proc of ACM Symp. on Parallel Algorithms and Architecture
(SPAA) pages 142- 153, 1993.

[63] J. Keller and G. Simon. SOLIPSIS: a massively multitpgant virtual world. Ininter-
national Conference on Parallel and Distributed Technigjaed Applications2003.

[64] S.Keshav. REAL network simulator - http://www.cs.oel.edu/skeshav/real/overview.html,
1989-1997.

[65] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High Hamdth data dis-
semination using an overlay mesh.Rmoceedings of ACM SOSP, 20@803.

192 BIBLIOGRAPHY

[66] R. Kumar, Y. Liu, and K. W. Ross. Stochastic fluid theooy P2P streaming systems. In
Proceedings of IEEE INFOCOM’07, Anchorage, Alask@07.

[67] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustgriand sharing incentives in
BitTorrent systems. IfProceedings of ACM SIGMETRICS’2007, San Diego, CA, ,USA
June 2007.

[68] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Frdimg in BitTorrent is cheap. In
Fifth Workshop on Hot Topics in Networks (HotNets-V), leyi@A, USANov. 2006.

[69] N. Magharei and R. Rejaie. Understanding mesh-basedtpepeer streaming. IRro-
ceedings of ACM NOSSDAV’06, Newport, Rhode Island,, V&4 2006.

[70] N. Magharei and R. Rejaie. PRIME: peer-to-peer reaeira’en mesh-based streaming.
In Proceedings of IEEE INFOCOM’'07, Anchorage, Alaska07.

[71] N. Magharei, R. Rejaie, and Y. Guo. Mesh or multiplestré comparative study of live
P2P streaming approaches. Rroceedings of IEEE INFOCOM’'07, Anchorage, Alaska
2007.

[72] L. Massoulié, A. Twigg, C. Gkantsidis, and P. R. Rodegu Randomized decentralized
broadcasting algorithms. IRroceedings of IEEE INFOCOM’'07, Anchorage, Alaska
2007.

[73] P. Maymounkov and D. Mazieres. Kademlia: A Peer-torpef®rmation system based
on the XOR metric. IrProceedings of the®1 International Workshop on Peer-to-Peer
Systems (IPTPSpages 53—-65, Mar. 2002.

[74] T. Moreton and A. Twigg. Trading in trust, tokens, andraps. InProc. of the 1st
Workshop on Economics of Peer-to-Peer Syst@0@33.

[75] G. Neglia, G. L. Presti, H. Zhang, and D. Towsley. A netkvformation game approach
to study BitTorrent Tit-for-Tat. InProceedings of EuroFGI International Conference on
Network Control and Optimizatigdune 2007.

[76] S. R. Network. SSFNET network simulator - http://wwsfrset.org/homepage.html, 1999.

[77] T. S. E. Ng and H. Zhang. Predicting internet networktatise with coordinates-based
approaches. IRroceedings of IEEE INFOCOM’'02, New York, NY, UB&ges 170-179,
June 2002.

[78] T. Nguyen and A. Zakhor. Distributed video streaminghafiorward error correction. In
Proceedings of Packet Video Workshop, Pittsburgh, \2882.

[79] J. Nonnenmacher and E. W. Biersack. Scalable feedbaclafge groups.IEEE/ACM
Trans. Netw.7(3):375-386, 1999.

BIBLIOGRAPHY 193

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkul€hstributing streaming media
content using cooperative networking.Rnoceedings of the 12th International Workshop
on Network and Operating Systems Support for Digital Audio ¥ideq pages 177-186,
2002.

V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mo Chainsaw: Eliminating
trees from overlay multicast. IRroceedings of the 4th International Workshop on Peer-
to-Peer Systems, February 20@005.

D. Perino. The PULSE system. A new P2P prototype for $treaming. Master’s thesis,
Institut Eurecom, Sophia-Antipolis, France, 2006.

R. Peterson and E. G. Sirer. Going beyond tit-for-tagsIgning peer-to-peer protocols for
the common good. IProceedings of the Workshop on Future Directions in Distidal
Computing, Bertinoro, ItalyJune 2007.

F. Pianese. P2P live media streaming: Delivering daé@ams to massive audiences within
strict timing constraints. Master’s thesis, Institut Ezom, Sophia-Antipolis, France,
2004.

F. Pianese, J. Keller, and E. W. Biersack. PULSE, a fle#fi2P live streaming system. In
Proceedings of the 9th IEEE Global Internet Symposium 2@0&ynjunction with IEEE
Infocom 2006, Barcelona, SpaiApr. 2006.

F. Pianese and D. Perino. Resource and locality awasdanean incentive-based P2P live
streaming system. IRroceedings of the 2nd P2P-TV Workshop, in conjunction M@
SIGCOMM 2007, Kyoto, JapaAugust 2007.

F. Pianese, D. Perino, J. Keller, and E. W. Biersack. BB1lan adaptive, incentive-based,
unstructured P2P live streaming systetEEE Transactions on MultimedidNovember
2007. Special Issue on Content Storage and Delivery in eBeer Networks.

M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, ahdvenkataramani. Do incentives
build robustness in BitTorrent? IRroc. of the 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI 20@%)r. 2007.

J. Pouwelse, J. Taal, R. Lagendijk, D. Epema, and H.. &Rpsal-time video delivery using
peer-to-peer bartering networks and multiple descriptioding. InProceedings of the
IEEE Int'l Conference on Systems, Man and Cyberng@ztober 2004.

D. Qiu and R. Srikant. Modeling and performance analydiBitTorrent-like peer-peer
networks. InProceedings of the 2004 ACM SIGCOMM Conference, Portlam, C5A
2004.

J. Ritter. Why gnutella can’'t scale. no, really. httpmw.monkey.org/ dug-
song/mirror/gnutella.html, February 2001.

194 BIBLIOGRAPHY

[92] L. Rizzo. Dummynet: A simple appproach to the evaluatd network protocolsCom-
puter Communication Revie®7(1):31-41, Jan. 1997.

[93] L. Rizzo. Effective erasure codes for reliable compuaemmunication protocolsCom-
puter Communication Revie®7(2):24-36, April 1997.

[94] A. Rodriguez, C. Killian, S. Bhat, D. Kostj and A. Vahdat. MACEDON: methodology
for automatically creating, evaluating, and designingriayenetworks. InProceedings of
the USENIX/ACM Symposium on Networked Systems Design atehientation (NSDI
2004) 2004.

[95] S. Sanghavi, B. Hajek, and L. Massoulié. Gossiping witlitiple messagesEEE Trans-
actions on Information Theoyy12), Dec. 2007.

[96] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurdmtmy of peer-to-peer file
sharing systems. IRroceedings of Multimedia Computing and Networkidg02.

[97] M. Schiely and P. Felber. CROSSFLUX: an architectunepieer-to-peer media stream-
ing. Global Data Management, Volume 8, Emerging Communicat®tudies on New
Technologies and Practices in Communication, IOSRi@&s:12—-358, 2006.

[98] M. Schiely, L. Renfer, and P. Felber. Self-organizatio cooperative content distribution
networks. InProceedings of the IEEE International Symposium on NetW@ankputing
and Applications (NCA'05), Cambridge, M2005.

[99] S. Sheu, K. A. Hua, and W. Tavanapong. Chaining: A gdizexdbatching technique for
video-on-demand. IICMCS pages 110-117, 1997.

[100] J. Shneidman, D. Parkes, and L. Massoulié. Faithfidireinternet algorithms. IRroc. of
the ACM SIGCOMM workshop on Practice and theory of Incestindletworked Systems
(PINS’04), Portland, OR, USAR004.

[101] J. Shneidman and D. C. Parkes. Specification faitlesgnn networks with rational nodes.
In Proc. 23rd ACM Symp. on Principles of Distributed Compu(id®DC’04), St. John'’s,
Canada July 2004.

[102] T. Silverston and O. Fourmaux. Measuring P2P IPTVeayst InProceedings of ACM
NOSSDAV’07, Urbana-Champaign, IL, USAIne 2007.

[103] T. Small, B. Liang, and B. Li. Scaling laws and tradeadff peer-to-peer live multimedia
streaming. Inn Proc. of ACM MM’'06, October 23-27, 2006, Santa Barbaralifoania,
USA, 2006.

[104] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zharide feasibility of supporting
large-scale live streaming applications with dynamic aggpion end-points. IfProceed-
ings of the 2004 ACM SIGCOMM Conference, Portland, OR, \2584.

BIBLIOGRAPHY 195

[105] M. Steiner, E. W. Biersack, and T. En-Najjary. Actiyahonitoring peers in kad. In
Proceedings of thé"" International Workshop on Peer-to-Peer Systems (IPTPSZD0?7.

[106] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Hldkrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.Phceedings of the 2001 ACM
SIGCOMM Conferencgages 149-160, 2001.

[107] Y.-W. Sung, M. Bishop, and S. G. Rao. Enabling contiittu awareness in an overlay
broadcasting system. IRroceedings of the 2006 ACM SIGCOMM Conference, Pisa,
Italy, pages 411-422, 2006.

[108] K. Tamilmani, V. Pai, and A. E. Mohr. SWIFT: a system lwihcentives for trading. In
Proceedings of the 2nd Workshop on the Economics of Peeed¢oSystem2004.

[109] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Bueoim BubbleStorm: resilient,
probabilistic, and exhaustive Peer-to-Peer searchProteedings of ACM SIGCOMM
2007, Kyoto, Japarmug. 2007.

[110] D. A. Tran, K. A. Hua, and T. T. Do. A peer-to-peer arelgiiure for media stream-
ing. IEEE JSAC Special Issue on Advances in Service Overlay Netw2?(1, Jan.
2004):121-133, 2004.

[111] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Késti. Chase, and D. Becker.
Scalability and accuracy in a large-scale network emulatarProceedings of the 5th
ACM/USENIX Symposium on Operating System Design and Iraptatron (OSDI),
Boston, MA2002.

[112] V. Venkataraman, P. Francis, and J. Calandrino. Chspiead: Multi-tree unstructured
peer-to-peer multicast. IRroceedings of the 5th International Workshop on PeerderP
Systems, February 2008006.

[113] V. Venkataraman, K. Yoshida, and P. Francis. Chunigeh: Heterogeneous unstruc-
tured end system multicast. Rroceedings of the 14th IEEE International Conference on
Network Protocols2006.

[114] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. WMR a secure economic frame-
work for peer-to-peer resource sharing. Pnoc. of the 1st Workshop on Economics of
Peer-to-Peer Systemiune 2003.

[115] V. Vishnumurthy and P. Francis. On overlay constrectand random node selection
in heterogeneous unstructured P2P networks.Pioceedings of IEEE INFOCOM’06,
Barcelona, Spaif2006.

[116] A. Vlavianos, M. lliofotou, and M. Faloutsos. BiToShleancing bittorrent for supporting
streaming applications. Ifth IEEE Global Internet Symposium 2006 (in Conjunction
with IEEE INFOCOM 2006), Barcelona, Spai2z006.

196

[117]

[118]

[119]

[120]

[121]

[122]

BIBLIOGRAPHY

S. VWoulgaris, D. Gavidia, and M. van Steen. CYCLON:xpensive membership man-
agement for unstructured P2P overlaylurnal of Network and Systems Management
13(2):197-217, Jun 2005.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guru@dsM. Newbold, M. Hibler, C. Barb,
and A. Joglekar. An integrated experimental environmentdistributed systems and
networks. InProceedings of OSDI 'Q2December 2002.

W. Yang and N. Abu-Ghazaleh. GPS: a general peer-to-gimulator and its use for mod-
eling BitTorrent. InProceedings of the 13th IEEE International Symposium onéViog,
Analysis, and Simulation of Computer and Telecommunica®igstems (MASCOTS’Q5)
pages 425 — 434, 2005.

X. Yang and G. de Veciana. Service capacity of pegrder networks. IfProceedings of
IEEE INFOCOM’'04, Hong KongMar. 2004.

M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang. A peepé®r network for live media
streaming using a push-pull approach. MULTIMEDIA '05: Proceedings of the 13th
annual ACM international conference on Multimed@ages 287—-290, New York, NY,
USA, 2005. ACM Press.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. CoolStreamiD®Net: a data-driven overlay
network for peer-to-peer live media streaming. Rroceedings of IEEE INFOCOM'05,
Miami, FL, USA March 2005.

