

UNIVERSITE DE NICE-SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

T H E S E

pour obtenir le titre de

Docteur en Sciences

de l’Université de Nice-Sophia Antipolis

Mention : Informatique

présentée et soutenue par

Fabio PIANESE

Systèmes Pair à Pair Pour la Diffusion de Données V idéo
PULSE - Un Système Adaptatif pour le Streaming en Direct sur Internet

soutenue le 3 Décembre 2007

Jury :

Dr. Walid DABBOUS Président
Prof. Dr. Ernst BIERSACK Directeur de Thèse
Prof. Dr. Wolfgang EFFELSBERG Rapporteur
Prof. Dr. Pascal FELBER Rapporteur
Dr. Joaquín KELLER Examinateur

PULSE
An Adaptive Practical Live Streaming System

(PULSE - un Système Adaptatif pour le Streaming en Direct surInternet)

Fabio Pianese

October 31st, 2007

2

Final Version 1.0 - January 31st, 2008 - Library Version

Copyright c© 2007-2008 by Fabio Pianese (fabio.pianese@eurecom.fr). All rights reserved.

Typeset in LATEX by the author using the LYX Editor, by Matthias Ettrich and the LYX Team

3

Cum sit enim proprium
viro sapienti
supra petram ponere
sedem fundamenti
stultus ego comparor
fluvio labenti
sub eodem tramite
numquam permanenti

– Carmina Burana

4

Abstract

Live Streaming consists in distributing live media (video and audio) to large audiences over a
computer network. Providing a live streaming service over the Internet presents many challenges:
the application must respect the timing and quality constraints imposed by the nature of live
media and by user expectations while struggling with the practical limitations due to thebest
effort properties and unpredictable dynamics of the Internet. Because of the limited deployment
of native IP multicast, an Internet-based live streaming application with a global scope can only
rely onend-to-endnetwork primitives, such as unicast connections. The traditional client-server
approach to live streaming has a serious scalability limit,as the upload capacity requirement
at the server grows linearly with the user population. A P2P solution has the big advantage of
seamlessly scaling to arbitrary population sizes, as everynode that receives the video, while
consuming resources, can at the same time offer its own upload bandwidth to serve other nodes.
In theory, if every node contributed on average at least as much as it consumed, the P2P system
would have enough resources to grow indefinitely.

This work presents and evaluates PULSE, a practical P2P livestreaming system intended for
large-scale deployment over the Internet. PULSE uses an unstructured mesh-based design and
relies on local pairwise incentives as its peer selection mechanism. The most innovative feature
of PULSE is the unique coupling of incentives with feedback derived from data reception, which
leads to the emergence of clusters that regroup nodes with similar resources. By exploiting this
intrinsic clustering phenomenon and by leveraging latencymeasurements to estimate network
locality, PULSE is capable to successfully operate in a widerange of resource-constrained real
world scenarios and to support dynamic user populations andheterogeneous node upload capac-
ities.

5

6

Résumé

Le live streamingconsiste en la distribution d’un flux de données multimédias(vidéo et audio)
en direct vers une large audience par le biais d’un réseau d’ordinateurs. Offrir un service de
streaming live sur l’Internet présente plusieurs défis: respecter des contraintes de délai et de
qualité, imposées par la nature des données audiovisuelles, en utilisant un réseaubest effortau
comportement aléatoire. Par ailleurs, le support pour le multicast IP n’a pas été déployé de façon
suffisante, ce qui oblige toute application qui vise un déployement sur échelle globale à utiliser
des connexionsde bout en bout. L’approche traditionnelle client-serveur souffre d’un goulot
d’étranglement au niveau de la bande passante remontante duserveur, dont la consommation
augmente de façon linéaire avec le nombre d’usagers. Une approche pair-à-pair (P2P) a l’énorme
avantage de permettre le passage à l’échelle du système jusqu’à une taille arbitraire, puisque
chaque nœud qui reçoit le flux vidéo peut apporter ses ressources au réseau au même temps qu’il
en consomme. En theorie, au cas où chaque nœud apporterait enmoyenne la même quantité
d’upload qu’il consomme, le système pourrait s’accroître indéfiniment.

Ce travail présente et évalue les performances de PULSE, un système de streaming en direct
adapté aux exigences pratiques d’un déploiement à large échelle sur l’Internet. PULSE utilise un
réseau maillé non structuré (unstructured mesh) et applique des mécanismes locaux d’incitation
au partage en tant que critères pour le choix des nœuds avec qui établir des associations. L’aspect
le plus innovant de PULSE est l’introduction d’un mécanismequi combine l’incitation avec une
boucle de rétroaction basée sur les délais de réception, quimène à la formation de clusters parmi
les nœuds qui partagent la même quantité de ressources. Exploitant cette organisation émergente
et utilisant des mesures de latence de bout en bout pour estimer la proximité entre nœuds, PULSE
peut supporter un large éventail de scénarios réels où les ressources sont rares et distribuées de
façon hétérogène, avec une large population d’usagers au comportement dynamique.

7

8

9

Acknowledgments

The last time I had the opportunity to compile a list of peoplethat I felt deserved recognition
[84] I ended up with two pages full of names, in-jokes, and fond memories. This time I will be
more sober and to the point - mainly cutting down on the in-jokes - but still strive not to forget
too many people.

Thanks to my family. It’s been a long time since I left you to follow this unusual path - almost
five years, 18% of my whole current lifetime, give or take. Yet, I constantly feel your love and
support, and hope you feel mine, as strong as ever. Wherever Ihave been, wherever I will be, I
wish you to know that I have ever been - and ever will be - grateful to you: for all that you have
been to me, for what I am, thanks! I owe you everything.

I spent the first two years of my thesis in Paris. A wonderful place, a city I deeply love: I love
your streets and boulevards, your gardens, your bridges, your monuments. I love your immortal
spirit, this strange feeling of being in the heart of historyand humankind. I love your restaurants,
too! Maybe one day I will have the chance to live there again...

Thanks to my friends in Paris. It has been a pleasure to meet you, to hang out with some of you,
to drink fine wine with some others of you, to have fun with everyone of you. Let’s celebrate the
wine-drinkers! I want to especially thank Thierry Baudoin:not only is he a great friend, he is
also the one who provided some of the best wine bottles I have ever tasted. Thanks to Nicolas,
my roommate in Paris for more than two years. How do I miss our old apartment in the 15th
arrondissement! I wish you both well and to your families (and new-born children!). Andbonne
chancefor you life in China,ma poule!

Thanks to my colleagues in France Telecom R&D, Issy: the timeI spent with you has been so
precious to me. I’m most grateful to Dr. Joaquín Keller for his guidance, support, and friendship
over these years. Thanks to Dr. Gwendal Simon, it has been a pleasure to work with you. Also
thanks to Dr. Frederic Dang Ngoc, the third member of our former NETOFPEERSteam, I wish
you the best for your North-American adventure. I feel that,as a ridiculously small team (of
which I was the fourth and - unfortunately - last member), we have achieved a lot, and am proud
of our work. If perhaps not in the right place, we have been doing the right things at the right
time, and as well as we could do.

Thanks to my interns! It is with emotion that I acknowledge the role of Diego Perino, my first
student, a person who has contributed a lot to my work, and a good friend. Diego wrote the code
of the prototype PULSE node and helped with the testbed and PlanetLab measurements. Thanks
for your tireless devotion to the task: you went well beyond your (not-so-simple) duty of intern,
and I hope that the results we could get have fully paid your effort back.

Thanks to all the people I met in France Telecom R&D, to name just a few: my friend and fellow
PhD student Franck Shen, Olivier Gachignard, Olivier Bouté, Dr. Fabien Mathieu, Dr. Patrick
Brown, Jean Béhue. Many thanks to my secretary in Paris, Chantale Couvert.

10

I then had to leave Paris, and spent my last year in Sophia Antipolis between the Institut Eurecom
and the local branch of France Telecom R&D. While I had to mourn the loss of my Parisian social
life, which - to be honest - was replaced by no social life at all, I had the opportunity to work
in close contact with many brilliant people. I wish to thank some of them here: Prof. Pietro
Michiardi, Prof. Guillaume Urvoy-Keller, Dr. Damiano Carra, Dr. Taoufik en-Najjary, Moritz
Steiner, Matteo Varvello, Daniele Croce. Thanks to KrishnaK. Ramachandran (“ça va?”), it was
really a pleasure to meet you here. Also, many thanks to Eurecom director, Dr. Ulrich Finger,
and all of the Eurecom staff.

No social life, however, does not mean no human interaction at all. Even if remotely, I could
count on the support of my dear old friends. They say: “years pass, things change”. I firmly
believe that most people do not. At least, you didn’t, and I amthankful for that.

And here I am. These three years have been long, and I am both glad and sad as I approach the
end of this venture. Of all the outstanding people who supported me during my work, I want
to sincerely thank my advisor, Prof. Ernst W. Biersack. Evenwhen in Paris, 900 Km away
from your office, I have always felt backed by your knowledge,wisdom, and human support. I
remember with fondness our evening meetings, held in Paris each time you happened to spend
some time there, when we would discuss our work in unlikely places such as Frenchbistrotsor
Scottish pubs... Thanks for teaching me how to do research. Thanks for allowing me the freedom
I needed to manage my thesis project. Thanks for understanding the delicate compromise I had
to strike between the academic and corporate worlds. Thanksfor being there when I needed you,
with advice, criticism, and praise.

This dissertation is the final result of three years of speculation, hypoteses, and experiments
about a practical system that targets a very specific problem. Also, it is an attempt to look in a
comprehensive way to the problem itself, from its historical roots to its current incarnation, and
to build a systematic framework of the existing approaches to solve it. I hope that the reader will
find this work - if not enjoyable - at least interesting and maybe useful. And I fully claim my
responsibility for any mistake or inaccuracy hereby contained.

Saturday, July 14th 2007

Fabio Pianese

Contents

1 Introduction 25

1.1 Why Peer-to-Peer Live Streaming? 25

1.1.1 A Potential ’Killer Application’ 25

1.1.2 Beyond the Limits of a Centralized Approach 27

1.1.3 Advantages of P2P Live Streaming 28

1.1.4 Challenges in P2P Live Streaming 28

1.2 Issues Not Covered in This Thesis 29

1.3 Thesis Contributions 30

1.4 Thesis Organization 31

2 Related Work 33

2.1 A Brief History of P2P Live Streaming 33

2.1.1 Live Streaming, or the Internet Television 34

2.1.2 The Long Wait for Native Multicast 37

2.1.3 On Current Peer-to-Peer Networks 39

2.2 Basics and Requirements of Media Streaming 42

2.2.1 Time Matters! . 43

2.2.2 Media Quality Also Matters .. 45

2.2.3 Application Design: An Open Debate 46

2.3 P2P Live Media Streaming Applications 48

2.3.1 Current P2P Live Streaming Systems 49

2.3.2 Analysis of P2P Overlays for Media Distribution 52

2.4 Conclusions .55

11

12 CONTENTS

3 The PULSE System 57

3.1 Introducing PULSE .. 57

3.1.1 The PULSE Manifesto . 58

3.1.2 Background . 59

3.1.3 Fundamental Insights .. 60

3.1.4 Claims . 62

3.2 Terminology .64

3.2.1 The Peers . 64

3.2.2 The Stream . 67

3.2.3 Receiving the Data . 68

3.3 Structure of the PULSE Node 69

3.3.1 Data Buffer . 69

3.3.2 Knowledge Management . 73

3.3.3 Trading Logic . 74

3.4 Algorithms . 75

3.4.1 Joining the Network . 76

3.4.2 Initializing the Buffer 76

3.4.3 Bandwidth Allocation .76

3.4.4 Peer Selection . 78

3.4.5 Chunk Selection and Request .. 79

3.5 Implementation .. 81

3.5.1 Practical Details .82

4 Understanding the Behavior of PULSE 85

4.1 Modeling Static Systems 85

4.2 Analyzing Incentive-Based Systems 86

4.2.1 Intrinsic Incentives .. . 87

4.2.2 External Incentives .. 88

4.3 Simulating a Distributed System 88

4.3.1 Background . 89

4.3.2 Pulsim - The PULSE Simulator .90

CONTENTS 13

4.4 Large-Scale Emulation 91

4.4.1 Implementing a Prototype Node .. . 92

4.4.2 Emulating a Large-Scale System 92

4.4.3 PlanetLab . 93

4.5 Deploying on the Internet 93

4.5.1 The Potential of Measurement Studies 94

5 Metrics For Performance Evaluation 95

5.1 Introduction .. 95

5.1.1 Dealing with a Data-driven System 95

5.1.2 “Mesh Overlays” and Performance Metrics 96

5.1.3 Outlook . 96

5.2 Performance Metrics for Data-driven Systems 97

5.2.1 Data Reception Delay at the Nodes 97

5.2.2 Bottlenecks and Bandwidth Efficiency 103

5.2.3 Understanding the Data Distribution Process 106

5.2.4 Locality Awareness of Data Exchanges 107

5.3 Behavioral Metrics: the Role of Incentives 110

5.3.1 Class Affinity . 110

5.3.2 Class Friendliness .111

5.3.3 Soft Fairness . 112

5.3.4 Toward a Better Concept of Fairness for PULSE 115

5.4 Conclusion . 116

6 Simulation Results 119

6.1 Methodology and Expectations 119

6.1.1 Choice of Simulation Step .. 120

6.1.2 Modeling Data Transfers .. 120

6.1.3 Model of Knowledge Propagation 121

6.1.4 Expectations and Limits of Our Modeling Approach 122

6.2 A Set of Scenarios for Simulation 124

6.3 PULSE Parameters: How to Set Them? 126

14 CONTENTS

6.3.1 Initial Transitory Phase 127

6.3.2 Critical Parameters .. 130

6.3.3 Long-term System Stability .. . 131

6.4 Effects of the Peer Selection Algorithms 133

6.4.1 Varying the Number of Connections 134

6.4.2 Lag Performance across Bandwidth Scenarios 136

6.4.3 Understanding Node Interactions 137

6.5 PULSE: a Quantitative Analysis 145

6.5.1 Analysis of Data Distribution Performance 146

6.5.2 Asymptotic Behavior of Node Lag 148

6.6 Results under Dynamic Membership 150

6.7 Conclusions .152

7 Experiments and Real Measurements 155

7.1 Validating the Simulation Results 155

7.1.1 Convergence and Evolution of Node Lag 157

7.1.2 Bandwidth Classes and Data Paths 158

7.1.3 Interactions between Bandwidth Classes 159

7.1.4 PULSE under Churn . 161

7.1.5 Results of PlanetLab Deployment 162

7.2 Evaluating Latency Awareness 163

7.3 Conclusions .165

8 Conclusion 167

8.1 Contributions .. 167

8.2 Outlook . 168

9 Synthèse en Français 171

9.1 Introduction .. 171

9.1.1 Définition du problème .172

9.1.2 Contributions . 174

9.2 PULSE et ses algorithmes .. . 176

CONTENTS 15

9.2.1 Objectifs . 176

9.2.2 Principes et innovations .. . 177

9.2.3 Fonctionnement du système .. 179

9.2.4 Implémentation . 180

9.3 Évaluation .181

9.3.1 Propriétés des systèmes non-structurés 181

9.3.2 Simulation . 182

9.3.3 Émulation sur large échelle 183

9.3.4 Résultats de l’évaluation 183

9.4 Conclusions .185

Bibliography 187

16 CONTENTS

List of Figures

3.1 The Buffer of a PULSE Node .. 70

3.2 Internal Organization of the PULSE Node and Data Paths 83

5.1 Histogram of the Number of Nodes per Lag Value by Class (t = 81) 100

5.2 Plot of Average Class Lag and Lag Variance over Time 101

5.3 Average Node Lag vs. Chunk Reception Delay 103

5.4 Amount of Data Transmitted versus Transfer Locality 109

5.5 Soft Fairness Plot for a Given Bandwidth Class (in this example: RICH) 114

6.1 Transitory of a PULSE System (1000 peers, HH-LB,R = 16 chunks/s,TW = 64)128

6.2 Snapshots of Chunk Reception Lag vs. Node Lag During Convergence 129

6.3 Typical Pattern of Instability due to a Small Trading Window (TW = 32) 130

6.4 Impact of Sliding Tolerance on Efficiency withRI = 1 133

6.5 Snapshot of Data Exchanges during an EPOCH (HH-LB) 134

6.6 HH-LB Scenario: PULSE with Standard Parameters (4M, 8 F, TW = 64) 135

6.7 HH-LB Scenario: Reducing the Number ofFORWARD Connections 136

6.8 Examples of System Evolution in Various Bandwidth Scenarios 137

6.9 HH-LB Scenario: Class Affinity vs. Number ofFORWARD Connections 139

6.10 Weight of Data Exchanges over Different Connections (HH-LB Scenario, 8F, 4M) 141

6.11 Weight of Data Exchanges over Different Connections (HH-HB Scenario) 142

6.12 Total Duration of Unilateral/BilateralMISSING Interactions (100 nodes, HH-LB) 145

6.13 Comparison of Max Depths and Average Widths of Distribution Trees (1000 nodes)146

6.14 CDF of Average Node Class Distribution at Steady State (1000 nodes) 147

6.15 Asymptotic Dependence of Average Node Lag on System Size 149

17

18 LIST OF FIGURES

6.16 Effects of Node Transience on Global Lag Performances (8 FORWARD) 151

6.17 Effects on Soft Fairness of Sudden Disappearance of VR Nodes (HH-LB) 152

7.1 Testbed Validation of the PULSE Prototype Node: Class Lag over Time 156

7.2 Analysis of Average Chunk Distribution Tree Properties(800 nodes) 159

7.3 Average Cumulative Data Exchange Outcomes by BandwidthClass (G5K, HH-LB)160

7.4 Average Class Lag over Time for HH-LB under SPIKE and SQUIT 161

7.5 Results of an Uncontrolled PULSE Run on PlanetLab (200 nodes) 163

7.6 Effect of Latency Bias on Cumulative Connection Latency. 164

7.7 Effect of Latency Bias on Overall Data Exchange Locality. 165

List of Tables

2.1 Outlook on Video Streaming Applications 44

2.2 Summary of Main Approaches to Live Streaming 52

3.1 Summary of System-Wide Parameters 67

3.2 Other Parameters Appearing in the PULSE Algorithms 75

6.1 Composition of Bandwidth Class Scenarios (distribution, upload) 125

6.2 Buffer Reset Statistics: Unstable Peers by Class at Steady State 135

6.3 Comparison of Normalized Affinity and Friendliness 140

6.4 Soft Fairness: Comparing HH-LB and HH-HB Scenarios withand withoutFOR-
WARD . 144

6.5 Average (Std. Dev.) of Max. and Average Tree Depth at Steady State (1000 nodes)147

6.6 Average per-Layer Distribution of Node Classes in the First Layers (1000 nodes) 148

7.1 PULSE Protocol Parameters Used for Testbed Experiments. 157

7.2 Effect of Latency Bias on Average Node Lag (in chunks) 165

9.1 Applications pour la Diffusion de la Vidéo 172

19

20 LIST OF TABLES

List of Algorithms

1 Buffer Initialization: Condition to Set Initial Window 76
2 MISSING Selection Algorithm . 78
3 Optimistic Peer Selection Strategy 79
4 FORWARD Selection Algorithm . 80
5 Chunk Scheduling at the Sender Peer 80
6 Chunk Scheduling at the Source .. . 81
7 Chunk Request Scheduling at the Receiver Peer 82

21

22 LIST OF ALGORITHMS

List of Main Variables

Ui Upload capacity of the access link at nodei

Di Download capacity of the access link at nodei

Bi,j Connection bandwidth between nodei and nodej

RTT Network round-trip time

N Number of nodes in the system

Pi Nodei (uniquely identified)

d Node degree

SBR Stream bit-rate [Kbit/s]

R Chunk rate [chunks/s]

cj j-th chunk in the stream

TB Average node lag

TV Node playout delay

W Size of node Sliding Window [chunks]

TW Size of node Trading Window [chunks]

EPOCH Time between two subsequent peer selections

C Latency bias coefficient for peer selection

Hi Local value of History score about nodePi

23

24 LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Why Peer-to-Peer Live Streaming?

We decided to concentrate our attention on the problem of live streaming for several reasons.
First, scalable data distribution is a fundamental need in the Internet today: while the distribution
of static (i.e. pre-stored) content has been a topic of widespread interest during the last decade,
the attention to live content distribution has been more recent. The rise of peer-to-peer (P2P)
architectures in the context of static content distribution has provided a definite improvement in
scalability over the previous server-based architectures. Extending a P2P approach to live media
streaming allows to address the scalability issues of centralized systems, presents interesting
challenges, and still constitutes an open research problem.

Second, the understanding of live media distribution is much less consolidated than the classic
case of static file distribution, as it is subject to timing and ordering constraints. Third, live
streaming is a problem with clear boundaries and requirements: as new data are constantly gen-
erated(i) all the viewers are loosely synchronized in receiving roughly the same stream segment,
(ii) the system as a whole has a short memory and(iii) it can operate with a larger independence
on the user behavior patterns than bulk data distribution orVoD. Fourth, scalable live streaming
applications have today a huge practical interest, as the equipment required (powerful comput-
ers, digital cameras or web-cams, Internet connections) isavailable off-the-shelf and is usually
cheap: this constitutes a fundamental premise for the commercial success of a new application
or service, enabling it to spread and succeed among the general population. Finally, we believe
that there are several aspects of the existing practical P2Plive streaming systems that can be
improved, and we make several contributions in order to do so.

1.1.1 A Potential ’Killer Application’

In the beginnings of the Internet, the only type of data that could be exchanged and displayed
by users was text. Images were then introduced: initially inthe form of large uncompressed

25

26 CHAPTER 1. INTRODUCTION

bitmaps, then compressed using formats with an ever-increasing efficiency since the beginning
of the 90’s. The continuous growth in the access bandwidth and CPU power has allowed to
integrate and display complex combinations of text and images in the form of WWW pages.
Web-aware scripting (Javascript) and programming languages (Java, ActiveX, Flash) have added
an interactive dimension to otherwise ’static’ web pages. Full applications that are able to run
inside the ubiquitous web browsers allow today to perform tasks that once required the installa-
tion of platform-specific binary executables. The seamlessdiffusion and reception of live media
streams to arbitrarily large audiences could well be the next successful killer application of In-
ternet technology.

A Long-Awaited Development For a long time, video over the Internet has actually been con-
sidered by many “the next big thing”. During the last 20 years, Internet service providers and
telephone companies have devoted exceptional resources tothe study of the impact of video dis-
tribution over their networks, both in technological terms(how to transport the media data to the
home users, how to guarantee appropriate levels of quality)and from an economical perspective
(how can we make money from it). The research in networking has followed the expected needs
of the industry, providing insights on the theoretical feasibility of the transmission of video and
on the technological limitations that had to be overcome to allow an efficient distribution of data
from one source to many destinations.

The Shadow of Illegality Quite recently, a formidable interest for streaming technology has
also been expressed by the well-established content providers, along with equally formidable
concerns about how to protect their valuable content, control its distribution, and avoid to en-
danger their existing market. Having realized the inherentdanger of the free flow of information
allowed by the Internet to their current business model, they have set in motion a titanic effort
to protect their interests by way of technical measures [6],legal litigation [2], propagation of
FUD (fear, uncertainty and doubt) over the press and the media, and lobbying efforts toward
lawmakers and regulatory bodies.

The success of this multi-pronged effort menaces the success of large-scale media distribution
applications. The danger comes especially from the legislative and regulatory fronts: the en-
actment of laws that set arbitrary limits on purely technological matters, or the introduction
into hardware and software standards of technical measuresthat prevent the “unauthorized” use
of the capabilities of general-purpose computing equipment. While in the regulatory front the
manufacturers have shown to be hostile to restrictions mandated by standards, as they decrease
the usefulness of the products and thus their value for theircustomers, there is no such market
pressure on the lawmakers. Several countries have been adopting laws that not only sanction
copyright infringement as a civil offense, but that punish as penal offenses thecircumvention of
technical restrictions(e.g. Digital Millennium Copyright Act [7] in the USA, European Union
Copyright Directive [1] in Europe) or the conception use anddistribution of peer-to-peer appli-
cations (e.g. the “Droits d’Auteur et Droits Voisins dans laSociété de l’Information” law [4]
in France), and assimilate to theft the fact of downloading copyrighted data (e.g. Italian and

1.1. WHY PEER-TO-PEER LIVE STREAMING? 27

German law).

A solution to this heated controversy between the owners of popular content and the general pub-
lic does not seem to be in sight yet, as it would probably require a full rethinking of established
juridic concepts such ascopyrightandintellectual property.

1.1.2 Beyond the Limits of a Centralized Approach

It is quite interesting to notice that the distribution of media over the Internet has not taken off
thanks to the explicit intervention of the industrial or academic world. Rather, the small play-
ers - such as single individuals, start-up ventures, and technically educated Internet users as a
whole - have often been the first to explore the possibilitiesof the existing network infrastruc-
ture, anticipating the so-calledinnovationslater introduced by the established players of the
telecommunications field.

The development and success of P2P systems is as a good example of user-driven innovation.
These small players were in fact the ones confronted with serious practical issues, such as lack
of economic resources, unreliable hardware and limited connectivity - they could not afford
powerful server machines, nor large data storage facilities, nor fast Internet access. For them,
P2P was more a necessary evolution than an incremental optimization over the server-based
architectures.

In a world where servers were required to support every kind of online activity - from data down-
load, to search, to instant messaging, etc. - the adoption ofa distributed approach that enabled the
exploitation of the resources provided by the users was a definite breakthrough. Initially, there
was widespread skepticism over the effectiveness of P2P networks as a replacement of server-
based technology. Especially the earliest P2P software such as the first iterations of Gnutella
were not meant to support large scale systems [91], and were expected to be deployed in local
contexts with small user populations.

The astonishing growth in popularity of these applications, coupled to the reduced need for re-
sources at the “server”, quickly spurred a considerable interest. Suddenly, P2P became a sort
of buzzword, which was supposed to grant either the immediate success ofa new application,
enormous cost savings at the service provider, or both. Thisphenomenon sometimes reached un-
reasonable and hilarious proportions (“Let’s do <anything> using P2P! Quick!”) before finally
giving way to more rational behaviors.

Today, the design of large-scale services and applicationsbenefits from a large body of lessons
learned from the evolution of P2P applications. The most important insight is that a P2P approach
works well to solve few specific issues but is impractical forsome others. Problems such as large-
scale data distribution [33], data storage, keyword-basedor pattern-matching search [73] can
enjoy significant benefits when distributed techniques are adopted. On the other hand, features
such as user presence tracking and authentication are extremely challenging to reproduce in a
pure P2P fashion.

28 CHAPTER 1. INTRODUCTION

1.1.3 Advantages of P2P Live Streaming

Live streaming is a challenging application because of its timing constraints. However, it is also
particularly interesting because these constraints are loose enough to leave a significant degree of
flexibility in the architectural choices available to the system designer. While few tens of seconds
are allowed between the generation of data at the source and the reproduction at the receivers,
this short time frame can still be sufficient to process the data stream and to distribute it through
multiple “hops” over the network.Thanks to the non-negligible amount of tolerance to playout
delay, the live streaming application allows the adoption of a large range of technical solutions,
including P2P techniques.

A P2P approach has the big advantage of making the systemscale seamlessly to arbitrary sizes:
every node in the P2P network, while consuming system resources, will at the same time offer its
own resources to serve other nodes. In principle, if every node contributes at least as much as it
consumes, the P2P system will be able to grow indefinitely. This property, calledself-scalability,
is the first compelling reason for the research in P2P live streaming.

Moreover, in a client-server architecture the cost of mediastreaming is completely bestowed
on the content provider, as it requires the allocation of an amount of resources at the server side
directly proportional to the expected peak audience. The media source in a P2P streaming system
just needs a constant (and small) pool of resources, as each user can contribute to the system.
Theeconomic benefitsof this property are especially relevant for large user populations.

1.1.4 Challenges in P2P Live Streaming

In recent years, a number of P2P systems for live streaming, which adopt several different archi-
tectures, have been proposed. While Chapter 2 will be devoted to the analysis and comparison
of the systems in the literature, we anticipate here the mostrelevant issues that are driving the
research activity in this field:

Scalability While resources may scale without limits, a theoretical upper bound of the system
size exists for time-sensitive applications such as live streaming. This limit is due to the delay
introduced by each “hop” that is traversed by the media data.As a consequence, the primary
challenge of P2P live streaming is to devise a data distribution technique that guarantees the
constant propagation of the media data through the system andavoids an excessive delay
build-up as the user population increases.

Bandwidth Awareness Many practical issues arise when switching from the classicclient-
server paradigm toward a P2P approach. Another challenge toachieving self-scalability comes
from the questionable assumption that all nodes will contribute sufficiently to the system. Indeed,
nodes may contributeless than what they consume, or evennothing at all, either because of
inherent technical limitations (lack of resources, presence of a firewall) or on purpose, having
made the explicit choice to defect (freeloading).

1.2. ISSUES NOT COVERED IN THIS THESIS 29

Fairness If the assumption of cooperation does not hold, several problems (such as the rejec-
tion of new users or the loss of data) can compromise the functionality of the system and the
playback quality. This problem can be approached from two main points of view: as a matter of
resource allocation, i.e. how to place the peers in the system and distribute the data inorder to
to efficiently exploit the available resources, and ofincentivation (or access control),i.e. how to
discourage or ban from the system the nodes that do not contribute enough.

Locality Awareness Another widespread concern in P2P content distribution comes from the
fact that the data are replicated in a non-optimal way compared to native IP multicast, as the
application is not aware of the underlying network topology. The lack of locality awareness,
namely higher media reception delay and redundant link utilization in the network, can degrade
the performance of time-sensitive applications such as live streaming.

Resilience In addition to the best-effort and unreliable nature of the network, using interme-
diate nodes as functional elements of the system increases the probability that the service will
be disrupted by transient changes in the system membership.Since a large-scale P2P streaming
application relies almost completely on ordinary users to provide the service, the original media
provider has little control on the way data is distributed and on the quality perceived by the users.
Unlike the underlying network infrastructure (i.e. routers, cables, etc.), which has an extremely
high availability and fault tolerance, the applicative overlay built by the nodes of a P2P system
(i.e. software processes running on user hardware) offers no such guarantees [14]. Any peer can
be expected to join the system, leave the system, misbehave,or fail at any moment: to provide an
uninterrupted service, the system must hide the effects of node transience and manage to restore
as soon as possible its correct functionality.

Accessibility The ease and freedom of access by potential broadcasters to the live streaming
infrastructure can be seen as a further technical challengein system design: the application
should not require a large amount of resources (upload capacity) at the media provider, so that
users with broadband Internet access can still act as streaming sources. The application should
be easy to set-up and use, so that casual users will not be discouraged from participating in the
system. In a system where the content is generated by the users, accessibility is the key factor
that boosts the user-perceived value the application.

1.2 Issues Not Covered in This Thesis

There are several related issues that we do not investigate in this thesis:

• Security Issues: Security is a fundamental aspect in every system, especially when large-
scale computer networks are involved. Besides the problem of protecting the integrity of

30 CHAPTER 1. INTRODUCTION

the media data, which is briefly touched on in Chapter 3, and the need to protect the system
from users who do not contribute sufficiently to the system, which is a central aspect of
this thesis, all other security issues, such as robustness to denial of service (DoS) attacks
and to blatantly malicious behavior (byzantinepeers,sybil attacks [39], collusion between
nodes, manipulation of protocol information, etc.), lie out of the scope of this work. Due
to the partial reliance on altruism to improve and stabilizethe system performance, we do
not guarantee either that the algorithms and protocols presented in this thesis are capable
to withstand strategic exploitation by greedy players [88].

• Optimality of Chunk Selection: Peer selection and chunk selection algorithms are the two
core elements of data-driven P2P live streaming systems. Inthis thesis we focus on sce-
narios where nodes are non cooperative and their capacitiesare highly heterogeneous, as
required by our practical approach: we argue that, in these circumstances, peer selection
is the most important algorithmic component and, as such, itdeserves to be the primary
focus of our attention. Our choice of chunk selection algorithm, while carefully reasoned,
was largely based on empiric considerations.

• Comparison with Other Systems: An evaluation of PULSE against live streaming systems
in the literature is not included in this work. We are convinced of the usefulness of this
study, as it is the logical fulfillment of a practical study:“Will it work better or worse?”
Unfortunately, as far as we are aware, there is a sore lack of published experimental results
or data traces from other data-driven systems that can be used as a basis for comparison
(i.e. verifiable and obtained under reproducible conditions). Our motivation in releasing
the prototype code and publicly documenting the algorithmsis to provide to the community
a reference for future comparisons.

1.3 Thesis Contributions

This thesis makes several contributions. It first approaches the problem oflive media streaming
from a practical point of view . The requirements of large-scale P2P streaming applications are
presented and discussed starting from theset of challengesenumerated above, which reflect the
current technical limitations of Internet technology (andtheir likely evolution in the foreseeable
future). An in-depth survey of the related work is then performed, whose aim is to evaluate the
existing live streaming architectures in light of their suitability to a large-scale deployment over
the Internet. Insights on the architectural features that help toward this goal are also provided.

The second contribution is thedesign of PULSE, a P2P live streaming system that satisfies the
previous requirements. The PULSE system is among the first systems to rely on an unstructured
mesh-based design, and introduces an incentive-based mechanisms for the selection of neighbor
nodes. By leveraging an intrinsic resource-based clustering (due to the pairwise incentives) and
by exploiting the loose synchronization between peers (using a feedback mechanism based on
reception performance), PULSE is capable to operate in a wide range of real-world scenarios.
The advantages of PULSE over existing systems can be summarized as:

1.4. THESIS ORGANIZATION 31

• Support for very high levels of churn (node arrivals and departures)

• Support for strongly heterogeneous distributions of peer upload capacity

• Efficient use of the available upload capacity, especially under scarcity of resources

• Fast adaptation and recovery from abrupt changes in networkconditions

• Implicit awareness to network locality through latency measurements

• Attention to the quality of media playback, striving to minimize degradation

The third contribution is a comprehensive set ofmetrics for generic data-driven systems, com-
plemented by additional metrics that are useful to assess the bandwidth and latency awareness
of adaptive live streaming systems such as PULSE. A small survey on the current techniques
that allow to describe the behavior of data-driven systems,covering both theoretical models and
empiric methods, is also included.

The fourth contribution is theimplementation of asimulator that models the complex behavior
of a PULSE system. Based on the insights obtained by experimenting with the simulated algo-
rithms, a stand-alonenode prototypewas also implemented. These pieces of software have been
used to improve our understanding of the emergent global behavior of PULSE systems that oper-
ate under a variety of bandwidth distribution scenarios, node membership patterns, and network
environments.

The fifth and last contribution is the qualitative and quantitativeanalysis of PULSEbased on
simulation and emulation results. We first validate that thePULSE algorithms are operating as
expected, and then assess their performance in a large rangeof challenging scenarios in which
structured systems would hardly be able to operate. We specifically evaluate the awareness of
the resulting overlay mesh to resource availability in the system and to pairwise network latency,
and describe the average characteristics of the data paths that connect the source to the nodes.

1.4 Thesis Organization

The rest of the thesis is structured as follows. Chapter 2 presents live streaming over the Inter-
net in an historical and technical perspective. The currentsolutions for P2P live streaming are
then introduced: after restating in better detail the main challenges of this problem, the various
available design options are compared and conclusions on their viability are drawn. Chapter 3 de-
scribes the PULSE system in its entirety - the basic insights, the terminology, the algorithms, and
the implementation. Chapter 4 approaches the problem of understanding a dynamic mesh-based
system like PULSE: after a survey on the most recent theoretical models and on their current
limits, we illustrate the empirical techniques that we had to adopt to study our system. Chapter
5 introduces an original set of performance metrics to describe the behavior of a generic data-
driven system. An additional set of metrics that correlate the availability of node capacity and

32 CHAPTER 1. INTRODUCTION

data reception performance is defined: these metrics will bethe fundamental tools of our sub-
sequent analysis of PULSE by way of simulation in Chapter 6 and emulation on medium-scale
network testbeds in Chapter 7. Chapter 8 concludes this work.

Chapter 2

Related Work

This chapter approaches the subject of live streaming in a broad perspective. Section 2.1 briefly
traces the evolution of modern-day streaming from its earlyroots in radio broadcasting. Section
2.2, presents the requirements and the main challenges of supporting large scale data distribu-
tion under timing constraints. Section 2.3 follows the chronological evolution of Internet-based
streaming systems during the last decade, with an analysis of the properties of the main overlay
architectures and a study of their practical advantages andlimitations. Section 2.4 concludes the
chapter.

2.1 A Brief History of P2P Live Streaming

Human beings have a distinctive trait in that they can learn from other people’s experience1.
Communication is the principal vector through which information is conveyed to others. The
human society can be seen on many levels as a “communication framework”, which allows the
replication and transmission of knowledge both across time(e.g. from parents to children) and
across space (e.g. among individuals of the same population).

Looking back in history, we can notice how the means used to spread knowledge to larger and
larger audiences have closely followed the growth of the human population. Also, we can appre-
ciate how the available means of communication have been at all times functional to the structure
and the needs of the predominant social organization.

The demographical increase of the human race, together withthe establishment of dense com-
munities living in limited spaces, has introduced the need for new methods to effectively deliver
information to people. The long way from the early beginnings of human organization - when
men supposedly began to aggregate in small groups of nomadichunters-gatherers - to the current
globalized post-industrial mass society has been paved by technological breakthroughs, which
have then become the necessary basis for the subsequent social evolution. We can think about

1“[and] are also remarkable for their apparent disinclination to do so.” (Douglas Adams)

33

34 CHAPTER 2. RELATED WORK

carved signs on the stone and the invention of alphabets; theevolution of writing supports, from
clay tablets to parchment, papyrus, and then paper; the use of scrolls, replaced by codices and
books; the printing press, which made possible the diffusion of literary works on a broader scale,
such as pamphlets and newspapers; the mechanical printing machines, capable to generate thou-
sands of copies of a single text in a short time.

In the last two centuries, the technological breakthroughsrelated to human communication have
occurred at an ever increasing pace, thanks to our improved scientific understanding of physical
phenomena: the discovery of the laws of electricity and electro-magnetism, the telegraph, the
telephone system, the birth of radio communications, the development of computing machines,
the advent of long-distance computer networks, the tremendous advances in digital electronics
and optoelectronics. All these technologies distinctively shape the evolution of the human soci-
ety, revolutionizing in large part the way people live, behave, think, and perceive the reality.

The20th century has been profoundly influenced by the advent of the first two forms of real-time
mass-media: radio and television broadcasting. Suddenly,the horizon of the knowledge available
to common people, previously limited to a small geographical scope, was expanded to a national
or continental scale, and the speed at which information could spread among the population
became nearly instantaneous. The public opinion was thus born. The art of harnessing the power
of the masses also began to develop. Information and misinformation started to become tactical
weapons, called intelligence and counter-intelligence. Wars were fought, won or lost with the
help of AM radio waves and TV shows. Political speeches, news, ideology, moral values, fashion,
religion, social trends, education, advertisements - all these (and more!) started flowing each day
into every household by the small TV screen.

Television does not only allow ’to see far’, as its name implies. It creates and distributes popular-
ity, it forges a background of well-known concepts, and facts that will be shared by people over
an enormous spatial scale. Radio and television have now become an unprecedented source of
human synchronization, as they regularly dictate, through their schedule and message, a single
and common dimension of time and culture.

2.1.1 Live Streaming, or the Internet Television

An inherent property (and limitation) of radio and television is that they are a one-to-many broad-
casting schemes. The access to these technologies by private citizens is restricted by many fac-
tors: the cost of the equipment necessary to produce, process, and transmit information over
a meaningful distance, the regulatory rules, the limited availability of licensed radio frequency
bands, and the difficulty of gaining popularity starting from a complete anonymity.

Cable Television and Direct-to-Home satellite televisionhave begun to emerge in America and
Europe in the 1970s, offering a much larger choice of television channels and service providers.
They did so using either a wired medium (fiber/coaxial cable)or microwave frequency channels
(C band around 4 GHz, Ku band between 12 and 18 GHz), which are subject to less strin-
gent regulations. The recent and widespread push for digital terrestrial television broadcasting

2.1. A BRIEF HISTORY OF P2P LIVE STREAMING 35

will probably further mitigate the limitations due to the scarcity of UHF/VHF frequency bands.
However, the use of different frequencies and signal encodings does not eliminate any of the
fundamental restrictions on the open access to the medium.

The availability of high-speed computer networks and powerful commodity hardware has opened
new possibilities for the distribution of video and audio data. If we transcend the classical im-
plementation of television, which uses a closely-regulated medium to convey information, we
can easily imagine a system where another medium of communication, for example a public
computer network, is used to replace the radio channel.

The Internet: An End-to-End Paradigm The advent of the Internet as an open and vendor-
neutral world-wide communication infrastructure has deeply marked the end of the last century.
It is quite interesting that the enormous growth in size and importance of the Internet initially
went largely unnoticed by the masses, until around 1996, when the “Internet phenomenon” sud-
denly emerged: in a few years, the general population becameaware of the Internet, that started
to be a prominent factor in the culture and lifestyle of most first-world countries.

The evolution of Internet applications has closely followed the technological development of the
medium: from the earliest program,e-mail, which was intended to deliver short text messages
between users of different machines - followed byftp, to perform reliable file transfers - to the
world wide web(in origin just HTTP+HTML), for the retrieval and presentation of interlinked
structured data, and to a plethora of other applications that deal with new data typologies and
address specific user needs. This evolution has only been possible because of the basic technical
and philosophical foundation of the Internet: theend-to-end principle.

On the Internet, packet switching supported by a routing protocol is used to propagate the data
over the network. Data are cut into small segments calledIP datagrams, and source and des-
tination addresses are associated to the individual datagrams before they are sent out into the
network; the core of the network is made of routers, computers whose main task is to send the
datagrams hop after hop toward the correct destination, making forwarding decisions based on
the content of their routing tables. A small number oftransport protocolsoffer the basic func-
tionalities required by the majority of the applications, such as reliable, ordered, at most once
data delivery (TCP) and unreliable data delivery (UDP).

The Internet is built so that the network itself is basicallydumb, as it only provides a way for
information to reach its final destination. Theintelligenceof the network only resides at the end
points, where applications are run by the users and deal withthe users’ data. The network does
not cares neither about the data format, nor about the protocol that an application uses. The end-
to-end principle has given a precious freedom from technical constraints to Internet users, and
it has made (and still makes) it possible to deploy and test new applications without the need to
make modificationsinsidethe network, and with no supervision or regulation from any entity.

A Fast-paced Technical Evolution The first thoughts about real-time distribution of live data
as a major Internet application are certainly very old, probably dating back to the early vision

36 CHAPTER 2. RELATED WORK

by its founders. The introduction of IP multicast, in the middle of the ’80s, is already motivated
in part by the practical need of streaming applications: in RFC 966 (December 1985) we can
in fact read that multicast can be“useful to several applications, including[...] conferencing”,
and that one of the strengths of multicast over unicast is that “ transmitting multiple[unicast]
copies of the same packet makes inefficient use of network bandwidth, gateway resources and
sender resources. For instance, the same packet may repeatedly traverse the same network links
and pass through the same gateways”. These early mentions of “streaming” applications were
mostly speculative at the time, as many other technical requirements to the transmission of video
and audio on the Internet were still missing.

The Internet, in fact, has become a viable medium to transmitnear-real-time audio and video data
only over the last decade. This was due to the concomitant developments in several technical
and social domains: the development of powerful and affordable personal computers and media
acquisition hardware, the advances in the video/audio coding algorithms and standards, and the
widespread improvement in speed and in affordability of thedefault commercial Internet access
technology.

The hardware was one of the first limitations to be overcome: CPUs started to be powerful
enough to decode an MP3 stream only around 1995, but the improvement in CPU designs (super-
scalar architecture, branch prediction, multimedia extensions, integrated vector computing, mul-
tiple cores, etc.) and building technology (constant transistor miniaturization, steady increase
of clock frequency, improvement in semiconductor quality and design) was then so fast that
high-quality video playback became possible on high-end machines since around 2000. Coding
algorithms also saw huge improvements during the same time frame. Improving on the MPEG-1
specification (1988), which required a 1.2 Mbit/s bitrate for a television-quality stream, the sub-
sequent MPEG-2 (1994) and MPEG-4 (1998-2005) standards focused on better compression and
subjective quality2.

Meanwhile, the Internet was undergoing a rapid evolution from a non-commercial network used
for research and educational purposes to its current “information superhighway” status. After
the ban on commercial activities was lifted (mid-1994), commercial Internet service providers
(ISPs) began to develop their access networks, gradually reaching a pervasive coverage of the
world’s richest countries. Internet began to be known outside of the academic circles, and started
to gain an ever-increasing role on the day-to-day life of many people, both for work and leisure
purposes.

The feasibility of live streaming over the Internet was initially limited by the small access band-
width that was available to most users: ten years ago dialup connections at a nominal rate of 28
to 56 Kbps were still the most common access technology, barely enough to send or receive a
single media stream of low quality. The advent of private cable networks, of the DSL family of
access technologies, and more recently offiber to the home(FTTH) has solved the problem of
download bottleneck on the users’ side. Today, the ISPs of most countries provide connectivity
at downstream speeds between 2 and 20 Mbps.

2Today, a 500 Kbit/s stream is commonly rated as television-quality for all practical purposes.

2.1. A BRIEF HISTORY OF P2P LIVE STREAMING 37

2.1.2 The Long Wait for Native Multicast

As we said above, the end-to-end paradigm around which the Internet was built has been critical
to its success. Because of this paradigm, many new end-to-end protocols were created, some
of which succeeded and became the standard protocols still in wide use today. On the other
hand, the inherent limitation of the end-to-end paradigm isthat the number of ends involved in
each protocol transaction is two: each node on the Internet has a name and can reach (and be
reached by) any other node3, but nogroup interactions (e.g. point-to-multipoint, multipoint-to-
multipoint) are made possible by the IP network layer.

End-to-end worked very well in supporting the ’connection’metaphor, a direct link between
named ends, an old idea that was deeply rooted in the legacy ofthe telephone. But some appli-
cations do not need named ends, nor single pairwise connections: this is the typical case ofdata
diffusion applications,where the focus is not on who provides the data, but on the datathem-
selves. This class of applications includes live media streaming, video-on-demand streaming,
and bulk content distribution, which all suffer from the network-layer limitation to point-to-point
connections. If it were someway possible to synchronize thestate of more than two peers that
are interested in retrieving the same information, and if the underlying physical resources could
be allocated in an appropriate way, then a ’group communication facility’ could be introduced at
network level to provide seamless support for data diffusion applications.

The thoughts of the proponents of native IP multicast in the mid 1980s went probably along those
lines. A multicast network primitive implemented at each router would have been the optimal
solution to the diffusion problem in terms of backbone link utilization, since at that layer there
is full visibility on the local links and on the global routing tables. Advantages could have been
significant also on the limited scope of individual domains,especially for the efficient distribution
of locally-relevant information to the customers of a same ISP, the students of a same university,
etc.

A large amount of research on IP multicast has been conductedfrom 1985 to 2000. By 2000,
most of the technical issues had been sorted out [17], such asscalable algorithms for reliable data
dissemination [43][79] and multicast routing [35]. The problems that could not (and will never)
be solved were mainly in the fields of multicast congestion control ([22] proved that the maxi-
mum throughput of a one-to-many transmission withcoupledcongestion control decreases with
the logarithm of the number of nodes in the multicast group) and of multicast group management.

It is a common opinion [38] that the native IP multicast infrastructure failed to be widely de-
ployed because of several concurrent reasons, including:

• the standardization by IETF of an open, unmanaged multicastinfrastructure composed by
a multitude of alternative protocols that covered the same functionalities;

• many security concerns, especially about the resistance toattacks targeting the multicast
routing infrastructure, the ability to guarantee the integrity of the distributed data, and the

3Actually, this is no longer the case today, as the introduction of NAT and other packet-manglingmiddle-boxes
has had the side effect of disrupting the originalperfectend-to-end connectivity.

38 CHAPTER 2. RELATED WORK

issue of controlling of the actual scope of a multicast session (e.g. by authenticating its
participants and by performing access control in a distributed manner);

• probably the most important reason, the lack of a commercialinterest by ISPs in invest-
ing money to provide a native multicast facility when popular applications that require
multicast do not yet exist.

We agree with the statement that most ISPs are not enabling inter-domain multicast routing
likely because the bandwidth savings they can expect are faroutweighted by the prospective
costs of deploying and supporting the multicast functionality (despite the hardware support for
IP multicast is available out-of-the-box in recent networkequipment and operating systems).
Few ISPs support the full inter-domain multicast specification, whose scope is however limited
by the fact that most other ISPs do not support it. Some ISPs are known to just implement
intra-domain multicast (e.g. Orange France), so the scope of multicast sessions is limited to the
customers of the same ISP.

We conclude that, today, the deployment of native IP multicast is not adequate to make it a viable
world-wide multicast infrastructure.

Napster and Its Legacy While IP multicast was being studied and improved by academics
world-wide, the Internet was undergoing an enormous development and many things were evolv-
ing at a fast pace. The end of the ban to commercial activitiesmarked the death of the ’elitist’
Internet (mostly used by students and researchers) and opened it to the ’common people’. To
the dismay of the purists of yore, e-mail spam started to fill the once sacred mail boxes and
the newly-born World Wide Web rapidly became a shopping mallpolluted by animated GIFs,
HTML <BLINK> tags, annoying Javascript, and ubiquitous (and slow!) Java applets and Ac-
tiveX controls. To the enjoyment of the new dwellers, Internet was gaining appeal as a lot of
opportunities for fun and profit were rapidly unfolding.

Among the plethora of software and services available on theInternet, a low-profile website -
called Napster - began offering in June 1999 a program to download and share music files. The
interesting feature of this program was that the music was downloaded directly from the other
users: this provided fast access to the music files (as they were not located on an overloaded
central server) and allowed a user community to develop improving the ability to find a large
body of rare content.

Technically, Napster was a centralized search index where all users published the availability of
their music for download and where they could search for new content. The results of a suc-
cessful search on the Napster server allowed the Napster client to connect and directly download
the music from another client. Nonetheless, Napster is regarded by many observers, along to
SETI@Home4, as the initiator of the so-called “peer-to-peer revolution”, as it contributed to de-

4SETI@Home (http://setiathome.berkeley.edu/), a projectlaunched in May 1999, is another early example of
distributed application. The SETI@Home clients harnessedthe power of idle CPUs to search for radio signals from
extra-terrestrial sources.

2.1. A BRIEF HISTORY OF P2P LIVE STREAMING 39

velop the awareness about the power of distributed applications running on a huge number of
computers around the world.

While Napster was already in trouble due to several pending lawsuits (it was eventually shut
down in late 2002), Justin Frankel (Nullsoft) released in March 2000 an early prototype of
Gnutella, a generic file-sharing program that overcame a major weakness of Napster - the central
indexing server - by replacing it with a distributed search function. The Gnutella protocol and
software immediately started to be extended and developed collaboratively by enthusiast pro-
grammers around the world, with the eventual creation of theGnutella Development Forum. By
then, several other peer-to-peer file-sharing protocols had begun to emerge, such as KaZaA, and
new applications with a peer-to-peer architecture had appeared, such as Freenet [32] (anonymous
and censorship-resistant information distribution), BitTorrent [33] (large-scale bulk content dis-
tribution), Skype (Internet telephony), PeerCast [14] (media streaming), etc.

The Peer-to-Peer (r)Evolution Distributed systems and algorithms, however, are nothing new,
neither in theory nor in practice. The study of distributed algorithms was introduced a long time
before, during the early 1960’s, as the issues of concurrentprogram execution on multiple local
processors and/or distant computers began to arise. The first practical instance of a distributed
system on the Internet (then still known as Arpanet) was arguably the SMTP mail delivery system
(RFC 821, 1982): its root ideas can be traced back to RFC 524 (1973), which denounced the
limits of the earliest FTP-based mail protocols. The key concept of the protocol is the distributed
message relaying performed by local servers toward the finaldestination. Another early example
was the USENET protocol, in which the news servers exchange the relevant newsgroup data - as
requested by their users - in a distributed way without relying on a central entity.

2.1.3 On Current Peer-to-Peer Networks

The main differences between the older ’distributed’ protocols and the new peer-to-peer (P2P)
applications can be especially seen in the following aspects:

• the functionality they offer: SMTP and USENET are limited toa store-and-forward data
distribution model. Current P2P applications span a largerrange of possible applications,
from distributed search [106][73], to store-and-forward /bulk data distribution [33][32], to
live data distribution [27], to networked virtual environments (NVEs) [63], etc.

• the interest of end-users in running the application and (consequently) the potential scale of
their deployment: end-users are seldom interested in running SMTP/news servers, which
require a relatively high availability and give relativelylittle advantage over using the
POP/IMAP/NNTP servers provided by their ISP (or by a third party). For this reason,
in general, each Internet domain has no more than a couple of mail servers and a news
server: this fact limits the number of entities that participate in the distributed system to
the order of the104-105 nodes. A successful P2P application can attract about one ortwo

40 CHAPTER 2. RELATED WORK

orders of magnitude more simultaneous users (e.g. more than4 · 106 for the KAD DHT
used by thee-donkeyfile sharing application [105]).

• the sophisticated techniques used by P2P applications to avoid dependence on Internet
infrastructure: while SMTP performs lookups thanks to its tight integration with the hi-
erarchical DNS system (MX records), peer-to-peer systems usually rely on their own ad-
dressing space and routing system, exploiting the DNS just occasionally and for standard
functions such as IP address lookup and reverse-lookup.

We believe that the true revolutionary aspect of P2P lies in the practical impact that such systems
have had on the mindset of both computer science researchersand Internet users.

For the researchers, it was a confirmation about the expectedeffectiveness of distributed algo-
rithms. The success of early P2P systems motivated new research about scalability issues with
an increased awareness of real-world constraints. We have witnessed during the last five years
a definite trend of convergence between theoretical (graph theory, game theory) and system re-
search (performance analysis, optimization) that has led to the development of many delicate and
interesting trade-offs between the two traditional camps of computer science.

For the users, apart from the immediate advantages brought by the use of P2P systems (“free”
music, “free” movies, “free” software), we can argue that these applications contributed a lot
to the development of some sort ofuser awarenessabout their new role in the “information
economy” and of higheruser expectationsfrom the “Internet experience”. These aspects have
recently evolved into the “Web 2.0” fad, which has more to do with the way users interact with
Internet-based applications than with the technology itself. However, it cannot be denied that
the increased focus on user interactions and user-contributed data has opened many interesting
technical developments, which would have hardly been possible without the widespread success
of P2P networks.

General Principles of P2P Networks A peer-to-peer network is a system composed two or
morepeers(or nodes) that exchange information over a computer network. Peers are software
processesthat “speak and understand” a common protocol, and may run ondistinct pieces of
networked hardware.

A peer-to-peer system does not need to rely on a fixed infrastructure, as long as its primary
functionality is concerned.This definition concedes that, for the correct operation of the system,
it may be sometimes necessary to rely on a centralized mechanism to overcome few specific
problems which would be difficult to address in a purely decentralized manner. A typical difficult
issue is thenode bootstrap problem, which is common to all peer-to-peer systems because of
their very definition: since there is no fixed infrastructurethat supports the system, and with no
initial knowledge about the current members of the established network, how can a new peer ever
join the system? The solution adopted by most peer-to-peer systems is to rely on some external
infrastructure or on a known reliable source of information, which allows to collect up-to-date
bootstrap information. For this reason, a distributed system’s solution to the bootstrap problem
does not usually count as to determine whether it is peer-to-peer or not.

2.1. A BRIEF HISTORY OF P2P LIVE STREAMING 41

Peers operate autonomously based on their local knowledge. One of the main concerns about
distributed systems is scalability, that is their ability to reach large sizes without suffering from
excessive overhead. In P2P applications, overhead mainly depends on the amount of computa-
tional resources and information that is required by each node to correctly execute its algorithms:
thus, scalability requires both a small number of connections to other peers and the access to a
partial viewon the whole system. The main challenge of distributed algorithms is providing the
same features as a centralized algorithm, while just relying on a subset of the global knowledge
which isneither guaranteed to be consistent nor up-to-date.

Peers are functionally equivalent, at least potentially. A (somewhat weaker) requirement for
a distributed system to be called peer-to-peer involves a connotation of equality between the
entities that participate in it. This does not mean that all the entities have to provide the same
function or cover the same roleat the same time: it rather prescribes that every peer, under
appropriate environmental or internal conditions, could take up any of the roles or functions.
For example, a P2P system might well adopt a hierarchical design (e.g. the 2-tier Gnutella 0.6
network, in which nodes are eitherpeersor super-peers) where nodes behave in different ways
depending on their current role in the system, as long as eachnode is allowed to assume either
role.

An Interim Solution, here to Stay Whether a true revolution or a simple evolution of old con-
cepts in the new Internet landscape, P2P networks are today very successful, as they definitely
offer practical advantages in a number of applications. Thetraffic generated by P2P has become
one of the strongest components of network traffic at the ISP level (ISPs and other sources5 cite
BitTorrent and other P2P traffic taking up about 80% of the total bandwidth near the backbone)
and their popularity keeps increasing: despite the dissuasive tactics employed by media, record-
ing companies, and film studios, despite technical interventions by ISPs aimed to selectively
degrade the performance of P2P applications, and despite the adoption by technically ignorant
lawmakers of draconian laws introducing bans on a vague “P2Ptechnology” and punishing copy-
right infringement as a felony.

The success of P2P systems can be explained with the ease of their deployment, which usually
requires nothing more than the installation of a single piece of software by the end-users. This
requirement has been so light that, during the last decade, the evolution of the Internet and P2P
networks has been largely symbiotic: on the one hand, the rising popularity of Internet has
contributed to the growth of these systems, as the number of new users with Internet access has
grown and still grows at a fast pace; on the other hand, the functionality offered by the P2P
programs has fueled the growth of the Internet user base, as the awareness of the advantages of
having an Internet access at home (“free” music, etc.) started spreading, especially among the
youngest.

What in our opinion suggests that the P2P architecture is going to be a permanent part of the

5A 2004 CacheLogic study (no longer available) was often cited in the press. A copy can be found at
http://web.archive.org/web/20041114005733/http://www.cachelogic.com/research/slide12.php . These measure-
ments largely match the results reported by CAIDA in [61].

42 CHAPTER 2. RELATED WORK

future Internet landscape are the impressive achievementsof several families of distributed al-
gorithms. The study of distributed hash-tables (DHTs) has led to the development of practical
systems (likeKAD , an implementation of Kademlia [73]) that can withstand reasonable churn
and perform key-based search withO(logN) or better latency [52]. BitTorrent [33] has proven
a simple and powerful method for distributing large files to large user populations with little re-
sources at the original publisher. The study of random graphs has made possible great advances
in probabilistic data diffusion protocols, e.g. gossip protocols like LPBcast [41], SCAMP [47],
and Swaplinks [115], and has also given birth to efficient unstructured keyword-matching search,
as the recent Bubblestorm [109]. Finally, we must acknowledge that the recent versions of the
Gnutella 0.6 protocol, which is based on partial flooding over a 2-tier overlay, keep operating in
a satisfactory way well beyond the initial expectations.

Most important, all these achievements were possible without modifying the existing Internet
infrastructure, without the need or even the expectation ofback/forward compatibility, without a
complex public standardization process, without the backing from big companies and industrial
interest groups. Compared to the hurdles required to introduce new functionality in the core
of the network (IP multicast, IPv6, etc.), operating at the application layer grants P2P systems
a much faster development and deployment cycle, since it allows an immediate experimental
validation on a small and medium scale, that can be followed by a seamless transition to the
actual deployment.

This aspect makes P2P an interesting approach for algorithmic research and evaluation: as “ex-
periments” can be performed in realistic environments and using large numbers of networked
machines, it becomes relatively easy to obtain results early-on, which allow to test the working
hypotheses and help with a successful theoretical modeling.

2.2 Basics and Requirements of Media Streaming

The concept ofmedia broadcastingis a familiar one: distributing the same video/audio data in-
tended forimmediate consumptionfrom a single sourceto a large audience. The best-known
examples of this transmission model in our everyday life arethe television and the radio net-
works. As commodity electronics available today are way more powerful and flexible than in
the past, the user of a traditional broadcast system can expect a variety of options for the con-
sumption of the received media that goes far beyond the immediate consumption(live) model
allowed by television and thestore-and-playbackmodel allowed by VHS systems. Thanks to
the presence of large quantities of shared-access data storage and CPU power, personal video
recorders (PVRs) introduced new consumption models such astime-shifting, i.e. the possibil-
ity to seamlessly pause, resume, and rewind/fast-forward alive event while it is broadcast on
television. The wordstreaminghas been coined quite recently6 to describe the analogous act of
broadcasting multimedia data over a computer network, suchas the Internet.

6The first uses of the termstreamingappear to date back to around 1995, when RealNetworks began to market
its RealPlayer program. The probable etymology of the word is an old logging term: it derives from the common
practice by lumberjacks of using rivers and streams to transport the tree logs cut into pieces to the processing facility.

2.2. BASICS AND REQUIREMENTS OF MEDIA STREAMING 43

Transmission of data being the primary purpose of a computernetwork, there is nothing par-
ticular about transmitting media streams - rather than, say, text or pictures - over the Internet.
The network is supposed to treat all kinds of data in an uniform way7 as they actually are noth-
ing more than mere strings of bits (cut and packed into datagrams) that have to be forwarded
to their final destination. Contrary to the transmission of information by radio waves, which is
subject to administrative oversight in terms of physical parameters (power, frequency spectrum,
type of modulation, signal encoding) and thus strictly limited in terms of the maximum rate it
can achieve, streaming supports a wide range of arbitrarytransport formatsandcoding formats.
Thus, the most important and defining parameter for amedia streamis the data rate at which it
is encoded, also called thestream bitrate, which corresponds to the amount of data per second
required to reproduce the original media.

Internet-based streaming offers all the options that are expected from traditional broadcast sys-
tems. In addition, they can offer a much wider choice of mediaquality, live channels and stored
contents. Compared to other applications that perform datadistribution, the peculiarity of stream-
ing systems lies in the time-sensitivity of the data they handle, which in turn derives from the
user expectation of continuity, quality, and timeliness inthe reception and reproduction of the
media stream.

2.2.1 Time Matters!

The expression “streaming systems” encompasses a whole family of applications that deal with
the distribution of multimedia content: the distinction among the various applications stems from
the different amount of timelinessthat is expected by their users as they receive and reproduce
the media stream. We enumerate these systems in ascending expected timeliness order, that is
from the least to the most time-critical(Table 9.1).

Bulk Media Distribution In bulk distribution, the media is actually treated as a regular file.
Files have afinite size and a content that cannot change over time; they are considered opaque
data objects and there is no special order (sequential, priority-based, etc.) following which their
data have to be retrieved. We may assimilate the requirements of this streaming application to
those found in file sharing or in bulk data distribution applications. Downloading a video via FTP,
participating in a BitTorrent session to get a recent movie,looking up and retrieving a media file
on E-donkey, Gnutella or KaZaA: all these actions can be considered as examples of bulk video
distribution.

Video on Demand (VoD) Video on Demand (VoD) describes the distribution of recorded me-
dia data (e.g. video files) in a way that makes possible their consumptionwhile they are being

7We are simplifying here for the sake of clarity. The adoptionof Diffserv or traffic shaping techniques can
introduce differences of treatment between IP datagrams atnetwork layer – which are usually based on applicative
requirements (QoS) or economical concerns.

44 CHAPTER 2. RELATED WORK

Name Example App. Timeliness from Media Generation Timeliness of Consumption

Bulk BitTorrent, E-donkey None (stored file) Play media after complete retrieval

VoD Joost, Youtube None (stored file) Low - Play during reception (1 min)

Live Peercast, PPLive High (10 ∼ 30 s) High - Play as soon as possible (10s)

Interactive Conferencing, Skype Highest (∼ 100 ms) Highest - Play immediately

Table 2.1: Outlook on Video Streaming Applications

retrieved. The media data are againstatic, just like in the case of bulk data distribution: stored
files of finite and known size. VoD introduces a first loose constraint on the way the data must
be delivered to the player application: the user of a VoD system expects to be able to begin the
reproduction of the contentshortlyafter he initiates the data retrieval. The consequence of this
constraint is that data must be made available to the player in sequential order to be reproduced:
if the required data are not available the playout will be disrupted (starvation).

In VoD, while data from the whole media filecan be retrieved out of order, the data that are
needed for playout have to be recovered with higher priority. Also, thebuffering delay, i.e.
the time between the beginning of data retrieval and the beginning of media playout, must be
chosen with care: it must be large enough to compensate forall the temporary starvations that
will be encountered during the entire streaming process, but short enough to be acceptable to the
user. The smoothness of the data playout process depends largely on the choice of both playout
delay and data distribution policy, and is not directly related to the instantaneous speed of data
reception.

The simplest VoD application can be conceived as a client-server protocol, such as FTP or HTTP,
which provides the media file to a player application at a constant rate: if the average download
speed is equal or higher than the stream bitrate, the playoutmay start few instants after the
download is initiated. If the download speed is lower than the stream rate, the stream length
comes into play to calculate the optimal initial delay required to avoid starvation for the entire
(expected) playout duration. More advanced VoD schemes candownload data in different parts
of the file at the same time and from different sources: in these cases, the data that are nearest
to the playout deadline are given priority over the others (e.g. as in BiToS [116] or RedCarpet
[10]).

Live Media Streaming Live streaming is the first application in the data distribution family
that deals withpractically infinitestreams of data and introduces a constraint on the maximum
tolerable data reception delay. Live streams are differentfrom the recorded VoD streams because:

• The current stream content is being distributed by the videosourceonly right now, and
will cease to be available in a short time

• The total duration of a stream isnot known a priori: the usersjoin the system in the middle
of a streaming session, andleave before the end. The time spent by a user in the system

2.2. BASICS AND REQUIREMENTS OF MEDIA STREAMING 45

can be considered negligible when compared to the duration of the whole stream (hence
the definition of practical infinity)

• The receivers of a stream are interested in reproducing itwith a reasonable delay, as the
interest for its data is highly volatile.

In addition to the two VoD requirements (sequential ordering of data to player, setting playout
to avoid starvation), the requirement ofreasonable reception timelinesscharacterizes the live
streaming application. Because of the inherent propertiesof live streams, new data are constantly
being generated by the source and need to be played, while older data quickly lose their interest
as newer data appear: live streaming thus introduces the concept ofplayout delay, defined asthe
delay between the generation of the media by the source and its reception by the viewer. Contrary
to VoD streaming, where users are largely independent in their behavior, the reception of a live
stream becomes aloosely synchronousoperation, since all the users are interested in roughly the
same segment of the stream data at the same time.

Interactive Video Interactive video is at the most time-sensitive end of the spectrum of media
distribution applications. Its requirements are very similar to those of live streaming application,
as detailed above. The main additional challenge of interactive video is brought by the low
tolerance to delay, which is typical of interactive applications: for a system to be qualified as
interactive, the users should expect a very fast response between their actions and the reaction by
the system, with a latency not exceeding the 100-150ms range [26].

Conferencing applications are a typical example of interactive media: as every listener can inter-
vene at any moment, the presence of larger delays may lead to contention between speakers and
degrade the user experience. Because of the hard constraints on reception delay, interactive video
requires a high synchronization between the users, is very sensitive to packet loss and network
congestion, and makes it extremely difficult to implement distribution techniques that modify the
sequential ordering of the data.

2.2.2 Media Quality Also Matters

The purpose of media streaming applications is to distribute time-sensitive data to several users
at the same time over a computer network. Several common problems can however hinder the
correct and on-time delivery of the media data, for instance: packet loss in the network, possibly
caused by corruption, congestion (wired) or fading/shadowing/interference (wireless); excessive
packet delay due to network congestion and queue build-up atintermediate routers; “route flap-
ping” due to temporary instability of the inter-domain routing tables. The temporal granularity
of these transient events can produce delay oscillations that can reach several hundreds ofmil-
liseconds. When the application imposes a media playout delay in this order of magnitude (e.g.
in real-time interactive client-server applications), packet losses are not recoverable with an Au-
tomatic Repeat-reQuest (ARQ) scheme, and even an excessivedelay in the reception of a packet
makes it no longer useful for playout - with the same net effect of a loss.

46 CHAPTER 2. RELATED WORK

This rather extreme example illustrates the fundamental trade-off betweenmedia qualityand
reception timelinesswhich is common to all streaming applications: the concept of data lossand
thus ofquality degradationis mostly determined by the timing constraints that can be tolerated
by the application. When the timing constraints are strict as in the interactive case above, it
is very difficult to recover from data losses, so it becomes reasonable to try topreventthem
by usingforward error correction(FEC) or other redundant coding techniques. On the other
end of the spectrum, in the case of bulk video distribution, there is no reason why the media
received without any timing constraint should be incomplete. In the middle of the spectrum, for
VoD and live streaming applications, there is a substantialmargin of tolerance to delay that can
be exploited by the designer of streaming systems: by choosing appropriate timing constraints
and loss recovery and prevention strategies, it becomes possible to elaborate innovative system
designs that offer both acceptable delay and adequate quality.

Startup Delay as an Aspect of Media Quality For a long time, minimizing the playout delay
was implicitly assumed to be the critical challenge of P2P live streaming [14][29]. While this is
true for interactiveapplications, such as conferencing, the distribution of live streaming media
allows much looser bounds on the playout delay, which is nowhere near to the interactivity
threshold. Instead, an aspect of live streaming that is morelikely to influence the perception of
the user is thetime required by the application to start displaying the media stream. This delay,
known asclick-to-play delay(C2P) orstartup delay, is the time lapsed between the instant a
user launches the streaming program (click) and the instant at which the playout begins (play).
The startup delay is far more important in practical terms than the playout delay: while the user
has no means of evaluating ’how fresh’ is the data he is receiving (unless he can relate it to an
absolute time reference or to external events), he can surely tell how long he has been waiting
for the player to start to produce its output.

2.2.3 Application Design: An Open Debate

To perform data dissemination in a network without support for native multicast functionality
(one-to-many), it becomes necessary to build several application-layer“channels” between pairs
of nodes (end-to-end). A centralized approach to dissemination involves havingone node, the
central sever, maintain a connection with every other node in the system. This scheme implies
a linear increasewith respect to the number of nodes in the system of the uploadbandwidth
required at the server that provides the streaming service.The server-based approach also in-
troduces a hard limit to the size of the streaming (no more users can be served than the server’s
upload capacity allows) and the problem of adequately provisioning the server infrastructure
according to the expected audience size.

Distributed approaches can successfully reduce the total upload capacity needed at a single node.
The use of a distributed architecture not only lowers the costs for the publisher, but it also confers
self-scalability to the system: as long as each user “gives back” to the system at least as much as
it requires to be served, the size of the streaming audience can in theory increase without bounds.

2.2. BASICS AND REQUIREMENTS OF MEDIA STREAMING 47

However, so far no consensus has been reached about the exactrequirements of a practical In-
ternet streaming application, and the debate about how to design P2P live streaming applications
for large scale deployment is far from being settled. While many authors agree about most of
the challenges, there is still no widespread agreement on what architectural design offers the best
performance for a large range of applicative scenarios. Thedebate is still open on fundamental
points as:

1. Basic features of a live streaming system. Traditionally, low latency has been consid-
ered the primary property needed for a viable streaming infrastructure. The first practical
distributed applications [14], however, showed that the instability of software nodes (e.g.
compared to routers) had a largely negative impact on the streaming performance, as the
failure of single peers had cascading consequences over therest of the system. Resilience
to churn and failures have thus been recognized as a further requirement: the acceptable
trade-off between latency and robustness for the differentapplications is still an open topic
of discussion.

2. Efficiency of a streaming system. In the early work about P2P live streaming (better
known back then as “application-layer multicast”) the termof comparison for efficiency
was native multicast: metrics as link stress or stretch wereroutinely used to evaluate the
latency/data replication overheads of application-layertrees with respect to network-layer
IP multicast trees. The appearance of mesh-based systems has rendered such comparisons
more difficult, as data do not keep flowing over the same path even while the node mem-
bership remains stable. Research is still ongoing on optimal theoretical schemes for chunk
scheduling and bandwidth allocation [103][34][72].

3. Robustness under real-world scenarios. How to characterize the behavior of a live
streaming system under churn? How to fairly compare the control overhead of mesh-based
systems, which is almost constant with the churn rate, against the overhead for tree repair,
which instead is very sensitive to churn? What is the critical churn threshold at which each
system stops operating correctly? How does content degradation happen in each system
once this threshold is reached?

4. Optimality of streaming under capacity constraints. How is optimality defined in net-
works where the node upload capacity is not uniformly allocated across the system and/or
where the resources are globally scarce? How will P2P live streaming systems perform
under an arbitrary bandwidth distribution? How will a P2P system behave in a non-
cooperative environment?

5. Topological awareness. How can the awareness of a system to the underlying network
conditions be evaluated? How can its latency overhead be improved compared to native
multicast?

48 CHAPTER 2. RELATED WORK

2.3 P2P Live Media Streaming Applications

Early P2P Designs Three landmark works can be seen as the most influential precursors of
more recent live streaming systems. The first [99] describeschaining, a simple technique to
allow the distributed replication of streaming media to small-to-medium audiences. Data are
replicated by each user to the next in a linear chain: while the system offers a way to achieve
self-scalability for the first time, its delay performance is a poorO(N); moreover, node arrivals
and departures have a strong negative effect on data reception, as the entire chain is broken at
some point.

Yoid [44] is a proposal by Paul Francis for a generalized applicative multicast infrastructure. The
structure of Yoid is twofold: it consists of a mesh of connections between the nodes, which is
optimized for robustness to avoid network partitions and toensure member reachability, and of
a tree, built to offer optimal performance in terms of delay and bandwidth, that actually conveys
the content: these two topologies are largely independent as they have different goals. Yoid
explores a peculiarmesh+treeapproach, where a primary concern is to avoid loops in the tree:
an evolution of this design has resulted in the recent development of Chunkyspread [113].

Narada [30] is a system designed to support multipoint-to-multipoint communication such as
small-scale video conferencing. Narada organizes the nodes in a mesh, over which a distance-
vector routing algorithm allowed to build spanning trees that support the actual data distribution.
The mesh overlay is updated over time by establishing new connections to random peers: the
decision whether to keep the new neighbor is made on the basisof the improvement in the
average cost to reach all the other nodes. The use of pairwiselatency between the nodes as the
cost metric allows to optimize the trees for minimum delay. The improvements to the initial
design introduced in [29] add the link bandwidth as a second optimization criterion for tree
construction. Narada suffers from scalability issues, as every peer has to keep state for each one
of theN other peers in the network.

Two-Tiered Streaming Systems Several designs of large-scale live streaming systems witha
distributed component but based on infrastructure were introduced in the same years [59][25][24].
These proposals were made with a service-oriented scenarioin mind, in which an organization
such as a telephone operator or an ISP would provide video broadcasts toits customersover the
Internet (or rather, on their internal network): as the content providers would operate both the
infrastructure and the streaming application, they would be able to retain control over the system
and possibly offer a guaranteed level of service quality.

The common feature of these systems is the use of atwo-tier model, comprised of apeer-to-
peer core, where all the nodes are server-class machines operated by the service provider, and
the clients, which receive service by the core network without providing any resource. The
core network can be connected by either unicast connectionsor locally-scoped multicast. Users
establish connections to the servers under the supervisionof a load-balancing mechanism that
can be either internal or external. Data are transferred over single connections between each
client and its assigned serving node.

2.3. P2P LIVE MEDIA STREAMING APPLICATIONS 49

Overcast [59] builds trees between the servers that aim to maximize the bandwidth availability
from the source to the leaves. This algorithm also allows theshape of the tree to loosely fol-
low the underlying network topology. Load balancing and user admission are performed in a
centralized way by the root node of each tree, but these functions could possibly be distributed
to improve the global robustness against failures. Scattercast [24] is a system conceptually very
similar to Overcast, with an additional feature: the nodes in the core network, called SCX (Scat-
terCast proXies), can adapt the quality of the content they deliver to the download bandwidth and
to other requirements (such as particular real-time constraints) of the nodes they serve. RMX
[25] adds features on top of the Scattercast framework, suchas the use of locally-scoped mul-
ticast by the proxies to serve clients in a same location, andis meant better support bandwidth
heterogeneity and data losses.

2.3.1 Current P2P Live Streaming Systems

Single-Tree Overlays The subsequent approaches to P2P live streaming [12][110] inherit much
from the earlier research on application-level overlays mentioned above. A single-tier tree over-
lay was chosen as the simplest topology to convey data to large user populations: the good scaling
properties of trees and the relative similarity to native multicast motivated the earliest approaches,
such as SpreadIt [14]. To improve scaling and resilience, NICE [12] later proposed a hierarchical,
cluster-based single-tree overlay, which allows to optimize the average delay through appropriate
node management policies and cluster-head selection criteria. ZIGZAG [110] further improves
on this design by adding redundancy to the cluster management mechanisms to better cope with
node churn.

The fundamental shortcoming of all tree-based systems is due to the limitations imposed by the
tree structure: single trees artificially limit the available service capacity as the leaf nodes, which
make more than half of the population, are prevented from contributing bandwidth to the system.
Moreover, in a real-world context, there are no guarantees about the resources brought to the sys-
tem by nodes involved in a streaming session. Nodes can be limited in their contribution by the
access technology they use (e.g. slow ADSL uplink), by otherapplications that compete on their
upload bandwidth (e.g. other file-sharing applications), and/or by IP connectivity issues - such
as the use of network address translators (NAT) or packet shapers at the ISP. Other limitations
may be voluntarily introduced by the user, e.g. application-level bandwidth limiting.

Multiple-Tree Systems Multiple-tree overlays were proposed as a solution to the inefficient
use of upload capacity by single trees. By encoding the stream as several independentMDC
stripes[50] and distributing them over different trees, these systems can exploit the upload ca-
pacity of leaf nodes and spread the load uniformly across thewhole population. CoopNet [80]
first introduced this approach: while still relying on a resourceful central server, the client nodes
could cooperate to the content distribution in case of high server load. Splitstream [21] is the
first P2P system that uses interior-node-disjoint trees. Every peer is an interior node in no more
than one tree: this mitigates the incidence of the data losses due to node failures, as isolated

50 CHAPTER 2. RELATED WORK

failures result in the interruption of at most one stripe, which can be masked by the encod-
ing method. On the other hand, the control overhead is higherthan in the single-tree case: in
general, multiple-tree systems must rely on an underlying DHT substrate for tree-building and
maintenance purposes. Further research has however shown the limits of a DHT-based overlay
multicast protocol: in [16] the authors observe the shortcomings of Splitstream under churn and
in presence of upload heterogeneity, as its trees become much deeper than the expected theo-
retical depth and rely on non-DHT links for a large number of connections. These phenomena
noticeably degrade the system performance and scalability: [16] argues that DHT-based schemes
cannot easily support heterogeneity and churn, because of the fundamental mismatch between
node constraints (unknown a priori) and randomly-assignedDHT identifiers.

Splitstream had a major influence on the subsequent development of P2P live streaming: a
large number of systems quickly adopted the multiple-tree architecture, developing original tree
topologies in order to improve the properties of the tree-building algorithms [46][97]. More
recently, Chunkyspread [113] has removed the requirement for a structured substrate such as a
DHT by adopting a clever non-hierarchical approach to tree-building. Using a gossip protocol,
nodes exchange the list of the data stripes they currently receive along with a compact Bloom fil-
ter representation of the list of their ancestors for each stripe. Bloom filters are used to constrain
peer selection and assure that the resulting stripe distribution paths will be free of loops. Peer se-
lection is based on theload advertised by the neighbors and on theirlatencyin receiving specific
stripes. The unstructured architecture of Chunkyspread allows the use of other policies for peer
selection, such as tit-for-tat: however, preliminary results [112] show a decreased performance
when TFT-based approaches are used.

Data-Driven Systems Mesh-based designs aim to reduce the structural constraints of live me-
dia streaming systems. These systems break up the stream into a series ofdata chunks: the
chunks are generated by the source, which then transmits them to a small number of nodes. Af-
ter that, the nodes must autonomously exchange the chunks and retrieve a complete and ordered
sequence before the expected play-out deadline. Bullet [65] is an early approach that combines
a single-tree and a mesh: the tree is used to convey both data chunks and control information,
while the mesh is created independently by the nodes based onthe control information and is
used to exchange the bulk of the data among peers that are far away in the tree hierarchy. An
advantage of this scheme is that the control protocol running on the tree can have a very low
complexity and bandwidth overhead. On the other hand, no mechanism to encourage bandwidth
contribution was implemented in the system.

The emergence of unstructured mesh-based P2P live streaming systems begins in 2004: some
examples are Coolstreaming, Chainsaw [81], PULSE [85], GridMedia [121] and, later, PRIME
[70]. Chainsaw [81] is a proof-of-concept example of a simple mesh-only system that uses ran-
domized peer- and chunk-selection algorithms. However, ithas not been tested on scenarios with
heterogeneous bandwidth. Coolstreaming/DONet [122] introduces a smarter chunk scheduling
algorithm that takes into account the expected play-out time of the individual chunks, gives
higher priority to the locally-rarest chunks, and distributes the chunks based on an estimate of

2.3. P2P LIVE MEDIA STREAMING APPLICATIONS 51

the available capacity at the sender nodes. GridMedia [121]uses a combination ofpull and push
to supposedly improve the efficiency of chunk distribution.PRIME [70] proposes a peculiar
mesh-based design which is actually more similar to a multiple-tree system: several separate
tree structures are present over which different data is distributed, and mesh-based “swarming”
is achieved by making the leaves of each tree serve data toward random members of the other
trees.

In presence of upload heterogeneity or non-cooperative environments, however, chunk schedul-
ing and peer selection are subject to additional constraints due to the uneven distribution of node
upload capacity. While the optimal node placement can be achieved by having peers with higher
upload nearer to the source (as demonstrated in [103], Lemma1), information on the upload at
the other nodes is rarely available (or, if available, not very reliable). Distributed algorithms that
solve these issues in non-cooperative scenarios are still atopic of active research.

The Advent of Practical P2P Live Streaming Systems Meanwhile, the first working pro-
totypes of practical live streaming applications started to emerge. Peercast [36] was released
in 2002, and gradually attracted a small following of users and broadcasters of (mainly) radio
channels. End System Multicast [27] was the first large-scale video distribution system based on
a single-tree multicast infrastructure to have been deployed and for which measurements have
been collected. The authors of ESM preferred to use well-understood technologies (a traditional
single-rooted overlay tree, standard single-descriptioncoding for the media streams) rather than
implementing more convoluted architectures, and were deeply concerned by real-world connec-
tivity problems (e.g., firewalls and NAT). The main goals of ESM were to show that application-
layer overlay multicast over the Internet was already feasible at the time, to highlight the issues
and limitations of the basic single-tree system architecture, and to gain a first practical experi-
ence to drive future research on the subject. While ESM does not introduce theoretical models
nor proposes original distributed algorithms, thelessons learnedsection of [27] contains very
helpful advice about creating distributed applications and describes well the main problems that
have to be considered in the design of practical overlays forlive streaming. Thanks to its sim-
ple design, ESM has been used as a foundation in subsequent research projects: for instance, the
ESM software was recently adapted to support multiple treesand collaborative incentive schemes
[107].

Later, Coolstreaming [122] was the first practical P2P live streaming system to propose a com-
pletely unstructured, mesh-based design. Together with Chainsaw [81], it provided the earli-
est insights into the feasibility and advantages of this approach. A working prototype of the
Coolstreaming software was released in 2004 and quickly became popular: more than 30,000
users were counted, with as much as 4000 simultaneous viewers. Coolstreaming introduced
an interesting chunk scheduling algorithm (more complex than the random scheduling used in
Chainsaw) that takes into account the individual chunk deadlines for play-out together with the
estimated bandwidth intake from each of the serving neighbors. Also, every node performs an
iterative long-term optimization of the mesh by replacing its least-contributing neighbor, in order
to slowly adapt the overlay mesh to the variations in bandwidth availability inside the system.

52 CHAPTER 2. RELATED WORK

Control Plane & Data Plane

Knowledge Mgmt. Tree-Based Mesh-Based

Implicit NICE [12], ZIGZAG [110], ESM [27] =

Structured Splitstream [21] (Control: DHT) Bullet [65] (Control: Tree)

Unstructured Chunkyspread [112][113] DONet [122], Chainsaw [81], PULSE

Table 2.2: Summary of Main Approaches to Live Streaming

Coolstreaming does not seem to adopt any specific measure to address the combined effects of
upload bandwidth heterogeneity and high churn. The use of Virtual Coordinates [77] has later
been proposed in [23] to improve the locality awareness of Coolstreaming overlays. Initial user
reports about the Coolstreaming application seem to indicate that it suffers from a high play-out
latency (up to several minutes), which is probably due to conservative data buffering policies.

After Coolstreaming was shut down in response to legal threats during 2005, many other ap-
plications with similar functionality quickly took its place: the more popular among them are
today SOPCast, TVAnts, PPStream, and PPLive [102]. Recent measurement studies on PPLive
[55] have revealed the astonishing success and impressive deployment status of this system, with
a daily average of 400,000 users and average measured simultaneous audiences in the order of
100,000 viewers for the most popular individual channels.

2.3.2 Analysis of P2P Overlays for Media Distribution

An interesting aspect of live streaming is the large solution space that this application presents.
The existing architectures adopt a number of original schemes of data distribution overlay. Table
2.2 summarizes the main design choices adopted by recent P2Plive streaming systems:mesh-
basedor tree-based, based on the way data are exchanged by the nodes (data plane), andstruc-
tured or unstructured, referring to the way control information and knowledge arepropagated
(control plane or knowledge management).

Knowledge Management: Implicit, Structured, Unstructured An important factor in the
ability of a system to withstand transience is the way its overlay is built and maintained. We can
observe three prevalent ways of maintaining the connectivity among the nodes:

• Implicit connectivity: each node knows only about those nodes to which it is directly
connected. The earliest single-tree overlays were based onthis scheme, which suffers
heavily from node transience. To increase the robustness, information about additional
nodes in the system has to be maintained: in [36] nodes contact their grand-fatherupon
a parent failure, while in [27] all the ancestors on the path to the source and some more
nodes chosen at random are known. We qualify their control plane asimplicit because it is
largely dependent on the geometric structure of these overlays.

2.3. P2P LIVE MEDIA STREAMING APPLICATIONS 53

• Structured membership management: the peers belong to an external infrastructure (DHT,
tree, etc.) which either defines how the data connections canbe established between the
nodes [21] or provides a channel over which the updates aboutthe buffer content of the
nodes can be propagated.

• Unstructured membership management: the peers use a randomized gossip protocol to
distribute and receive updates about their state and content of their buffers [122][81][85].

To perform live streaming a peer also needs, in addition to the basic information required to
contact other peers, some form of up-to-date knowledge on their current data availability. The
presence ofintrinsic instability in the data retrieval process, as in data-driven systems, implies
a reduced reliance on long-lived information about the restof the system. If we consider the
various random factors that can perturb the operation of a streaming system as sources ofexter-
nal instability, the presence of intrinsic instability can help to accommodate a certain level of
externally-induced transience. Therefore, when the scenario targeted by the P2P application in-
volves a high instability, the use of less-structured and dynamic systems will be more appropriate
than a structured and static architecture.

Developing ana priori assessment of the level of churn a real-world application will have to
sustain is challenging, as the user behavior has a large influence over this parameter. A strong
interest has developed lately for measurement studies of widely-deployed streaming systems that
aim to characterize the user behavior in real-world systems[9][55].

Data Plane: from Trees to Meshes The traditional approach to P2P live media streaming
consists in creating a multicast infrastructure at the application layer, over which data will then
flow [14][12][110]. Tree overlays, whose main property is the absence of loops, do notneed
any exchange of control information once the overlay has been built. Control messages are only
required during the overlay construction phase and to repair the tree after node disconnections.
During normal system operation, the information about which data will be received in the future
is implicitly conveyed by the placement of a node in the overlay; also, since no loops are present
and data are transmitted sequentially, there is no necessity for reconciliation mechanisms. We
can thus consider these overlays as permanent channels, which are constantly used to distribute
an ordered and steady data stream. The major drawback of single trees, as we mentioned above,
is that they artificially limit the available service capacity, as the leaves cannot contribute any
upload bandwidth to the system. Moreover, each internal node in a tree is a potential bandwidth
bottleneck for the subtree it serves, and packet losses doaccumulatewhile descending the tree.
Finally, the maintenance, optimization, and recovery of failed overlay tree links can become a
daunting task under heavy churn. Data losses that occur during the tree repair process can be
partially masked and attenuated by buffering and recovery mechanisms, but - eventually - they
end up severely disrupting the play-out quality.

Mesh-based (ordata-driven) systems [122][81][55][85] do not explicitly define fixed data paths
over which data will flow. The stream is no longer a continuoussequence of bits: it is now split

54 CHAPTER 2. RELATED WORK

into chunks, the basic units of data exchange, which are forwarded independently by each peer
to its local neighbors. Mesh overlays are connected, directed graphs generated by the local
connections between nodes, thus in general they do not satisfy any specific property. The only
constraints that apply to meshes involve limitations on theinbound and outbound degree of each
peer, which may vary from node to node. For this reason, a nodeof a data-driven system does
not know anything a priori about the data it will receive fromhis neighbors: in particular, it is
not able to predict the data rate it shall receive on each connection, nor can it foretell the order
in which he will obtain the data chunks. Moreover, the connections that make up the mesh must
be renegotiated periodically, to adapt the set of potentialpartners for data exchange to the actual
availability of useful data throughout the mesh.

Tree or Mesh: a True Dichotomy? The tree and mesh approaches seem to be largely incom-
patible, as they deal with content distribution in antithetic ways:

• Trees require simple mechanisms to build and maintain pathsthat are loop-free. Assuming
that losses can be either tolerated or recovered at the transport layer, data can flow over the
paths without need of any signalization. The main issues with tree-based systems can be
summed up as: building a good overlay using appropriate construction policies, which in
general attempt to avoid to introduce slow nodes and/or bandwidth bottlenecks along the
data paths, and protecting the integrity of the overlay and its geometric coherency against
node failures and disconnections, which can become a big problem in case of high churn
and node transiency in large overlays.

• Meshes are the global result of the local associations of nodes: they do not follow any
global structural criteria. Frequent control exchanges are required to avoid the redundant
duplication of the individual pieces of data (chunks). The main issues with data-driven
systems are defining efficient algorithms for peer and chunk selection, and providing nodes
with critical information about data availability at theirneighbors in a scalable way.

The recent developments in the field have introduced severalintermediate solutions, which - as
seen from the tree perspective - give up a certain amount of determinism in the system structure
to introduce a better support for network dynamics, or - as seen from the mesh point of view -
introduce some structural constraints in exchange for a reduction of the control traffic.Multiple-
tree systems like Splitstream can indeed be seen as an incarnation of the former trend, since the
final result is a mesh based on geometrical rules (trees) and additional constraints (tree disjoint-
ness, etc.): the existence of several independent data paths improves the overall resilience to node
failures and data loss. The latter trend is evident in themesh+treeapproach in Chunkyspread
[113]: by tagging the data forwarded by each node in an appropriate way, loop-free paths can be
dynamically created over the mesh which can be re-used for many subsequent pieces of data.

However, if we look closely, it becomes easy to realize that the “philosophical” incompatibility
between trees (fixed structures, constant data paths) and meshes (no a priori organization, vari-
able data paths) is only apparent: indeed, the fundamental task of an efficient streaming system

2.4. CONCLUSIONS 55

is to transmit every individual piece of data to every node exactly once. This means that in both
cases the data will follow a path which is an acyclic directedgraph, i.e. a tree: this graph is
either built explicitly and re-used over a long time frame (overlay trees) or built implicitly and
constantly changed in the data-driven meshes. From the point of view of system performance,
multiple-tree and mesh-based architectures can attain thesame efficiency and scalability.

2.4 Conclusions

It is our opinion that the design space of P2P live streaming applications has been thoroughly
explored. We also remark that the existing architectures cover the full range of possible com-
binations of structured and unstructured solutions in both, control and data planes (see Table
2.2). Another fundamental observation is that, whether using meshes or trees, the path taken by
any single piece of data always ends up to be a tree. This intrinsic similarity renders multiple-
tree-based and mesh-based system very similar from the point of view of both efficiency and
scalability. The differences mainly reside in the granularity of the knowledge about the rest of
the system and in the expectations about future data reception, rather than on the way the data
distribution overlay operates.

We are convinced that knowledge and expectations, which describe theflexibility of a system,
should be the primary object of a system designer’s attention. Given a target deployment sce-
nario and its expected churn, a reasoned choice between a structured or unstructured approach
is relatively easy to formulate: when churn is low, structured overlays are more efficient, as they
require a very small control overhead when repairs are sporadically needed. When churn is high,
unstructured overlays guarantee higher resilience with a constant control overhead. For inter-
mediate churn scenarios, both choices are equally viable, and the implementers can often adjust
some parameters such as the frequency of control messages, the amount of information about
other nodes, etc., to best adapt to the operating scenario.

Mesh-based systems give an intrinsic advantage from the point of view of topological optimiza-
tion over structured tree-based systems, since they ’naturally’ require a larger base amount of
knowledge on the system. This advantage can however be reproduced in a tree-based context by
introducing random gossiping and advertising a larger amount of internal state [27].

The main argument that - we believe - gives a major advantage to unstructured systems is their
better suitability to non-cooperative environments, which directly translates into a better support
in heterogeneous upload capacity distributions as found inmost real scenarios. By using the
received bandwidth to support some form of pairwise incentive, such as tit-for-tat, meshes can
promote a form of intrinsic optimization and resource awareness that is solely based on local
information and which is not possible in a tree-based scenario, unless an external mechanism
is introduced to certify the contribution of each node to thesystem [89]. The most elaborate
mesh-based systems, such as Coolstreaming [122] and Chunkyspread [113], all recognize this
potentiality as an advantage over systems based on static data paths. One of the goals of PULSE
is to explore a specific form of practical incentives that promises to support both, resource and
locality optimizations, at the same time.

56 CHAPTER 2. RELATED WORK

Chapter 3

The PULSE System

In this chapter1, we describe the PULSE system. In Section 3.1 we introduce the goals of PULSE,
how it was born and evolved over time, which intuitions guided its design, and what we believe
are its original contributions.

Then, we present in full detail the inner workings of the PULSE system. We start by illustrating
in Section 3.2 the notations and basic terminology we employin the rest of this work. We proceed
by describing the basic component of this distributed system, the PULSE node. Section 3.3 is
a top-down overview of the different functional componentsof the node. Here we define the
purpose of each component, its main data structures, and theway data are managed and updated
internally. In Section 3.4, we cover the algorithms used by aPULSE node and enumerate the
main parameters that affect its operation.

Section 3.5 contains a brief overview of the prototype of a PULSE node, which has been im-
plemented to validate the algorithms and to test the behavior of the application in real-world
settings.

3.1 Introducing PULSE

To introduce properly the main subject of this chapter - and focal point of this whole thesis -
we will begin from the name of our system. A long-standing engineering tradition prescribes in
fact that a project should be described by a self-explainingacronym, with bonus points for the
semantic value and recursiveness of the acronym.

PULSE is actually an acronym that stands forPeer-to-Peer Unstructured Live Streaming Experi-
ment. This denomination includes some of the fundamental designchoices on which our system
is based: the fact that it is peer-to-peer, i.e. does not require the availability of a centralized
resource for its operation; the unstructured nature of the system, which does not rely on a fixed

1The contents of this chapter have been published in part as [85] and [87].

57

58 CHAPTER 3. THE PULSE SYSTEM

topology for the exchange of data and control information; and the fact that it was an experi-
ment, as the viability of this kind of approach was not clear from the beginning. The acronym
was born during a hot day of July 2004, while the author was still drafting the early specifications
of what was - until then - an unnamed live streaming system capable to work in realistic network
environments.

3.1.1 The PULSE Manifesto

The primary purpose of the PULSE system, which was devised inthe beginnings but still holds
true today, is allowing an Internet host -any host- to either act as a distributor of its own live
media stream or as a receiver of a live stream from any other node. The technical challenges to
this applicative scenario are:

• Any hostmeans no guarantees on the stability of the peer. There are several reasons that
urge us to consider peers as unstable and to design a system that tolerates node failures:
Internet hosts are in general unreliable, as they may crash or go offline because of software
glitches or user activity; also, a peer is a software processthat can be activated and stopped
by the user at any moment; finally, the users of a live streaming system are expected
to interfere with the application in an unpredictable fashion, for example by ’switching
channel’ and associating to another streaming session. We will therefore assume thatthe
expected lifetime of a peer in the system is very short, in theorder of hundreds of seconds.

• Any hostmeans no guarantees on the bandwidth resources of the nodes taking part in a
streaming session, including the source itself. We do not want to restrict ourselves to
largely optimistic scenarios, where all the nodes have sufficient resources to receive the
stream and to replicate it at least once: currently, while the downlink of commercial ADSL
Internet access is now sufficient to receive a TV-quality video stream (at 500 Kbps and
above), the uplink capacity is often much lower, typically less than 500 Kbps. While
the connection speeds, both uplink and downlink, have been steadily increasing in the last
decade and will probably continue on the same trend, we also remark that the video quality
and the bitrate it requires has kept growing [57]. Therefore, in a medium-term perspective,
we still believe that the bottleneck will continue to be located at the uplink for the majority
of the nodes.

• Any hostmeans that there is no central access control facility that can verify the perfor-
mance of a node and decide whether to allow or deny it access tothe system. Every node is
then allowed to enter enter the system, but the system itselfhas to cope with the balancing
and allocation of the available resources. The system should then be expected towork in
a best-effort mode, with a graceful performance degradation in case of generalized lack of
resources.

This is the environment we are designing for: a strongly dynamic environment, with nodes
joining and leaving continuously (churn), with peaks of arrivals (flash crowds) and departures,

3.1. INTRODUCING PULSE 59

where nodes have an asymmetrical access link, where the upload bandwidth is not uniform but
largely spread (and often inferior to the stream rate), where nodes are considered non-cooperative
by default. An additional ’extrinsic’ constraint that we want to introduce is the fact that the
algorithms and code for our system should be made public and be easily modifiable by anyone,
e.g. like the BitTorrent software.

Our choice of this kind of scenario is supported by several previous studies:

1. A milestone analysis of the bandwidth availability in a Gnutella network [96], performed
in 2002, showed that node uplink bandwidths were distributed following an approximate
power law. While five years have passed, we believe that the results of this study are
still valid as long as we factor in the increase of average connection speed. More recent
studies confirm that bandwidth asymmetry and scarcity of resources are still a concern:
for instance [27], despite a more limited scope in comparison to [96], offers a rather bleak
outlook based on data from measurements of medium-scale live streaming sessions on the
Internet.

2. Studies about the role of churn in distributed live streaming systems [14][104] estimate the
churn rate and its impact on tree-based systems2, concluding about the need of appropriate
overlay construction techniques. In its insightful analysis of real traces from a number
of large-scale live broadcasts, [104] suggests the need foroverlays capable to withstand
transient peer behavior, such as multiple-tree forests, and advises against predictive mech-
anisms based on past node lifetime.

3. Experiences from other applications suggest that cooperation should never be expected
from the members of a large-scale distributed system. An example is the well-known
seminal study by Adar and Huberman on free-loading on the Gnutella network [8], which
showed the inherent lack of willingness of provide resources to the system, if no benefit
is expected in return. Similarly, it may be risky to rely on peer-provided feedback about
resource availability or past performances, as this information can be easily tampered with
by the user if, by doing so, some kind of benefit can be expected3.

3.1.2 Background

Distributing live data to a large audience requires short data paths that grow slowly with the
number of nodes that have to be reached. Single trees are useful in this context, as their depth

2A serious oversight that was quite common in the earlier works was to assume that the behavioral traces obtained
from any distributed application could be seamlessly exported to any other: for example, traces from large scale file-
sharing systems such as Gnutella were used in [21] to describe typical membership of live streaming sessions. Later
studies have fully recognized that the type of application and the way it interfaces with the user strongly influence
the actual user behavior, and by consequence the distribution of node lifetimes.

3In this document, we do not intend to consider advanced form of malicious behavior, such as strategically tuning
the bandwidth contributions or willingly disrupt the functionality of the system. These concerns are more pertinent
to the field of security, which lies out of the scope of our discussion.

60 CHAPTER 3. THE PULSE SYSTEM

increases logarithmically with the population size -O(logdN), if the degreed of each node in
the tree is constant and if the tree branches are balanced. However, the dynamical growth of a
tree-based system heavily depends on the capacity distribution of the nodes in the system and
rarely leads to balanced trees [20]: in the real world, it is not possible to expect a fixed per-
node bandwidth contribution, as it depends both on upload limitations at each node and on its
willingness to contribute. In practice, this approach usually leads to poor performance, as very
few nodes can contribute a sufficient amount of excess resources to the system. Also, a degree
d > 1 implies that a node is contributing more resources to the system than it receives, which
makes little sense in an economical perspective4. Finally, a large share of upload capacity is
wasted, as the leaves are (by definition) prevented from contributing.

In the hypothetical case where everybody contributes equally, the single tree degenerates into one
or morechains, whose length isO(N) - not suitable for the timely distribution of live data. To
introduce timeliness in this context, the multiple-tree approach has been devised: split the content
in k stripes, which are then distributed usingk internal-node-disjoint trees of degreed = k. The
internal-disjointness requirement can be tuned by appropriate tree-building algorithms so that the
load on each node is not higher than what it would have been in asingle tree withd = 1, while
the path length scales now much better than before:O(logkN).

Again, the real world does not guarantee that each node will contribute equally to the system.
It is a common occurrence that nodes will provide less uploadbandwidth than what nominally
required. Solutions to this issue include: preventing ’poor’ nodes from joining the system [21]
(access control), eliminating ’poor’ nodes by means of a external cryptographic records [89] or
complex tree+cluster/based organization where neighboring nodes reach consensus on whether
to enforce punishing measures [46] (detection). Few multiple-tree based system accept the fact
that peers could contribute less than the stream rate. As faras we know, when they do, they expect
that ’poor’ nodes will either refrain from obtaining more resources than what they contribute
[107] or politely comply with the demands from richer peers that try to push them towards the
bottom of the trees[97] (cooperation). The effectiveness of these approaches is not guaranteed in
non-cooperative environments (users can actively interfere with the correct node behavior, e.g.
by willingly disabling data upload) and when the software code is public and could be modified
and then recompiled.

What we expect from an Internet application is to work in best-effort mode as long as resources
are available, and to fail gently when resources are no longer sufficient, based on locally-available
knowledge and without relying on explicit cooperation.

3.1.3 Fundamental Insights

The initial intuition that motivated our work on PULSE is that there should be a better way of
organizing the members of a live streaming session than using trees. “If we accept to break up the

4Actually, in a game theoretical perspective, it makes no sense for a greedy player to provideanythingto the
system, as there is no way that its lack of contribution can bedetected and retaliated against.

3.1. INTRODUCING PULSE 61

rigid tree structure - we thought - it would perhaps become possible to leverage local information
to optimize the overlay in a way that was not possible with traditional tree-based designs”.

We also understood that asymmetry in upload resources (and/or the lack of willingness to provide
them) is a fundamental problem that has to be taken into account early on, while defining the way
peers interact and choose their partners: a system where cooperation between users and resource
availability are expected would hardly operate in an environment such as the Internet.

Finally, we considered churn as a natural consequence of alive application: users would be
joining, leaving, switching from one streaming session to another, rapidly zapping through a
number of channels. The reliance on static, stable overlaysthat have to be actively repaired in
response to churn appeared to us as an inappropriate choice,much less effective than renouncing
to the classic concept of overlay that (back then) was ubiquitous in the literature.

These intuitions suggested us to devote our efforts toward an unstructured, data-driven, incentive-
based, dynamic system design.

Unstructured Systems - Resilience to churn Building tree overlays has several shortcomings.
When the incoming nodes proceed hierarchically (from the root to the leaves) the source is
involved as a starting point [36]: this fact limits the flexibility of the system, as repositioning
a disconnected node means recontacting the source and traversing again theO(log N) tree layers
to get to the bottom. The solution to this lack of flexibility requires an increase in the node
knowledge, to avoid getting back to the source every time thetree requires maintenance: keeping
the contact information for nearby nodes, such as thegrandfather[14], or maintaining the entire
list of ancestors [27] plus some random nodes, allows to somewhat mask the effect of transience
on the playout quality. However, in presence of limited bandwidth resources, a disconnected
node will rarely be able to reconnect on a higher layer, as thecapacity of its ancestors is likely to
be completely allocated: several hops will be required for anode to reach its final position in the
tree. The use of structured overlays, such as DHTs [21], for tree construction and maintenance
solves thereconnectionissue, as the underlying overlay layer implements repair policies that act
transparently, ensuring the connectivity to the system in spite of node transience. However, the
streaming application loses the control on peer selection and cannot be aware of factors such as
bandwidth availability and latency [16]. Unstructured systems can support very high amounts of
churn without adding constraints to the streaming application. Moreover, the less structured is a
system, the lower is the impact of external perturbations onits operation.

Unstructured Systems - Flexibility in node placement The advantages of an unstructured
system lie in the fact that the streaming application has a much larger degree of freedom in
the way it manages its connections: this freedom requires a broader amount of information on
a larger subset of the node population, but if properly exploited it can grant to the system the
capability of adapting itself to variable network conditions. An example of these advantages
is provided by the recent Chunkyspread architecture [113],whose unstructured tree-building
technique allows seamless switching between different positions in the same tree while keeping
into account both the load of the nodes and the network latency.

62 CHAPTER 3. THE PULSE SYSTEM

Data-Driven Systems - Flexibility in resource allocation A data-driven approach imposes
less constraints on the contribution of individual nodes. While in traditional tree-based systems
each node would have to contribute an integer multiple of thestream bandwidth, and while in
multiple-tree systems nodes are supposed to cooperate, providing at least the same bandwidth
that they consume, in data-driven systems there is no fixed data rate that has to be maintained on
each connection. The free allocation of the node upload capacity brings additional flexibility in
the establishment of peer associations and in the scheduling of data transfers.

Data Driven Systems - Dynamic overlay optimization The freedom from structural con-
straints allows unstructured systems to support non-deterministic optimization techniques to re-
cursively improve the overlay quality: this interesting option was already implicit in the earliest
examples of unstructured data-driven systems, such as CoolStreaming/DONet [122]. The aware-
ness to pairwise node latency and to the availability of upload capacity among the peers are
important features that can help lower the playout delay andimprove the efficiency of data dis-
tribution [27].

Incentive-based overlay optimization The live streaming problem has several features that
suggest the effectiveness of incentives to stimulate cooperation: first, it involves a pool of users
interested in roughly the same data, synchronizing the attention of all the receivers on a small
segment of the stream; second, it requires that the users stay in the system as long as they wish to
receive the stream, introducing the possibility of long-term, repeated interactions among them;
third, it can provide a sort of “reward” to the cooperating nodes, in the form of better data
reception quality and lower playout delay.

Incentives have been mainly studied so far as a way of preventing freeloadingin distributed
systems, enforcing a “fair” retribution. More recent studies [45][75], however, acknowledge the
emergence of clustering behavior in incentive-based systems as a secondary phenomenon, which
in some cases is deeply linked to the good performance of the system in exam (e.g. BitTorrent
[67]). These results support our long-standing intuition about the usefulness of clustering by
resource availability as a way to achieve dynamic overlay optimization in P2P unstructured live
streaming systems: by allowing nodes rich in upload capacity to position themselves near the
source, the higher fan-out they provide can hasten the initial distribution of data chunks. This
approach can shorten the average path lengths as it tends to achieve an optimal node placement
[103].

3.1.4 Claims

PULSE introduced from its very beginning in 2004 [84] several seminal design choices:

1. The use of a mesh-based organization of the streaming overlay, when the only ap-
proach that was widely considered viable was based either ontrees or multiple-trees.

3.1. INTRODUCING PULSE 63

The first published studies that argued for the viability of mesh-based systems were about
DONET/Coolstreaming [122] (2005) and Chainsaw [81] (2005).

2. The deliberate choice - at all levels - of dynamic system organization over fixed over-
lay structures. This choice has very profound implications on the attitudeof a system
toward churn. Fixed-overlay systems react to churn as an exceptional event, and perform
special operations to bring back the system to its ’normal’ state. A dynamic system, on the
other hand, implies that a certain amount of churn is always present even while it operates
’normally’, and its algorithms further contribute to this randomness, paradoxically exploit-
ing it to improve the overall stability of the system. The first published work we are aware
of that introduced dynamism from churn as a normal componentof the system operation
was Chunkyspread [112][113] (2006).

3. The use of incentives to discourage freeloading. While incentive-based schemes have
received a lot of attention in the last few years, mainly attributable to the blazing success
of the BitTorrent [33] bulk data-distribution system, the application of incentives against
freeloading to the live streaming context has been slow and not very successful. Several
systems have been devised that include some kind of incentive mechanism: for instance,
[89] (2004) described a multiple-tree architecture where tit-for-tat was implemented to
prevent freeloading. The fundamental issue with such a scheme is that, since exchanges
between nodes over several disjoint trees cannot be expected to be reciprocal, it requires
an external tamper-proof decentralized debit/credit logging system, that adds another layer
of complexity on top of the streaming system itself.

4. The use of incentives to promote the contribution of resourcesby users of the system.
More often than not, when incentives have been implemented,their goal was to prevent
freeloading by sanctioning nodes that contribute less thanexpected. Only recently, in [107]
(2006), a multiple-tree system is described where nodes areallowed to join a number of
trees which is proportional to their resource contribution, while the excess resources are
allocated to all the peers without restrictions. Another multiple tree-based system, CROSS-
FLUX [97] (2006), uses incentives to establish a variable number of backup connections:
peers that contribute their fair share of resources are rewarded with a better protection
against churn. In the context of unstructured live streaming systems, Chunkyspread [113]
(2006) gives the option of using incentives to bias the peer selection process toward those
peers that contributed more.

5. The use of a feedback loop based on the present state of data distribution in the system
and on pairwise local incentives to provide dynamical adaptation to both heteroge-
neous upload capacity and network topology. The approach we propose in PULSE aims
to exploit an underlying network where resources are unevenly distributed: when placed
near the source, the nodes contributing excess capacity will greatly reduce the lag per-
ceived throughout the system as if the out-degree of the source was much bigger of what
it actually is. On the other hand, peers that contribute lessthan the stream rate will still be
able to participate to the streaming session. This is the essential mechanism that makes the

64 CHAPTER 3. THE PULSE SYSTEM

data-driven topology adaptive to the available network resources. No other systems we are
aware of currently use this technique.

In addition to the original design of the application, we also introduced a series of metrics based
on buffer parameters such asnode lag(see Chapter 4) in order to describe the instantaneous
state of data-driven live streaming systems. The use in the literature of similar metrics first
appeared in a 2006 measurement study about PPlive [55].

3.2 Terminology

This section describes the concepts and terminology used throughout the rest of this document.
The following pages will refer to definitions and abbreviations contained in Table 3.1.

3.2.1 The Peers

Similarly to all other peer-to-peer applications, a PULSE system is constituted of a multitude
of peers (or nodes). We remember from the previous chapter that apeer is a software process
running on a networked machine: in the following pages, we will use the termsnodeandpeer
interchangeably. As more than one node can be running on the same machine, and as every
instance of the program must bind to a different network socket for listening, each peer can be
uniquely identified by the tuple <IP address, port>. For brevity, in the following we will use the
notationPi to refer to the uniquenetwork identifier of peeri. We suppose that each peeri has
a certain amount of bandwidth resources. We will callUi andDi respectively the upload and
download capacity, that is the maximum amount of bandwidth available for sending or receiving
data. All the peers that are retrieving the same video streamat the same time are part of the
samestreaming session.

Peer Initialization A PULSE peer needs to obtain some information before it can join a
streaming session and receive the media data. This information is usually provided by the pub-
lisher of the stream under the form of a short initializationfile: we refer to it as the.pulsefile,
from its default file-name extension, e.g.video1.pulse. This file contains:

• Metadata about the stream being diffused (title, author, start date, indexing information,
etc.)

• A set of one or more identifiers of peers that are part of the streaming session at the moment
of the creation of the .pulse file (a.k.a. anentry point to the system)

• Information on the parameters of the stream being broadcast

• Information on the protocol parameters that the peers must adopt

3.2. TERMINOLOGY 65

• The source’s public key for chunk integrity verification

• A signature by the source on the whole content of the .pulse file

The .pulse file is named in the same spirit of its BitTorrent homologous, called .torrent file,
and it plays a very similar role. The main difference betweenthe content of the two files is
that the.pulsefile does not contain the cryptographic hash of all the blocksof the data that
are being distributed. This difference is due to the fact that, in the live streaming context, data
are not available a priori to the node that distributes them.For this reason, pollution attacks
by resourceful peer that distribute corrupted data are verymuch a concern for practical live
streaming applications [37].

In the general case of live streaming, the checksum information to guarantee theintegrity of the
streamcan only be generatedon the fly, and has to reach the nodes with a low delay, so that data
verification (and error recovery) can be performedbeforethe chunk is played. In a centralized
system, all the peers could retrieve the stream of chunk checksums from an authoritative party,
possibly the video streaming source itself. In a completelydistributed system, however, such
a solution is not acceptable, as it introduces a single failure point in the system. While not
a bandwidth-intensive operation, centralized checksum retrieval can limit the scalability of the
system.

In a distributed system, the least cumbersome way to guarantee data integrity is using asymmetric
cryptography and certificates5. The streaming source can specify its public key in the .pulse
initialization file, and then digitally sign the contents ofthe .pulse file (making the .pulse file
a sort of self-signed digital certificate6). Then, the source can append to each data chunk a
cryptographic signature computed with its private key. These chunk signatures can be easily
verified by peers using the source’s public key.

Membership Management When a new node joins a streaming session, it needs to quickly
gather the contact information for a number of nodes alreadyin the system, and should at the
same time make other nodes aware of its presence. This problem is referred to in the literature as
membership management, and can be seen as an independent issue from the core functionality
of the PULSE system.

Several examples of membership management can be found in the literature. The simplest way
to approach the problem involves the use of a central entity (e.g. the BitTorrent [33] tracker) that
keeps track of who is in the system and provides a list of suitable candidates for future interaction
to the incoming nodes. Distributed approaches to membership management have been the focus

5This section is provided only for completeness, to indicatea possible solution of a related security problem in
the distribution of live streams. However, a complete analysis of security concerns lies out of the scope of this work.

6If we suppose that the .pulse files are retrieved from a trustworthy source, then a self-signed certificate will be
sufficient to guarantee integrity. Otherwise, a trust chainto a well-known certificate authority would be necessary to
detect a .pulse file that has been tampered with (e.g. by replacing the source key and signature with someone else’s
key and signature).

66 CHAPTER 3. THE PULSE SYSTEM

of recent research on efficient primitives for group communication: they involve the creation
of a suitable overlay network on which membership messages will travel and reach a sufficient
fraction of the system population.

A naïve distributed solution can be based onflooding, e.g. similar to the early Gnutella 0.4 pro-
tocol: nodes establish a limited number of connections toward their peers - the resulting overlay
is thus a “random” graph - and when a message is received by a node it is forwarded over all its
connections (except the one on which it was received). To improve the efficiency of this basic
solution, other approaches have been suggested that involve either the use ofstructured overlays
(e.g. the control tree in Bullet [65], the DHT infrastructure in Splitstream [21]),clustering(e.g.
the layered cluster infrastructure of NICE [12] and ZIGZAG [110]), orunstructured gossiping
(e.g. the probabilistic broadcast in SCAMP [48], the randomshuffling of neighbors in CYCLON
[117], the biased random walks in Swaplinks [115]).

In PULSE, we selected a gossiping approach based on the SCAMPmembership management
protocol. Randomized gossip offers several advantages, including the good (logarithmic) scaling
of the local neighbor list size at each peer - calledpartial view - and the robustness of the
resulting connection graph, which can resist high levels ofchurn. The membership information
messages convey summary information on the status of data reception at the individual nodes
and are propagated on the SCAMP overlay using fixed-length random walks: we will henceforth
call themBLUE messages. In the context of membership management, theloose distributed
synchronization to the source clock is also performed (see 3.2.2 below).

Data/Control Connection Management After a node has gained a coarse grained knowledge
about other peers, it starts contacting them directly to obtain detailed information on the con-
tents of their data buffer7 and to advertise its own buffer contents. The list of nodes about which
BLUE messages have been recently received is called theBLUE knowledge set. A subset of
these nodes is chosen by each peer as the recipient of fine-grained buffer information via PULSE
protocol messages, called from now onRED messages. The set of nodes selected for this pur-
pose is calledRED neighbor set. The list of nodes about which fine-grained information has
been recently obtained via either solicited or unsolicitedRED messages is calledRED knowl-
edge set.

As the primary goal of any peer is to retrieve useful data chunks and recover a playable media
stream, each peer must contact neighbors in the RED knowledge set that are able to provide use-
ful data chunks. At the same time, the node must in turn collect and honor the chunk requests
coming from its neighbors. The neighbors that a peer serves are organized in several groups,
callednode exchange lists. These lists are based on the outcomes of thepeer selection algo-
rithm , which is executed with a fixed periodicity (once perEPOCH - which amounts in general
to few seconds) and on the behavior of partner nodes. There are three node exchange lists that
are served with a decreasing level of priority: theMISSING, NEW, andFORWARD lists. Their
complete definition is deferred to Section 3.3.

7The buffer collects and stores the received data chunks before they are sent to the player application.

3.2. TERMINOLOGY 67

Parameter Typical Value Description

W 32 Length of buffer sliding window [chunks]
TW 64 Total length of trading window [chunks]
SBR 256 FEC-encoded stream bit rate [Kbit/s]

R 16 Rate of chunk generation @source [s−1]
LRmax 25% FEC tolerance to chunk losses/window

S LRmax ·W Window sliding tolerance [chunks]
TD

250
R

Min. node lag to trigger buffer reset [s]
EPOCH 2 Time b/w subsequent peer selections [s]

Table 3.1: Summary of System-Wide Parameters

3.2.2 The Stream

The stream is a sequence of data that is generated by an audio/video source (e.g. camera, mi-
crophone, recorded media file). The stream is encoded using one or more8 codecs, video/audio
compression algorithms that can take several parameters toproduce a coded output with the de-
sired properties. Codecs are definedlossyif information is irreversibly lost during the encoding
phase,losslessotherwise. For the practical purposes of video transmission over narrowband
channels, lossy codecs are the preferred choice as their bandwidth requirement is lower.

The codec parameter that is most relevant to our discussion is thenominal bit-rate , which
determines both the video/audio quality and the bandwidth requirement of the video stream.
Lossy codecs are further divided in two categories: constant bit-rate (CBR) and variable bit-rate
(VBR), depending on whether the bit-rate of a stream remains unchanged over time or adapts
to the features of the video data: while the nominal bit-rateof a VBR codec can continuously
change, the average bit-rate achieved when compressing a given media sequence is constant.

Streaming Source and Data Chunks In PULSE, all peers are identical pieces of software
implementing the same algorithms. However, one peer in eachstreaming session needs to behave
differently: this special peer is thestreaming source, and is the only peer that introduces new
data from the stream into the system.

The streaming source receives an encoded video stream as itsinput and turns it into a sequence
of data chunks. The chunks are the basic unit of data exchange in the system and are generated
by the source with a fixed rateR, the chunk rate. Chunks contain, beside the video data,
several pieces of control information, such as the chunksequence numbercj, a counter which
is incremented by one for each chunk, and thechunk timestamp τ(cj), the time at which the
chunkj was generated. This timestamp is generated using the local clock at the source, also
called themedia clock.

8Each component of the stream (audio, video) is encoded separately using specialized codecs. Then, the audio
and video substreams are packed together, with the possibleaddition of metadata, padding, and redundant informa-
tion for error recovery using acontainer format.

68 CHAPTER 3. THE PULSE SYSTEM

While the chunk sequence number is mostly used for internal node operations (ordering the
chunks in the buffer, finding the missing chunks), the chunk timestamp is used by a peerPi to
evaluate the “age” of a chunkcj upon its reception: we will call this delaychunk lag, defined as
Tcj

(t) = t−τ(cj) ∀t > τ(cj). The use of lags (i.e time delays) that are relative to the generation
of chunks at the source will be useful for the purpose of representing the status of the system at
steady state, as we will better explain in the following pages.

Chunk Loss Recovery The streaming source can also process the video data and add informa-
tion to enable the recovery of a certain amount of chunks that(for some reason) have not reached
a node. In PULSE, we adopt a chunk-level forward error correction (FEC) technique based on
the classic(N,K) Reed-Solomon coding, which has often been used in the literature for similar
purposes [58][93][78].

The source applies FEC coding9 to protect the stream from up to a specifiedloss rate (LR).
Coding is performed by first splitting the original video stream into a block ofK chunks, and
then generatingS = W − K linearly independent parity chunks10, for a total number ofW
chunks in each block: the coding rate is thus equal toK

W
. After this process, theW chunks are

made available to the nodes in the system: each node will onlyneed to retrieve anyK ′ ≥ K
chunks to be able to recover the original video stream data. To guarantee the full recovery of the
stream,W andK will be chosen so that the rate ofredundant codingis sufficient to compensate
the maximum amount of expected losses, i.e.1 − K

W
= S

W
≥ LRmax. LRmax is called the

maximum tolerable loss rate, a system parameter that depends on the expected operational
conditions of the streaming application.

3.2.3 Receiving the Data

The streaming source delivers the most recent data chunks tothe nodes it is connected to in a
push-basedfashion (only considering their buffer information to avoid sending duplicates). On
the other hand, ordinary peers request (pull) the missing chunks from their neighbors. Using
the collected buffer information from red messages, nodes can issuechunk requestsfor one or
more individual chunks to the neighbors in the RED knowledgeset. Chunk requests are assigned
to the nodes according to therequest scheduling algorithm.

After receiving a chunk request, a peer stores it in the appropriate per-neighborrequest queue.
Chunks are served to nodes in a priority-based round-robin order over the various exchange
lists (MISSING, NEW and FORWARD): for each node, the chunks are chosen using thesender
scheduling algorithm among those that were requested, until there are no more chunks to be
sent or the bandwidth resources are fully utilized.

9For the sake of maintaining coherence with the notation in the next pages, the (N,K) parameters of the Reed-
Solomon coding are henceforth renamed (W,K). Incidentally, W is used because the total number of chunks in a
FEC block will be equal to the length of the buffer sliding window of the PULSE node.

10Incidentally again,S will be defined as thesliding toleranceof the node buffer window, i.e. the number of
chunks that a peer can skip during data reception without compromising its playout quality.

3.3. STRUCTURE OF THE PULSE NODE 69

Buffer Size and Data Reception An exchange of data between nodeA and nodeB can be
performed whenA has in its buffer one or more chunks thatB has not obtained yet: we define
this condition asbuffer overlap. Since every peer keeps the chunks it has received in its buffer
for only a short time and is free to discard them once they havebeen sent to the player, the overlap
between the buffers of the two nodes is null or finite, and its maximum extent is determined by
the size of the node buffers. The synchronization of the nodebuffers has to be encouraged to
obtain higher data transfer rates between nodes, as the overlap is maximum when the two buffers
are perfectly aligned. Synchronization increases at the same time the likelihood of bi-directional
exchange.

The two basic conditions of live streaming, i.e. the continuous generation of new chunks by the
source and the need of their sequential delivery to the application, do not imply an upper bound
on the node buffer size: in fact, the larger the buffers, the higher the chance that data transfers
will be possible between two nodes. On the other hand, the additional constraint of near-optimal
playout latency introduces an upper bound on the size of the buffer: the larger the buffers, the
longer the time required for a complete series of chunks to beretrieved and passed to the player
application. Therefore, the choice of a system-wide buffersize also involves a trade-off between
playout latency and throughput.

3.3 Structure of the PULSE Node

The PULSE node contains a set of data structures and methods that manage the different aspects
of its behavior: theData Buffer, which collects, reorders and transfers data chunks to the player
application, theKnowledge Manager, which organizes the information that a peer holds about
the rest of the system, and theTrading Logic , which executes the algorithms that determine the
node behavior using the information coming from the Data Buffer and the Knowledge Manager.

3.3.1 Data Buffer

The buffer of a PULSE node is more than a simple data structurethat stores the data chunks
prior to their delivery to the application. Actually, it is asophisticated object that performs many
operations, and that actively influences the behavior of thenode:

• It determines onwhich set of chunksthe chunk selection algorithm will operate, based on
their playout priority and on the current buffer content.

• It influences key aspects of the peer selection algorithm, asthe profitability of a relationship
with other remote nodes depends on the presence of overlapping data ranges.

• It guarantees the integrity of the data stream sent to the player, exploiting the FEC encoding
performed by the source on the data chunks.

70 CHAPTER 3. THE PULSE SYSTEM

Lag (T)

Zone of Interest Sliding Window TD

TV

TQ
Source
TB = 0()

Trading Window

inst
TB

Buffer Edge

//
Most Recent Chunk Oldest ChunkBuffer Delay Range

Figure 3.1: The Buffer of a PULSE Node

• It measures the data reception quality, and enables the nodeto timely react to transient
reception shortages.

Structure The PULSE buffer is designed to decouple the data retrieval process from the deliv-
ery of the stream to the player (Figure 3.1).

The data exchange involves only a limited portion of the buffer, calledTrading Window , which
contains2W contiguous chunks. The first (lower) half of the Trading Window, which contains
chunks with smaller sequence numbers (i.e. older), is called Sliding Window and containsW
chunks. The other (upper) half, which contains chunks withsbigger sequence numbers (i.e. more
recent), is calledZone of Interest. The most recent chunk in the Sliding Window is calledbuffer
edgeand is referred to ascβ.

The chunk lag of the buffer edge is used to represent the current reception status of the node:
the instantaneous node lagis defined asTBinst

(t) = Tcβ
(t) = t − τ(cβ). For instance, the

availability of chunks in the Trading Window is periodically advertised by every node to its
neighbors in the form of a bitmap of2W bits, along with the sequence number of the buffer edge
cβ.

The delivery of the data to the application is performed after the data chunks reach a lag equal
to TV , calledplayout delay. The value ofTV is decided during the initialization phase and,
once set, it is bound to remain constant during the whole streaming session - unless the node
experiences severe reception shortage, as we will explain later. Once passed to the application,
data can be discarded by the node, to limit the memory usage bythe buffer: the lag value at which
chunks are discarded is calledTD. This lag value also conventionally marks thereconnection
threshold of the node buffer, as the chunks are assumed to be too old for playout.

Operation A parameterS = W −K, calledsliding tolerance, defines the minimal amount of
chunks that can be missed by the sliding window while it movesforward. The maximum chunk
loss rate tolerated during normal peer operation is thus bound byLR = S

W
. The system-wide

3.3. STRUCTURE OF THE PULSE NODE 71

parameterLRmax is equal to the amount of redundant coding performed by the source. The
value ofS at every peer must be set so thatLR ≤ LRmax to ensure the complete recovery of
the original data stream. If less thanK chunks are available, the sliding window cannot move.
The lag of all the chunks contained in the window increases astime passes and as new chunks
are generated. Otherwise, the window will keep sliding forward as long as it contains at leastK
chunks.

Let’s suppose that at timet the buffer is operating at steady state, well after initialization has been
performed: the buffer contains a long continuous sequence of chunks, the node is requesting
chunks in its Trading Window zone, and the Sliding Window containsK or more chunks. The
buffer delay range is defined as the sequence of chunks that spans fromTV to TBinst

(t).

Because of the randomness of the data retrieval process, thevalue of the instantaneous node lag
TBinst

fluctuates over time in an unpredictable way. At timet0, when data chunks are received
and chunkci becomes the new buffer edge, the node lag value isTBinst

(t0) = Tci
(t0) = t0 −

τ(ci). While chunkci is the buffer edge, the value ofTBinst
linearly increases with the time, i.e.

TBinst
(t) = Tci

(t0) + (t − t0). When chunkci+k ∀k > 0 becomes the new buffer edge at time
t = t1 > t0, the value of node lag suddenly decreases:TBinst

(t1) = Tci+k
(t1) = t1 − τ(ci+k) <

Tci
(t0) + (t1 − t0).

As new data chunks are introduced into the system at a constant rate, it is useful to study the
evolution of instantaneous node lag over time. In the example above, while the value ofTBinst

keeps changing, it is possible to make a short-term estimateof whether its average value is
increasing or decreasing (that is, whether its derivative is positive or negative). Since the chunk
generation rate isR, we know that chunkci+k was first distributed by the sourcek

R
seconds after

the chunkci. We can then compute theTBinst
differential between timest0andt1 as:

∆TB(t0, t1) =
Tcj+k

(t1)− Tci
(t0)

t1 − t0
=

(Tci
(t1)−

k
R
)− Tci

(t0)

t1 − t0
=

=
(Tci

(t0) + (t1 − t0)−
k
R
)− Tci

(t0)

t1 − t0
= 1−

k

R (t1 − t0)

which is positive when k
t1−t0

< R, i.e. lag increases because fewer chunks have been received
than the source has generated during the[t0, t1] time interval, and negative whenk

t1−t0
> R. If no

new chunks are received,TBinst
grows over time at a constant rate, and the window keeps drifting

on the lag axis (to the right in Figure 3.1) with a constant speed. Only when at leastK chunks
overW have been collected, the window is allowed to slide and to reduce itsTBinst

(moving to
the left in Figure 3.1).

A Safety Margin between Reception and Playout Chunkcβ −W is the most recent chunk
that can be played by the local node without any loss of quality11. We callTQ the interval that

11As FEC encoding is performed on blocks ofK chunks and producesW = K + S chunks, the fact that all
chunks up tocβ−W have passed through the sliding window (with less thanS chunks lost per window) guarantees

72 CHAPTER 3. THE PULSE SYSTEM

spans from the end of the sliding window to the playout delay:TQ(t) = TV − (TBinst
(t) + W

R
).

Continuous playout without quality degradation requiresTV to remain constant during the whole
streaming session: the duration ofTQ indicates themargin of safety that the system maintains
against data reception problems, as at leastTQ seconds of playable media data have already been
retrieved by the peer. During system operation, it may then happen thatTQ drops to zero or
becomes negative due to an extensive reception shortage (i.e. whenTBinst

(t)+ W
R
≥ TV). At this

point, no more data can be copied from the buffer to the playerwithout disrupting the integrity
of the stream.

If shortage persists,TBinst
may grow up toTD, at which point the chunks the node is requesting

are no longer available in the system: the node is then forcedto reset itsTBinst
value and repeat

the initialization procedure (detailed below). Abrupt changes in the duration ofTQ (while it
is still positive) can also be used by peers to predict impending reception problem: nodes can
leverage this information to preemptively react to avoid playback disruption12. The consequence
of reception shortage that are experienced by the user is a temporary interruption of playback,
with the loss of a segment of media stream.

The (Average) Node Lag We define thenode lagTB as the average of the instantaneous node
lag. The value ofTBinst

is sampled by each node at regular time intervals ofγ seconds. The aver-
age node lag can then be computed either as the simple moving average (SMA) on a finite win-
dow of the lastn samples ofTBinst

or as the exponentially-weighted moving average (EWMA)
over the whole sequence of samples. If the EWMA notation is used, node lag is defined as:

TB(t) = (1− a) TBinst
((kn− 1)γ) + a TB(nγ) ∀t ∈ [kγ, (n + 1)γ)

If we use the SMA notation, node lag computed over the window of then most recent instanta-
neous lag samples can be written as:

TB(t) =
1

k

n
∑

i=0

TBinst
(iγ) (3.1)

Node lag is used to advertise the approximate range of chunksthat a node is able to provide.
Messages containing the values ofTB andTD provide a synthetic and durable description of the
data content of a node: the choice of new partners for data exchange can be based upon this
information, as it is the result of a long-term averaging process.

that lossless playout can be achievedat leastup to chunkcβ −W .
12The current implementation of PULSE does not include any reactive policy to anticipate or avoid buffer reini-

tialization.

3.3. STRUCTURE OF THE PULSE NODE 73

3.3.2 Knowledge Management

The Knowledge Manager organizes the information a peer has about the rest of the network.
Its role is very important in an unstructured system, as mostnode decisions are based on the
currently available local knowledge. The information stored at peerPi includes:

• direct measurements of network parameters (RTT , data throughput per connection)

• information about thenetwork addressand buffer delay range of the other peers.

• detailed accounts of the exact buffer content of the remote peers, required to engage in data
exchange.

• local records of previous trading interactions, in the formof a cumulativehistory scoreH
for each of the peers that have had previous interactions with peerPi.

Messages Nodes exchange two types of messages, BLUE messages and RED messages.BLUE
messagescarry summary information about the data available at the node in the form of the ex-
treme lag values of the[TB, TD] interval in its buffer: these values do not refer to specific chunks,
but give a durable notion of which data range a node can be expected to provide, as the values
of TBandTD are expected to remain stable when the system operates at steady state. These
messages are forwarded among all peers using a protocol, such as random walks with a finite
length [49]. RED messagescarry a timestamp, the instantaneous node positionTBinst

, TD, the
bitmap summarizing the chunks present in the Trading Window, and (optionally) explicit request
bitmaps for data chunks in that range. These short messages are directly exchanged between
pairs of nodes, and it is possible to use them to estimate the pairwise network latency. Two ad-
ditional messages,HELLO / HELLO REPLY messages, are only used when a node joins the
PULSE system to perform its insertion in the membership management overlay.

The Node Lists While thenetwork addressesof all the nodes that have been contacted during
the life of a peer are stored in a list, similar to thehost catcherof a Gnutella node, only a small
number of nodes is contacted on a regular basis during the operation of PULSE in order to obtain
up-to-date information. Two lists are actively maintainedto support the needs of the streaming
application:

The BLUE Knowledge List- PULSE relies on an unstructured substrate to guarantee that the sys-
tem will stay connected and that every node knows and can contact enough peers. The substrate
currently implemented by PULSE is based on SCAMP [47], a randomized gossip membership
management service that shows good asymptotic properties,such as the logarithmic growth with
the size of the system of thepartial viewsat each node.BLUE messages are periodically ex-
changed over this substrate: upon receipt of these messages, the local peer records their content

74 CHAPTER 3. THE PULSE SYSTEM

in the BLUE knowledge list. This list currently has a fixed size13 (several tens of nodes) and is
regularly purged from older records as new messages come in.

The RED Knowledge List- To be able to perform data exchanges, a PULSE node requires an
up-to-date view of the buffer content of a subset of the system population. A number of peers
that sent a recent RED message are included in this list, whose maximum size is also currently
fixed to few tens of peers. To populate its own RED list, every node periodically chooses a small
number of peers from its BLUE list and sends them a RED messageabout its current situation,
without any chunk request. Also, a node responds with a RED message (that may or may not
contain chunk requests) to the first RED message without requests it receives from nodes not
present in its RED knowledge list.

3.3.3 Trading Logic

Peer selection algorithms determine how the associations between nodes are established and
maintained. In the global context of distributed systems, the problem of selecting a subset of the
peers to exchange data and control information appears constantly: the role of peer selection can
be more or less relevant depending on the applicative requirements, the operating environment,
and the architectural choices made by the designers of a system. Live streaming systems, for
instance, require the rapid propagation of data across the node population. The three prevalent
architectures for live streaming - overlay-driven, multiple-tree based, and data-driven - all use
selection algorithms with different characteristics and purposes.

In single-tree systems, the purpose of peer selection is to incrementally build (and, when needed,
repair) a good overlay tree. The choices on the placement of incoming nodes are thus often per-
formed by the nodes already in the system, and the join procedure may involve the streaming
source or an external rendez-vous point [12]. The reason is that internal nodes have more in-
formation on the current overlay topology than the new peer,and can optimize the placement of
nodes for several criteria such as lowest latency and highest bandwidth availability. Inmultiple-
tree systems, the main purpose of node placement is to guarantee that all nodes have an uniform
upload distribution. Additional goals can be overlay path diversity [21], improved resilience [80],
incentive support [97] and resource-adaptive load balancing [113]. The placement can be per-
formed using an additional structured overlay (such as a DHT), relying an external rendezvous
point or with the help of nodes already in the system. Inmesh-based systems, the peer selection
algorithms are even more important, as, unlike trees, meshes do not provide guarantees on the
flow of data across the system. This means that each node has tochoose - autonomously and
periodically, based on a steady exchange of control information - the peers it should associate
with. A chunk scheduling policy is also required in the mesh-based case to insure the timely and
steady delivery of the stream data.

The trading logic of a PULSE node controls all the aspects of chunk request, selection, and
scheduling. It processes the information coming from both the local buffer and the knowledge

13The maximum size of the BLUE knowledge list could be adapted to the node population size based on the
estimates performed by the SCAMP substrate.

3.4. ALGORITHMS 75

Name Value Meaning

δ 3
8
W Offset for initial chunk requests [chunks]

TQINIT
- Margin of safety at buffer initialization [s]

MAX_MISSING_SLOTS 4 Peers chosen w/ optimistic TFT incentive
TFT_RESERVED_SLOTS 3 Max slots for pure TFT
MAX_FORWARD_SLOTS 8 Peers chosen for altruistic relationships

RTOT 16 Max total outstanding requests
Rmax 2 Max outstanding requests to same peer
H - A remote node’sHistoryscore
C - Latency bias for opt. peer selection

latency Measured latency to remote node
NEARBY_THRESHOLD 2W

R
Minimum ∆TB to selectPi asFORWARD

FAR_THRESHOLD 4W
R

Maximum∆TB to selectPi asFORWARD

Table 3.2: Other Parameters Appearing in the PULSE Algorithms

logic to decide which and how many chunks will be requested/sent from/to which neighbor. Its
two main components are thePeer Selectionand theChunk Schedulingalgorithms:

• The Peer Selection module maintains three exchange lists, which contain the peers that can
receive service by the local peer during the current EPOCH. These lists,MISSING, NEW

andFORWARD, contain nodes chosen with different criteria and are receive service with
different priorities.

• The Chunk Selection module decides which chunks will be requested from which node
from the exchange lists, based on the information containedin the RED knowledge list.

The rationale and the algorithmic details of the trading logic will be explained in the next section.

3.4 Algorithms

This section describes the algorithms used by a PULSE peer, from its first connection to the
network to steady state operation. We will present the join phase, when incoming nodes enter the
system and synchronize with the source clock, the initialization phase, when the node receives
the first data chunks and chooses its buffer parameters, the data exchange phase, where peer
selection and chunk selection are performed regularly, andthe recovery phase, in which the nodes
overcome the effects of a permanent download starvation. Table 3.2 summarizes the parameters
that will appear in the following pages.

76 CHAPTER 3. THE PULSE SYSTEM

Algorithm 1 Buffer Initialization: Condition to Set Initial Window

for idx in range(δ + W
2
, δ − W

2
, −1): # idx is the lag of a virtual sliding windowvsw(idx)

if ‖chunks in the SW ofvsw(idx)‖ ≥ W
4

AND ‖chunks in the TW ofvsw(idx)‖ ≥W :
setTBINIT

= Tcidx

3.4.1 Joining the Network

To join a PULSE session, the incoming peer has to know the IP address and port of at least
one node that already belongs to the system. This information can be supplied by anybootstrap
mechanism: in the current implementation, a file that contains the addresses of one or more nodes
(not necessarily including the source node) is used as the starting point for node bootstrap.

The joining peerP sends HELLO messages to the bootstrap nodes. The HELLO messages are
propagated throughout the network using the SCAMP algorithms [47] until they reach a peer that
can accept the new neighbor: this peer will then directly send P an HELLO REPLY message
and will add it to its local view. SCAMP guarantees that, for large node populations, the number
of nodes that will haveP in their local partial view - and also the size of the partial view of P -
will be in the order ofO(log N).

3.4.2 Initializing the Buffer

After a node has joined the system, it begins requesting chunks in the[0 + δ, W + δ] fixed delay
interval14. As chunks are retrieved, they are put into the buffer: in this initial phase, the sliding
window is not yet enabled, and chunks are requested with the goal of forming a nearly-contiguous
block. At t0, when at leastW

2
overW chunks have been collected in the Sliding Window andW

over the whole Trading Window (Algorithm 1), the sliding window mechanism is first enabled
around that block of chunks, and the initial buffering lagTBINIT

≡ TBinst
(t0) value is set to the

lag of the current buffer edge. As soon as the window containsenough chunks to begin sliding
forward - unless the value ofTB meanwhile grows too large, in which case the initial window
is cleared - the buffer keeps operating as described above (Figure 3.1). The play-out delayTV

is determined after timet0, when the node buffer at least contains a continuous sequence of
R ·TQINIT

chunks. Only at timet1 > t0, whenTBINIT
−TBinst

(t1) = TQINIT
, the media play-out

is allowed to begin.TV is then set at timet1 to be equal toTBinst
(t1) + TQINIT

+ W
R

.

3.4.3 Bandwidth Allocation

At any given moment, each peer maintains several connections for sending and receiving data.
To simplify the problem of bandwidth allocation, PULSE peers try to establish a fixed number of

14Theδ parameter introduces an offset in the initial lag interval where incoming nodes request their first chunks.
Requesting chunks with higherδ may increase the speed of node initialization (when resources are available) as
older chunks are usually better replicated in the system.

3.4. ALGORITHMS 77

outbound connections for data exchange, but do not explicitly limit the number of incoming ones.
As node bandwidth is typically asymmetric, with the upload bandwidth being much smaller than
the download bandwidth, it is mainly important to control the number of outbound connections.

The biggest challenge for the bandwidth allocation mechanism is the need to support upload
bandwidth heterogeneity: especially in a live streaming application, it is critical to make all nodes
contribute, since unused upload bandwidth reduces overallsystem capacity. Opening multiple
connections has two benefits: a node is able to provide service to several peers, and it obtains
more information to support its future exchanges. However,the more connections, the higher is
the control message overhead for each node. Also, when the upload bandwidth can vary widely,
it is difficult to set a fixed ’number of connections’ parameter that works for all the nodes in the
system.

In PULSE, we approach the bandwidth allocation problem in a practical way. Nodes populate
their MISSING and FORWARD exchange lists on every EPOCH using the peer selection algo-
rithms. A third list contains all nodes that have sent one or more chunks during the current
EPOCH and do not belong to the two previous lists: we refer to this list as theNEW list. The
only difference in bandwidth allocation between the three exchange lists is thatchunk requests
received from peers in theMISSING list are honored with higher priority, followed in order by
peers in theNEW list and peers in theFORWARD list.

On the Number of MISSING Connections We believe that a large number ofMISSING con-
nections can reduce the effectiveness of the tit-for-tat selection: we must in fact remember that
at steady state, for arate-limitedapplication such as live streaming, no more than SBR bytes
per second will be received on average by each node. To clarify this point, let us suppose that
MISSING connections alone are sufficient to sustain the reception bya peer of the full stream,
and that each peer opens exactlyn MISSING connections to other nodes: each node will be se-
lected on average byn peers asMISSING partner. Intuitively, a largen means a lower expected
throughput from (and to) eachMISSING connection: as the contribution threshold required to
gain a place in theMISSING list of the remote node becomes lower, associations become more
random and less related to the actual resource availabilityat the nodes and system performance
may suffer because of repeated sub-optimal choices. For this reason, we decided to use a small
number of connections (e.g. four) toMISSING partners, so that each peer can expect a meaningful
theoretical throughput on each connection (e.g. SBR/4).

On the Number of FORWARD Connections On the other hand, especially for the richer nodes,
opening more connections could improve the odds of finding useful chunks and fully exploiting
their upload capacity. To take this fact into account, a variable number of connections can then be
assigned toFORWARD exchanges, depending on the available upload. We remember that main-
taining an open connection to some node does not imply that itwill be used for data exchange, as
that is determined by the chunk scheduling mechanism: however, these connections may allow
resourceful peers to utilize their excess bandwidth to the system by providing a large number of
other peers with recent chunks.

78 CHAPTER 3. THE PULSE SYSTEM

Algorithm 2 MISSING Selection Algorithm
Old_Contributors # list of nodes that contributed during last EPOCH
TFT=[] # an empty list
MISSING_list=[] # list that will contain the MISSING peers

SortOld_Contributorsby decreasing data_contribution
for eachnode in Old_contributors:

if node’s data_contribution > MIN_TFT_CONTRIB:
addnode to TFT

orderTFT by decreasing data_contribution

while TFT is NOT empty AND length ofMISSING_List< TFT_RESERVED_SLOTS:
take first element out ofTFT, calledpeer
addpeer to MISSING_List

3.4.4 Peer Selection

Peer selection is periodically performed by each node, its time period is calledEPOCHand is
constant. PULSE uses two peer selection algorithms: an optimistic tit-for-tat selection based
on the total amount of data received during the previous EPOCH (similar to BitTorrent) and a
lag-constrained selection based on a cumulative trust score. The two algorithms are executed at
the start of each EPOCH, and give as a result two lists of peers, theMISSING and theFORWARD

list.

MISSING Selection: Optimistic Tit-for-Tat

This policy aims to identify which peers, among all those about which a node has knowledge,
are currently interested and able to provide data in the short term. Two pieces of information
are relevant to this choice: the fact that a peer has provideddata in the recent past and may be
expecting a short-term compensation to continue to do so, and the presence of a shared interest
in the same window of the stream which may lead to fruitful future exchanges.

The selection policy we employ in PULSE uses a tit-for-tat choice based on information about
the amount of data received during the previous EPOCH to fill theMISSING list (Algorithm 2). At
least one place in the list is reserved for an optimistic selection, leading to the choice of a known
node with the largest trading window overlap. Network latency can be taken into account to bias
this selection toward peers ’in the vicinity’ and improve the support for topological locality: the
latency-aware optimistic selection algorithm is shown as Algorithm 3.

3.4. ALGORITHMS 79

Algorithm 3 Optimistic Peer Selection Strategy
Candidates, Overlap=[] # empty lists

Candidates←{ n | n∈RED_Knowledge_ListAND /∈MISSING_list}
Overlap← { n | n ∈ CandidatesAND have overlapping TW }

latency(x) returns the network latency between of node x measured bythe local peer
C is thelatency bias
for eachpeer in Overlap:

ComputeDistance=abs(TB(local)-TB(peer))+C·latency(peer)
orderOverlapby increasingDistance

while Overlapnot emptyOR length ofMISSING_List< MAX_MISSING_SLOTS:
remove firstnode from Overlap
addnode to MISSING_List

FORWARD Selection: Round-Robin on History Score

Every node maintains a record of the previous interactions with every other peer as a numeric
value, which we called thehistory scoreH. This mechanism enables a peer to use data on past
behavior of its fellow peers to makeinformed choiceswhen selecting future candidates forFOR-
WARD exchanges. The history score is computed as follows: each time a previously unknown
peer is encountered, it is given an initial score. The score is incremented by a fixed value when-
ever useful chunks are received from a node while it does not belong to theMISSING/FORWARD

lists. The score is decreased by some fixed quantity wheneverit is chosen asFORWARD partner
and receives one or more chunks from the local peer during that EPOCH.

As it is currently defined, the history mechanism can appear rather simplistic, but it proved
effective to evenly distribute altruistic contributions among the peers. We believe that the original
incentive model proposed by GnuNet [51] could eventually beapplied to our system, further
improving the strength of the relationships among resourceful nodes.

3.4.5 Chunk Selection and Request

A good chunk selection strategy is one that distributes the chunks in an uniform way across the
nodes to avoid situations where some chunks are much less replicated system-wide than others.
It should also ensure that the buffer content of nearby nodesis different enough that they can
engage in mutual transactions and concurrently exploit their multiple connections. Finally, it
should prevent that several neighbors concurrently send duplicate chunks to the same node.

Chunk Selection: Sending The chunks to be sent over a connection, regardless ifMISSING or
FORWARD, are selected comparing the requests received from each peer to the chunks currently

80 CHAPTER 3. THE PULSE SYSTEM

Algorithm 4 FORWARD Selection Algorithm
Candidates, History=[] # empty lists
FORWARD_list=[] # list that will contain the FORWARD peers

Candidates←{ n | n ∈ RED_Knowledge_ListAND /∈ MISSING_list}
History←{ n | n ∈ CandidatesAND H 6= NULL}

SortHistoryby decreasingH

while Historynot empty OR length ofFORWARD_list< MAX_FORWARD_SLOTS:
remove firstnode from History
ComputeDistance=abs(TB(local)-TB(node)))
if NEARBY_THRESHOLD <Distance< FAR_THRESHOLD:

addnode to FORWARD_List

Algorithm 5 Chunk Scheduling at the Sender Peer
ordered_list← list of chunks in the buffer sorted by decreasingreplica_count

for eachpeer in MISSING_list, NEW_list, FORWARD_list:
if peer has outstandingrequests:

least_sent←chunks fromrequestswith the smallestreplica_count

if length(least_sent)>1:
randomly shuffleleast_sent

chunk=least_sent[0]
sendchunk to peer
updateordered_list

held in the local buffer (Algorithm 5). Requested chunks that are available are then sorted using
local ordering criteria, and the first one is chosen for sending. The criterion we are currently
using for ordering chunks at the sender is a “Least Sent First, Random” strategy. Each peer
keeps a counter of how many times it has sent each requested chunk (replica count). The one
that has been sent the least number of times is chosen to be sent first. In case of a tie, the chunk
is selected randomly. It is indeed possible to queue severalchunk uploads toward the same peer
to benefit from the effects of transfer pipelining.

This scheduling strategy shows fairly good results, since the newest (and thus rarest, from the
point of view of the sender) chunks to be received are among the first that are sent. Breaking
ties with a random choice, instead of e.g. selecting the chunk whose lag is lowest, aims to avoid
the preferential replication of a same single chunk which may happen in situations where several
peers have their trading windows synchronized.

3.5. IMPLEMENTATION 81

Algorithm 6 Chunk Scheduling at the Source
for eachpeer in SOURCE_list:

ordered_list= sort chunks by number of times they have been sent
least_sent= select from ordered_list the least-replicated chunk(s)

if length(least_sent)>1:
random shuffle least_sent

chunk=least_sent[0]
sendchunk to peer

Chunk Selection: the Source The streaming source adopts a sender scheduling mechanism
which differs from the normal nodes by the fact that the source discards all the requests it receives
from other nodes (Algorithm 6). Thus, the source is the only peer in the system that adopts a
push-only scheduling strategy, i.e. a random round-robin over the newest chunks.

Chunk Selection: Requesting The algorithm for chunk requests is similar to the heuristicused
in DONet/CoolStreaming [122]. Its purpose is to request therarest chunks among those that are
locally available, and to distribute the requests across different possible providers (Algorithm 7).
Using the local knowledge gathered from the current neighbor set, chunks that are rarest across
the neighborhood are requested with higher priority than more common ones. To limit the load
on any single peer, the maximum number of per-node requests is bounded.

3.5 Implementation

The first working version of the PULSE prototype node has beendeveloped during the summer
months of 2006 by Diego Perino, who wrote a detailed account of his internship activity in
[82]. The node was implemented following the PULSE simulator code as a reference for the
data exchange algorithms, while most data structures had tobe redefined and the interface to the
network had to be designed from scratch.

The internal organization of the node is depicted in Figure 3.2. The subdivision into classes
closely follows the scheme, and is also remarkably similar to the system diagram presented in
[122]. The solid arrows in the picture represent the flow of control information and data inside
the node, while the dotted arrows describe the interconnections between system modules. When
compared to the protocol description above, the trading logic and knowledge manager functions
are jointly implemented by apeer manager, performing peer selection, and achunk scheduler,
performing chunk selection, that rely on a common set of datastructures. The central block,
system management, coordinates the timely execution of the various algorithms.

82 CHAPTER 3. THE PULSE SYSTEM

Algorithm 7 Chunk Request Scheduling at the Receiver Peer
chunks_needed=[] # list of chunks the local peer needs (fromits TW)

for eachpeer in RED_Knowledge_List:
for chunk in chunks_needed:

if peer can offerchunk:
addpeer to chunk.providers

Order chunks_needed by chunk availability, with n_available as the index:
ordered_same_rarity(n_available, [chunk ID, [providers]])
Sort ordered_same_rarity’s lines from the less available set of chunks (rarest first)

for each row ofordered_same_rarity:
chunk_vec←vector of tuples [chunk ID, [providers]] with highest rarity
while chunk_vecis NOT empty:

selected_chunk←remove a random chunk fromchunk_vec
providers=providers forselected_chunk

while providersis NOT empty:
sel_provider←remove a random element fromproviders
if (sel_provider.requests≤ Rmax)

addselected_chunkto sel_provider.requests
sel_provider.requests+=1
if num_requests= RTOT

return

3.5.1 Practical Details

The PULSE prototype is written in Python, an object-oriented scripting and programming lan-
guage that is well suited for quickly implementing simple applications. One of the main ad-
vantages of using Python for our purposes is the availability of the Twisted15 framework, a
library that provides an event-driven networking back-endthat takes care of several low-level
issues (multiplexed socket accesses, management of network buffers, etc.). The prototype node
also uses some external libraries and modules, notably a Python wrapper to the fast C++ Reed-
Solomon FEC implementation by Luigi Rizzo [93]. Furthermore, the node implements SCAMP
as it is defined in [47] (with the exception of the indirectionmechanism). Some other minor
modifications (such as a message ID field) were required to suppress repeated loops in scenarios
with small node populations, as the use of variable-length random walks with probabilistic ter-
mination criteria was generating a large amount of network traffic each time a node would join a
PULSE session.

15Twisted by Twisted Matrix Labs, http://www.twistedmatrix.com/

3.5. IMPLEMENTATION 83

Figure 3.2: Internal Organization of the PULSE Node and DataPaths

Choice of Transport Protocols The PULSE node maintains two transport sockets: a TCP
socket for data transfers and an UDP socket for RED and BLUE control message exchange.
The choice of TCP connections for data transfers is motivated by the need of reliability, as data
chunks span over several IP datagrams, making an unreliabletransport protocol such as UDP
unsuitable for the task. PULSE can adopt rather large chunk sizes and small chunk rates in
virtue of the less stringent timeliness constraints of livestreaming compared to interactive video
distribution. For instance, typical chunk sizes will rangefrom few to several tens of kilobytes,
while chunk rates will range between 2 and 16 chunks per second. We remember that, given the
chunk rate, chunk size can change between PULSE sessions as it depends on the bitrate of the
stream being broadcast.

The use of UDP is motivated by the fact that loss of control messages is tolerable and does not
need recovery. The exchange of control data happens on a periodical basis, in order to update
the soft state kept by each node about the status of remote buffers: the loss of few messages is in
no way critical to system operation. The length of UDP control messages mainly depends on the
size of the buffer Trading Window, and is typically less than100 bytes. The membership HELLO
messages, in the order of the few tens of bytes, are also sent over UDP. In the original plan, all
network messages were meant to be encoded in the Bencode format by Bram Cohen, but lack of
time and resources has imposed the provisional use of a less efficient text-based protocol.

84 CHAPTER 3. THE PULSE SYSTEM

Bandwidth Allocation and Rate of Control Messages In a practical context, the way band-
width allocation is performed is critical as it often determines the real efficiency of a data dis-
tribution application. While the algorithms specify whichdata chunks have to be sent to which
neighbor, an application is supposed to perform the data transfers using a network whose be-
havior is unpredictable: the application must carefully manage sockets and buffers, especially
when sending out data, and be responsive to unexpected events by using timeouts and triggers,
to mitigate the negative influence of churn and congestion.

As we described above, the PULSE node opens a small number of connections to its neighbors
for data-exchange purposes. In practice, after the scheduling algorithm at the sender peer assigns
a chunk to a certain neighbor, the chunk enters a per-neighbor sending queue. The presence of
the queue decouples the scheduling decision from the transmission of the chunk on the socket
interface. To avoid starvation, the queue can accept only a small amount of chunks (currently
two), and a new space is freed only after the amount of data in the queue drops under a threshold.
This simple mechanism allows to avoid both inefficient link use, as a fixed amount of data can
always be sent without having to wait for a new scheduling round, and excessive queuing of
chunks on slow connections.

One of the drawbacks of data-driven systems is the need for a steady control traffic to support
data exchange. To limit the rate at which messages are generated between any two peers, we
introduce a self-clocking mechanism based on data exchange. If no data are being transmitted
or requested, RED messages are sent with a minimum fixed rate:this happens for the majority
of peers that currently are in the RED knowledge list. The “active” peers (nodes with which an
exchange is in progress) have a message rate that increases with the rate of data exchange and is
upper-bounded by the stream chunk rate. Also, in order to reduce the number of active neighbors,
the chunk request algorithm is slightly biased so that chunks are preferentially requested from
peers which are currently active.

Chapter 4

Understanding the Behavior of PULSE

The previous chapter presented the PULSE protocol and algorithms. The rest of this thesis
will be devoted to understanding how and why PULSE works, evaluating its performance and
scalability, and - in general - validating whether the system architecture we propose is able to
meet our stated goal, that is supporting a large-scale live streaming application in heterogeneous
and dynamic environments.

In many respects, the biggest challenge about PULSE is actually understanding its behavior.
It is indeed non-trivial to predict the global properties ofa data-driven system from the simple
description of the algorithms that are executed by its individual nodes. We were unable to provide
a theoretical model of PULSE, as its algorithms are based on pairwise incentives coupled to a
feedback response from the data distribution process: the presence of a dynamic component as
the fundamental feature of our system has forced us to turn toalternative forms of evaluation,
namely simulation, emulation, and limited deployment on the Internet.

This chapter reviews the various techniques available today to understand data-driven systems.
Section 4.1 is devoted to theoretical modeling of static data-driven architectures. Section 4.2
describes the latest models for incentive-based streamingsystems. Section 4.3 introduces sim-
ulation tools and techniques, while Section 4.4 examines the challenges and the advantages of
performing an evaluation using emulation techniques. Finally, Section 4.5 gauges the feasibility
of large-scale system deployments and the potential of measurement studies.

4.1 Modeling Static Systems

The literature on the theoretical analysis of peer-to-peerstreaming systems has kept growing with
a fast pace during the last six years. Most of the early work focused on the study of overlay-driven
and structured systems, which posed no particular challenges due to the geometrical properties
offered by their explicitly-built overlays. Data-driven unstructured systems, on the other hand,
have not been the subject of a comprehensive theoretical study until very recently: the available
techniques to model these systems in realistic conditions are not yet mature and still constitute

85

86 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

a vibrant research field. While the first models for data-driven systems were introduced to study
practical bulk data distribution systems such as BitTorrent [120][90], they have been quickly
extended to the domain of live streaming.

Fluid Models Fluid models, an application of markovian queuing theory, have been used ex-
tensively in the past to model the complex dynamics of computer networks at the packet level.
They have been recently applied to content distribution networks and to P2P live streaming [66],
providing interesting results on the upper-bounds of the streaming rate under simple bandwidth
distributions and node churn patterns. By their very abstract nature, however, fluid models are
not appropriate to describe data-driven systems, as the internal state of the nodes (buffer contents,
local knowledge) is never taken into account. The absence ofa more precise characterization of
the individual nodes makes it impossible to model the algorithms for peer and chunk selection
and the underlying network topology.

Packet-Level Models Another approach to fluid modeling [72] introduces a packet-level marko-
vian model over an edge-capacitated network graph, which isthen extended to the node-capacitated
case. This model allows to introduce and evaluate simple node selection and chunk selection
policies: among other insightful results, the paper evaluates and proves the optimality (limited to
complete network graphs) of a combined random-useful packet selection with a most-deprived
neighbor selection. Unfortunately, the extension of this method to generic fixed graph topologies
(and worse, variable topologies) is an open question. Also,the peer selection strategies that can
be currently modeled are rather simple and cannot rely on theinternal state of the nodes.

Gossip Models Gossip-based modeling uses a randomized approach to chunk distribution in
order to obtain probabilistic bounds on the performance of peer selection and chunk selection
schemes. In [95] several simple protocols that do not require data reconciliation between peers
are presented, and their efficiency is proved to be comparable to fixed tree overlays. To the best
of our knowledge, gossip models haven’t been evaluated yet in scenarios with heterogeneous
node capacity, peer churn, or when nodes do not spontaneously cooperate.

4.2 Analyzing Incentive-Based Systems

Most live streaming systems were designed to operate in cooperative environments where node
contribute either homogeneously [21] or as much as they can [65][27]. When heterogeneous
node capacities are allowed, few streaming systems introduce techniques that aim to increase the
social welfareof the system [28], sometimes giving advantages to nodes that contribute more.
The “reward” to better contributors can be in terms of locally increased media quality, e.g. when
nodes are attributed a higher number of stream descriptions[107], or lower reception latency,
e.g. when more resourceful contributors preempt less resourceful nodes and switch their positions

4.2. ANALYZING INCENTIVE-BASED SYSTEMS 87

[98]: the system-wide effects often include improvements in the system-wide performance and
efficiency of data distribution. Obviously, these techniques depend on the willingness of all the
peers to abide to the protocol rules: typical ways of cheating include malicious nodes behaving
as if they were good contributors or ignoring preemption requests.

The adoption of incentive mechanisms can allow live streaming systems to work in non-cooperative
environments: incentives provide a local source of information about node contributions, which
is usually leveraged to give back to the peers that contribute and, conversely, to retaliate against
the nodes that do not contribute sufficiently.

4.2.1 Intrinsic Incentives

In the general context of data distribution, finding a good internal balance between fairness and
altruism is hard. Studies about BitTorrent have shown the existence of a fundamental trade-
off between performance and fairness [42]. Moreover, the presence of even small amounts of
altruism, while boosting performance, opens the way to easyexploitation by greedy nodes [68].
In the context of live streaming, the presence of timing constraints further complicates the issue,
as the incentive mechanism should not diminish the efficiency of data replication [31].

Pairwise Trust Pairwise trust incentives rely on direct assessments by individual peers about
the capabilities of other nodes. Live streaming applications are particularly suited by trust-based
incentives since(i) all peers share interest for the same data at the same time and(ii) nodes have
to interact repeatedly over time as long as streaming is being performed. Examples of current
live streaming systems that integrate trust metrics use it to detect and retaliate against freeloaders
[46] or to provide to better contributors a higher number of backup paths to mitigate the effects
of churn [97]. As far as we are aware, the effects of these trust policies on the global behavior of
large-scale streaming networks have not been evaluated.

Game Theory The use of game-theoretical incentives in peer-to-peer networks has been intro-
duced quite recently [33] as a way of ensuring that the peers,modeled as rational agents, have
a reason to voluntarily provide their resources to the system [11]. Game theory (GT) provides
a framework to describe and evaluate P2P systems asnon-cooperative games: nodes are mod-
eled as players, game decisions are mapped to resource contributions, and the game consists in
having nodes play against the rest of the system, striving tomaximize their ownutility function.
The study ofNash equilibria, defined as the global states of the system in which no player can
increase its own utility by changing its current strategy, provides an analytic tool to determine
the existence of stable (pure) trading strategies of an iterated game.

Recently, [19] proved that, eventually, a system with differential incentives converges to a Nash
equilibrium. In [108], several pure strategies including freeriding are introduced and their effects
evaluated. Games such as the “rate game” [90] and the “network formation game” [75] have
been used to analyze the properties of the BitTorrent overlay, showing the existence of a Nash

88 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

equilibrium for the cases of homogeneous and heterogeneousnode upload distribution. However,
the incentives implemented in practical distributed systems are often analytically intractable as
they depend on a too large number of real-world parameters and constraints1. The limits of
classic GT as a modeling approach for real-world incentivesarise from the very abstract nature
of game-theoretical models. Everything, from the system-wide utility function to the acceptable
player strategies, must be arbitrarily set: while thequalitative descriptionof real systems may
be very accurate for specific choices of strategies and parameters, thepredictive valueof game-
theoretical models is quite low.

4.2.2 External Incentives

Systems that adopt external incentives rely onseparate protocols and facilitiesto help nodes
decide about their interactions with other peers. Because of their independent nature, extrin-
sic incentives are usually separate subsystems with an extremely limited interface to the inter-
nal state of the main streaming application. Incentive subsystems tend to manipulate values of
system-wide variables (such as a node’s “reputation”, “wealth” or performing micro-payments
and currency exchanges [114][74]) based on information from the local and remote nodes. The
use of reputation-based incentives has been advocated for instance in [89], however without a
published evaluation. An analysis of systems based on extrinsic incentives lies out of the scope
of this thesis.

4.3 Simulating a Distributed System

As the current theoretical models does not offer the supportwe need to evaluate the properties
of our system and to predict its scalability, we had to attackthe problem in an empiric way.
Simulation, as usual, comes to the rescue when we need to model a phenomenon that is not
sufficiently understood. The main strength - and drawback, at the same time - of simulation is
that it relies on a simplified model of reality, where the metrics that better characterize the sys-
tem can be easily observed and measured. The predictive value of a simulation is lower than
mathematically-proved theoretical results, but nonetheless sufficient to anticipate the behavior of
a system over a wide range of parameters and border conditions. On the other hand, simulation
results have a much lower generality and cannot be easily exported to different contexts. Simula-
tion, while unable to perfectly reproduce the dynamics of real-world systems, can provide useful
insights with limited requirement of human and computational resources.

1A relatively new branch of GT, calledevolutionaryGT, studies the spontaneous emergence of dominant strate-
gies when each node in the population is free to evolve its initial strategy, e.g. by copying the strategy of more suc-
cessful peers or introducing random mutations: the goal of evolutionary GT is to develop empirical non-deterministic
strategies that can induce a desired global behavior [53].

4.3. SIMULATING A DISTRIBUTED SYSTEM 89

4.3.1 Background

A number of simulators is available to simulate the behaviorof computer networks and dis-
tributed applications: as a thorough simulation performedat the lowest level (i.e. bytes on a
physical medium) would be very much time and resource-consuming, each simulator usually
concentrates on modeling a specific facet of the interestingphenomenon.

The most accurate packet-level simulator in common use isns2[15]: its primary goals are provid-
ing a faithful representation of TCP protocol behavior, interaction between routing and topology,
and effects of heterogeneous physical media on transport protocol performance. Other simula-
tors of this type but with somewhat more limited purposes areREAL [64], showing a specific
interest in TCP and packet scheduling (apparently discontinued since 1997) and SSFnet [76],
focused on TCP/UDP and routing protocol performance.

Performing an accurate simulation, however, has its costs:these costs translate in high require-
ments of processing power, memory bandwidth, and RAM capacity by the hardware on which
simulations run, and in long waiting times for the people performing the simulation. An approach
such as the one used by ns2 can be viable when studying the performance of data exchange be-
tween few nodes across a network, but shows clear scalability problems when analyzing the per-
formance of a distributed protocol, with thousands of nodesexchanging data at the same time.
Nonetheless, the level of accuracy offered by this approachcould be required to successfully
model a specific protocol: simulators like P2PLP [54] act as afront-end to a network simula-
tor, transforming a high-level description of the distributed algorithms into a series of network
events, which are then passed to ns2 for execution and whose feedback is taken into account in
the subsequent phases of the simulation.

When highest accuracy is not fundamental to the applicationbeing analyzed, it is possible to
lower the requirements of the simulation by adopting a simpler network model: this typically
leads to a trade-off between upper limits in simulation scale and accuracy of the results. Different
applications can withstand different amounts of simplification, so the system designers have to
use their own judgment when choosing an existing simulator:

• Few simulators strive to be as generic as possible: they use an event-driven main loop and
just simplify the transport protocol algorithms to improvetheir speed over ns2. An example
of such a simulator is GPS, the Generic P2P Simulator [119], which claims a good accuracy
along with reasonable speed. GPS exposes all network entities as objects, giving great
flexibility to the implementer of new application protocols: the example protocol provided
by the author models the BitTorrent protocol, which is a quite demanding application in
terms of information required by each peer to operate correctly. On the other hand, the
claims of accuracy are not supported by a thorough analysis and validation on a significant
scale.

• Some simulators give an option to replace the classicalevent-drivenmain loop, which is
used by most network simulators, with a simplertimeslot-drivenstructure. This choice
usually means that the role of underlying topology and network latency is eliminated from

90 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

the model, but still leaves the freedom to experiment with bandwidth allocation and peer
selection policies. For example, PeerSim [60] is a generic simulator that allows to experi-
ment with structured and unstructured distributed protocols; however, it is not clear if the
limited set of parameters that are made accessible to the nodes allows to faithfully model
the complex internal state and local behavior of unstructured distributed algorithms.

• Finally, most simulators purposefully restrict their applicative scope to be specific to a lim-
ited subset of system architectures: this usually implies simplifications both in the network
model (time-slots) and in the range of actions available to simulated nodes.

Looking at the simulators that were available at the time we performed our analysis (January
2005), it was unclear whether they would be suitable to our task. The main concern we had was
about whether the feature set they provided to implement thebehavior of a peer was sufficient to
support the complex internal state required by the PULSE algorithms. This concern, along with
the fact that we did not know yet what would be the appropriategranularity for a realistic yet fast
simulation, pushed us to choose the last option, writing a purpose-built simulator.

4.3.2 Pulsim - The PULSE Simulator

Simulating an experimental phenomenon requires that the people doing the modeling first get
acquainted with the effects of the phenomenon, experiment alittle, play with its variables, etc.,
to gain a first insight on what is its ordinary behavior and on what standard modeling technique
would work best. On the other hand, modeling anunknown system- for which no experimental
data is available yet - ismuch harder, as the researcher typically has no idea of a) what the
normal behavior of the system is, b) on what timescale this typical behavior is best visible, and
c) whether the system itself could actually exist as an experimental phenomenon. For these
reasons, writing a simulator for such a system is necessarily a recursive trial-and-error process,
based both on intuition and conjectures from partial results.

In the beginning, we approached the task of simulating PULSEfrom a realistic point of view:
we conjectured that the only way to properly model the complex feedback-driven algorithms that
each node implements was to take into account in the simulation all the variables that appear in
the real system. This basically meant to emulate as deeply aspossible the network (link latency)
and transport (delay of data transfers), over which a gossipmembership protocol would run (with
BLUE knowledge messages appropriately delayed), that would in turn provide the information
required by PULSE to function.

We initially adopted an event-driven approach, with a minimum step granularity of10−4 sec
to ensure that the asynchronous nature of the system would bepreserved (small probability of
concurrent events happening). The input accepted by the program included the node bandwidth
distribution and a full pairwise latency matrix. This approach was found not to be viable because
of the extreme computational complexity of the simulation,and the difficulty debugging the
protocol activity at so many levels. However, this initial experience suggested that the most

4.4. LARGE-SCALE EMULATION 91

relevant factors in the behavior of the network would be the delays due to data transfers, mainly
because of the size of the chunks (tens of KB’s), and the propagation process of knowledge about
data chunks among the peers. The dominant factor shouldn’t have been the fact that data was
traveling back and forth over a simulated network, but that nodes had totake decisionsbased on
their local view of the system

For these reasons, we chose a coarser granularity for our final design, switching at the same
time to a timeslot-based approach: this emphasized the roleof node buffers, peer choices, and
local knowledge about the data, while still allowing control on the most important parameter
relative to users of the system, the node upload bandwidth. Also, the emulation of the BLUE
gossip subsystem was abstracted out with an oracle-like global mechanism: the rationale was
that, since the role of blue messages is significant only in the earliest phases of a node lifetime
- when there is no other source of information about the rest of the system - its importance
significantly decreases near steady state. Moreover, usingan oracle assures that no node will
find itself ’isolated knowledge-wise’ from the rest of the system due to an unlucky turn of events,
eliminating this negative interference from the simulation outcomes.

There are drawbacks to these choices: first of all, network locality had to disappear from the sys-
tem. This was a loss that was difficult to accept, since propagation times of the messages appear
as a core parameter in the PULSE peer selection algorithms. Still, its relevance is arguably much
lower than the role of bandwidth in determining the choices of peers, as the tit-for-tat mecha-
nism only consider how many chunks have been obtained from a node2. Then, the presence of
an oracle has a side effect in the fact that it exposes a partial subset of private node data to the
whole node population: one consequence of this is the over-inflation of the local view at each
peer. We verified that the ability to contact any other connected node can dilute the effectiveness
of the peer selection algorithms, especially in the initialphases when no past knowledge about
the performance of other nodes exist.

The full details of PulSIM, along with a more accurate description of the motivations, limits, and
strengths of its simulation model, are presented in Chapter6.

4.4 Large-Scale Emulation

Emulation techniques are very powerful, as they can give reliable and reproducible empirical
results about the real behavior of algorithms in distributed systems. Emulation allows to de-
ploy a medium- to large-scale P2P network while retaining the full control of all its operating
parameters. Also, the emulated behavior of an algorithm implementation can take into account
important practical factors which often are not easily tractable by theoretical analysis, as the

2Network latency has two second-order effects on the bandwidth that is exchanged between peers: first, as
control messages take longer to propagate, if proper request pipelining is not implemented the available bandwidth
could be exploited in a less efficient way; second, as controlmessages that are in-flight for a longer time contain
older information about the remote node’s buffer, this could reduce the probability that the remote node may provide
interesting chunks.

92 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

availability of knowledge at the nodes and the realistic allocation of bandwidth. Emulation of
data-driven systems is a fundamental step to gain a reliableunderstanding, as peer interactions,
data availability and bandwidth allocation can be modeled for the first time in a realistic way, and
often allows to validate or invalidate the predicted behavior suggested by simulation models.

4.4.1 Implementing a Prototype Node

One of the first choices that must be made when starting a software project is which language and
framework will better suit the needs of the project. In our case, a balance had to be found between
rapidity of the development phase, usefulness of external libraries, platform-independence of the
resulting software, and maintainability of the code. Thesereasons motivated our choice to use an
object-oriented interpreted programming language and event-based network library: in hindsight,
we believe our choice was right, as the prototype was completed in the expected timeframe and
could exploit a range of readily available software components that accelerated the development
and debugging phases.

The drawback of choosing a high-level programming languageand complex libraries is the rela-
tive loss of control on the low-level operation of the software, especially on the way it manages
network sockets and buffers. Implementations of applicative protocols are often hard to com-
pare, as it is difficult to abstract the strict performance ofthe algorithms from the surrounding
implementation details. In order to facilitate comparisons, sets of network libraries, such as
MACEDON [94] (for C++), have been developed to make it possible to experiment with the var-
ious algorithms on a common ground. However, while this approach has been adopted to com-
pare tree-based systems (from NICE to Bullet to Splitstream), to the best of our knowledge no
data-driven systems have been implemented using this framework yet. Extending this approach
to data-driven systems could provide experimental data to support more extensive theoretical
comparisons between data-driven and tree-based systems than the existing ones [71].

4.4.2 Emulating a Large-Scale System

Compared to simulation, emulation helps assess how the implementation of a set of algorithms
behaves. This means that the actual application code - executable, self-contained, and capable
to interface to real networks - is operated under controllednetwork conditions. Large-scale
emulation demands powerful computational resources, proportional to the target system size,
but has the advantage ofnot requiring a real network infrastructure:tools such as Dummynet
[92] and Modelnet [111] help simulate in a local setting a configurable internetwork substrate
with realistic pairwise latencies and link bottlenecks. Simulating the network topologies while
leveraging the computational resources of a large scale research grid, such as Emulab [118] or
Grid’5000 [3], allows to extend the emulation approach to anorder of magnitude of thousands
and tens of thousands nodes, which approaches pretty well the expected scale of an initial Internet
deployment.

4.5. DEPLOYING ON THE INTERNET 93

Since the conditions in which emulation is performed are both controlled and specifieda priori
by the researcher, emulation does not answer all the questions about how the emulated system
will fare in an uncontrolled real environment. While the network can be configured at will and
factors such as cross-traffic and geographic diversity of the nodes can be added to the model
with relative ease, the fact that all the conditions are keptunder control means that the effects
of unpredictable real-world phenomena, such as random nodefailures user dynamics, could still
have an unexpected impact on the behavior of the application.

4.4.3 PlanetLab

To better approximate realistic operating conditions, Internet-based testbeds such as the Planetlab
[5] can provide a practical way to experiment a limited-scale deployment in the order of few
hundreds of simultaneous nodes. While the traffic generatedby the deployed application travels
over the Internet, the experimenter has little knowledge about the state of the network and of the
computers, which may be used at the same time for an unknown number of other experiments:
this makes PlanetLab results non-reproducible and quite ill-suited as a basis for performance
evaluation and comparison. However, the fact itself that a system can operate in these condition
is a partial confirmation of the practical viability of a networking application.

Our experience with PlanetLab has suffered from well-knownshortcomings due to the unrelia-
bility of many PlanetLab nodes and their high average systemload: while most measurement and
data distribution experiments may demand little processing resources and be able to run without
any adverse effect from load, in our experiments with PULSE we have observed that CPU load
was in many cases so high to prevent the timely execution of expected protocol actions, leading
to problems ranging from time-outs to completely erratic software behavior. Finally, recent stud-
ies argue that the placement of PlanetLab nodes is not representative of the typical connectivity
of Internet hosts, as they are mostly placed along the well-provisioned international research and
educational backbone, and that their network diversity is lower than the average diversity in the
“commercial” Internet [13]. While this limitation mainly affects measurement studies, it may
also have an impact on the behavior of application-layer protocols.

4.5 Deploying on the Internet

A definitive answer about the practical behavior and viability of a large-scale network can only
be found by actually deploying a large-scale system and measuring its performance. The chal-
lenge of deploying a live streaming system to users world-wide is a quite impressive one3: the
development effort required to test the software, fix its bugs, implement new features, monitor
the health of the system in real time, and recursively improve the software and algorithms to
follow the growth of the system, all of this requires the combined effort of either an industrial
team or of a small development community. Then, to attract enough attention and reach a large

3Gale Huang, PPLive Software Architect, Keynote at the 2nd SIGCOMM P2P-TV Workshop, 2007

94 CHAPTER 4. UNDERSTANDING THE BEHAVIOR OF PULSE

audience a marketing strategy is required, as rarely word-of-mouth alone is sufficient to immedi-
ately reach a large user base: this task becomes increasingly difficult as more and more players
enter the same “technological niche”. Clearly, such an endeavor requires a lot of effort, and is
unlikely to reach the system scale and audience size initially sought.

4.5.1 The Potential of Measurement Studies

Once a system has reached a sufficiently large deployment status, it suddenly becomes an in-
teresting object for measurement studies. The earliest large-scale commercial live streaming
systems have been steadily gaining popularity since 2005, and today have reached impressive
sizes. Starting in 2006, measurement studies about SOPCastand PPLive, two of the largest live
streaming systems, have begun to appear. These studies haveprovided performance results from
the perspective of the end-user [9], “black-box” analyses of the external protocol behavior [102],
and led to the partial reverse-engineering of the PPLive protocol, which allowed the implementa-
tion of a crawler capable of capturing the full-scale dynamics of popular live streaming sessions
[55][56].

Measuring the behavior of a working system and the patterns of user activity provides extremely
valuable insights on the nature of the problem itself and on the practical challenges that system
designers have to take into account. Measurement studies have a high practical value as they
allow to directly compare the efficiency and scalability of real-world systems in similar environ-
ments: while they are not repeatable and do not provide context information on the state of the
underlying network during system operation, they give the most useful information about the
performance of the application and on the overhead of the system under a real workload4.

4Another drawback is that the behavior observed on specific applications is often hard to generalize to different
applicative contexts. The results in [18] suggest that evenminor non-structural details - such as GUI modifica-
tions, addition of new “cosmetic” features, etc. - often have unexpected effects on the way users interact with an
application.

Chapter 5

Metrics For Performance Evaluation

5.1 Introduction

This chapter focuses on two fundamental questions: how is itpossible to measure and compare
the performance of generic data-driven systems, and how is it possible to successfully describe
and evaluate the behavior of the PULSE algorithms.

5.1.1 Dealing with a Data-driven System

In Chapter 2 we described in-depth the differences between data-driven and structured overlays:
in synthesis, tree-based systems have the advantage of explicitly defining a single path for data
distribution - which makes analysis easy and allows to straightforwardly introduce optimizations
(latency, bandwidth) - while in mesh-based systems the datadistribution trees are an indirect
consequence of several mechanisms, such as peer selection and chunk scheduling - which loosen
the control on the path taken by data over the network and hinder deterministic optimization
techniques.

From an analytic point of view, data-driven systems are harder to describe and evaluate than
classic structured systems. The reasons are the following:

1. Data do not follow a constant path over the mesh, nor the trajectory of a data chunk in the
system is predictable, even given the complete knowledge ofthe state of all the peers in
the network.

2. Local mechanisms for data reconciliation are needed to avoid unnecessary data duplica-
tion. Data reconciliation requires the exchange of controlinformation about data chunks
carried by each node. Tracking the knowledge of the rest of the system and the decisions
made at each node is quite challenging, when looking from a global perspective.

95

96 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

3. Connections between nodes can carry either control information only or both data and
control information. The existence of a connection betweentwo nodes does not imply that
data are being steadily exchanged in either direction.

4. The mesh is frequently changing over time, as the connections that constitute it are rene-
gotiated locally among the peers.

5.1.2 “Mesh Overlays” and Performance Metrics

In the general data-driven case, we have seen that the classical definition of “overlay” is stretched
to its limits. “Connections” in an unstructured mesh overlay are both functionally and seman-
tically different from those in systems with structured, tree-based overlays. Also, the resulting
performance of data distribution is not completely determined by the placement of nodes and by
their resources, but are also influenced by the availabilityof useful data chunks and up-to-date
knowledge about neighbor nodes. Lacking geometric structure and average per-connection ser-
vice expectation, a data-driven overlay does not offer any property that could help predicting its
global performance.

While many structured overlay multicast systems can be (andhave thoroughly been) analyzed
starting from topological considerations, data-driven systems have so far proved impervious to
this kind of analysis. As the basic assumptions that are commonly made when dealing with
traditional, structured systems (such as single or multiple distribution trees, etc.) do not hold for
data-driven systems, performing a satisfactorya priori analysis is very hard and still constitutes
an open field of research. We will have to adopt an empiric approach to performance evaluation
in order to deal with data-driven systems in general (and PULSE in particular).

PULSE exhibits all the properties of a data-driven system, and - additionally - its mesh topology
evolves quickly over time and is influenced by feedback from the data exchange activity between
peers. There are no explicit rules or constraints for building, repairing, and optimizing the over-
lay, only thepeer andchunk selectionalgorithms running on the individual nodes (which we
described in Chapter 3). These algorithms constantly strive to establish efficient partnerships be-
tween peers, and to choose the chunks that need to be redistributed. However, their effectiveness
in a specific scenario (bandwidth availability, bandwidth distribution, latency distribution, etc.)
cannot be evaluated with the classic metrics used to describe structured overlay topologies.

5.1.3 Outlook

In this chapter, we discuss the issues we encountered in our attempt to study the behavior of
data-driven systems and the solutions we devised to performour analysis. In Section 5.2, we try
to adapt some of the traditional performance metrics used tostudy live streaming applications to
make them suitable for generic data-driven systems. Section 5.3 introduces additional metrics to
evaluate the specific behavior of PULSE and to understand what happens inside a running system.
All these different metrics will be the main tool at our disposal to understand how PULSE fares in

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 97

different scenarios, how it responds to external perturbations (such as node arrivals, departures,
variations in the available bandwidth, etc.) and how some slight parametric changes of the core
algorithms affect its global performance. Finally, Section 5.4 concludes the chapter.

5.2 Performance Metrics for Data-driven Systems

As we stated above, all the classical overlay performance metrics that have been used to evaluate
structured systems cannot be applied to a data-driven system, since they would require a fixed
and predictable geometrical characterization of the overlay. Even the most basic metrics, such
as data reception delay and data loss rate, cannot be used as they are, as the distribution of data
chunks does not follow a sequential order. We clearly need adequate empirical tools to describe
generic data-driven systems and analyze them in a comparable way to structured overlays.

5.2.1 Data Reception Delay at the Nodes

One of the requirements of a live streaming application is that the stream data must be received
in order before the media can be played. We can reduce this constraintto the concept ofcom-
pletenessof the stream data at playout time: a data loss event involvespieces of data missing
their playout deadline, even if the missing data could be eventually retrieved afterward.

Remarks about Data Loss In general, the architecture of the streaming system determines its
data reception requirements. For instance, the earliest systems based on single-tree structured
overlays considered data as a continuous bit stream that wasreceived from the parent node.
Buffers at the nodes were small and dimensioned so that they could absorb the delay jitter on the
connection with the parent.

In these systems, data loss is possible in case a serving nodehas a congested uplink or if an
ancestor node leaves the system: losses due to disconnections can usually be detected when no
data are received during a certain time interval (this timeout is usually set to a value around
E(delay) + k · σ(delay), where the constantk allows to trade between detection sensitivity and
maximum response time), while losses due to congestion might be detected if the data is found
to be damaged by the application or when an unexpected datagram (i.e. future, out of order) is
received.

The reaction of a node to data loss is system-specific and depends on the size of the playout
buffer, on the underlying transport protocol used by the application, and on the presence of loss
recovery mechanisms. In interactive and “almost real time”systems, nodes often do not try
to recover the loss but - depending on its entity - either compensate it using redundant media
encoding, try to hide the resulting video/audio artifacts,or display the media with degraded
quality. Some systems also react to repeated loss events by dynamically decreasing the rate

98 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

at which the media is encoded, either at the source or at the parents of those nodes which are
experiencing losses (e.g. down-sampling, transcoding [25]).

The definition of data loss is less clear-cut for data-drivensystems, as the stream is no longer
treated just as a sequence of bits but is now a sequence of chunks. Each chunk has a sequence
number, and mechanisms are in place to ensure that its contents are complete (e.g. reliable
transport protocols, application-level checksums). In data-driven systems, chunks are normally
retrieved out of order. The definition of loss has thus to takeinto account the deadline by which
the chunk has to be retrieved, e.g. the time left before the chunk playout is scheduled. Chunks
that are received after that deadline, in addition to constituting loss events, also have the adverse
effect of wasting bandwidth.

Depending on the average playout latency targeted by the system, different mechanisms to avoid
losses have been devised. These mechanisms can range from appropriate chunk scheduling tech-
niques [122] to more complex buffer management algorithms,as we currently use in PULSE.
Redundant media encoding techniques [93][78] can again be used, trading bandwidth usage and
CPU overhead for an improved resilience against chunk loss.On the other hand, dynamically
reducing media quality in data-driven systems would be impractical, as the source has no way to
control the propagation of the data inside the system.

Continuity Index Two design options have become especially popular among thearchitects
of practical data-driven systems. The simplest option is based around a data buffer that outputs
data to the application at a constant rate. The chunks that donot meet the playout deadline are
lost altogether, but the playout advances with a constant pace, even if the played media becomes
severely corrupted. A typical metric for data loss in this context is theContinuity Index(CI),
which is defined as the ratio between the number of chunks received on time and the total number
of chunks [122]. In formula, for a system withN nodes over the time intervalT :

CI =
1

N

N
∑

i

< number of chunks received byPi >

RT

This metric is based on two silent assumptions: that the amount of disruption introduced by
chunk losses is roughly proportional to the number of missedchunks, and that any distribution
of a same amount of loss events over time roughly has a similarimpact on the perceived quality.

The second option is based on a buffer that can selectively output data to the application, waiting
for enough chunks to be collected prior to playout in the hopethat loss events can be avoided
altogether. With this approach, the playback may be frozen until an adequate amount of con-
tiguous chunks has been received: in this case, the playout disruption can be limited to the fixed
amount of losses the buffer is expected to tolerate. The maindrawback of this mechanism is that
every freeze increases the playout delay without any explicit upper bound, as long as the media
playout is always performed at its nominal rate.

While theCI metric could be extended in some cases to this second type of systems (depending
on the way the buffer tolerance is implemented) we must arguethat theCI alone is not adequate

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 99

to describe the ’reception quality’ of a generic data-driven system. For instance in PULSE, since
we combine a loss-tolerant selective buffer with an appropriate FEC encoding of the stream to
guarantee that the playout quality will never suffer in caseof chunk loss, the fact of receiving
less than 100% of the chunks does not imply a degradation in the quality perceived by the user.
The introduction of FEC allows in our case to seamlessly absorb S = W −K losses over each
window of W chunks. More thanS losses, on the other hand, can have a strong non-linear
effect on playback quality and may render the whole window ofchunks unrecoverable1: PULSE
responds by freezing the playback up to a maximum delay value, and then resetting the buffer –
completely losing a whole segment of stream, rather than reproducing it with reduced quality.

The inadequacy of theCI to describe the performance of PULSE encouraged us to look for an
alternative and complementary set of metrics that can be extended to all data-driven systems.
These metrics are the playout and average chunk reception delays, which will be the subject of
the following pages.

Instantaneous and Average Node Lag Using the reception delay, ornode lag(Chapter 3), to
describe data-driven systems allows us to overcome the limits of traditional metrics that rely on
geometrical properties of the overlay. Whereas the position of a node in a structured overlay was
clearly defined in terms of either number of hops or data reception delay from the source, in an
unstructured context we can define theposition of a nodein terms of node lag.

A drawback of this metric is that the information about the actual path followed by the individual
chunks and about the provider nodes is not taken into account, as we do not rely on any topo-
logical information but only focus on data reception in order to compute it. However, node lag
still conveys a stable and meaningful description of the average “length” of the path that chunks
follow to reach a node from the source: at steady state, its value synthesizes the average number
of hops that chunks traverse, along with the average delay properties of each hop.

For these reasons, we will use node lag as the primary metric to represent both the position of a
node inside the system and the large-scale evolution of a dynamic overlay.

Large-scale Evolution of Node Lag The value ofTB is the result of an averaging process over
a short time span: it is thus sensitive to the long and medium-term variations of the node lag,
such as those occurring when a nodes waits for specific chunksbefore its window can slide, or
when a node starts receiving data from a bandwidth-rich neighbor. As we explained above, we
can trace the dynamics the data reception process of a node just by looking at the variations over
time of its average node lag.

Lag traces from individual nodes, however, just describe the evolution of individual peers inside
the system: if taken alone, they do not allow a full understanding of the reasons behind the
observed global behavior. But if we manage to extend this analysis to the entire node population

1The magnitude of the playout disruption depends on the way the coefficients for the Reed-Solomon coding are
chosen and on which data chunks were lost, in addition to the more obvious factors such as chunk size and media
format/codec.

100 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

of

 n
od

es

Average lag (TB)

TB distribution by class / data file 081

Very Rich

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

of

 n
od

es

Average lag (TB)

TB distribution by class / data file 081

Rich

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

of

 n
od

es

Average lag (TB)

TB distribution by class / data file 081

Normal

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50 60

of

 n
od

es

Average lag (TB)

TB distribution by class / data file 081

Poor

Figure 5.1: Histogram of the Number of Nodes per Lag Value by Class (t = 81)

and to appropriately correlate the individual traces, it then becomes possible to investigate in
depth the reasons for the observed node behavior patterns.

Without loss of generality, we suppose that the node population is divided into a number of
subsets with different properties. For instance, we may partition the nodes into severalbandwidth
classesaccording to the amount of upload bandwidth that is available to each node2. We can then
draw an histogram representing the number of nodes from the same class that have the same value
of TB at a given time instant (e.g. as in Figure 5.1). By comparing the lag distribution of nodes
from the various classes visually, we can already get a first insight about the global behavior of
the system. It is easy to see, for instance, what are the smallest and largest values of node lag in
the system, and how the lag is distributed.

Also, we can aggregate the lag information by class to get a synthetic picture of the aggregate
behavior of similar nodes. This kind of analysis can identify both the presence of widespread
problems in the data exchanges, such as massive disconnections, and class-specific results in
reception performances. The average instantaneous value of per-classTB, along with its dis-
tribution around the mean value (captured by statistical estimators such as the unbiased sample

2Grouping the nodes by their available upload bandwidth willbe especially interesting when studying PULSE.
Since one of the fundamental aspects of the behavior of PULSEis the presence of correlation between the available
outbound bandwidth at a node and its reception performances, it will be useful to evaluate separately and then
compare the average aggregate behavior of each bandwidth class.

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 101

-50

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TBavg distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

Figure 5.2: Plot of Average Class Lag and Lag Variance over Time

variance or appropriate percentiles) is an example of useful metric that can be easily computed
based on node lag information. It becomes therefore easy to represent the statistical evolution of
per-class node lag over the time domain: we can for instance represent the values of the average
and variance of the per-class node lag over time, as shown in Figure 5.2.

Asymptotic Behavior of Node Lag Another interesting analysis we can perform using the
node lag metric focuses on the scalability of a data driven system. In tree-based systems, scal-
ability was more or less considered a fact - at least on paper3 - since in the case of a balanced
tree of fixed degreed the maximum delay needed for data to travel from the source toN nodes
is O(logdN), as they must traverse at mostlogdN hops to get to the leaves at the bottom of the
tree.

When dealing with an unstructured data driven system, however, understanding how it performs
when it reaches larger and larger scales is a necessity. As the data distribution process does not
follow predictable paths, it may be challenging to determine the relationship between the system
performance at steady state and the size of the node population. Intuitively, as the number of

3Scalability in this context becomes a matter of using appropriate mechanisms to re-balance the tree in response
to node churn, and to prevent nodes unable to serve a sufficient number of peers from occupy an internal position in
the tree.

102 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

nodes in the system increases, the delay required for data topropagate from the source to all
nodes will become higher and - consequently - the overall average node lag will also increase.

Average Node Lag vs. Chunk Reception Delay An interesting way to represent the status of
the node buffers in the system is to look at it from the perspective of a data chunk. In a structured
system, where the position in the overlay determines the data reception delay, the average delay
for a given node is quite stable over time. In data-driven systems, as we explained before, chunk
reception delay at a given node can fluctuate significantly over time, and out-of-order chunk
reception is the norm. The average node reception delay, as defined above, describes the past
and current performance of the node but does not give information on its future behavior. A
new metric can be devised to estimate the timeliness of current data reception with respect to the
average node lag, and again give a sort of prediction on the short-term variation of a node’s lag.

For a chunkci, we can mark a point on a 2D graph when it is received by a peerP - with
chunk lagT P

ci
at timet - with coordinates(T P

B (t), T P
ci

). The diagonal liney = x represents the
theoretical behavior of a structured overlay system, wherethe average reception delay is constant
(i.e. T P

B = T P
ci

). Points above the diagonal represent nodes that received chunkci later than their
average reception lag, while those below the diagonal represent nodes that got the chunkbefore
their current node lag.

As we did before, we can perform the usual partition of the nodes into different classes. In Figure
5.3 we can see an example of plot comparing node lag with chunklag for a population of 500
nodes in an early stage of a simulation, where the shape of each tick represents the bandwidth
class of each node. We can draw many interesting insights from this kind of graph. For instance,
we obtain:

• a snapshot of the position of the nodes by bandwidth class inside the system with respect
to one chunk. This is equivalent to a simplified representation of the chunk’s path inside
the system (where the links followed by the chunk are not explicitly drawn).

• an estimation of the diversity of data buffers across the system, which is given by the
horizontal width of the range of chunks that nodes are interested in requesting4 (as seen on
the x axis).

• the highest lag value with which nodes managed to receive thechunk5, which corresponds
to the maximum lifetime of a chunk in the system (as seen on they axis).

• specific to PULSE: a glimpse on the state of the system. It may be converging, when
nodes are spread in a comet-like fashion (as in Figure 5.3), stable, when all nodes are
concentrated in a small area at a low lag value, or unstable, with nodes scattered around
the plot in clusters of variable size.

4We must however remember that this representation is not a snapshot of the system’s state at a particular instant,
but rather a picture of the system as ’seen’ by a data chunk.

5Obviously, not counting nodes that did not receive that particular chunk.

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 103

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
hu

nk
 a

ge
 (

ch
un

ks
)

Node lag (chunks)

Node TB vs. chunk age for Chunk 600

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

Figure 5.3: Average Node Lag vs. Chunk Reception Delay

5.2.2 Bottlenecks and Bandwidth Efficiency

The primary bottleneck of a streaming system is given by the upload bandwidth of the source:
this bottleneck is a fundamental issue of all streaming systems for which there is no actual so-
lution. Peer-to-peer systems alleviate this problem by allowing the users to contribute their re-
sources, but the fact that the source is the only point from which data is introduced into the
system still constitutes a bottleneck.

On Bandwidth Efficiency Let us consider a system withN nodes where each node has an
upload capacity ofU , and one sourceSRC with an upload capacity ofUSRC . The stream rate
is SBR Kbps, which in the case of a chunk-based system means thatR chunks of sizeSBR

R

Kbytes are generated each second. The total available upload capacity of the system at any time
is NU + USRC : however, each node can use just a fraction0 ≤ ϑ ≤ 1 of its available upload.
We will define thebandwidth efficiencyof a system asξ = 1

N

∑N

i ϑi. For instance, a node in
a single tree-based system can only have an integer node degreed =

⌊

U
SBR

⌋

, which leads to a

maximum efficiency (for an internal node) ofξ =
SBR⌊ U

SBR⌋
U

, while leaves haveξ = 0. Nodes

of a multiple-tree based system withM trees can reach a maximum efficiencyξ =
SBR

M ⌊
MU
SBR⌋

U
.

Finally, data-driven systems can achieveξ = 1 by using an optimal scheduling algorithm.

104 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Bottlenecks in Structured and Unstructured Systems The connection bandwidth between a
pair of connected peersa→ b can be defined in a simple way as:

Ba,b = min(
Db

in-degreeb
,

Ua

out-degreea
)

In structured acyclic overlays such as trees, the data reception rate of a node is upper-bounded
by the stream bit rate, and its lower bound is determined by the smallest connection bandwidth
on the overlay path to the data source, that is:

BSRC,n = min
i−>j∈path{SRC,n}

(SBR, Bi,j)

Given the current scenario of bandwidth availability on theInternet, the scarce resource is located
at the node uplink, which can be (in the case of ADSL links, themost popular commercial access
technology)two to twenty timessmaller than the downlink of the same node. For this reason,
the main source of bottlenecks in structured overlays is upload bandwidth scarcity at an internal
(non-leaf) node.

In data-driven overlays, whileB is still defined for each connection, it becomes harder to define
a bandwidth bottleneck on the data paths, since there are multiple ways of connecting the source
to each receiver and since the distribution of chunks does not follow a sequential order. This
situation is encompassed by the well-known Edmonds’ theorem (1969), which defines the min-
imum theoretical streaming rate from a single source over anedge-capacitated overlay graph as
the sum of the edge capacities across the “minimum cut” of thegraph(the minimum cut is given
by the partition of the graph for which the sum of edge bandwidths that cross the cut is minimal)
[40].

Different chunks are commonly distributed over different spanning trees: depending on the chunk
scheduling and node selection algorithms used in the system, the bandwidth efficiency can be no-
ticeably improved and leads to an important reduction on themaximum chunk propagation delay.
Karpet al. have proved in [62] that centralized scheduling algorithmsexist that can approach the
optimal propagation bound in the continuous-broadcast problem: while these algorithms cannot
be applied to fully distributed systems, they suggest that the bandwidth efficiency of a system
that allows data paths to change over time is potentially better.

However, the lack of an adequate link bandwidth (at least equal to the stream bitrate) on the sys-
tem’s “minimum s-cut” is not theonly source of bottlenecks in a data-driven streaming system.
The state of the data distribution process also determines which chunks a nodeneedsand which
ones itis able toretrieve: the actual bandwidth efficiency of the system could be further reduced
because of an inefficient scheduling in the chunk distribution among the nodes. Therefore, the
bandwidth efficiency of the system can be used as a metric to evaluate the functionality of a set
of peer selection and chunk selection algorithms.

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 105

Bandwidth Bottlenecks vs. Content Bottlenecks We definestarvationas the reception of a
data rate lower than the bitrate of the stream by the receiverr. This phenomenon happens when
∑

i∈r′s neighbors Bi,r < SBR, that is when the neighbors ofr do not manage to provide a sufficient
amount of stream data tor [69]. The reasons for this starvation include, as we said above:

• Content Bottlenecks: the sender neighbors are not able to send enough chunks to the re-
ceiverbecause they do not have any chunks in their buffers that could be useful tor.

• Bandwidth Bottlenecks: all senders combined can offer atotal bandwidth which is too low
for the receiver to be able to retrieve the stream at a rate of SBR, even if they hold chunks
which can be useful tor.

The content bottleneck problem can be limited by choosing anappropriate chunk selection al-
gorithm, which should make sure that data is uniformly spread among nodes, so that they can
exploit at best their upload capacity. The bandwidth bottleneck problem can be addressed (within
the framework of the Edmonds’ theorem) by using an appropriate peer selection algorithm and
adequate values for the node out-degree.

From an external point of view, the effect of both forms of bottlenecks is the same: the stream is
delivered tor at a lower rate than expected. But the distinction between content bottlenecks and
bandwidth bottlenecks is a useful one to be made when studying and optimizing the performances
of a data-driven system, as it may allow to isolate the shortcomings of a given chunk-selection
algorithm from those due to a poor peer selection strategy.

The Resource Index Describing the availability of bandwidth resources on a macroscopic
scale can be useful to quickly evaluate the overall serving capacity of a system and to identify
excess or shortage in bandwidth resources. A simple way to doso is to calculate theResource
Index(RI) of a given streaming session [104]. TheRI is defined as the ratio between the avail-
able serving capacity of the system and the capacity required to fully serve the node population.
In formula, when there areN peers (excluding the source) with bandwidthU and if the stream
rate isSBR:

RI =
USRC +

∑N

i=0 Ui

N · SBR

We notice that, by its definition,RI ≥ ξ for any distribution of node bandwidth. A resource index
larger than one indicates a global bandwidth excess, whereas values smaller than one indicate
that there are not enough resources to serve all the peers in the system. The most challenging
bandwidth scenarios are those where the RI is only slightly higher than one, but every node is
expected to receive the full streaming service.

106 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

5.2.3 Understanding the Data Distribution Process

In data-driven systems, as stated above, data exchanges areperformed among the nodes based on
local criteria, such as the current state of data distribution (reconciliation of the buffer content at
neighboring nodes), the existence of established neighboring relationships with other peers (data
connections and control information), and the local knowledge about the past evolution of the
system. For this reason, even a detailed knowledge of the mesh structure - which gives only an
approximate short-term characterization of the system activity - is not sufficient to capture the
the details of the data distribution process.

A more precise understanding of a data-driven system can be gained from the stochastic analysis
of the paths taken by data chunks. We recall that these paths are spanning trees, that is acyclic6

directed graphs connecting all nodes that received a specific chunk. It is possible to look at the
data distribution performance in a different way by studying and measuring the average perfor-
mance of chunk distribution trees, such as the tree depths and the average layer out-degree: this
kind of analysis is particularly useful when the environment in which the system runs is not fully
known a priori (for instance, if nodes have an unknown bandwidth distribution).

Average Maximal Depth of Distribution Trees Maximal tree depthD(cj) is the number of
hops required for a chunkcj to reach from the sourceS the totality of theN ′ nodes that actually
received it (N ′ ⊆ N). In formula:

D(cj) = max
i∈N ′

hops(S
cj

−→ i)

We must briefly emphasize here the difference between lag andtree depth: while the former also
takes into account the time required for chunk delivery, tree depth only deals with the maximum
number of hops that a single chunk travels. We remember that each node autonomously decides
the next data chunk to request using thechunk requestalgorithms based on locally available
knowledge. Since a chunk can typically only be sent following a request, the actual delay intro-
duced by a hop also depends on the timing with which the request was answered by a serving
node.

While small tree depths do not directly imply that data distribution is efficient (e.g. in the case
of widespread chunk loss), this metric can however give an idea of themaximum number of
exchangesneeded to distribute a chunk. To increase the meaningfulness of the observed value, it
is advisable to compute the average tree depths on several (k) contiguous chunks. We define the
Average Tree Depth metric for chunkscn to cn+k as:

Davg(cn, cn+k) =
1

k + 1

n+k
∑

i=n

D(ci)

6We assume for simplicity that chunks are not unnecessarily duplicated, which means that there are no loops in
the distribution graph.

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 107

5.2.4 Locality Awareness of Data Exchanges

The fundamental strength of native network-layer multicast lies in the fact that the path taken by
the data is always the shortest: the routers taking part in a multicast session are only those that
lie on the direct path between the source and all the destinations. This results in two desirable
properties: the optimal latency of the data paths and the optimal use of the available capacity of
the network.

Application-layer multicast cannot match the optimal performance of network layer multicast.
In the previous sections, we have discussed at length about the allocation of upload bandwidth
capacity at the access link. However, we must not forget thatdata travel on the transport network
over multiple unicast connections between the nodes. This means thatthe network path between
the source and the destination is not the shortest one. Nodes establish connections without any
knowledge of the underlying network topology, so it is not uncommon for data to travel multiple
times over backbones even if the shortest path between the source and the destination would not
cross the boundaries of a same AS.

The earliest application-layer multicast designs were very much concerned with this inefficient
use of the network [30][12][110]. The performance of these overlays was evaluated using metrics
such as thenetwork stretch, defined as the multiplicative ratio between the length of anoverlay
path and of the unicast path connecting a node to the source (also known as RDP -relative delay
penalty), and link stress, defined as the number of copies of the same data that are sent over
the same physical link. These metrics need the full knowledge of the network topology to be
computed, and are very useful to determine the scalability of a given static overlay architecture
by means of simulation.

However, these metrics are not applicable in a straightforward way to data-driven systems, as
the overlay structure is not fixed. A possible solution wouldrequire analyzing a number of
subsequent chunk distribution trees, from which the stressand stretch metrics could be computed,
and then averaging those figures to come up with the typical behavior of the overlay construction
algorithms. Problems arise though when the data-driven system is dynamic, as its evolution
depends both on the current status of the network and on external factors, such as resource
availability and distribution of node pairwise latencies.

We argue that the main problems data-driven systems intend to solve are the robustness against
node churn and the allocation of the available upload capacity, rather than the achievement of
optimal delay performance: it does not make a lot of sense to compare a data-driven system to
a fixed-structure overlay to determine which system is better, as fixed-structure overlays surely
offer better performance in terms of delay.

Average Latency of Node Connections The main information available to an application
about network locality is theend-to-end latencyof a transport connection. Several techniques

108 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

exist to measure latency: the simplest is based on thepingprinciple, that is measuring the round-
trip-time (RTT) required for a short message to reach another node and to be retransmitted back.
To improve the accuracy of the measurement, more complex techniques are used which aim to
factor out the delay introduced by processing time at the remote node (for example, the NTP host
synchronization protocol uses this approach). A common approximation to estimate the one-way
connection delay is to just divide theRTT by two, even if the forward and backward paths could
well be asymmetric.

Nodes in data-driven systems associate to exchange both data and control information. The
choice of partner nodes is important for two reasons:

• control messages can be sensitive to delay, as they may contain information that tends to
evolve rapidly over time. A control message can lose accuracy if its delivery is delayed
for too long, and the actions performed in response to an outdated message can result in a
waste of bandwidth (transmission of duplicate chunks, etc.)

• data transfer over high-latency connections means an inefficient use of the underlying net-
work, as it results in both high stretch and stress.

For instance, it can be interesting to evaluate the localityawareness of a data-driven system by
performing an analysis of the average latency of the connections that a peer chooses to establish
when the system has reached steady state.

Amount of Data Transferred vs. Transfer Locality As the quantitative weight of data trans-
fers in a streaming application is much higher than the weight of control traffic, improving the
locality awareness of data transfers is a key requirement toavoid an inefficient use of network re-
sources. We find it especially interesting to analyze, from the point of view of a single node, how
many data were exchanged with “nearby” peers, compared to how many data were exchanged
with nodes located far away: this information is not adequately conveyed just by the average
latency of theconnections establishedby a node, as there is no notion about the amount of data
transferred.

The technique we use to define the average locality of data transfers is the following: at each
node, we calculate the number of chunks sent to each of its peers over a given time interval.
Then, based on the pairwise latency matrix (which can obtained from measurements performed
while the system runs), each node defines a number oflatency binsof uniform width. Each node
computes the value of the amount of data associated with eachlatency bin by computing the
total amount of chunks sent to nodes whose link latency fallsin the range of each bin. Then,
we aggregate the values contained in the same bin for all the nodes in the system, dividing by
the number of the nodes. Finally, the value of the bins is again normalized by the total amount
of data chunks generated by the source over the time interval. The result of this process can be
represented as an histogram correlating the percentage amount of data exchanged in average to
thedistanceit has traveled on the network (Figure 5.4).

5.2. PERFORMANCE METRICS FOR DATA-DRIVEN SYSTEMS 109

 0

 1

 2

 3

 4

 5

 0 500

%
 o

f D
at

a
E

xc
ha

ng
ed

Latency [ms]

Latency-Based Locality of Data Exchange C=0

Figure 5.4: Amount of Data Transmitted versus Transfer Locality

Locality and Average Node Lag Finally, we can easily expect that the latency of the individual
data transfers will have a cumulative impact on the overall delay with which chunks propagate
through the system. However, as we said before, this overalldelay cannot be compared to the
delay of the unicast path from the source to the node (i.e. to compute network stretch): the
average chunk reception delay, or node lag, is not only due tothe performance of individual
links, but its main component is made up by the scheduling decisions and node associations
independently performed by all the peers.

While a comparison of node lag to the “absolute” reference ofunicast delay is meaningless,
the fact that node lag is influenced by the awareness to network locality allows us to establish
“relative” comparisons between systems. By looking at the average lag, we can draft a rough
comparison of the locality awareness of different data-driven systems that operate in similar
conditions. However, this metric is useful to evaluate the effect of slight parametric changes
in the algorithms of a same system, giving the feedback required to experimentally tune the
algorithms to better operate under real-world conditions.

110 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

5.3 Behavioral Metrics: the Role of Incentives

We now focus our analysis on PULSE-specific mechanisms and properties. PULSE is basically a
data-driven system, but its algorithms present additionalfeatures that this general definition does
not capture:

• First, the choice of partners for data exchanges is determined by the concept oflag, a
metric that describes the stream reception status of each node. As the data retrieval process
is restricted to a small continuous segment of the stream (the trading window), nodes use
information aboutlag to discriminate between the nodes that may reciprocate and those
that cannot.

• Second, being an incentive-based system, the recent history of the data distribution pro-
cess contributes to the choice of possible targets for node associations. Also, the optional
altruistic mechanism exploits long-term knowledge about remote node behavior as a bias
for peer selection.

In this section we introduce three new metrics to better understand the behavior of PULSE,
analyzing it under a different point of view. While the metrics we described above capture the
external aspects of the system - such as the shape of its mesh,its observed loss rate, or the average
reception delay - we now start correlating the system performance and the decisions taken at the
individual nodes to their own and their partners’ resources, i.e. mainly to their upload bandwidth.

The first metric,affinity, deals with the effectiveness of the peer selection algorithm for the
MISSING connections. The second,friendliness, tries to portray the role of altruism inside the
system. The last one,soft fairness, aims to capture the reaction of the system to the bandwidth
conditions in which it happens to run.

5.3.1 Class Affinity

A useful way to capture the behavior of a given bandwidth class can be the frequency at which
its nodes establish MISSING links toward nodes of the same class, or to any other class.

The choice of neighbor nodes for MISSING data exchanges is infact critical to the good behav-
ior of the system, as MISSING partnerships should convey thelargest share of stream data to
most resourceful nodes. It is thus very important for these partnerships to be establishedwith
resourceful nodes that share a common data interest range, to maximize the reciprocal benefit
both peers can obtain from the relationship.

We thus define the concept of “Class Affinity” between classα and classβ as:

Φ(α, β)(t) =

∑

n∈α ‖n’s MISSING links toward nodes of classβ‖
∑

n∈α ‖n’s total MISSING links‖
(5.1)

5.3. BEHAVIORAL METRICS: THE ROLE OF INCENTIVES 111

We will also represent in our plots a normalized version of the Class Affinity metric. The purpose
of normalization is to take into account the different cardinality both for the different bandwidth
classes and for the different scenarios. To this end, we divide the value ofΦ by the fraction of
the total population belonging to the target class. In otherwords, this amounts to comparing the
choices performed by a node with theuniformly randomnode selection policy.

Φ′(α, β)(t) = Φ(α, β)(t) ·
N

‖β‖
(5.2)

An interesting way to represent the internal cohesion amongnodes from the same class can be
captured by the “self affinity”Φ(α, α)(t) of any given class. Intuitively, this coefficient will be
higher when most nodes from one class have many connections to nodes of the same class. This
would be an indicator of a heavy reliance of any group of nodeson nodes with a similar band-
width capacity. Affinities toward other classes, richer or poorer, are also interesting to analyze
under a different light how nodes tends to negotiate their main way of obtaining chunks.

Interpretation We expect rather high “self affinity” results for classes with considerable excess
resources in highly heterogeneous simulation scenarios. On the other hand, results showing
that the affinities between different classes are very similar could indicate that tit-for-tat is not
the dominant criterion impacting MISSING peer selection: typically, this should be the case
in scenarios with little resource heterogeneity between bandwidth classes. Also, by comparing
these plots with thenode laggraphs we can correlate variations in the affinity metrics tochanging
system conditions (e.g. convergence, steady state, etc.).

5.3.2 Class Friendliness

Another interesting piece of information is the behavior ofFORWARD connections. We recall
that the purpose of FORWARD connections is to better utilizethe capacity of richer nodes to
help other nodes in the system, while avoiding to negativelyimpact their MISSING exchange
performance.

We thus define the concept of “Class Friendliness” between classα and classβ as:

Ψ(α, β)(t) =

∑

n∈α ‖n’s active FORWARD links toward nodes of classβ‖
∑

n∈α ‖n’s total active FORWARD links‖
(5.3)

As we did above, we will again normalize the metric against the fraction of the nodes belonging
to the target bandwidth class:

Ψ′(α, β)(t) = Ψ(α, β)(t) ·
N

‖β‖
(5.4)

112 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Class Friendliness is similar to Class Affinity in that it describes the likeliness of interaction
among node classes, but since FORWARD connections are not really active until a node actually
sends data over them,Ψ has to be computed at the end of each peer’s EPOCH.

Interpretation We expect that normalized friendliness at steady state willbe higher toward
classes with decreasing bandwidth resources. We are thus interested in analyzing the evolution
over time ofΨ(t), especially during the system convergence phase and following major changes
in the network configuration (spike of arrivals, etc.).

5.3.3 Soft Fairness

The wordfairnessis often employed to describe a vague desirable property of asystem that is
somewhat along the lines of ’who gives shall receive’.

This definition may be enough for conveying a general idea of what fairness is about. However,
when comparisons have to be made between the fairness of two systems (or of the same system
for different initial conditions), this definition is clearly insufficient. How fair is a system? How
can fairness be measured? And then, what to do when a node doesnot ’give’? If a system - in
presence of a sufficient service capacity - does exclude the nodes who give less than required, is
it ’more fair’ than a system that serves them anyways?

About the Meaning of Fairness We feel that giving a clear definition of what fairness means
is a problem in itself, one that has deep roots outside the scope of computer science. We do
not wish to deal here with the underlying philosophical questions of “what’s the right/wrong
behavior and how right/wrong deeds are rewarded” applied toa rational agent’s behavior inside
a generic cooperative system. We will however observe that the definition of fairness used by
each author is deeply influenced by his “moral” evaluation ofthe fairness problem, within the
specific constraints of the application at stake.

Some authors thus understandfairnessas“equal contribution by each node in the system”, which
has to be either expected [12][110], required [21], or enforced reactively [89][107][46]. This
concept is sometimes expressed in a different (but closely related7) form, “the service received
from the system is proportional to the node’s contribution”, e.g. in BitTorrent [33].

Contributions may consist in actions performed by a node on behalf of another one (e.g. forward-
ing a message to a third party), services offered directly tothe requesting node (e.g. upload of
a requested file), and/or offers of future service (e.g. replying to a query). Finally, enforcement
can be performed on the short term (bit-torrent’s tit-for-tat, bit-for-bit) and/or on the long term
(cumulative tit-for-tat, reputation, trust).

7Game theory allows to reduce a game with more than two playersto the same game between one player and
“the rest of the system”.

5.3. BEHAVIORAL METRICS: THE ROLE OF INCENTIVES 113

This understanding of fairness is well-suited to applications with an implicit incentive forlong-
term abuse of the system. For example, in a file-sharing system, it may be reasonable to lower the
priority of requests coming from nodes that share fewer files, to prevent them from clogging up
the service queues at the other nodes – thus protecting the performances of those peers that share
more. Another example can be a large-scale content distribution network: it may be reasonable
for nodes to serve data to peers that do likewise contribute service capacity than to peers that
never give back.

The applications that are well-suited by this type of fairness often share one or more of the
following aspects:

• The service performed has a finite duration (e.g. transfer ofa file), after which the request-
ing node is no longer interested in staying in the system.

• The gain a node can achieve from the network, is inversely proportional to the time it
spends in the system.

• Thegainof a node is not upper-bounded as a consequence of the type of resources that are
served (e.g. a huge number of different files vs. a single file).

• The value of the objects served by the system does not decrease over time, so that it be-
comes possible to “profit” by accumulating them.

Defining a Metric for Fairness To measure fairness following the above definition, we need
a metric that can take into account both the contribution of anode (i.e. its available outbound
bandwidth) and the local outcome it experiences. In PULSE, we can consider the local outcome
as the inbound bandwidth a node manages to obtain from its peers. If we take into account the
fact that the streaming application is rate-limited, we canthen describe the amount - and the
steadiness - of a node’s incoming bandwidth by theposition(i.e. the average node lag) that it
occupies inside the system.

Our definition of “Soft Fairness” (bandwidth class version)between any twobandwidth classes
α andβ, whose upload capacity isUα < Uβ , is :

F(α, β)(t) =

∑

n∈α

∑

m∈β I(TB(n)(t) ≤ TB(m)(t))

‖α‖ ‖β‖
(5.5)

where the indicator functionI(x) is defined as

I(x) =

{

1 if x is true
0 otherwise

andTB is, as usual, the average node lag measured at timet.

114 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Figure 5.5: Soft Fairness Plot for a Given Bandwidth Class (in this example: RICH)

Should bandwidth classes not be defined (for instance, in a real system where the possibleU for
each node can take a wide range of values) the same “Soft Fairness” for this general case would
become:

F(t) =

∑

n∈N

∑

m6=n :UB(n)≤UB(m) I(TB(n)(t) ≤ TB(m)(t))

N(N − 1)/2
(5.6)

Values ofF near1 mean that the system is “fair”, since the near totality of nodes that contribute
more to the system get a steadier incoming bandwidth than less-contributing ones, allowing them
to settle on a lower lag value than poorer classes. On the other hand, values near zero indicate
that the system is “unfair”, since those who contribute lesscan systematically get in return the
needed data chunks with a better lag performance. Finally, intermediate values could suggest
that there is no strong correlation between the capacity provided by a node class and the lag it
manages to obtain.

Graphic Representation We will represent the class-based fairness values on a plot like the
one shown in Figure 5.5. In this kind of plot, to include the ’reverse fairness’ relationships
between classes with higher-to-lower upload, i.e.Uα > Uβ, we will represent the function:

F̄(α, β)(t) =

∑

n∈α

∑

m∈β I(TB(n)(t) ≥ TB(m)(t))

‖α‖ ‖β‖
(5.7)

5.3. BEHAVIORAL METRICS: THE ROLE OF INCENTIVES 115

Applying this convention, we can obtain pictures where it’spossible to grasp immediately the
amount of soft fairness relative to a pair of bandwidth classes. The plot can be then read as
if divided into two horizontal stripes that correspond to two zones of “prevalent fairness” and
“prevalent unfairness”, as we explained above.

Interpretation Soft Fairness is an useful metric to describe a running PULSEsystem. It allows
to compare the average performances observed by nodes with different resources. This can offer
an empirical description of the effectiveness of the tit-for-tat retribution mechanism in a given
operating scenario. Intuitively, we expect tit-for-tat tobe more effective when operating in highly
heterogeneous conditions and with scarce bandwidth availability, and less relevant whenever
bandwidth is abundant.

5.3.4 Toward a Better Concept of Fairness for PULSE

We introduced thesoft fairnessmetric to assess the relationship between a peer’s bandwidth
contribution to the system and its lag. This metric is especially relevant when the resources of
the system are scarce (RI close to 1 or even lower). On the other hand, when there is no scarcity,
the retribution mechanisms will be less effective in discerning the nodes that give more from
those that give less. This is also what we intuitively expectfrom a rate-limited application

However, we must not forget that fairness as “just retribution” is not our primary interest. Af-
ter all, a live streaming application is primarily meant to distribute streaming data. Incentive
mechanisms are important to make the system resilient to peers who are uncooperative - either
for technical limitations or deliberate choices - since spontaneous cooperation should never be
expected. However, their role and usefulness of an incentive mechanism is subordinated to the
system’s main purpose, that isdelivering a live stream to large audiences with low delay.

In the context of our target application, we feel that fairness described as in Section 5.3.3 - either
same contribution for all nodes, or service provided to eachnode by the system is equal to the
node’s contribution - is still not totally appropriate to evaluate a live streaming application, for
the following reasons:

• Live streaming is a rate-limited application, meaning thatthere is little interest for each
node in obtaining at steady statemore data(i.e. at a faster rate) than other nodes.

• No node can in any case receive data faster than the source produces them. The interest
function (i.e. reception delay) is now upper-bounded.

• Live streaming deals with “ephemeral” content, whose valuetends to zero over time.

Moreover, some constraints of live streaming and some properties of the current Internet also
show the limits of that fairness concept:

116 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

• Studies about the availability of bandwidth resources at Internet hosts show how their
distribution is not uniform throughout the entire population, but more similar to a truncated
power law [96][104].

• Systematically enforcing strict limits on the instantaneous bandwidth (e.g., because of
long-term considerations) can hurt the short-term performances of the system, especially
when the usefulness of the content is so short-lived. As we know, bandwidth may be
“infinite” over time, but it is limited at any given moment: wecan thus think at unused
available bandwidth as if it waslost service capacity[107].

• And finally, using up a larger share of the bandwidth available at a node does not imply (in
most cases) an additional cost.

We will therefore suggest our own concept of fairness, whichis more oriented to the common
interest and survivability of the whole system rather than the interest of the individual nodes. We
attempt here a definition of“global fairness” as the property of a system where ’good’ actions
of its individual components give origin to ’good’ local outcomes and ’good’ global outcomes,
and where ’bad’ actions of its individual components may give origin to ’bad’ local outcomes,
but also lead to ’good’ global outcomes.

Applying this definition to PULSE, we can say that a good (bad)action is (not) offering enough
upload bandwidth, i.e. less than the stream bit-rateSBR. A good (bad) local outcome at each
node is receiving (less than) an average stream bit-rate ofSBR. The good global outcome is
that as many nodes as possible are served by the system– regardless of the serving capacity
distribution across the population. This new definition of fairness better translates, in the specific
context of our application, to the need for the system to “protect itself against exploitation”,
specifically by nodes that cannot / don’t want to contribute enough. As long as there is enough
serving capacity, we do not feel that “poor” nodes or freeloaders should be penalized. On the
other hand, when the service capacity becomes scarce, the first nodes to be penalized should be
those that are contributing the least, in name of the “commongood” of the system [83].

5.4 Conclusion

In this chapter, we provided two sets of metrics to evaluate mesh-based live streaming systems.
The first set, based on the concept oflag, is intended as a common framework that may be
used to describe and compare the performance of generic data-driven systems. The second set is
designed to study the macroscopic relationships between node resources, their placement in the
system, and their data reception performance: while possibly useful in a more generic context,
these metrics specifically aim to capture the internal dynamics of the PULSE system and to
monitor the evolution of node placement inside the network.

The metrics we presented in this chapter are in no way meant tobe exhaustive. We believe that
other new metrics could be introduced to study certain specific aspects of data-driven systems:

5.4. CONCLUSION 117

for instance, further insights could be gained from the measurement of graph properties of the
mesh overlay (e.g. clustering coefficient, diameter, etc.). We decided, in the context of our study
of PULSE, not to focus too much on the full overlay graph, as itkeeps changing rapidly over
time, but rather to privilege the study of data exchange paths supported by the statistical analysis
of node relationships.

118 CHAPTER 5. METRICS FOR PERFORMANCE EVALUATION

Chapter 6

Simulation Results

In this chapter1, we evaluate the performance of PULSE algorithms through extensive simula-
tions. We introduce in Section 6.1 the simulated model in full detail, underlining its strengths and
shortcomings. In Section 6.2 we describe the simulation scenarios used, while in Section 6.3 we
analyze the stability and efficiency of the simulated systemover a range of structural parameters,
such as length of the Trading Window and amount of FEC added bythe source. In Section 6.4
we apply the metrics we presented in Chapter 5 to understand the global behavior of the peers
and to describe the internal dynamics of the PULSE system. Section 6.5 examines the behavior
of PULSE under the various scenarios we introduce in this chapter, with a specific interest for
the quantitative performance of the system. Section 6.6 examines the effects of churn and sud-
den variations in the membership and in the available resources while the system is operating.
Finally, we conclude our analysis with additional commentsin Section 6.7.

6.1 Methodology and Expectations

PulSIM, the simulator we implemented and used to obtain these results (Chapter 4), is a sim-
ple time-slotted simulator. The first design choice which isfundamental in order to perform a
realistic time-driven modeling of any phenomenon is the time unit (orstep duration) of the sim-
ulation: while atoo small time unit makes the simulation slow, increases the volume of the data
produced, with little benefit on the accuracy of the data itself, choosing atoo large timescale can
give inaccurate results. Then, the accuracy of the model has to be perfected depending on the
selected time scale: this includes amodel of data transfer at the chosen time scaleand thedefini-
tion of a knowledge propagation model: these rules basically regulate what pieces of information
are available to which node with how much propagation delay.Finally, based on the modeling
choices, it is advisable to formulate anexpectation about the overall accuracy of the model: this
should give a clear idea of what will be the limited scope inside which results will be valid, and
some predictive reasons on why and when the model could deviate from reality.

1The contents of this chapter have been published in part as [87].

119

120 CHAPTER 6. SIMULATION RESULTS

6.1.1 Choice of Simulation Step

Simulating a system at a certain timescale implies the ability to sample its state with a period
that cannot be smaller than the simulation step. By Nyquist’s Theorem, the lossless sampling
of a system requires a frequency which is at least twice the signal’s frequency. However, we
must not forget that the simulation step also determines themaximum frequency at which the
simulated system can act: therefore, the simulator frequency should be a multiple of the double
of the actual rate at which things evolve in the system. An appropriate timescale can usually
be chosen by selectinga step value about one order of magnitude smallerthan the actual time
constant of the phenomenon.

The best way to choose a correct time unit is to examine the system that has to be modeled
and recognize the frequency at which important events happen. In PULSE, the peer selection is
performed at regular intervals of several seconds, called EPOCHs2. Peer selection is based on
the actual performance of data exchange during the previousEPOCH, so the simulator has to
allow for repeated exchanges to take place between two subsequent peer selections. The rate of
data exchanges will be on average in the same order of magnitude of the data generation process,
as live streaming is a rate-limited application. Therefore, we believe that a time step in the order
of the tenths of seconds would be a good choice. In our simulations, we used a value of0.25 sec.

6.1.2 Modeling Data Transfers

We now concentrate on the way to model data exchanges in a data-driven system at the chosen
time scale. We remember that the basic unit of data exchange in our context is thechunk: new
chunks are generated by the source at a constant rateCR. We suppose that the size of a data chunk
can range between few KB to few hundreds KB, depending on the actual rate of the stream and
on the amount of error correction protecting the stream data. The issues then becomes: how can
we allocate node capacity to simulate data transfers in a realistic but lightweight fashion?

First, we can introduce one of the traditional hypotheses, which has been used thoroughly in the
modeling literature: that the bottleneck link is always located at the edge of the network, i.e.
each node is bandwidth-constrained but the network does nototherwise affect the data exchange.
This results in a simple transit-stub network topology, where the transit has an infinite bandwidth
and the stubs are dimensioned to approximate realistic access link capacities. We also suppose
that download capacities are always higher (e.g. twice at least) than the stream rate.

Then, we have to face the problem of how to model the behavior of our network: we are espe-
cially concerned about the transfer delays between nodes and about pairwise node latency. The
network should then introduce an initial delay for any communication to be possible between
two nodes, on top of which it adds the delay required to transmit the data payload. But how
can we model data transfers, which in reality are a continuous phenomenon, in the context of a
time-driven simulator?

2The typical EPOCH length that we used in our simulations is two seconds.

6.1. METHODOLOGY AND EXPECTATIONS 121

To simplify things, we can think about having data transferspartially synchronized across the
system, so that they always respect the boundaries of a time step. This can be done (for instance)
by limiting the total number of chunks that a node can generate during each step. The amount
of upload/download bandwidth at each node determines the amount of chunks that can be ex-
changed by a node3 during each time step. Having introduced this further approximation, we
can be sure that all the chunk transfers will be completed on time (if the full capacity is used) or
before the end of a step (if spare capacity remains), but never later.

The simplification above leads us toward the concept ofbandwidth slot, which constitutes the
practical unit of measure to represent data transfers in ourmodel. A bandwidth slot is defined as
the amount of bandwidth required to transmit one chunk in a single time slot. Node capacities
are then defined in terms of multiple bandwidth slots: this quantization of bandwidth capacities
can approximate quite well the average behavior of TCP undercongestion at the edge, since the
available upload node capacity during a time step is equallyshared by all the competing chunk
transfers.

When dealing with latencies, the relatively large time scale we selected for our step value comes
into play with a positive outcome. If we consider the typicalpairwise latency values measured
over the Internet, which range from few tens to few hundreds milliseconds, we can approximate
the maximum time a message requires to reach another node with the duration of a whole time
step. This is especially useful for control messages, whichare quite short (tens of bytes) and
whose transfer delay is mainly dominated by the pairwise latency between nodes. The fact of
expressing pairwise latencies in terms of single simulatorsteps helps us to model the evolution of
the internal state of the system, as state changes induced bycontrol messages become effective
with an uniform delay of one iteration.

6.1.3 Model of Knowledge Propagation

Under the above assumptions for data and control exchanges,we can build a knowledge model
which is suitable to simulate the internal state of PULSE nodes. In the real application, nodes
obtain knowledge about the rest of the system by randomized gossiping and by direct exchanges
of control messages. On the other hand, we do not wish to implement a simulated gossiping
process, as this would increase by far the complexity of our simulator (the interactions of the
gossip protocol with the actual PULSE control exchanges would be difficult to understand and
debug).

For this reason, we approximate the propagation of information in the system in the following
way:

1. BLUE knowledge: at each iteration,all nodesare aware of theTBavg
at the previous iter-

ation for all other nodes. This oracle-like source of knowledge replaces in the simulation
model the actual gossip protocol. We argue that, when systemreaches steady state, as the

3This limitation holds both for uploads and downloads.

122 CHAPTER 6. SIMULATION RESULTS

values ofTBavg
are substantially stable, the fact of having an updated knowledge of average

remote node positions approximates what happens in reality, i.e. low-frequency updates of
aTBavg

value that is slowly changing over time.

2. RED knowledge: it is critical for the realistic modeling of the system that the detailed
knowledge of each peer’s buffer be available only to a small,well-chosen subset of the
entire node population. In this case, we need to roughly simulate the inner workings of the
PULSE protocol and cannot rely on an oracle-like mechanism as we did above. For this
reason, we have to specify few simple rules that constrain RED knowledge propagation.
A nodeP is aware of the full buffer state of another nodeQ at the previous time step,
including any chunk requests it may have expressed, if and only if:

(a) Q appears in theMISSING / FORWARD neighbor list ofP

(b) P appears in theMISSING / FORWARD neighbor list ofQ

(c) Q has chosen to send a RED control message toP at the previous time step

(d) P has chosen to send a RED control message toQ at the previous time step

3. DATA knowledge: nodes become aware of the chunks they received from their neighbors
at the iteration following the data transfer. Moreover, a mechanism is in place to prevent
the synchronous transfer of the same chunk by several different nodes at the same iteration:
in these cases, either the next queued chunk is sent (insteadof the potential duplicate), or
the node is skipped altogether, when there are no more chunksin the request queue.

6.1.4 Expectations and Limits of Our Modeling Approach

The choices we made while formulating our model of the PULSE system are all aimed to provide
a faithful description in terms of internal dynamics and global behavior at steady state. However,
the compromise we had to reach between simplicity and faithfulness has several consequences
on the kind of results we can expect from PulSIM: we try to synthesize our choices in the pages
that follow.

• Since all nodes are modeled as having an independent internal state, and since each of them
has to apply the PULSE algorithms on its data structures, thecomputational complexity of
the simulator is rather high. While we haven’t performed a thorough study of the exact de-
pendence between every system parameter and the time required for a complete simulation
run, we can say that the overall complexity roughly scales:

1. linearly with the duration of a simulation run

2. quadratically with the size of the buffer windowTW and the chunk rateR

3. linearly with the total number of nodes in the system

6.1. METHODOLOGY AND EXPECTATIONS 123

While the memory footprint of the simulator can be easily contained in the RAM of a
recent computer (e.g. about 1GB of memory used by our largestsimulations with104

nodes), the actual bottleneck was given by the available CPUpower. We had to resort to
run several instances of the simulator in parallel to minimize waiting times: on the machine
we managed to obtain to run simulations, a dual dual-core Intel Xeon server clocked at
2.8GHz and with 7GB RAM, a “simulation unit” made of 16 different scenarios (serially
run over four independent threads) would take from less thantwo days with103 nodes, to
more than one week with104.

• The bandwidth granularity of the simulation is implicitly determined by several parame-
ters. There is a relationship binding together stream rate (SBR), chunk size (CS), chunk
rate (R), time step duration (STEP), and maximum bandwidth slot size (BSmax):

BSmax =
SBR

CS
· STEP = R · STEP

The smallest bandwidth granularity should be dimensioned to be a fraction of (or at least
equal to) the smallest possible peer upload bandwidth. An important consequence of our
design choices is that the simulation results depend only onchunk rate, simulation step,
and bandwidth slot size. It is thus possible to rescale the results of a single simulation to
fit different values of these parameters through this relationship. Typically, we can scale
up the stream rate by scaling up the chunk size, double the chunk rate by halving the
time duration of a simulation step, etc., but we must be careful to always stay within the
reasonable range of operation given by the other simulator assumptions detailed above.

The model works very well to study the behavior of the system at steady state. It is conceived to
evaluate with particular accuracy the impact of different bandwidth scenarios on the evolution of
the system as a whole. However, there are also some drawbacks:

• The simulation model does not include a way to define latency scenarios other than the
uniform latency distribution. This does not allow us to evaluate through simulations the
behavior of the PULSE algorithms with respect to pairwise node delay and network locality
in general.

• The simulation model is also not suitable to predict the amount of bandwidth overhead
brought by control traffic, nor its possible interactions with the actual streaming traffic and
its impact on the operation of rest of the network.

• Another weakness of the model is in its simplified knowledge model, which overestimates
the likelihood of chunk exchanges between nodes and the efficiency in the use of available
upload capacity when compared to reality.

• Since the evolution of the simulation is not tunable by the operator once a run has been
launched, and since the simulator relies on randomized oracle-like mechanisms to model

124 CHAPTER 6. SIMULATION RESULTS

less-relevant aspects of the system, simulations may sometimes produce artifacts. Espe-
cially when modeling concurrent node arrivals, it is not uncommon to encounter a certain
degree of artificial transitory instability.

• The node reception lag results, as output by the simulator, should not be expected to be
faithful “in absolute” to measured results from real-worldsystems, as they do not take into
account with sufficient accuracy the delays induced by the exchanges of control informa-
tion which always happen before the transmission of the stream data. Also, as the real
throughput of data exchanges depends on TCP and on the underlying network topology,
the worst-case duration of a chunk exchange is not limited tothe time step duration. Fi-
nally, the real system is asynchronous, so its actual performance will surely be inferior to
its synchronous approximation attempted by this model.

The primary goal of our simulation model is to preserve thesystem-wide orderof the nodes in
terms of reception lag. This goal is motivated by our main hypothesis, namely that the lag of
the members of each bandwidth class is in some way dependent on the total (system-wide) and
relative (class vs. class) availability of resources at thenodes. The PulSIM simulator will be our
main instrument to validate whether this conjecture holds both at steady state and during system
convergence.

6.2 A Set of Scenarios for Simulation

We now set out to evaluate the behavior of nodes that concurrently run the PULSE algorithms.
As the algorithms are designed to adapt to the bandwidth conditions in the system, choosing
appropriate bandwidth scenarios that represent a wide range of possible operating conditions
will be crucial to understand how they work. Also, we want to have get some clues on how the
system is able to react to churn: for this reason, we apply several synthetic arrival and departure
patterns to the node population, to test the system’s response to slow and sudden membership
variations.

Bandwidth Scenarios The simulator parameters and bandwidth distribution ranges have been
chosen to model the diffusion of a 1 Mbps FEC-protected stream. In all the scenarios we use, the
source’s maximum upload bandwidth is set to 3*SBR. The values of the Resource index (RI) for
each scenario do not include the source’s bandwidth since itwould make the RI dependent on the
population size. However, if we consider a population of 1000 nodes, the RI increase introduced
by the source is just0.003. The various scenarios are also summarized in Table 6.1.

High Heterogeneity, Low Bandwidth (HH-LB) This scenario encompasses four bandwidth
classes: 4% of VERY RICH peers, with 4*SBR upload and 4*SBR download bandwidth; 20%
of RICH peers, with 2*SBR upload and 2*SBR download bandwidth; 21% of NORMAL peers,

6.2. A SET OF SCENARIOS FOR SIMULATION 125

Class Name HH-LB HH-HB LH-LB LH-HB

VERY RICH (VR) 4%, 4*SBR 4%, 10*SBR = =
RICH (R) 20%, 2*SBR 20%, 3*SBR 20%, 2*SBR 20%, 4*SBR

NORMAL (N) 21%, SBR 21%, SBR 80%, SBR 80%, SBR
POOR (P) 55%, SBR/2 55%, SBR/2 = =

Resource Index (RI) 1.045 1.485 1.2 1.6

Class Name UNIFORM-LB UNIFORM-HB

NORMAL (N) 100%, SBR 100%, 1.5*SBR

Resource Index (RI) 1 1.5

Table 6.1: Composition of Bandwidth Class Scenarios (distribution, upload)

with SBR upload and 2*SBR download bandwidth; and 55% of POORpeers, with SBR/2 upload
and 2*SBR download bandwidth. This amounts to a resource index ofRIHH−LB = 1.045.

The HH-LB scenario aims to show the system’s behavior when bandwidth resources are scarce
and asymmetrically distributed throughout the population. The total serving capacity is barely
sufficient to provide every peer with a complete stream.

High Heterogeneity, High Bandwidth (HH-HB) This scenario encompasses four bandwidth
classes: 4% of VERY RICH peers, with 10*SBR upload and 10*SBRdownload bandwidth; 20%
of RICH peers, with 3*SBR upload and 3*SBR download bandwidth; 21% of NORMAL peers,
with SBR upload and 2*SBR download bandwidth; and 55% of POORpeers, with SBR/2 upload
and 2*SBR download bandwidth. This amounts to a resource index ofRIHH−HB = 1.485.

Here we noticeably increase the upload capacity of the two richest bandwidth classes. As a
consequence, the total available bandwidth exceeds the minimum amount required for the com-
plete stream distribution by nearly 50%. The resulting scenario aims to approximate the hetero-
geneous bandwidth distribution observed by recent studies[96][27] on resource availability in
peer-to-peer file-sharing networks.

Low Heterogeneity, Low Bandwidth (LH-LB) This scenario encompasses two bandwidth
classes: 20% of RICH peers, with 2*SBR upload and 2*SBR download bandwidth, and 80% of
NORMAL peers, with SBR upload and 2*SBR download bandwidth.This amounts to a resource
index ofRILH−LB = 1.2.

The main challenge in this scenario is the small difference between the bandwidth capacity of the
two classes of nodes, together with the presence of a relatively low excess of overall resources.

Low Heterogeneity, High Bandwidth (LH-HB) This scenario encompasses two bandwidth
classes: 20% of RICH peers, with 4*SBR upload and 2*SBR download bandwidth, and 80% of

126 CHAPTER 6. SIMULATION RESULTS

NORMAL peers, with SBR upload and 2*SBR download bandwidth.This amounts to a resource
index ofRILH−LB = 1.6.

This scenario is designed to examine the behavior of nodes ina two-class scenario where band-
width resources are abundant.

Uniform Scenarios, High and Low Bandwidth These simple and self-explanatory scenarios
are useful to provide results to support comparisons to structured systems. The low-bandwidth
version (unif-LB) encompasses a single class of nodes with SBR upload and 2*SBR download
bandwidth. The high-bandwidth version (unif-HB) encompasses a single class of nodes with
1.5*SBR upload and 2*SBR download bandwidth.

Churn Scenarios We experimented with few synthetic arrival and departure patterns, to intro-
duce a way to evaluate the impact of user activity on the system behavior. We tried to approxi-
mate conditions that could be encountered in real-world environments, such as flash crowds and
sudden departures. The arrival patterns we adopted are:

• ATONCE: all the nodes join the network at the instantt = 0

• SPIKE: 25% of the nodes join the system att = 0; the remaining 75% come in together
after the system reaches stability

The duration of the life of a node in the system is assigned in the following ways:

• NOLEAVE: nodes never leave the system until the end of the simulation

• SQUIT: sudden departure of 50% of the nodes

6.3 PULSE Parameters: How to Set Them?

When we launch a PulSIM run, we would like to just provide the arrival pattern and bandwidth
distribution of the nodes. However, several protocol parameters have a decisive role both on the
initialization and on the evolution of the system. It is necessary to correctly set these parameters
before actual results can be obtained from the simulator.

Node initialization, for instance, is an especially sensitive phase, as new incoming nodes have
an empty buffer and must execute the various buffer synchronization algorithms before they can
operate normally. Especially when several nodes join in a small time frame, the odds that a node
manages to fully initialize its buffer depends on many factors: the available excess resources are
an important factor, but several buffer parameters (width of sliding windows, sliding tolerance,
initial window position) also play a critical role. If a simulated system does not initially converge,
then we will not be able to get any meaningful result from thattrace.

6.3. PULSE PARAMETERS: HOW TO SET THEM? 127

Problems in the initial system convergence are caused by both the simulation artifacts and by
the intrinsic properties of the algorithms. We remember that PULSE is a dynamic system based
on positive feedback: this means that the initial conditions can have a decisive weight on the
short-term stability of the system. In simulation, the stability problem is harder to address, since
the “inertia” of simulated peers is lower than in the real world (because of the fixed propagation
delay, oracle-like sources of knowledge, synchronized chunk transfer, etc.) and consequently the
randomness of their actions is higher.

In the following pages, we explore a limited subset of the protocol parameter space by way of
practical heuristics and trial-and-error. Our goals here are to begin to understand the fundamental
system dynamics and to settle on a small range of possible protocol values that will give useful
simulation outcomes.

6.3.1 Initial Transitory Phase

The simulations always begin with several nodes joining thePULSE system: depending on the
churn scenario, several hundreds of nodes can appear duringthe same time-step or within a short
interval. Initially, joining nodes have an empty buffer, and must start to fill it by interacting with
other nodes. We also remember that, until the buffer has beenfully initialized, a node cannot
start to advertise real average lag measurements about its buffer (Chapter 3, Algorithm 1).

We recall that in the simulator the knowledge model allows anunrestricted access to the average
node lag information. When they join, nodes do not have a valid node lag value, since their
buffer is not initialized yet. As a consequence, all the nodes will randomly choose their partners
during the first EPOCHs. Also, the widespread initial lack ofchunks at the nodes at the begin-
ning requires some time before node buffers begin to set a valid TB and peer selection becomes
effective.

The initial transitory phase should be of short duration (Figure 6.1): it is indeed common for most
nodes to either initialize their buffers at the first attempt, or to retry the joining procedure once
or twice before their buffer reaches the initialized state.The sudden increases in the variance of
class lag, which are visible in Figure 6.1a at 12 and 33 seconds are due to several starved peers
resetting their buffer as they reach the maximum allowed value of TB = TD. The bandwidth
traces in Figure 6.1b confirm that, att = 33s, all the peers are actively exchanging data. Aftert =
33s, we notice that the average download bandwidth of all the classes ishigher than the stream
rate, as the nodes reduce their lag from the source thanks to the presence of excess capacity.
After the average system-wide node lag drops to a stable minimum, which approximates the
mean delay required for the propagation of each chunk through the system, the class download
rates become equal or slightly lower thanSBR: this event marks the beginning of the steady
state phase, where nodes reach an equilibrium and keep receiving data with a stable lag.

Interesting insights can be obtained by examining the transitory evolution of the relationship
between node lag and delay of chunk reception (introduced inChapter 5, Figure 5.3). In Figure
6.2 we can see a sequence of nine snapshots of an HH-LB system taken at regular intervals of

128 CHAPTER 6. SIMULATION RESULTS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

A
v
e
r
a
g
e

L
a
g

[
c
h
u
n
k
s
]

Time [s]

TBavg distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(a) Evolution of node lag, averaged by class

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

B
a
n
d
w
i
d
t
h

[
c
h
u
n
k
s
/
s
]

Time [s]

Average node bandwidth use (by class)

Used OUT BW (Very Rich)
Used IN BW (Very Rich)

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

B
a
n
d
w
i
d
t
h

[
c
h
u
n
k
s
/
s
]

Time [s]

Average node bandwidth use (by class)

Used OUT BW (Rich)
Used IN BW (Rich)

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

B
a
n
d
w
i
d
t
h

[
c
h
u
n
k
s
/
s
]

Time [s]

Average node bandwidth use (by class)

Avail OUT BW (Normal)
Used OUT BW (Normal)
Used IN BW (Normal)

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

B
a
n
d
w
i
d
t
h

[
c
h
u
n
k
s
/
s
]

Time [s]

Average node bandwidth use (by class)

Avail OUT BW (Poor)
Used OUT BW (Poor)
Used IN BW (Poor)

(b) Bandwidth utilization by class

Figure 6.1: Transitory of a PULSE System (1000 peers, HH-LB,R = 16 chunks/s,TW = 64)

6.3. PULSE PARAMETERS: HOW TO SET THEM? 129

Chunk Lag vs. Node Lag during Convergence (chunks 10 to 460)

 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

C
hu

nk
 la

g

P
N
R

VR
 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

P
N
R

VR
 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

P
N
R

VR

 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

C
hu

nk
 la

g

P
N
R

VR
 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

P
N
R

VR
 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

P
N
R

VR

 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

C
hu

nk
 la

g

Node lag

P
N
R

VR
 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

Node lag

P
N
R

VR
 0

 30

 60

 90

 120

 150

 0 30 60 90 120 150

Node lag

P
N
R

VR

Figure 6.2: Snapshots of Chunk Reception Lag vs. Node Lag During Convergence

50 chunks during the first thirty seconds of convergence, ordered from top left to bottom right.
The evolution of the “system cloud” shows the gradual and natural emergence of a group of
resourceful nodes from the VR and R classes: they first coalesce in the midst of the other nodes
(Figures 2 to 5); then, nodes that did not manage to connect ontheir first attempt rejoin the system
after a buffer reset (Figure 6); because of the local excess of node capacity, the more resourceful
nodes in the system slowly overrun the others, “gaining ground” and gradually reducing their
node lag (Figure 7). We notice that, during the whole process, the most resourceful nodes are
normally located below the diagonal liney = x, that is they receive chunks with a lower lag
than their current node lag, while the poor nodes stand out asbeing spread along and above the
diagonal. The two last Figures show the gradual stabilization of the system: once the resourceful
nodes have aggregated at the front of the cloud, the rest of the system begins to collapse toward
them, and the cloud reduces slowly but steadily its average global lag until it reaches a stable
equilibrium around an average of 24 chunks as in the simulation above (Figure 6.1).

130 CHAPTER 6. SIMULATION RESULTS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

Figure 6.3: Typical Pattern of Instability due to a Small Trading Window (TW = 32)

6.3.2 Critical Parameters

We definecritical parameters those system parameters that appear to have a strong non-linear
effect on the initial outcomes of the simulation. These parameters affect both the initial chance of
the system converging to a stable state, and can also determine long-term instability phenomena.
The critical parameters are the Trading Window Size (TW) and its Window Sliding Tolerance
(S). Our earliest experiences with the simulator have shown that these parameters are the most
important factors during the initial transitory phase: if the Trading Windows are too short, nodes
do not manage to obtain enough chunks in a timely manner and fail to develop a significant trad-
ing window overlap with their peers and the whole system may become stuck in the initialization
phase. The second critical parameter is the loss tolerance of the sliding window: in general, the
lower this value, the longer it takes for the nodes to begin a normal exchange activity, as trading
windows tend to become stuck just after the initialization phase is completed.

The failure of the system to settle in a stable state gives as its outcome a characteristic node lag
evolution: all the nodes in the system appear to reiterate their initialization attempts in a syn-
chronous way, producing a periodical sawtooth plot (Figure6.3). Interestingly, the frequency of
the peaks appears to be inersely proportional to the width ofthe trading windows: under similar
bandwidth scenarios, the larger the windows, the less frequent the massive re-initializations. In-
stability stops altogether once a threshold window size (which mainly depends on the bandwidth
distribution scenario) is reached. For instance, for populations of up to 1000 nodes, instability
appears to cease when the trading window is larger than 48 chunks. We experimented with val-
ues ofTW ranging from 16 to 256 chunks: we noticed that, once a system is stabilized, further

6.3. PULSE PARAMETERS: HOW TO SET THEM? 131

increasing the window size leads to higher average node lagsand to a slower execution of the
chunk selection algorithm (in addition to the larger size ofcontrol messages, a more practical
concern).

The external variables that come into play in a simulation have an important role in determining
the sensitivity of the initial transient phase to the two critical parameters above.

• The capacity of the sourceis especially critical with respect to the outcome of system
initialization. We observed that, when the source bandwidth is less than twice the stream
bitrate (for initial populations larger than 100 nodes), the transient phase either lasts longer
or does not settle, resulting in an unstable system. Increasing the source bandwidth has
a dramatic effect on system convergence: starting from three times the stream bitrate, the
likelihood of experiencing initial convergence problems becomes much lower even when
global capacity is scarce (RI ∼ 1).

• A high level of heterogeneity coupled to a low resource indexfor a given scenario also
results in increased chances that the initial transient phase will last for a longer time, as
the initial connections among nodes are established at random: high asymmetry and low
global capacity imply that, if several resource-rich nodesget a bad initial placement, the
resources of the rest of the peers are not sufficient to sustain the system initialization.

We also noticed that the initial population size impacts thesimulated system convergence. Even
given a sufficient source capacity, we observed that the initial convergence tended to be slower
or less likely for small initial populations (under 50). We attribute these convergence problems
to the increased weight on the initial system behavior of random choices and concurrent actions
by the simulated nodes.

6.3.3 Long-term System Stability

Arguably, a system that does not reach convergence at initialization could still manage to operate
on the brink of instability: at the beginning, the upload capacity required by the system is higher
than at steady state, as nodes have to fill their empty TradingWindows, and the upload bandwidth
of each node is further limited by the lack of chunk diversityamong the node buffers (content
bottleneck).

We have however encountered several scenarios in which a system that initially converges does
slowly diverge over time: this usually happens when the available upload capacity is scarce and
uniformly distributed across the population. The lack of upload capacity in the system usually
results in a subset of the nodes that start to increase their lag and eventually reach thebuffer reset
threshold. If this subset is small, the effect on the global system of few nodes resetting their
buffer is negligible, and upon one or more re-connections these nodes may be able to reach a
stable position. However, if this subset contains a large majority of the nodes, then the entire

132 CHAPTER 6. SIMULATION RESULTS

system may become unstable, with a periodical behavior thatsees almost every node re-initialize
its buffer at the same time (similar to Figure 6.3).

The critical parameter, in the case of long-term stability,is the total bandwidth capacity of the
system. When resources are sufficiently available (RI > 1), the other parameters that come into
play and can determine the speed of system convergence appear to be:

• Asymmetry of bandwidth scenario: counter-intuitively, the higher is the bandwidth asym-
metry in a given scenario, the faster stability is reached. We will analyze this phenomenon
in detail in the following pages.

• Trading Window Size (TW): while somewhat slowing the node initialization process, a
larger TW gives the system an improved “inertia”, since the content diversity between
nodes becomes large and the probability of finding nodes withan overlapping window
increases.

On the other hand, when resources are constrained (RI ∼ 1), the Sliding ToleranceS emerges
again as an additional critical factor: even if a system is 100% efficient, that is all the available
upload capacity is exploited, the delays introduced by the random propagation of the chunks will
hinder the progression of the sliding windows: if chunk losses are not allowed by the sliding
window, and without an excess of bandwidth that could be usedto recover the ’lost’ chunks, the
node lag is bound to increase and eventually reach the bufferreset threshold.

The use of an appropriate amount of FEC can improve the stability of the system, at the price of
an effective reduction in the media bitrate: defining an appropriate amount of FEC that balances
stability and efficiency is an interesting challenge. If we consider the worst-case scenario, an
uniform capacity distribution withRI = 1 (UNIF-LB), we can observe the relationship between
S
W

and the bandwidth efficiencyξ: in Figure 6.4 we plot the measured efficiency for simulated
systems ranging from 100 to 1600 nodes using values ofS

W
from 3.125% to 50%. For compar-

ison, measurements have also been performed for an hypothetical case ofS
W

= 100%, i.e. with
no sliding constraints (’Free’).

From Figure 6.4a, we notice that, the smaller the amount of FEC, the faster efficiency decreases
with increasing system size. Efficiency is affected because, due to the fact that chunks have
to traverse more nodes, buffer windows become less and less synchronized as the average lag
increases. In turn, a lower efficiency further accelerates the growth of average node lag. Remem-
bering the basic constraint of lossless media reception, which in the caseRI = 1 requires an effi-
ciencyξ ≥ (1− S

W
), we can deduce from the observed efficiency whether a system of a given size

may achieve or not a stable reception. For instance, a systemwith 3.125% FEC for a population
of 200 nodes has a measured efficiency of 0.962, which is lowerthan the minimum efficiency
required for stability4; a system with 6.25% FEC hasξ = 0.951 for a network of 400 nodes,
which is more than the minimum, but becomes unstable at 800 nodes (ξ = 0.9250 < 0.9375).

4As throughput depends in turn on stability, once a system falls beyond the required efficiency threshold, the
measurements become only indicative, as the system will no longer be in a stable state.

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 133

 0

 0.2

 0.4

 0.6

 0.8

 1

N=100 N=200 N=400 N=800 N=1600

B
an

dw
id

th
 E

ffi
ci

en
cy

Bandwidth Efficiency for Various FEC Rates and Population Sizes
(UNIF-LB, SRC upload=3*SBR, sliding threshold=FEC)

Free
50%
25%

12.5%
6.25%

3.125%

(a) TW=64

 0

 0.2

 0.4

 0.6

 0.8

 1

N=100 N=200 N=400 N=800 N=1600

B
an

dw
id

th
 E

ffi
ci

en
cy

Bandwidth Efficiency for Various FEC Rates and Population Sizes
(UNIF-LB, SRC upload=3*SBR, sliding threshold=FEC)

Free
50%
25%

12.5%
6.25%

3.125%

(b) TW=128

Figure 6.4: Impact of Sliding Tolerance on Efficiency withRI = 1

The use of larger Trading Windows improves stability and efficiency regardless from the amount
of FEC: in Figure 6.4b we can remark that, with aTW length of 128 chunks (twice the size), the
efficiency for all S

W
ratios is improved and stability starts to decay much later.

We can also observe that, when the window isfreeand slides without constraints, the efficiency
for small population sizes is in many cases lower than when a sliding threshold is set, as an
unspecified amount of chunks may have been lost as the window advances. However, we notice
that the average efficiency offreewindows is more or less stable under increasing system sizes
(ξ ∼ 0.92 for TW = 64, ξ ∼ 0.95 for TW = 128), while in the case of constrained windows
efficiency tends to drop as instability arises. This result confirms that PULSE is ill-suited for use
in cooperative scenarios withRI ∼ 1 and where node upload capacity is uniformly distributed:
in these cases, any data-driven architecture that uses(i) a large Trading Window and(ii) a small
amount of FEC5 will obtain better scalability without introducing any stability concern.

6.4 Effects of the Peer Selection Algorithms

In this section, the macroscopic effects of the various parameters involved in peer selection are
evaluated. We first experiment with the main system parameters, defining a protocol reference
for comparing all subsequent results. Then, we investigatethe role of the two peer selection
mechanisms by inspecting the behavior of the metrics definedin Chapter 5 under a number of
protocol variants.

5Larger amounts of FEC in this context can only increase the likelyhood of lossless media reception.

134 CHAPTER 6. SIMULATION RESULTS

Peer 1Peer 2

Peer 3Peer 4 Peer 5

Peer 6

Peer 7

Peer 8

Peer 9

Peer 10 Peer 11 Peer 12

Peer 13

Peer 14

Peer 15

Peer 16

Peer 17Peer 18

Peer 19

Peer 20

Peer 21

Peer 22

Peer 23

Peer 24

Peer 25

Peer 26

Peer 27 Peer 28

Peer 29

Peer 30

Peer 31

Peer 32

Peer 33

Peer 34

Peer 35

Peer 36 Peer 37

Peer 38

Peer 39

SOURCE

Pajek

Figure 6.5: Snapshot of Data Exchanges during an EPOCH (HH-LB)
Figure 6.5 offers a sample snapshot of PULSE, taken during a small-scale simulation (40 nodes), visualizing all the

data exchanges that have happened during an EPOCH period at steady state. In this picture, nodes are ordered

from top to bottom by increasing node lag (the source is at thetop of the graph). We can notice the prevalence (in

number and volume) of horizontal connections, establishedbetween nodes with approximately the same lag.

6.4.1 Varying the Number of Connections

The parameters we define as standard to simulate6 PULSE include aTW of 64 chunks (i.e.
four seconds worth of data) with Sliding Window tolerance ofS = 25%, and an upper limit
of 8 FORWARD connections and 4MISSING connections. In Figure 6.6, which like Figure 6.1a
represents the time evolution of the average class lag, we see that a system containing 1000
nodes under the HH-LB scenario manages to quickly stabilizearound a small average lag value

6In all our simulations, the chunk rate is set to 16 chunks per second, that is 4 chunks per simulation step.

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 135

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

Figure 6.6: HH-LB Scenario: PULSE with Standard Parameters(4 M, 8 F, TW = 64)

NO FWD 4 FWD 8 FWD

Scenario VR R N P VR R N P VR R N P
HH-HB 0 0 23 181 0 0 0 0 0 0 0 0
HH-LB 13 53 59 242 0 0 4 183 0 0 0 0

Table 6.2: Buffer Reset Statistics: Unstable Peers by Classat Steady State

of about 30 chunks (i.e. about 2 seconds) with a low, constantvariance.

In Figures 6.7a and 6.7b we see how the removal of (respectively) four and eightFORWARD

connections impacts the performance of the previous scenario. We notice how the presence of
only a fewFORWARD connections has a strong stabilizing effect on the whole system, greatly
reducing the variance of lag for the three richest classes. In Figure 6.7a the poorest class is the
only one that begins to suffer from starvation, with periodic re-connections of a small part of
its nodes. It is interesting to notice that the repeating re-connections of these poor nodes do not
affect significantly the performance of the remaining classes.

When we altogether remove all theFORWARD connections,we can notice how convergence still
takes place, but the overall system stability is much weaker: all the classes are visibly disturbed
by the fact that buffers are frequently reset (e.g. massive reconnection att = 120s, leading to a
massive disconnection att = 200s) and many nodes either have an unstable lag values or become
stuck in the initialization phase (Table 6.2).

There are several common factors that emerge from the pictures above:

136 CHAPTER 6. SIMULATION RESULTS

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(a) 4 FORWARD

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(b) No FORWARD

Figure 6.7: HH-LB Scenario: Reducing the Number ofFORWARD Connections

• The different bandwidth classes appear to settle at different values of average lag, with
richer classes being nearer to the source than poorer ones. This is in agreement with our
intuition that the coordinated effect of incentive-based (tit-for-tat) and performance-based
(lag-based feedback) peer selection would allow the generation of clusters of peers with
similar resource availability.

• The initialization of the simulated system is relatively quick, even despite the lack of a
significant amount of excess bandwidth and the limits of the knowledge model used by the
simulator. In the three plots, which are typical realizations of the system behavior in this
scenario, system convergence is achieved between 50 and 100simulated seconds, that is
about 25-50 rounds of peer selection.

• Richer classes achieve their convergence before poorer ones, while the poorest class suffers
the most from global bandwidth scarcity.

6.4.2 Lag Performance across Bandwidth Scenarios

In Figure 6.8 we present four realizations of simulated PULSE system under the bandwidth
scenarios presented above. In these plots we can appreciateseveral qualitative properties of the
PULSE system, which confirm and integrate our previous remarks:

• The RI of a scenario influences convergence speed: comparing the HH-LB and HH-HB
scenarios, the time required for nodes to reach a steady position in the system is much
lower when excess bandwidth is abundant (< 20s for RIHH−HB = 1.485) than when it is
scarce (∼ 60s for RIHH−HB = 1.045). An analogous observation can be made to a lesser
extent for the LH-LB and LH-HB scenarios.

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 137

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(a) HH-LB Scenario

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

RICH peers
NORMAL peers

(b) LH-LB Scenario

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(c) HH-HB Scenario

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

RICH peers
NORMAL peers

(d) LH-HB Scenario

Figure 6.8: Examples of System Evolution in Various Bandwidth Scenarios

• The RI of a scenario influences the average system lag: the availability of excess resources
reduces the average node lag. Average lag ranges from about 24 chunks for the HH-LB
and LH-LB scenarios to about 18 for HH-HB and LH-HB scenarios.

• The presence of bandwidth heterogeneity reduces the average system lag: comparing the
HH-LB and LH-LB scenarios, we see that they settle on a similar average lag, despite the
fact that theRI for the former is much lower than the latter (1.045 vs. 1.2).

• Upload capacity influences the order of average class lag values: it is possible to see that
the average class lag increases as the upload availability decreases in the HH-LB scenario.

6.4.3 Understanding Node Interactions

To shed more light over the global behavior of a running PULSEsystem, we are going to apply
the behavioral metrics presented in Section 5.3. We hereby recall the definition of these metrics,

138 CHAPTER 6. SIMULATION RESULTS

namely Class AffinityΦ(α, β) and Class FriendlinessΨ(α, β):

Φ(α, β)(t) =

∑

n∈α ‖n’s MISSING links toward nodes of classβ‖
∑

n∈α ‖n’s total MISSING links‖
(6.1)

Ψ(α, β)(t) =

∑

n∈α ‖n’s active FORWARD links toward nodes of classβ‖
∑

n∈α ‖n’s total active FORWARD links‖
(6.2)

Affinity and Friendliness With and Without Altruism We compute Affinity and Friendli-
ness values for the previous simulation scenarios and provide a sample of the results in Fig. 6.9.
We first observe the evolution over time of Class Affinity in the HH-LB scenario with a) noFOR-
WARD connections and b) 8FORWARD connections. The plots suggest that there is a correlation
between the system’s convergence status and the value of theAffinity metric: when instability
is present, as in Fig. 6.9a, the Affinity values tend to widelyfluctuate, especially when node re-
connections take place. Looking more closely, we can clearly see that especially the self-affinity
of the resourceful classes becomes higher during instability, suggesting that tit-for-tat plays a
critical role in the initialization phase and whenever global shortage appears, but somewhat loses
its relevance when the system operates without constrainedresources.

Comparing Figure 6.9a and 6.9b, we see that only the Affinity values for the two richest classes
show meaningful quantitative differences during the convergence phase. We also remark that
the poorest classes show similar Affinity scores across the two scenarios. We can notice that
self-Affinity for the richest class is initially much higherwhen FORWARD connections are al-
lowed. This is a side effect of the interaction between altruism and tit-for-tat selection, which
improves the relationships among peers with extra resources. In fact, data contributed over the
FORWARD connections is also taken into account for the tit-for-tat selection at the receiver. This
increases the likelihood that the receiver will want to react and establish aMISSING connection
on the following EPOCH. As richer peers have more spare resources, they gain moreMISSING

relationships over time. Self-Friendliness (not shown) isalso very high, as targets preferred for
FORWARD links by the richest classes are mainly peers from the more resourceful classes.

Affinity and Friendliness in Different Scenarios We performed a full comparison of the av-
erage steady state values of Affinity and Friendliness we obtained from simulations of HH-LB
and HH-HB scenarios where nodes are allowed to establish up to eightFORWARD connections
(Table 6.3). Again, we did observe meaningful differences especially in the Affinity values be-
tween Very Rich (VR) and Poor (P) peers: in HH-LB the self-Affinity of the VR class is much
higher in the low bandwidth scenario, while the affinity between P and VR is much lower. Re-
lationships between the other classes do not seem to be affected by the presence ofFORWARD

connections:MISSING connections are established by richer classes toward poorer ones more or
less with the same probability in both scenarios. Moreover,the high Affinity value between P
and VR peers in the high-bandwidth scenario is due to the factthat poor peers receive from the

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from VERY RICH

Self-Affinity
to RICH

to NORMAL
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from RICH

to VERY RICH
Self-Affinity

to NORMAL
to POOR

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from NORMAL

to VERY RICH
to RICH

Self-Affinity
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from POOR

to VERY RICH
to RICH

to NORMAL
Self-Affinity

(a) Class Affinity, no FORWARD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from VERY RICH

Self-Affinity
to RICH

to NORMAL
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from RICH

to VERY RICH
Self-Affinity

to NORMAL
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from NORMAL

to VERY RICH
to RICH

Self-Affinity
to POOR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

A
ffi

ni
ty

 S
co

re
 [0

,1
]

Time [s]

Average Class Affinity from POOR

to VERY RICH
to RICH

to NORMAL
Self-Affinity

(b) Class Affinity, 8 FORWARD

Figure 6.9: HH-LB Scenario: Class Affinity vs. Number ofFORWARD Connections

140 CHAPTER 6. SIMULATION RESULTS

Normalized Affinity

HH-LB HH-HB
VR R N P VR R N P

VR 6.70 1.12 0.63 0.77 3.77 1.33 1.39 0.55
R 2.56 1.93 1.06 0.53 2.74 2.48 1.57 0.17
N 1.95 1.77 1.19 0.56 3.71 2.00 1.40 0.32
P 2.67 0.93 0.81 1.01 7.77 0.63 0.35 0.82

Normalized Friendliness

HH-LB HH-HB
VR R N P VR R N P

VR 11.18 2.15 0.47 0.18 5.55 3.20 0.51 0.03
R 1.43 2.71 1.10 0.29 2.13 3.68 0.68 0.02
N 0.56 0.62 1.43 0.60 1.69 2.75 1.63 0.12
P 0.58 0.60 0.83 1.24 1.39 0.80 1.01 1.03

Table 6.3: Comparison of Normalized Affinity and Friendliness
Comparison between HH-LB and HH-HB Scenarios with 8FORWARD connections. The values highlighted in bold
are significantly higher for HH-HB. The values highlighted in italic are significantly higher for HH-LB.

richest class more data than before in return for each successful exchange, and thus tend to re-
ciprocate to them with higher probability. We conclude on these observations that theFORWARD

exchanges do no interfere on the outcomes of the tit-for-tatselection, but help the richest nodes
to fully exploit their bandwidth potential.

Friendliness results show another interesting trend: in both scenarios, the self-Friendliness value
for each class is the highest on each row (except in a single case - N peers, HH-HB Scenario),
meaning that nodes with a similar level of contribution tendto help each other out. The differ-
ences between the two scenarios can be explained by the different values of average class lag on
which the nodes settle: while in the LB scenario the nodes arerather clustered around different
lag values, in the HB scenario nodes from different classes are all mixed up in a smaller lag
interval.

Data Weight of Relationship Types We investigated Class Affinity and Friendliness, which
describe the likelihood of the establishment of aMISSING or FORWARD connection between
nodes that belong to two bandwidth classes. Since in a data-driven system the existence of a con-
nection does not guarantee that it will be actually used to exchange data, nor how many chunks
will pass during an EPOCH over that connection, we are now going to observe how much data is
traded between pairs of bandwidth classes, and what are the types of connections that convey the
largest amount of data. In Figure 6.10a we draw the cumulative amount of data chunks exchanged
between the four bandwidth classes during a five-minute HH-LB simulation, normalized by the

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 141

POOR

NORMAL

RICH

VERY RICH

POOR
NORMAL

RICH
VERY RICH

0

500

1000

1500

2000

2500

3000

3500

Sender Class

Cumulative Data Distribution Results by BW Class (all exchanges)

Receiver Class

A
vg

. #
 o

f c
hu

nk
s

R
ec

ei
ve

d
pe

r
P

ee
r

(a) Total Exchanges

POOR

NORMAL

RICH

VERY RICH

POOR

NORMAL

RICH

VERY RICH

0

100

200

300

400

500

600

Sender Class

Cumulative Data Distribution Results by BW Class (MISSING)

Receiver Class

A
vg

. #
 o

f c
hu

nk
s

R
ec

ei
ve

d
pe

r
P

ee
r

(b) Only MISSING

POOR

NORMAL

RICH

VERY RICH

POOR
NORMAL

RICH
VERY RICH

0

500

1000

1500

2000

2500

Sender Class

Cumulative Data Distribution Results by BW Class (FORWARD)

Receiver Class

A
vg

. #
 o

f c
hu

nk
s

R
ec

ei
ve

d
pe

r
P

ee
r

(c) Only FORWARD

POOR

NORMAL

RICH

VERY RICH

POOR
NORMAL

RICH
VERY RICH

0

100

200

300

400

500

600

Sender Class

Cumulative Data Distribution Results by BW Class (OTHER)

Receiver Class

A
vg

. #
 o

f c
hu

nk
s

R
ec

ei
ve

d
pe

r
P

ee
r

(d) Only NEW

Figure 6.10: Weight of Data Exchanges over Different Connections (HH-LB Scenario, 8F, 4M)

size of the receiving class7. We can remark that the VR and R classes provide to themselvesthe
majority of the data, while receiving very little from the other classes. Conversely, the N class
relies heavily on the contribution of the R class, while the Pclass also receives an important
amount of data from both R and N classes.

When we observe the amount of data exchanged over theMISSING connections alone (Figure

7Nodes can receive at most the total number of chunks that havebeen distributed by the source (SBR*t, in this
case 16*300=4800). Hence, in the “total exchanges” histograms, the sum along the x (receiver class) axis is equal to
the average number of chunks received by a class during the simulation, which is roughly the same for every class.

142 CHAPTER 6. SIMULATION RESULTS

POOR

NORMAL

RICH

VERY RICH

POOR
NORMAL

RICH
VERY RICH

0

1000

2000

3000

Sender Class

Cumulative Data Distribution Results by BW Class (all exchanges)

Receiver Class

A
vg

. #
 o

f c
hu

nk
s

R
ec

ei
ve

d
pe

r
P

ee
r

(a) Total Exchanges

POOR

NORMAL

RICH

VERY RICH

POOR
NORMAL

RICH
VERY RICH

0

200

400

600

800

Sender Class

Cumulative Data Distribution Results by BW Class (MISSING)

Receiver Class

A
vg

. #
 o

f c
hu

nk
s

R
ec

ei
ve

d
pe

r
P

ee
r

(b) Only MISSING

POOR

NORMAL

RICH

VERY RICH

POOR
NORMAL

RICH
VERY RICH

0

500

1000

1500

2000

Sender Class

Cumulative Data Distribution Results by BW Class (FORWARD)

Receiver Class

A
vg

. #
 o

f c
hu

nk
s

R
ec

ei
ve

d
pe

r
P

ee
r

(c) Only FORWARD

POOR

NORMAL

RICH

VERY RICH

POOR
NORMAL

RICH
VERY RICH

0

500

1000

1500

Sender Class

Cumulative Data Distribution Results by BW Class (OTHER)

Receiver Class

A
vg

. #
 o

f c
hu

nk
s

R
ec

ei
ve

d
pe

r
P

ee
r

(d) Only NEW

Figure 6.11: Weight of Data Exchanges over Different Connections (HH-HB Scenario)

6.10b), we first notice that they convey only a small part of the stream data to the two richest
classes (35% for the VR class, 18% for R). Then, we can observehow reciprocation is not ex-
actly proportional to the amount of node capacity: for instance, the contribution by the R class
is not reciprocated evenly neither by the N peers nor by the VR. Looking at theFORWARD con-
nections (Figure 6.10c), we see that their role in data exchanges is quantitatively preponderant.
Surprisingly, we observe a high degree of symmetry in the amount of data exchanged usingFOR-
WARD connections, with peaks in the self-contribution for most classes. These results confirm
the fact that altruism, when applied on a system which has been loosely organized by the repeated
action of tit-for-tat peer selection, is useful as it helps consolidate the relationships between the
more resourceful nodes. Finally, theNEW connections (Figure 6.10d) contribute a small amount
of data: it is interesting to observe that a significant 10% ofthe stream is exchanged inside the VR
class, as this is probably due to retributions to optimisticselections in theMISSING connections.

6.4. EFFECTS OF THE PEER SELECTION ALGORITHMS 143

In Figure 6.11, we conduct an analogous analysis on a HH-HB simulation trace. The most strik-
ing observation that emerges from these results is the loss of relevance in the system economy of
the VR class, despite its very high upload capacity (10*SBR): this fact suggests that the upload
capacity of the VR nodes is not fully utilized. The R class, whose upload is now 3*SBR, becomes
the most important provider of data for all the classes. Because of the widespread presence of
excess resources, theMISSING mechanism loses much of its importance: in Figure 6.11b, we
see that VR nodes do not send many chunks overMISSING connections, while R nodes increase
their contribution compared to HH-LB. TheFORWARD exchanges (Figure 6.11c) maintain their
quantitative importance and the degree of symmetry observed above, except for the role of VR
nodes, which receive from R peers much more than they give. Finally, we observe that the weight
of NEW exchanges (Figure 6.11d) is higher than in the previous case: the extremely large amount
of chunks sent by VR nodes (which have no longer a lag substantially lower than R, N, and P)
to N and P nodes can justify for the higher amount of data sent by N and P nodes to VR nodes
usingMISSING connections (in Figure 6.11b).

Soft Fairness between ClassesSoft FairnessF(α, β) between classesα andβ (with upload
capacityUα < Uβ) was defined in Section 5.3 as

F(α, β)(t) =

∑

n∈α

∑

m∈β I(TB(n)(t) ≤ TB(m)(t))

‖α‖ ‖β‖
(6.3)

while, whenUα < Uβ, its definition becomes:

F̄(α, β)(t) =

∑

n∈α

∑

m∈β I(TB(n)(t) ≥ TB(m)(t))

‖α‖ ‖β‖
(6.4)

In Table 6.4 we compare the Soft Fairness results from the HH-LB scenario, sampled at steady
state every 3 seconds and averaged over the last 90 seconds, with those from an HH-HB sim-
ulation, with and withoutFORWARD connections. The differences in the Soft Fairness values
between the two scenarios withFORWARD connections allowed are quite impressive: we see
that, under global bandwidth excess, the Soft Fairness of the two poorer classes is very low with
respect to all other classes. This means that, more often than not, NORMAL and POOR nodes
obtain a slightly lower lag than their richer counterparts.

This observation quantitatively confirms that, when resources are abundant, the tit-for-tat in-
centive mechanism becomes less relevant and is preempted bythe altruism present in the peer
selection algorithms. To further investigate the role of altruism under excess of resources, we
turn to the results obtained whenFORWARD connections are disabled. We notice that there is
a much smaller deviation in Soft Fairness values between thetwo scenarios. We believe that
this is due to the lack ofFORWARD connections, the primary altruistic mechanism. Also, some
degree of unfairness is present in both cases, for all classes except VERY RICH, probably as a
consequence of the altruistic discovery mechanism used byMISSING peer selection. Finally, we
can appreciate how the presence ofFORWARD connections enhances the clustering effect of the

144 CHAPTER 6. SIMULATION RESULTS

Soft Fairness between Different Bandwidth Classes

HH-LB, 8 FWD HH-HB, 8 FWD
VR R N P VR R N P

VR = 0.81 0.81 0.80 = 0.75 0.66 0.36
R 0.63 = 0.65 0.71 0.55 = 0.51 0.23
N 0.69 0.53 = 0.65 0.46 0.30 = 0.30
P 0.74 0.64 0.58 = 0.21 0.12 0.16 =

HH-LB, NO FWD HH-HB, NO FWD
VR R N P VR R N P

VR = 0.82 0.76 0.64 = 0.86 0.67 0.53
R 0.76 = 0.42 0.41 0.81 = 0.25 0.35
N 0.68 0.34 = 0.48 0.56 0.20 = 0.45
P 0.55 0.32 0.38 = 0.46 0.34 0.38 =

Table 6.4: Soft Fairness: Comparing HH-LB and HH-HB Scenarios with and withoutFORWARD

tit-for-tat incentive, especially when the total available bandwidth is scarce (highlighted in bold
in Table 6.4).

Impact of RepeatedMISSING Choices Finally, we examine the outcomes of the TFT-based
peer selection algorithm. Our goal here is to obtain more detailed insights about the role of the
two types ofMISSING connections as the internal conditions of the system evolveover time.
Figure 6.12 shows the cumulative duration of theMISSING interactions8 between nodes in HH-
LB scenario (P to VR from 1 to 100) over a time span of 300 seconds (150 EPOCHs) and 30
seconds (15 EPOCHs), differentiating theMISSING relationships betweenunilateral(established
toward a partner which is not currently reciprocating) andbilateral (both nodes have a link
open toward the other) connections. We can see in Figure 6.12a that nodes from all classes
maintain few long-term relationships (peers selected morethan forty times over 150 EPOCHs
are rare), with a strong prevalence of one- or two-time node selections. If we concentrate our
attention to the convergence phase (Figure 6.12b), we can notice a slight advantage for the richer
classes in the number of medium-length interactions. Deeper insights can be obtained from
the analysis of bilateral relationships: in Figure 6.12c wesee that bilateral relationships are
established in prevalence by the richest classes (VR and R).Moreover, when comparing the
amount and duration of long bilateral relationships in 300 and 30 seconds (Figure 6.12d) we
can see that they are mostly unchanged for the VR and R classes, while almost all the bilateral
relationships among P nodes occur after the system has reached steady state.

8To reduce the vertical scale of these plots, all the relationships that last less than ten EPOCHs have been purged
from Figure 6.12a, and those less than two EPOCHs from Figures 6.12b, c and d.

6.5. PULSE: A QUANTITATIVE ANALYSIS 145

(a) Unilateral - First 300 seconds (b) Unilateral - First 30 seconds

(c) Bilateral - First 300 seconds (d) Bilateral - First 30 seconds

Figure 6.12: Total Duration of Unilateral/BilateralMISSING Interactions (100 nodes, HH-LB)
In this figure Peer IDs are assigned to bandwidth classes in the following way: POOR from 1 to 54, NORMAL from

55 to 76, RICH from 77 to 96, VERY RICH from 97 to 100.

6.5 PULSE: a Quantitative Analysis

This section presents a comprehensive set of results about the performance of the standard
PULSE algorithms and parameters. We first describe the data distribution performance from
the point of view of the average properties of the data paths.Then, we observe the average
placement of the nodes in the steady-state chunk distribution trees. Finally, we investigate the
asymptotic scalability of PULSE up to medium-scale node populations to confirm our conjec-
ture that the random distribution paths actually scale as trees, with a logarithmic dependence on
system size. Finally, we observe the average composition ofthe distribution tree layers in term
of node bandwidth class.

146 CHAPTER 6. SIMULATION RESULTS

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

M
ax

 D
ep

th
 [h

op
s]

Chunk ID

Tree Depth Distribution (chunks 5 to 1200)

HH-HB
LH-HB

UniHB
HH-LB

LH-LB
UniLB

(a) Maximum Depth of Chunk Distribution Trees

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12

A
vg

. W
id

th
 [n

od
es

]

Tree Layer

Tree Width Distribution (chunks 2000 to 4000)

HH-HB
LH-HB

UniHB
HH-LB

LH-LB
UniLB

(b) Steady-state Analysis of Average Tree Layer Width

Figure 6.13: Comparison of Max Depths and Average Widths of Distribution Trees (1000 nodes)

6.5.1 Analysis of Data Distribution Performance

Even if PULSE is a mesh-based system, the path that each data chunk follows on the overlay
mesh is a tree. Trees will typically differ from chunk to chunk, depending on the current orga-
nization of the overlay: as the overlay connections are continuously renegotiated by each node
in an independent way, one could expect that the properties of the different trees will vary a lot
across different chunks.

Actually, this is not the case: Figure 6.13a shows the maximum tree depth for the first thousand
chunks. It can be easily noted that subsequent trees have similar depth, and - more importantly
- that tree depths tend to decrease over time, settling around an asymptotic minimum value. We
can explain this observation with the aggregation process among resourceful nodes, as described
in the previous pages. Thanks to the effects of the incentive-based peer selection, nodes with
excess bandwidth manage to get data earlier than poorer nodes. The presence of altruism speeds
up the data distribution process, as it increases the amountof data that rich nodes will exchange.

We observe that, according to our expectations, the trees from HB scenarios do converge faster,
are usually shorter, and have top layers that are wider on average than those from the HH and LB
scenarios. The scenarios that haven’t yet reached convergence toward the end of the 75 seconds
of the simulation above are HH-LB and Unif-LB: this fact confirms the importance of bandwidth
excess during system initialization.

We recall from Chapter 3 that the stream source tends to give chunks to nodes with lower lag
values. Hence, the rich nodes will be either directly servedby the source, or receive recent
chunks after few hops: in both cases, the likelihood that resourceful nodes will be placed close
to the root in subsequent chunk distribution trees is high. We expect that this node placement
will originate trees which are initially larger, and thus inaverage shorter than balanced trees with
fixed degree. This is confirmed by Figure 6.13b: we can see thatthe HH-LB scenario generates
trees with much better properties than the Uniform-LB scenario, despite the smallRI difference.

6.5. PULSE: A QUANTITATIVE ANALYSIS 147

Max. Tree Depth /RI HH LH UNIF

HB 6.30 (2.04) / 1.488 6.15 (1.59) / 1.603 6.30 (0.47) / 1.5
LB 10.10 (5.07) / 1.048 7.75 (2.78) / 1.203 11,10 (4,44) / 1.0

Avg. Tree Depth /RI HH LH UNIF

HB 4.62 (0.31) / 1.488 4.59 (0.27)/ 1.603 4.81 (0.25) / 1.5
LB 5.67 (0.56) / 1.048 5.53 (0.23) / 1.203 7.57 (0.64) / 1.0

Table 6.5: Average (Std. Dev.) of Max. and Average Tree Depthat Steady State (1000 nodes)

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Tree Layer

%
 o

f N
od

es

CDF of Node Placement by Class

VERY RICH
RICH
NORMAL
POOR

(a) HH-LB Scenario

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Tree Layer

%
 o

f N
od

es

CDF of Node Placement by Class

VERY RICH
RICH
NORMAL
POOR

(b) HH-HB Scenario

Figure 6.14: CDF of Average Node Class Distribution at Steady State (1000 nodes)

Moreover, the average width of the first five tree layers in HH-LB and LH-LB scenarios is also
very similar, despite the largeRI difference: on the other hand, the tail of the HH-LB tree is on
average few layers deeper.

Tree Depth at Steady State We can also notice how, once convergence is reached, the maxi-
mum and average tree depth remains largely stable: in Table 6.5 we show the average and stan-
dard deviation of both maximum and average tree depth (sampled every three seconds during one
minute). As we expected, scenarios with higherRI have shorter maximum path lengths, while
bandwidth heterogeneity only seems to slightly increase the variance of maximum tree depth.
On the other hand, the presence of heterogeneity has a remarkable effect in reducing the average
depth of distribution trees: this is particularly evident when comparing HH-LB to uniform-LB
scenarios, as theirRI values are close, yet the average path length is much lower inpresence of
a heterogeneous bandwidth distribution.

Node Class Distribution across Layers Figure 6.14 shows the cumulative distribution func-
tion (CDF) of the average node placement in chunk distribution trees for HH-LB and HH-HB

148 CHAPTER 6. SIMULATION RESULTS

HH-LB L1 L2 L3 L4 L5 L6 L7

VR 0.027 0.202 0.210 0.150 0.066 0.019 0.007
R 0.157 0.343 0.397 0.406 0.344 0.181 0.057
N 0.189 0.212 0.196 0.200 0.237 0.265 0.176
P 0.626 0.242 0.195 0.242 0.351 0.533 0.760

HH-HB L1 L2 L3 L4 L5 L6 L7

VR 0.037 0.213 0.108 0.073 0.018 0.006 0.003
R 0.144 0.396 0.444 0.339 0.119 0.034 0.015
N 0.323 0.190 0.212 0.260 0.220 0.054 0.017
P 0.494 0.198 0.234 0.326 0.642 0.904 0.964

LH-LB L1 L2 L3 L4 L5 L6 L7

R 0.185 0.373 0.481 0.464 0.304 0.100 0.021
N 0.814 0.626 0.518 0.535 0.695 0.899 0.978

LH-HB L1 L2 L3 L4 L5 L6 L7

R 0.142 0.432 0.581 0.409 0.068 0.010 0.059
N 0.857 0.567 0.418 0.590 0.931 0.989 0.940

Table 6.6: Average per-Layer Distribution of Node Classes in the First Layers (1000 nodes)

scenarios. We can see in both cases that the position of richer classes is on average always bet-
ter than poorer classes: in the HH-LB scenario (Figure 6.14a) more than 70% of the VR and R
nodes are concentrated in the first five tree layers, while in the HH-HB scenario (Figure 6.14b)
the first four layers in average comprise nearly 80% of the VR and R classes. This observation
again validates our hypothesis on the relationship betweennode capacity and the placement in
the system, justifying the fast growth of distribution treefan-out we observed above.

Finally, we collect in Table 6.6 the average proportion between nodes from each bandwidth class
in the HH-LB, HH-HB, LH-LB and LH-HB scenarios. We can remarkthat, in each scenario,
the proportion between the node classes found in the first layer (i.e. the peers chosen by the
source) approximates quite well the global scenario distribution, as we would have expected,
since the source adopts an uniformly random peer selection strategy. Subsequent layers (from
L2 to L4-L5) show a definite bias toward the richest classes with respect to the base scenario
distribution: in further layers, the likelihood of finding resourceful nodes decreases and becomes
quickly negligible.

6.5.2 Asymptotic Behavior of Node Lag

Figure 6.15 represents on a semi-logarithmic scale the average global node lag and its standard
deviation, sampled and averaged over thirty seconds after the system reachs steady state. We
can see that the lag values for systems withRI > 1 are placed on straight lines: this indicates

6.5. PULSE: A QUANTITATIVE ANALYSIS 149

 0

 10

 20

 30

 40

 50

 60

 70

 100 1000

A
ve

ra
ge

 n
od

e
la

g

Population Size

Scalability of Average Node Lag with Population Size
(SRC upload=3*SBR, TW=64, sliding threshold=FEC=25%)

HH-LB
LH-LB

HH-HB
Unif-LB TW=128

Unif-LB

Figure 6.15: Asymptotic Dependence of Average Node Lag on System Size

that PULSE has indeed a logarithmic scalability over the range of system sizes we considered.
Interestingly, the logarithm base depends on the bandwidthavailability in each scenario, with
higher base values - i.e. lower angular coefficient of the lines - for systems where more excess
bandwidth is present. The presence of heterogeneity also reduces the average node lag: as we
see, the average lag of HH-LB scenarios (RI = 1.04) is slightly but consistently lower than the
lag of LH-LB scenarios (RI = 1.2).

In the same Figure, we provide for comparison the scalability results of uniform systems (Unif-
LB scenario) and TW values of 64 and 128. We notice that, despite the small difference in
system capacity compared to HH-LB scenarios, systems with uniform bandwidth distribution
behave much worse in terms of scalability. The system withTW = 64 does not settle on a stable
lag for population sizes larger than 400 nodes: while the initial convergence is successful, the
average lag slowly but constantly increases. On the other hand, with TW = 128, the system
manages to settle on stable lag values until 2000 nodes.

The results from the Unif-LB scenarios confirms that larger TW sizes improve efficiency, as we
observed above, but also suggests that the conditionξ ≥ 1 − FEC aloneis not sufficientfor
system convergence. We believe that stability is negatively affected by the incidence of chunk
scheduling delays that can add up and result in a discontinuous advancement of node buffer
windows. WhenRI = 1, because of the lack of excess resources, the growth rate of these delays

150 CHAPTER 6. SIMULATION RESULTS

as the system grows past a certain scale can no longer be compensated by FEC alone. Non-
homogeneous node capacity distributions alleviate this problem: as resourceful nodes are placed
near the source and have a very stable lag, they can benefit thewhole network by reducing the
randomness of the chunk distribution process, making the advancement of other nodes’ buffers
smoother.

6.6 Results under Dynamic Membership

We have thoroughly experimented with a variety of arrival and departure patterns. We imme-
diately remarked that the impact of exponential churn on theordinary dynamics of the system
was hard to remark, even at high rates. To obtain noticeable effects of node churn, bursts of
simultaneous arrivals or departures were required. In Figure 6.16 we show the outcome of four
such churn events, again in resource-constrained bandwidth scenarios.

Sudden Node Arrivals In Figure 6.16 we see three sample lag traces of the reaction of the
system to node transience. In these plots, nodes can establish up to eightFORWARD connections.
We first present the effect of aninstantaneous spikearrival on our usual bandwidth scenarios.
With this arrival pattern, 750 nodes join the network att = 120s, when the initial 250 nodes
should have reached steady state. In Fig. 6.16a, we show an HH-LB scenario absorbing a spike
of arrivals: it can be noticed that most nodes from all the classes (including the richest ones) are
affected and forced to reconnect, but the perturbation lasts for a very short time. Byt = 150s,
in fact, all the classes have reached again convergence. If we increase the available bandwidth,
however, the impact of the spike is much reduced. This is the case of Fig. 6.16b, where the HH-
HB scenario is shown. Here we can notice that all classes temporarily increase their average lag,
but there are no disconnections. The lag increases up to 80 chunks on average but is absorbed
very rapidly (in about ten seconds). In this case, the nodes’media play-out is not affected.

Sudden Node Departures Figure 6.16c shows the effect on a HH-LB scenario of the simulta-
neous departure att = 120s of 50% of the nodes, chosen at random. We see that the impact of
random node departures on the system performance is even lower than from sudden arrivals, as
the increase in average lag is minimal and fades away in aboutten seconds.

Sudden Resource Shortage To assess the robustness of the system against more extreme
forms of churn, we devised a churn scenario where the most resourceful 4% of the HH-LB
population, the 40 nodes from the VR class, would suddenly fail at t = 120s and not be re-
placed. This failure event affects theRI, reducing it to0.888 (including the source capacity).
With RI < 1, the system cannot support its current population, whose lag starts to drift linearly.
It can be seen, however, that nodes from R and N classes, instead of following the mass of starv-
ing P nodes, begin a new convergence phase byt = 160s, regaining ground toward the source

6.6. RESULTS UNDER DYNAMIC MEMBERSHIP 151

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(a) Spike arrivals (t=120s), HH-LB Scenario

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(b) Spike arrivals (t=120s), HH-HB Scenario

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(c) Burst departures (t=120s), HH-LB Scenario

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB distribution by class over time

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(d) VR Departure (t=120s), HH-LB Scenario

Figure 6.16: Effects of Node Transience on Global Lag Performances (8FORWARD)

as they reach average lag values similar to those they had before the departure of the VR class.
While the subsequent reconnection by P peers do perturb the recovered system equilibrium, the
entire R class and most N peers keep receiving the stream witha reasonable lag. We can also
observe in the data trace that a small number of P peers is ableto keep its position along the two
other classes: however, the majority of P peers that reset their buffers have very few chances of
finding again a stable position in the system.

We can appreciate the system evolution under sudden shortage by following the value of Soft
Fairness between node classes (Figure 6.17). Before the churn event but after convergence
(80s < t < 120s), the system operates with a certain degree of unfairness due to the slight
excess of capacity (F(P, N) ≃ F(P, R)≃ F(P, V R) ≤ 0.5). At t = 120s, as the VR class
disappears, the Soft Fairness values of P peers versus the other classes get quickly back to the
fair region (F ≃ 0.8), while the R class keeps only a slight fairness advantage over N: as the dif-
ference in node capacity is quite small, these nodes are spread more or less uniformly in the same
lag interval. Soft Fairness for the R and N classes noticeably decreases (while still remaining in

152 CHAPTER 6. SIMULATION RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

F
ai

rn
es

s
[0

,1
]

Time [s]

Soft fairness as seen by RICH nodes

RICH to VERY RICH
RICH to NORMAL

RICH to POOR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

F
ai

rn
es

s
[0

,1
]

Time [s]

Soft fairness as seen by POOR nodes

POOR to VERY RICH
POOR to RICH

POOR to NORMAL

Figure 6.17: Effects on Soft Fairness of Sudden Disappearance of VR Nodes (HH-LB)

the fair region) in correspondence of the reconnection attempt by P peers (t > 250s).

6.7 Conclusions

The simulation results presented in this chapter allow us todraw the following conclusions:

Tit-for-Tat as an Optimization Mechanism Our results confirm that the use of a pairwise
incentive such as tit-for tat, combined to a performance-based feedback metric such as node lag,
provides a powerful mechanism for overlay optimization. Without any explicit knowledge about
the capacity of the other nodes, and despite the short average duration of node relationships, each
peer reaches and maintains a rather stable lag position inside the system, which in turn results in
the timely reception of a steady supply of recent chunks fromits neighbors. The analysis of the
steady-state data distribution paths indicates that the nodes from resourceful bandwidth classes
have the highest chance to be traversed early on during the distribution of each chunk.

Node Lag as a Discrimination Mechanism If we examine a system undergoing resource
shortage, we observe that the more resourceful nodes hardlyexperience any performance degra-

6.7. CONCLUSIONS 153

dation. We argue that using the node lag as a discriminating factor for the attribution of altruism
helps a running system to withstand the influence of nodes that contribute less than the stream
rate. Also, serving neighbors from theMISSING list with higher priority than those from the other
lists ensures that altruism will not affect the ability of a node to maintain its current lag even if
the altruism is not reciprocated.

The Critical Role of Altruism FORWARD connections, while being established out of altru-
ism, have a clear importance as they reinforce the effect of the tit-for-tat incentive. While the
history-based selection process biases the altruism toward those nodes that contributed the most
during the past interactions, it does not exclude poorer nodes and free riders. Our simulations
show that, by adding few more connections to peers that otherwise would not qualify for tit-for-
tat selection, the overall system performance and stability improve dramatically. Richer classes
use more of their available upload, overall efficiency increases, and the risk of chunk losses
decrease significantly - almost disappearing with eight or moreFORWARD connections.

Altruism as a Rational Choice (for both, Own and Common Good) WhenFORWARD con-
nections are disabled or reduced, we notice that especiallythe richest peers are often contributing
less than what they could actually offer to the system. The partial use of their capacity, while
allowing them to maintain regular relationships with otherresourceful peers, exposes them to the
risk of starvation, caused for instance by transient content bottlenecks. Starvation happens for
two reasons: a direct issue of competition between resourceful nodes, which makes the outcome
of future peer selections unpredictable, and an indirect problem of availability of new chunks,
which are spread to only a small number of nodes chosen using the tit-for-tat criterion. By
spreading additional copies of recently generated chunks,the richer nodes can solve these two
problems at the same time: competition is eased, as the number of peers that are eligible to select
the richer nodes becomes larger, and starvation becomes less likely, as new chunks are made
available much faster.

154 CHAPTER 6. SIMULATION RESULTS

Chapter 7

Experiments and Real Measurements

This chapter1 completes the evaluation of PULSE with additional results,obtained from the
emulation of PULSE systems over large-scale network testbeds.

7.1 Validating the Simulation Results

We used the Grid’5000 [3] large-scale testbed to perform a qualitative validation of our simu-
lation results. Grid’5000 currently offers 700-800 hosts (about 1200 CPUs) physically located
in several French research institutions and connected by a fast backbone network. We tried to
approximate on this testbed the model used in PulSIM, i.e. negligible and constant latency be-
tween nodes, no bottlenecks in the core network, and controlled attribution of access capacity to
individual nodes. As the pairwise latency between the testbed nodes was very low (in the order
of several milliseconds) and uniform, we performed our experiments using the bare underlying
network topology of the testbed. We implemented configurable upload bandwidth caps into the
node prototype software, in order to emulate the effects of upload bottlenecks at the access links:
we use a token-bucket algorithm where a variable number of tokens (depending on the bandwidth
class of the node) are replenished every 125ms.

We managed to reach a maximum scale for our experiments of 1000 simultaneous nodes by
running up to two peers on each testbed machine. The protocolparameters used in the Grid’5000
testbed evaluation are listed in Table 7.1: having reduced the chunk rateR to 8 chunks per second,
that is half rate compared to the simulations, the length in time of the node TW is now doubled,
that is 8 seconds of media. Because of technical limitations, to emulate the initial simultaneous
node arrival we sequentially launched the nodes in parallelbatches of 200. The time required to
launch 1000 nodes with this technique was usually less than 20 seconds.

155

156 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB avg and std deviation by class over time (HH-LB)

VERY RICH peers
RICH peers

NORMAL peers
POOR peers

(a) HH-LB Scenario

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

TB avg and std deviation by class over time (LH-LB)

RICH peers
NORMAL peers

(b) LH-LB Scenario

Figure 7.1: Testbed Validation of the PULSE Prototype Node:Class Lag over Time

7.1. VALIDATING THE SIMULATION RESULTS 157

Parameter Value Description

W 32 Length of buffer sliding window [chunks]
TW 64 Total length of trading window [chunks]

LRmax 20% FEC tolerance to chunk losses/window
TD

250
R

Minimum lag to trigger buffer reset [s]
EPOCH 2 Time b/w subsequent peer selections [s]
NTFT 4 Peers chosen asMISSING neighbors
NFWD 8 Peers chosen asFORWARD neighbors

R 8 Rate of chunk generation @source [s−1]
SBR 256 FEC-encoded stream bit rate [Kbit/s]
RTO 0.5 Timeout of chunk request messages [s]
Rmax 2 Max outstanding requests to same peer

Table 7.1: PULSE Protocol Parameters Used for Testbed Experiments

7.1.1 Convergence and Evolution of Node Lag

We launched extensive simulations of PULSE systems, mainlyconcentrating on the HH-LB and
LH-HB scenarios. In Figure 7.1 we show two sample traces fromtwo 800-node deployments
under the HH-LB (a) and LH-LB (b) scenarios. As we expected, the impact of the initial transi-
tory on the emulation results is much lower than what we observed in the simulated outcomes:
in fact, no massive “reset and reconnection” event was ever detected during the earliest phases
of every deployment. If we check in the peer logs the amount ofpeers that reset their buffer in
the HH-LB scenario, we notice that only a handful of resourceful peers get disconnected early
on during initialization (2 RICH and 2 NORMAL), compared to several POOR peers (about 40
in the first 50 seconds). Few POOR nodes happen to regularly disconnect during steady state, for
a total of 100 reset events during the 300 seconds shown above.

Figure 7.1 confirms the strong relationship we had observed in the simulations (Sections 6.4 and
6.5) between the available upload bandwidth of a class and the average lag of its members. The
peers with the highest bandwidth contribution reach in bothscenarios a steady-state lag of about
20 chunks (that is, less than 3 sec) from the media source. On the other hand, the less a class
contributes, the worse its average lag: the POOR class in HH-LB gets the highest average lag
among the four, at nearly 60 chunks (slightly more than 7 sec). Visually, the plot for HH-LB
is especially telling, as the four classes appearsorted by resources and layered one after the
other, with a meaningful difference between the average lag performance of each class: also,
we notice thatthe difference in node lag between classes becomes higher when the available
upload capacity of a class is smaller than the stream bandwidth. The same remarks can be made
regarding the LH-LB scenario, as the difference in average lag of the two classes is smaller but
still evident (18 chunks or 2.2 sec for RICH, vs. 30 chunks or less than 4 sec for NORMAL).

Figure 7.1 also shows the standard deviation of node lag as vertical lines. Here we can notice

1The contents of this chapter have been published in part as [86].

158 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

more clearly than in the simulations how nodes have their lagdistributed around the average
class lag: the variance ofTB appears as strongly dependent on node contribution and becomes
higher as the upload bandwidth available to each class decreases. This phenomenon can be
observed both in the HH-LB and in the LH-LB scenarios: the standard deviation of the lag is
4-10 chunks for VERY RICH and RICH classes, vs. 10-25 chunks for NORMAL and POOR
in HH-LB; 4 chunks for RICH vs. 11 chunks for NORMAL in LH-LB. This fact suggests that
having more bandwidth not only reduces the average lag, but also tends to give nodes a more
stable performance in the system.

We can in fact appreciate how the averageTB for each class is very stable over time in both
traces, with minimal fluctuations. The biggest event that can be observed (betweent = 160s and
t = 190s in the LH-LB plot, a point where the standard deviation of theRICH class increases
and then falls back to the previous values), is caused by a temporary increase in the lag of eight
RICH nodes, with two of them reaching a peakTB of 80 chunks before recovering their previous
lag value. In this scenario, no node suffered data loss.

7.1.2 Bandwidth Classes and Data Paths

After validating the main qualitative properties of PULSE behavior in a realistic context, we are
now interested in observing the distribution process of individual data chunks and in comparing
these results to our expectations. To this end, we will againstudy the paths taken by data chunks
as they are replicated by the nodes

Figure 7.2 contains the analysis of the average properties of chunk distribution trees from our
traces shown above. We notice that the maximum tree depth in hops for individual chunks is
short and quite stable over time. In our system with 800 nodes, maximum tree depths are in
average between 11 and 14 hops, for both bandwidth scenarios. We can also notice how HH-LB
trees are on average as deep as LH-LB trees and equally wide upto the6th layer, despite the fact
that the Resource Index for the HH-LB scenario is much lower than for LH-LB.

Comparing Figure 7.2 with Figure 6.13 in the previous chapter, we can validate the fact that the
first few layers of the trees are in average very wide, even if not as wide as in the simulated
systems, and that the relative system behavior for the two scenarios is quite similar in both cases.
We also confirm that the paths taken by the chunks are consistently good, even under widespread
bandwidth scarcity and while the data connections between nodes are continuously renegotiated.

The tree depth values observed in the emulation are slightlyhigher than predicted by our simu-
lations, but still in the same order of magnitude (for 800 nodes, the average maximum depth of
HH-LB trees would have been in average about 9 hops and less than 7 hops for LH-LB). The
difference with respect to simulation is likely due to the reduced efficience of chunk exchanges
in an asynchronous environment with additional delays for control message exchange. Finally,
the rare chunk losses, revealed by trees significantly shorter than the average, appear to be more
frequent here than in the simulated cases, but do not result in playback disruption.

7.1. VALIDATING THE SIMULATION RESULTS 159

Tree Analysis

 3
 5
 7
 9

 11
 13
 15
 17

 200 600 1000 1400 1800 2200M
ax

 D
ep

th
 [h

op
s]

Chunk ID

HH-LB
LH-LB

 0
 30
 60
 90

 120
 150

 0 2 4 6 8 10 12 14A
vg

 W
id

th
 [n

od
es

]

Layer

HH-LB
LH-LB

Figure 7.2: Analysis of Average Chunk Distribution Tree Properties (800 nodes)

7.1.3 Interactions between Bandwidth Classes

We now examine the consequences of peer selection in terms ofthe amounts of data exchanged.
We keep track, for each chunk, of the class of its sender and receiver peers, and of the type of
the connection, i.e. whether it’sMISSING, FORWARD, or NEW, as determined by the sender. In
Figure 7.3 we display the data we collected over a typical HH-LB run, as seen from the point of
view of both the uploads and the downloads.

The first finding is that, for every class except POOR peers,MISSING exchanges in upload do
convey on average more or less 80% of the stream bandwidth. Even when nodes may be able
to provide much more, their capacity is not used forMISSING exchanges, and would probably
be wasted to a large extent if noFORWARD connections were present. We also notice a striking
similarity between the amounts of data uploaded and downloaded by each class usingMISSING

exchanges. This observation suggests that increasing the number ofMISSING connections could
only marginally increase the amount of data they can convey,as the stream rate is a natural barrier
for reciprocal contribution.

A second result is thatFORWARD connections are especially important to distribute the excess
capacity of the richest classes to the poorer ones:FORWARD exchanges from VR and R peers
alone to nodes in the POOR class provide, in average, almost half of their stream rate, while they
obtain the rest fromMISSING exchanges, largely with other POOR peers. On the other hand,the

160 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

DATA UPLOAD PER CLASS

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

M F N

B
W

 (
w

rt
 s

tr
ea

m
 r

at
e)

Very Rich (VR)

VR
R
N
P

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

M F N

B
W

 (
w

rt
 s

tr
ea

m
 r

at
e)

Rich (R)

VR
R
N
P

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

M F N

B
W

 (
w

rt
 s

tr
ea

m
 r

at
e)

Normal (N)

VR
R
N
P

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

M F N

B
W

 (
w

rt
 s

tr
ea

m
 r

at
e)

Poor (P)

VR
R
N
P

DATA DOWNLOAD PER CLASS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

M F N

B
W

 (
w

rt
 s

tr
ea

m
 r

at
e)

Very Rich (VR)

VR
R
N
P

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

M F N

B
W

 (
w

rt
 s

tr
ea

m
 r

at
e)

Rich (R)

VR
R
N
P

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

M F N

B
W

 (
w

rt
 s

tr
ea

m
 r

at
e)

Normal (N)

VR
R
N
P

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

M F N

B
W

 (
w

rt
 s

tr
ea

m
 r

at
e)

Poor (P)

VR
R
N
P

Figure 7.3: Average Cumulative Data Exchange Outcomes by Bandwidth Class (G5K, HH-LB)
Amounts of data exchanged are broken down by connection type(M=MISSING, F=FORWARD, and N=NEW) and

normalized by the stream rate.

7.1. VALIDATING THE SIMULATION RESULTS 161

TB Avg. and Std. Deviation by Class over Time under Churn

 0

 20

 40

 60

 80

 100

 200 240 280 320 360

A
ve

ra
ge

 L
ag

 [c
hu

nk
s]

Time [s]

SPIKE

VR
R
N
P

 0

 20

 40

 60

 80

 100

 200 240 280 320 360

Time [s]

SQUIT

VR
R
N
P

Figure 7.4: Average Class Lag over Time for HH-LB under SPIKEand SQUIT

scarce bandwidth of the two poorest classes is rarely allocated toFORWARD or NEW connections.

These results validate the fact that the PULSE algorithms are correctly exploiting the available
capacity: tit-for-tat basedMISSING exchanges are important under bandwidth scarcity to ensure
a proportional exchange reciprocation, whereasFORWARD exchanges based on node lag and
History score allow to distribute the unused resources evenly to the entire system.

7.1.4 PULSE under Churn

We have reproduced the churn scenarios we used in our simulation in the context of our testbed
experiments. In Figure 7.4 we show the effects of the SPIKE and SQUIT churn scenarios on
the average lag of each bandwidth class of an HH-LB system. The churn event is scheduled
at t = 230s. We can observe how the system handles gracefully both events, with a visible
increase (decrease) ofTB over the seconds immediately following the arrival (departure) that
quickly leads to new stable average lag values. We remark that the response of real systems to
massive arrivals is very fast, while departures require some time for the system to reach a new
stable configuration: the time constant of the SQUIT scenario likely depends on the presence

162 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

of excess capacity in the system, which nodes can exploit in order to reduce their average lag.
Visually, the effect of both churn events is completely absorbed after about 150 seconds from
their occurrence.

7.1.5 Results of PlanetLab Deployment

Next, we performed experiments on PlanetLab in order to observe the behavior of PULSE under
uncontrolled network conditions. In fact, PlanetLab offers its users little control on the node re-
sources, not only in terms of an unknown available bandwidth, but also because of the high CPU
load of machines. This problem makes it especially difficultto test a time-sensitive streaming
application that requires low response times. For this reason, we only managed to find about 200
hosts with semi-acceptable CPU load conditions, while we had to lower the chunk rateR to 4
chunks per second to reduce the amount of processing performed by the nodes. We conducted
experiments with bitrate values ranging from 64Kbps to 512 Kbps, and performance appeared
to be rather insensitive to the stream rate up to 256 Kbps, decreasing for further bitrate values.
This phenomenon may be due to traffic shaping or other counter-measures adopted by PlanetLab
nodes to limit a steady bandwidth consumption by individualusers. As we could not collect
enough data for an in-depth analysis of this issue, we ratherdecided to avoid it altogether by
using a “safe” low bitrate: therefore, we set the stream bitrate in our experiment to 128 Kbps.

Furthermore, we resolved to not artificially constrain nodebandwidth, but rather chose to leave it
naturally limited by the resources available at each host (as the high CPU load in most PlanetLab
nodes would often interfere with the execution of the software in unpredictable ways). As band-
width classes were not defined for this experiments, we instead collect information such as the
cumulative amount of data uploaded, which will be useful to reconstruct the relationship between
node lag and contribution. As we see in the lower plot of Figure 7.5, no node contributed alone
an extraordinary amount of resources to the system: rather,99% of node contributions (averaged
on the whole system lifetime) ranged between zero and 2*SBR.We argue that these values can
be considered a reasonable approximation for an Internet-based streaming event.

Looking at Figure 7.5, it can be noticed that 90% of peers manage to regularly obtain aTB lower
than about 100 chunks (25 seconds), and that 50% present a node lag lower than 30 chunks (less
than 10 seconds). TheTB distribution is a consequence of the upload bandwidth distribution, as
about 60% of peers offer less than the full stream rate while the other 40% upload at a rate lower
than twice the stream rate. By correlating the total bandwidth contribution with the average lag
of the nodes, we can obtain in Figure 7.5 a clear inverse relationship between the two variables:
the more a peer uploads, the lower is its lag. The results we obtained from this experiment show
that PULSE behaves reasonably well even a difficult environment such as PlanetLab, proving
again a high level of resilience and adaptiveness.

7.2. EVALUATING LATENCY AWARENESS 163

 0
 30
 60
 90

 120
 150
 180

 0 100 200 300 400 500 600 700 800

La
g

[c
hu

nk
s]

Time [s]

Node Lag over Time (from 10th to 90th percentile)

 0
 30
 60
 90

 120
 150
 180

 0 0.5 1 1.5 2 2.5 3 3.5A
vg

 L
ag

 [c
hu

nk
s]

Data Uploaded (wrt stream rate)

Relationship between Node Lag and Average Upload

Figure 7.5: Results of an Uncontrolled PULSE Run on PlanetLab (200 nodes)

7.2 Evaluating Latency Awareness

After examining the macroscopic effect of tit-for-tat peerselection on the global system organi-
zation, we now study the impact of a weighted latency bias on the system in terms of awareness
to network locality. These experiments were performed on Planetlab using a population of 100
peers, again without any artificial upload limitation. We observed the behavior of the PULSE
system as theC latency weight parameter was set to 0 and 1. We used the pairwise node la-
tencies measured during our experiments with exponentially-spacedping probes (λ = 10s) as a
practical network locality metric.

Average Latency ofMISSING Connections Figure 7.6 shows theaverage total latencyof the
incentive-driven connections in function of the average lag of each peer. Average total latency
is computed for each single node by adding together the latencies of the four connections that it
established using the biased TFT incentive, and averaging this value over time. It is possible to
notice how the introduction of the latency bias can sharply reduce the average TFT connection
delay, especially for those peers whose lag is low. We can seethat, whenC = 0 (i.e with
no latency bias), all peers show an average cumulative latency uniformly distributed between
45 ms and 60 ms, regardless of their average lag. With the addition of a latency biasC = 1,

164 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

Lag vs Average TFT Connection Delay

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 100 200

T
F

T
 D

el
ay

 [m
s]

Lag [chunks]

C=0

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 100 200

Lag [chunks]

C=1

Figure 7.6: Effect of Latency Bias on Cumulative ConnectionLatency

the minimum average cumulative latency goes down to 22 ms, while just few nodes maintain a
cumulative latency of about 60 ms. Also, the average cumulative latency of all nodes becomes
lower for non-zero values ofC.

Estimating the Locality of Data Exchanges In Figure 7.7 we correlate the percentage of data
being uploaded by each peer with the latencies of the connections that it is using, again averaged
over the time. The histograms clearly show that locality of data exchange definitely increases if
we add a latency bias: whenC = 0, the data is sent to other peers in an almost uniform way
(we remember that the latency distribution of the peers is not uniform). On the contrary, when
C = 1, the amount that has to travel on shorter distances is much higher: the stream data are
prevalently exchanged between peers with pairwise latencies lower than 125 ms.

Other Advantages of Locality Optimization Finally, Table 7.2 shows the effects of latency
awareness on the global performance of data reception in thesystem, in terms of percentile node
lag. As we expected, with the latency bias peers achieve a slightly lower reception delay, thanks
to the fact that chunks are sent more often to peers which arecloser locality-wise. The extent
of this reduction is quite small, however, as the skew in the node latency distribution is quite
limited. We expect that, by introducing the latency bias in ascenario with larger difference

7.3. CONCLUSIONS 165

Latency-Based Locality of Data Exchange

 0

 1

 2

 3

 4

 5

 0 500

%
 o

f D
at

a
E

xc
ha

ng
ed

Latency [ms]

C=0

 0

 1

 2

 3

 4

 5

 0 500

Latency [ms]

C=1

Figure 7.7: Effect of Latency Bias on Overall Data Exchange Locality

Lag Percentile 10% 30% 50% 70% 90%

C=0 12.31 18.10 26.18 37.70 61.08
C=1 10.53 14.47 18.89 27.22 49.39

Table 7.2: Effect of Latency Bias on Average Node Lag (in chunks)

between pairwise latencies, the reception delay reductionwould also be bigger.

7.3 Conclusions

In this chapter, we validated our analysis of the behavior ofPULSE using emulation: we ran
a number of controlled experiments on a large-scale grid testbed, reaching a population size of
1000 nodes, and reproduced the same scenarios we previouslyused for our simulations in or-
der to make a direct comparison. We could observe a substantial similarity between simulation
results and the actual behavior of emulated systems: the presence of network delays and asyn-
chrony in the emulated environment greatly improves the visibility of aspects such as stability of
node class lag and system-wide response to churn. We then described our results from PlanetLab
experiments, which are quite encouraging as they confirm thesubsistence of a definite relation-

166 CHAPTER 7. EXPERIMENTS AND REAL MEASUREMENTS

ship between node lag and upload contribution even in uncontrolled environments, where both
theRI and the node capacity distribution are not known a priori.

Finally, we evaluated the effectiveness of introducing pairwise latency as an additional criterion
for peer selection: the use of a simplelatency biasin the optimistic choice ofMISSING neighbors
led to noticeable improvements in the overall locality awareness ofMISSING connections and
total data exchanges. Furthermore, we could measured in ourexperiments a net decrease in the
average node lag of at least 20% when latency awareness was enabled: this result suggests that
building some form of locality awareness into data-driven live streaming systems can provide
great practical advantages in terms of both, efficient network usage and performance gain.

Chapter 8

Conclusion

Internet-based peer-to-peer live streaming systems have to face several technical challenges.
They must be capable to scale to large populations, support highly asymmetric distributions
of node capacity, and withstand arbitrary user behavior. This thesis presented and evaluated
PULSE, a practical unstructured data-driven P2P system forlive media streaming. The PULSE
algorithms exploit the relative flexibility in the timeliness requirements of live streaming in or-
der to improve the performance and the robustness of the system in real-world conditions. The
results we obtained from simulation, testbed emulation, and Planetlab experiences confirm that
PULSE can meet the challenges of a full-scale Internet deployment.

8.1 Contributions

PULSE makes several contributions: its design combines an unstructured mesh-based architec-
ture, which grants the nodes great freedom to associate, with pairwise incentive mechanisms,
which are used as peer selection strategies. Thanks to the use of incentives to optimize band-
width allocation, combined to dynamic peer selection strategies that rely on implicit feedback
from data reception, PULSE is capable to support a operate innon-cooperative environments.
The presence of a global control loop based onnode lagallows PULSE to quickly react to
changes in both, node resource availability and system membership.

While the incentives in PULSE do not aim todirectly enforce fairness, as the common-sense
interpretation of the word “incentive” may suggest, they are meant to redistribute node capacity
in an useful way and, in case of system-wide resource shortage, to favor the nodes that contribute
more to the system in order to preserve the health of the global system. We also argue that the risk
of buffer starvation during live streaming, which becomes high for peers that offer an insufficient
upload contribution, is anindirect incentiveto cooperation that should be appealing to rational
nodes/players.

The simulation results we presented show that an altruisticincentive-based peer selection fos-
ters cooperation among the nodes and leads to the emergence of clusters of peers with similar

167

168 CHAPTER 8. CONCLUSION

resources. The presence of resource-aware clustering is functional to the efficient and timely
distribution of data throughout the system: we observed that in PULSE the number of hops that
a chunk takes, on average, is comparable to the height of trees in tree-based architectures, while
the first layers of the chunk distribution trees can be significantly wider.

The experiences we performed using large-scale testbed emulation and PlanetLab deployments,
in addition to validating the simulations, indicate that PULSE is capable to operate in a harsh en-
vironment such as the Internet. Also, they show that PULSE can easily take into account network
locality when establishing node relationships, introducing a further performance improvement.
Our results also confirm the ability of unstructured mesh-based systems to withstand the high
levels of transience that can result from user and network dynamics (churn, failures, congestion,
etc.).

Finally, we have collected and elaborated a number of metrics to evaluate both generic and
resource-aware data-driven systems. Besides their immediate interest for the analysis of PULSE,
we hope they will help to reach an improved understanding of unstructured streaming sys-
tems and to develop a more comprehensive comparison betweenstructured and unstructured
approaches to live data distribution.

8.2 Outlook

The lessons learned from the design, simulation, implementation, testing and initial deployment
of the PULSE system suggest thatubiquitous P2P live streaming on the Internet is indeed pos-
sible – and does not require a large amount of resources at theinvolved Internet nodes. The first
practical streaming architectures have shown the feasibility of the end-system multicast concept.
The current generation of large-scale P2P systems indicates that audiences of several hundred
thousand users can be served by an adequate provisioning at the source (upload capacity from
tens of Mbps1 up to several hundreds of Mbps2) and using advanced peer selection and chunk
selection algorithms. The next wave of live streaming applications could realistically involve
a multitude of broadcasters that serve media to populationsthat can range in size from few to
tens of thousands of users, just leveraging standard computing equipment and broadband Internet
access.

The Road Toward Optimality The search for an optimal strategy to distribute live data over
networks with arbitrary upload capacity distribution is not over yet: while PULSE is among
the first to explore pairwise incentives as a non-deterministic optimization technique, the re-
cent developments of theoretical models [72][34] and the application of graph theory [45], game
theory [75] and gossip algorithms [95] will certainly lead to an improved understanding of the
live streaming problem and to the design of new, more efficient algorithms and solutions. It is
our opinion that the improvement of live streaming techniques will also benefit applications for

1Gale Huang, PPLive Software Architect, Keynote at the 2nd SIGCOMM P2P-TV Workshop, 2007
2Qian Zhang, Hong Kong University of Science and Technology,ibidem.

8.2. OUTLOOK 169

large-scale data diffusion, such as video on demand and bulkfile distribution. The deliberate
introduction of loose synchronization between receivers,once seen as an undesirable constraint
of live media, could actually prove an effective method to increase the efficiency and data distri-
bution performance of these systems.

More Focus on Non-Cooperative Scenarios The live streaming problem has mostly been
studied in cooperative contexts so far, which implied either full compliance by the nodes to sys-
tem policies(e.g. providing as much upload as required, connecting to a specific number of
“entitled” sub-trees), or at leasthonest reporting of protocol information(e.g. correctly describ-
ing the number of children served, providing a truthful account of the content a node buffer).
PULSE is one of the first practical systems for live streamingto mitigate the consequences of
non-cooperative behavior (as freeloading or insufficient upload contribution): the support for
bandwidth heterogeneity naturally implies the ability to react to purposeful lack of cooperation.

Nevertheless, many avenues of attack emerge when the hypothesis of policy-compliant behavior
is rejected: an interesting example is provided by the latest attempts to defeat other incentive-
based mechanisms, such as the BitTorrent protocol [68][88]. While the tit-for-tat strategy has not
been surpassed yet by any other strategy and thus appears to be Pareto-optimal, its implementa-
tion in a distributed protocol for data exchange opens up several weaknesses [100]. In the case
of deliberate tampering with protocol information, however, the problem becomes way more
complex, reaching to the realms of practical and theoretical computer security: furthermore, the
assumption of player rationality may no longer hold if nodestry to actively disrupt the system
without seeking any benefit from it. The concept offaithfulness[101] of an application as a form
of resilience to misleading external information and behavior has been recently introduced to
support the design and analysis of P2P systems.

The Future of PULSE The software for the PULSE node has been released to the public by
France Telecom R&D under a LGPL Free software license in early 2007. The current code-
base for our node prototype (v. 0.1.1) is substantially the same that we used to obtain the traces
for our latest published papers [86][87] with some added bug-fixes. The future development of
the public branch of the PULSE node software shall be continuing as a part of the European
project (STREP) NAPA-WiNe. Moreover, the use of a Free license allows and encourages the
contribution by individual developers around the world.

170 CHAPTER 8. CONCLUSION

Chapter 9

Synthèse en Français

9.1 Introduction

Cette thèse est dédiée à l’étude du problème de la diffusion de flux vidéo en direct sur Internet,
mieux connu sous le nom anglais de "live media streaming". Nous avons choisi de concentrer
nos efforts sur ce problème pour plusieurs raisons.

Première raison, la distribution de données sur Internet vers de grands nombres de récepteurs
est aujourd’hui un besoin fondamental: les efforts dédiés pendant les dix dernières années à la
diffusion de contenu statique (i.e. fichiers) ont laissé la place à une attention accrue pour la
distribution de flux de données dynamiques. L’émergence dessystèmes pair-à-pair (en anglais
peer-to-peer, abrégé enP2P) dans le contexte de la distribution de données a permis une impor-
tante amélioration des performances par rapport aux architectures basées sur serveurs central-
isés, surtout en termes de réponse à la croissance de la taille du système (aussi définipassage à
l’échelle, provenant du mot anglaisscalability). Le principe fondamental des architectures P2P
est l’équivalence de rôle (a priori) entre toutes les entités qui composent le système, qui sont
appelées pairs ou nœuds.

Deuxième raison, l’extension d’une approche P2P au streaming live est une étape conséquente
de l’évolution des techniques pour la distribution de données, qui ajoute de nouveaux défis au
problème initial, notamment le respect de deux contraintes: l’ordre de réception et le délai de
reproduction (en anglais,playout delay) du flux vidéo. Troisième, le problème du streaming live
est clairement défini: puisque les nouvelles données sont générées constamment par la source
(i) tous les recepteurs sont à peu près synchronisés dans la reception du flux,(ii) le système a
une faible mémoire des événements passés et(iii) ses performances peuvent se révéler moins
dépendantes du comportement des utilisateurs par rapport àla distribution de fichiers ou à la
distribution de vidéo à la demande (VoD). Quatrième, l’interêt commercial pour des solutions de
streaming live qui puissent passer à l’échelle avec de faibles coûts est à présent très fort, puisque
les conditions nécessaires pour le succès et la diffusion deces applications sont désormais sat-
isfaites (ordinateurs personnels avec puissance de calculsuffisante, appareils photographiques

171

172 CHAPTER 9. SYNTHÈSE EN FRANÇAIS

Type Application d’Exemple Contraintes de Distribution Contraintes de Reproduction

Bulk BitTorrent, E-donkey Aucune (fichiers vidéo) Video reproduite après réception

VoD Joost, Youtube Aucune (fichiers vidéo) Reproduire pendant la réception (1 min)

Live Peercast, PPLive Court délai (10 ∼ 30 s) Reproduire au plus tôt (10s)

Interactive Conference, Skype Immédiate (∼ 100 ms) Reproduire tout de suite (100 ms)

Table 9.1: Applications pour la Diffusion de la Vidéo

et webcamspeux coûteux, facilité d’accès à l’Internet avec hauts débits). Enfin, nous sommes
convaincus de la présence de plusieurs aspects qui peuvent être améliorés dans les systèmes P2P
existants, et du fait qu’il nous est possible de contribuer àleur amélioration.

9.1.1 Définition du problème

La Table 9.1 présente une vue globale sur l’ensemble des applications pour la diffusion des
données multimédias. Tandis que la vidéo à la demande (VoD) consiste en la distribution de
données qui ont été enregistrées (par exemple des fichiers vidéo) de façon qu’il soit possible les
reproduire pendant qu’ils sont récupérés, le streaming live est la première application pour qui
les données constituent un flux qui n’a pas de début ni de fin, mais qui continue d’evoluer au fil
du temps. Les flux video en direct sont differents des flux VoD car:

• Les données d’un flux en direct sont distribuées par la sourcevidéo uniquement pendant
un e courte période, après laquelle elles cesseront d’être disponibles

• La durée totale d’un flux en direct n’est pas connue a priori: typiquement, les utilisateurs
vont rejoindre le système quand une session de streaming estdéjà en cours et vont la
quitter avant qu’elle soit terminée. Le temps passé par un utilisateur dans le système peut
être considérée comme négligeable par rapport à la durée totale du flux (d’où la définition
de durée pratiquement infinie d’un flux de streaming live)

• Les destinataires d’un flux sont intéressés à le reproduire avec un délai raisonnable, puisque
l’intérêt pour ses données courantes est très volatil.

Le streaming live est une application qui pose plusieurs difficultés dues à la présence de con-
traintes de délai. Au même temps, ces contraintes laissent un certain marge de liberté au con-
cepteur de systèmes par rapport au cas des applications interactives, ce qui rend le problème
intéressant par la variété des choix possibles au niveau de l’architecture: les quelques dizaines
de secondes qui découlent entre la génération des données a la source et la reproduction aux
récepteurs peuvent être suffisantes pour que les données soient traitées entre temps par plusieurs
pairs et redistribuées avec une série de sauts (hops) sur le réseau.

Grâce à cette marge de tolérance au retard, le streaming livepermet l’adoption de nombreuses so-
lutions techniques, notamment les architectures P2P. Une approche P2P a l’avantage de permettre

9.1. INTRODUCTION 173

au système de passer facilement à l’échelle, puisque chaquenœud du réseau P2P, au même temps
qu’il consomme les ressources du système, peut aussi mettreses propres ressources au service
d’autres nœuds. En principe, si chaque participant contribuait au moins autant de ressources qu’il
consomme, le système P2P pourrait atteindre des tailles arbitraires. Cette propriété, appelée en
anglais “self-scalability”, est la raison fondamentale qui justifie l’application d’une approche P2P
au problème du streaming live. De plus, dans une architecture client-serveur, le coût du stream-
ing est totalement au frais du fournisseur du contenu, puisque cela demande l’allocation d’une
quantité de ressources du coté du serveur qui estproportionnelle à l’entité maximale prévuede la
population à desservir. Au contraire, dans une architecture P2P, la source du contenu ne requiert
qu’une faible quantité de ressources, qui est largement indépendante de la taille du système. Les
avantages économiques de cette propriété sont aussi évidents, surtout quand les populations a
desservir sont très larges. Au cours des dernières années, plusieurs architectures P2P pour le
streaming live ont été proposées. Le Chapitre 2 de cette thèse étant dedié à l’analyse et à la
comparaison entre les architectures principales des systèmes dans la littérature du secteur, nous
nous limitons ici à énumerer les défis techniques auquels lessystèmes P2P pour le streaming live
doivent se confronter.

Passage a l’échelle Bien que les ressources augmentent avec le nombre de nœuds dans le
système, une limite supérieure théorique de taille existe pour les applications sensibles au temps,
tels que le streaming live. Cette limite est due au retard introduit par chaque "hop" qui est traversé
par les données du flux. En conséquence, le principal défi du streaming P2P est de mettre à point
une technique de distribution de données qui garantit une distribution continue et permet d’éviter
une excessive accumulation de retard quand le nombre d’utilisateurs augmente.

Adaptation aux ressources Un autre défi par rapport au passage à l’échelle dérive de l’hypothèse
que chaque nœud contribue suffisamment de ressources au système. En realité, les nœuds peu-
vent contribuer moins que ce qu’ils consomment, voire rien du tout, soit en raison de limitations
techniques inhérentes (scarcité de ressources, présence d’un pare-feu, etc.), soit par malveillance,
ayant fait le choix explicite de tricher (freeloading).

Équité dans le service Si l’hypothèse de la coopération spontanée n’est pas maintenue, de
nombreux problèmes (tels que le rejet de nouveaux utilisateurs ou la perte de données) peu-
vent compromettre la fonctionnalité du système et la qualité de reproduction. Ce problème peut
être abordé typiquement de deux faç ons: un problème d’affectation de ressources, c’est-à-dire
comment placer les pairs dans le système et distribuer les données afin d’exploiter plus efficace-
ment les ressources disponibles, et un problème d’incitation (ou de contrôle d’accès), c’est-à-dire
comment décourager ou éliminer du système les nœuds qui ne contribuent pas suffisamment.

Adaptation à la topologie du réseau Un autre problème qu’on rencontre dans les systèmes
de streaming P2P dérive du fait que les données sont répliquées par les nœuds suivant un chemin

174 CHAPTER 9. SYNTHÈSE EN FRANÇAIS

non-optimal par rapport au multicast IP natif, puisque l’application P2P ne peut pas connaître
la topologie du réseau sous-jacent. Le fait que la localité des connections ne soit pas prise en
compte a des effets négatifs, comme un retard supérieur réception du média et une utilisation
redondante des liens du réseau, qui peuvent affecter les performances des applications sensibles
au temps tels que le streaming en direct.

Robustesse L’usage de nœuds en tant que éléments fonctionnels du système augmente la prob-
abilité que le service sera perturbé par des changements soudains dans la composition du réseau
P2P. Puisque une application de streaming P2P de grande échelle repose presque entièrement sur
les utilisateurs ordinaires pendant son fonctionnement, le fournisseur original du service ou du
contenu a très peu de contrôle sur la manière dont les donnéessont distribuées et - par conséquent
- sur la qualité perçue par les utilisateurs. Contrairementà l’infrastructure réseau sous-jacent
(c’est-à-dire des routeurs, des câbles, etc), qui a une trèshaute disponibilité et tolérance aux
pannes, l’overlay applicatif construit par les nœuds d’un système P2P (c’est-à-dire des processus
logiciels tournant sur du matériel contrôlé par les utilisateurs) n’offre pas de telles garanties [14].
Chaque nœud peut, à tout moment, entrer dans le système, quitter le système, mal-fonctionner
ou tomber en panne: pour fournir un service sans interruption, le système doit être capable à la
fois de limiter les effets des perturbations et de rétablir au plus tôt son fonctionnement correcte.

Simplicité d’utilisation La simplicité d’usage et la liberté d’accès au système de streaming
live pour tout émetteur potentiel peuvent être considéréescomme des défis techniques supplé-
mentaires: l’application ne devrait pas nécessiter d’une grande quantité de ressources (surtout en
termes de bande passante remontante) au niveau du fournisseur du contenu, afin que n’importe
quel utilisateur qui se connecte à Internet par un commun accès à haut-débit puisse jouer le rôle
de la source. L’application devrait ensuite être facile à configurer et à utiliser, de sorte que les
utilisateurs occasionnels ne soient pas découragés a participer. Il est important de souligner que,
dans un système où le contenu est généré par les utilisateurs, la simplicité d’accès est l’un des
facteurs clé qui participe énormément au succès et à la valeur de l’application pour les usagers.

9.1.2 Contributions

Cette thèse apporte plusieurs contributions. En premier lieu, elle aborde le problème dustream-
ing live d’un point de vue pratique. Les exigences des applications P2P pour le streaming live
à grande échelle sont présentées et discutées à partir de laliste des défisénumérés ci-dessus, en
considérant les limitations techniques de la technologie Internet actuelle et leur probable évo-
lution dans le futur immédiat. Une étude détaillée de l’étatde l’art du streaming live P2P est
ensuite proposée, dont l’objectif est d’évaluer les architectures pour le existantes par rapport à
leur capacité de supporter un déploiement à grande échelle sur l’Internet. Notre avis à propos
des propriétés désirables des systèmes qui aident à réaliser cet objectif est également présenté.

La deuxième contribution est laconception de PULSE, un système P2P pour le streaming live
qui satisfait aux propriétés précédentes. PULSE est l’un des premiers systèmes qui est basé

9.1. INTRODUCTION 175

sur un réseau maillé non structuré, et introduit un mécanisme basé sur l’incitation (incentive-
based) pour la sélection des nœuds voisins. En exploitant le regroupement spontané des nœuds
selon la disponibilité de ressources (qui apparaît en raison des mécanismes d’incitation) et en
profitant de la faible synchronisation entre pairs (à l’aided’une boucle de rétroaction basée sur
les performances de réception), PULSE est capable de fonctionner dans une large gamme de
scénarios du monde réel. Les avantages de PULSE sur les systèmes actuels peuvent être résumées
ainsi:

• Support pour de hauts niveaux dechurn(nœuds qui arrivent et quittent le système)

• Support pour des distributions de ressources (et notammentde bande passante remontante)
très hétérogènes parmi les pairs

• Utilisation efficiente des ressources du système, en particulier en cas de pénurie

• Capacité de s’adapter rapidement aux changements soudainsdans les conditions du réseau
et du système

• Adaptation implicite à la topologie du réseau en utilisant des mesures de localité

• Attention à la qualité de la reproduction du flux chez l’usager, avec le but de minimiser la
dégradation causée par la variation des conditions dans le système au fil du temps

La troisième contribution est unensemble d’outils d’évaluationempirique pour les systèmes
de streaming live P2P non-structures (data-driven), avec d’autres outils qui permettent d’évaluer
la présence de ressources dans le système et la qualité de l’adaptation à la topologie du réseau
sous-jacent par des systèmes adaptatifs comme PULSE. Une courte digression sur les techniques
qui sont actuellement utilisées pour décrire le comportement des systèmes data-driven, couvrant
l’état de l’art des modèles théoriques et des méthodes empiriques, est également incluse.

La quatrième contribution est la réalisation d’unsimulateur qui modélise le comportement
complexe d’un système PULSE. Ensuite, en nous basant sur lesconnaissances acquises par
l’expérimentation par simulation, on a également implémenté unprototype software de nœud
PULSE. Ces logiciels ont été utilisés pour améliorer notre compréhension du comportement
global de PULSE quand le système opère sous une variété de scénarios de distribution de ressources,
d’arrivées et départs des nœuds, et de conditions de réseau.

La cinquième et dernière contribution estl’analyse qualitative et quantitative de PULSEbasée
sur les résultats de simulation et d’émulation. Nous avons vérifié d’abord que les algorithmes
de PULSE opèrent comme prévu, et ensuite évalué leur performance dans un large éventail de
scénarios “critiques” où les systèmes P2P structurés présents dans la littérature ne seraient pas en
mesure de fonctionner. Nous avons concentré notre attention sur l’étude de la qualité de l’overlay
maillé généré par PULSE, en fonction de la disponibilité de ressources dans le système et de la
distribution de la latence du réseau, et sur l’analyse des caractéristiques moyennes des chemins
que les données empruntent dans leur trajet de la source aux nœuds récepteurs.

176 CHAPTER 9. SYNTHÈSE EN FRANÇAIS

9.2 PULSE et ses algorithmes

PULSE est un système de distribution de flux multimédias en direct qui utilise un mécanisme
innovant pour l’adaptation de l’overlay à la disponibilitéréelle de ressources dans le système. Le
nom PULSE est un acronyme (en anglais) pour “P2P Unstructured Live Streaming Experiment”.

9.2.1 Objectifs

L’objectif concret du système PULSE est de permettreà tout hôteconnecté à l’Internet de dis-
tribuer des flux multimédia en direct et/ou de recevoir des flux publies par d’autres hôtes. Les
défis techniques de ce scénario applicatif sont les suivants:

• Tout hôtesignifie qu’il n’y aaucune garantie sur la stabilitédes nœuds PULSE. Plusieurs
raisons pratiques nous incitent à considérer les pairs comme instables, et qui rendent néces-
saire la conception d’un système qui tolère les défaillances: les hôtes Internet sont en
général peu fiables, car ils peuvent planter ou mal-fonctionner à cause de bogues logiciels
ou des actions des utilisateurs; ensuite, un nœud P2P est un logiciel qui peut être activé
et arrêté par l’utilisateur à tout moment; enfin, les utilisateurs d’un système live streaming
doivent pouvoir interagir avec l’application, par exemplepour faire du “zapping” ou pour
s’associer à une autre session de streaming, ce qui peut se produire de manière imprévisi-
ble. Nous allons donc supposer que ladurée de vie moyenned’un nœud dans le système
esttrès courte, dans l’ordre de plusieurs centaines de secondes.

• Tout hôtesignifie qu’il n’y aaucune garantie sur la présence de ressources(notamment
en bande passante remontante), ni chez les nœuds prenant part à une session de streaming,
ni chez la source. Encore une fois pour des raisons pratiques, nous ne voulonspas nous
limiter à considérer des scénarios optimistes où tous les nœuds disposent de ressources
suffisantes pour recevoir et reproduire au moins une fois le flux: aujourd’hui, alors que
la bande passante descendante des accès Internet ADSL commerciaux est désormais suff-
isante pour obtenir une qualité comparable à la télévision (flux vidéo à partir 500 Kbit/s),
la bande passante remontante est souvent beaucoup plus faible, et généralement inférieure
à 500 Kbps. Bien que la vitesse moyenne d’accès à Internet (montante aussi bien que
descendante) n’ait cessé d’augmenter pendant les dix dernières années, et bien que cette
tendance soit destinée a continuer dans le futur, on remarque aussi une augmentation par-
allèle de la qualité vidéo et du débit [57]. Par conséquent, dans une perspective à moyen
terme, nous continuons de penser que le goulot d’étranglement pour la majorité des nœuds
sera toujours situé au niveau de la liaison remontante.

• Tout hôtesignifie qu’il n’y aaucun mécanisme centralisé de contrôle d’accèsqui puisse
vérifier les performances d’un nœud et décider s’il faut autoriser ou refuser son accès
au système. Cependant, chaque nœud sera libre d’accéder au système, mais pour que le
fonctionnement soit garanti le système dans son ensemble doit se charger de l’équilibrage

9.2. PULSE ET SES ALGORITHMES 177

de la charge et de la répartition des ressources disponibles. Le système devra donc travailler
enmodalité “best-effort” , favorisant une dégradation graduelle des performances encas
de pénurie généralisée de ressources.

Tel est l’environnement dans lequel notre système est censéopérer: un environnement très dy-
namique, avec des nœuds qui arrivent et partent sans cesse (churn), avec des pics d’arrivées
et de départs importants (flash-crowds), où les noeuds ont un lien d’accès asymétrique, où la
bande passante remontante disponible aux nœuds n’est pas uniforme mais largement variable (et
souvent bien inférieure à la bande passante du flux), où les nœuds sont considérés comme non-
coopératifs par défaut. Un autre contrainte que nous voulons introduire (peut-être moins critique
pour l’application en elle-même, mais dont l’impact sur la conception globale du système est
très fort), c’est le fait que les algorithmes et le code de PULSE devraient être rendus publiques
et pourraient être modifies par les usagers (p. ex. comme le logiciel Bit-Torrent, dont plusieurs
implémentations avec d’importantes différences sont disponibles).

9.2.2 Principes et innovations

L’intuition initiale qui a motivé notre travail sur PULSE est qu’il il est possible organiser les
membres d’une session de streaming en direct d’une meilleure façon qu’en utilisant des arbres
figés: "si nous acceptions de briser cette structure rigide,il serait peut-être possible d’utiliser
davantage les informations localement disponibles afin d’optimiser l’overlay pour la distribution
des données”. Ce genre d’optimisation n’est pas envisageable avec des arbres traditionnels, car
le mantien de leur structure rend tout changement dans l’organisation des nœuds très coûteux.

Aussi, l’asymétrie entre les bandes passantes en upload et download et la pénurie de bande pas-
sante remontante (due aux limitations techniques et / ou à ladécision explicite par l’usager de ne
pas contribuer ses ressources) constituent un problème fondamental qui doit être pris en compte
dès le début, même avant de définir la façon dont les nœuds peuvent interagir et choisir leurs
partenaires: en effet, un système dans lequel la coopération entre les utilisateurs et la disponi-
bilité de ressources sont postulées a priori et non pas activement poursuivies ne pourrait guère
fonctionner dans un environnement tel que l’Internet.

Enfin, nous devons prendre acte du fait que le churn est une propriété intrinsèque au streaming en
direct: les utilisateurs peuvent arriver, partir, changerd’une chaîne de streaming à une autre, et
même “zapper” rapidement à travers de plusieurs chaînes. L’utilisation d’un overlay statique et
figé, qui doit être réparé activement en réponse à tout changement généré par l’activité ordinaire
des usagers du système, nous paraissait comme un choix inapproprié, beaucoup moins efficace
que de renoncer à la notion classique d’overlay qui était omniprésent dans la littérature.

Ces intuitions nous ont motivés à consacrer nos efforts sur un système non-structuré (data-
driven), dynamique et utilisant des mécanismes d’incitation au partage. Cependant, on a introduit
depuis le début du projet PULSE en 2004 [84] plusieurs innovations par rapport à l’état de l’art:

178 CHAPTER 9. SYNTHÈSE EN FRANÇAIS

• L’utilisation d’unoverlay maillé non-structuré dans un système de streaming live, prenant
les distances d’une approche basée sur les arbres (simples ou multiples) qui était consid-
érée comme la seule viable. Les premiers études publiés avecdes résultats en support des
systèmes non-structurés ont été DONET / Coolstreaming [122] (2005) et Chainsaw [81]
(2005).

• Le choix délibéré - opéré à tous les niveaux - d’uneorganisation dynamique de l’overlay.
Ce choix a de très profondes répercussions sur le comportement d’un système en présence
de churn. Les systèmes structurés considèrent les départs des nœuds comme des événe-
ments exceptionnels, et doivent effectuer des opérationsextraordinairespour ramener le
système dans un nouvel état stable. Un système dynamique, d’autre part, implique qu’une
certaine quantité de départs et d’instabilité sera toujours présente même en un régime de
fonctionnement normal: les algorithmes contribuent aussià augmenter le caractère aléa-
toire, et sont paradoxalement en mesure de l’exploiter pouraméliorer la stabilité générale
du système. Le premier système publié (à notre connaissance) qui prend en compte le dy-
namisme produit par le churn comme un aspect du fonctionnement ordinaire du système a
été Chunkyspread [113][112](2006).

• L’utilisation demesures incitatives pour décourager le freeloading. Alors que les sys-
tèmes basés sur des régimes d’incitation ont reçu beaucoup d’attention ces dernières an-
nées, principalement attribuable au succès du système de distribution de contenus BitTor-
rent [33], l’application de mesures incitatives contre le freeloading dans le contexte du
streaming live a été lente et pas très réussie. Plusieurs systèmes ont été conçus qui incluent
quelque sorte de mécanisme d’incitation: par exemple, [89](2004) décrit une architecture
multiple-tree où un schéma de tit-for-tat a été mis en œuvre pour prévenir le freeloading.
Le problème principal de cet approche est que, puisque les échanges entre nœuds organ-
isés en plusieurs arbres disjoints ne peuvent pas être toujours réciproques, il demande la
présence d’un système extérieur (décentralisé!) qui tienne la comptabilité des crédits et
des dettes de tous les nœuds du système: cela ajoute une ulterieure couche de complexité
au dessus d’un système de streaming.

• L’utilisation demesures d’incitation à la contribution des ressourcespar les utilisateurs
du système. Le plus souvent, lorsque les mesures d’incitation ont été mises en œuvre, leur
objectif était de prévenir le freeloading en sanctionnant les nœuds qui contribuent moins
que leur quota prévue. Ce n’est que assez récemment, dans [107] (2006), un système
multi-arbre est décrit où les nœuds sont autorisés à adhérerà un certain nombre d’arbres
qui est proportionnel à leur contribution de bande passante, tandis que les ressources en
excès sont allouées à l’ensemble des pairs sans restrictions. Un autre système à arbre
multiple, CROSSFLUX [97] (2006), utilise des mécanismes d’incitation pour créer un
nombre variable de connexions de backup: les pairs qui contribuent leur juste quantité de
ressources sont récompensés par une meilleure protection contre le churn. Dans le contexte
des systèmes non structurés, Chunkyspread [112] (2006) prévoit la possibilité d’utiliser des
incitations pour biaiser la procédure de sélection des voisins en la faveur des nœuds qui
contribuent davantage.

9.2. PULSE ET SES ALGORITHMES 179

• L’utilisation d’uneboucle de rétroactionbasée surl’état présent du progrès de la dis-
tribution des donnéeset surdes incitations localespour obtenir à la fois une adaptation
dynamique à l’hétérogeneité des capacités d’upload et à la topologie du réseau. L’approche
que nous proposons dans PULSE vise à exploiter les propriétés d’un réseau sous-jacent où
les ressources sont inégalement réparties: lorsqu’ils sont placés à proximité de la source,
les nœuds capables de contribuer de la capacité en excès peuvent réduire considérable-
ment le retard de reception (lag) perçu dans l’ensemble du système, comme si la capacité
de service de la source était plus grande que ce qu’elle n’estréellement. D’autre part, les
nœuds qui contribuent moins que le débit du flux seront toujours en mesure de participer
à la session de streaming. C’est le mécanisme essentiel qui rend la topologie de PULSE
adaptative à la distribution des ressources dans le réseau.Aucun des autres systèmes dans
la littérature n’utilise à présent cette technique.

Contextuellement à la définition de l’architecture de PULSE, nous avons également introduit une
série de techniques de mesure basées sur des paramètres telsque le lag des buffers des nœuds
(décrites dans le 4èmeChapitre) afin dei) permettre aux nœuds l’acquisition d’informations à
propos de l’état de leurs voisins etii) pouvoir analyser et décrire de façon synthetique l’état
global d’un système de streaming live. L’utilisation de techniques similaires à celles qu’on a
dévisé a paru pour la première fois dans une étude sur les performances de PPlive [55] en 2006.

9.2.3 Fonctionnement du système

Les nœuds rejoignent le système en contactant un nœud quelconque qui fait déjà partie de la ses-
sion PULSE. La façon dont cette information est obtenue peutêtre adaptée selon les exigences
de l’application: à présent, le point d’entrée du système est spécifié dans le fichier de configura-
tion de chaque session PULSE (fichier.pulse, dont la fonction et le contenu sont similaires aux
fichiers.torrentde BitTorrent).

Control Plane Les nœuds échangent deux types de messages, appelés RED et BLUE. Les
messages BLUE contiennent des informations sommaires sur la disponibilité de données chez
un nœud sous la forme de l’intervalle de lag des extremités deson buffer de reception. Les
messages RED contiennent une description détaillée du contenu d’une partie du buffer de chaque
noeud (laTrading Window, voir le Chapitre 4, Fig. 3.1) qui est encodée sous forme de bitmap.
Suivant la quantité d’information disponible au sujet des nœuds voisins, ceux-ci sont organisés
dans deux listes (Blue Knowledge List, Red Knowledge List). Les nœuds qui font partie de la
Red Knowledge Listpeuvent être choisis pour effectuer des échanges de données.

Data Plane Les échanges de données entre nœuds sont déterminés par deuxalgorithmes fon-
damentaux: l’algorithme de selection des nœuds (peer selection) et l’algorithme de selection des
pièces (chunk selection). Sans trop déscendre dans les détails, la selection des nœuds est basée

180 CHAPTER 9. SYNTHÈSE EN FRANÇAIS

sur des critères de rétribution (incentives) et sur la disponibilité de pièces utiles (chunk availabil-
ity). Les deux mécanismes principaux pour le choix des nœuds sont la MISSING selection, qui
permet les échanges réciproques entre nœuds partageant un interêt pour une même sequence de
pièces du stream, et laFORWARD selection, qui permet l’exercice de l’altruisme entre nœuds qui
ne partagent pas d’interêt réciproque. Le critère de selection des pièces est basé sur la rareté des
chunks parmi les voisins de laRed Knowledge Listde chaque nœud: périodiquement, tous les
pairs envoient des requêtes pour un ou plusieurs chunks à leur voisins utilisant un critèrerarest-
first; ensuite, les nœuds qui reçoivent les requêtes choisissentquels chunks seront envoyés à quel
voisin, utilisant un critèreleast-sent-firstqui vise à rendre homogène la réplication des chunks
(evitant, par example, que les chunks les plus rares soient envoyés trop souvent par un même
nœud à dépit des autres chunks).

9.2.4 Implémentation

Une première version fonctionnelle du prototype du nœud PULSE a été mise au point pendant
l’été 2006 avec l’aide de Diego Perino, qui a écrit un compte rendu détaillé de son activité dans
son rapport de stage [82]. Le noeud a été mis en œuvre prenant comme référence le code du sim-
ulateur PULSE pour les algorithmes d’échange de données, tandis que la plupart des structures
de données ont dû être adaptées et l’interface au réseau a dû être implementée. L’organisation
interne du nœud est décrite dans le 3ème chapitre.

Le prototype du nœud PULSE est écrit en Python, un langage de programmation et scripting
orienté-objet qui est bien adaptée pour développer rapidement des applications simples. L’un
des principaux avantages d’utiliser Python pour notre logiciel est la disponibilité du frame-
work Twisted, qui offre plusieurs fonctions de bas niveau utiles pour une application de réseau
(accès au sockets en multiplexing, gestion des buffers entre application et réseau, etc.). Le
prototype utilise également d’autres modules externes, notamment un wrapper Python pour
l’implémentation des codes FEC Reed-Solomon en C++ crée parLuigi Rizzo [93]. En outre,
le nœud PULSE intègre une implémentation du protocole SCAMPtel qu’il est défini dans [47]
(à l’exception du mécanisme d’indirection). Quelques autres modifications mineures (comme un
champ ID de message) ont été nécessaires pour limiter l’envoi de messages redondants dans des
déployements de petite taille, où l’utilisation derandom walksde longueur variable (avec des
critères de terminaison probabilistes) produisait une grande quantité de trafic réseau à chaque
fois qu’un nouveau nœud se joignait à une session PULSE.

Le nœud PULSE utilise deux sockets dans son fonctionnement:un socket TCP pour les transferts
de données et un socket UDP pour l’échange de messages de contrôle (RED et BLUE). Le
choix des connexions TCP pour les transferts de données est motivé par le besoin de fiabilité
(reliability), car les données des chunks vidéo s’étalent typiquement sur plusieurs datagrammes
IP, ce qui rend le protocole de transport UDP non approprié à la tâche. PULSE peut en effet
utiliser des tailles de chunks assez larges, et des débits degénération assez faibles, grâce aux
contraintes de temps moins strictes du streaming live par rapport à la distribution interactive de la
vidéo. Par exemple, la taille typique d’un chunk pourra aller de quelques à plusieurs dizaines de

9.3. ÉVALUATION 181

kilo-octets, alors que des débits raisonnables vont de 2 à 16chunks (environ) par seconde. Nous
rappelons que, une fois le débit fixé, la taille des chunks dépend du débit du stream diffusé et peut
donc changer d’une session PULSE à l’autre. L’utilisation d’UDP pour les messages de contrôle
est motivée par le fait que la perte occasionale de ces messages est tolérable et n’impacte pas le
fonctionnement du système. La taille des messages de contrôle UDP dépend principalement du
nombre de chunks dans la Trading Window du buffer (qui détermine la taille de la bitmap), et est
généralement inférieure à 100 octets.

9.3 Évaluation

La partie la plus importante de cette thèse est dédiée à l’évaluation du comportement du système
PULSE. Tout d’abord, le premier problème auquel nous avons été confrontés a été le manque
d’un cadre théorique bien défini pour l’évaluation des overlays non-structurés. Le Chapitre 5
contient une analyse des caracteristiques des systèmes data-driven et propose une série demetrics
qui peuvent être utilisés dans un cas général. Ensuite, nousélaborons des metrics originales pour
étudier spécifiquement PULSE, qui permettent de mettre en relation la présence de ressources
aux nœuds avec leur comportement et leur performance de de réception du flux.

Le deuxième problème à affronter était la question fondamentale: est-ce que les algorithmes de
PULSE peuvent réellement fonctionner? Et, dans ce cas, quelles sont les propriétés globales du
système? Pour repondre à ces questions, nous avons choisi demettre en œuvre une analyse basée
sur la simulation et sur l’émulation d’un réseau PULSE. Le Chapitre 6 contient la description
des methodes de simulation utilisées, leurs limitations etavantages, ainsi que les résultats de
simulation que nous avons obtenu. Ensuite, le Chapitre 7 décrit les deployements expérimentaux
du prototype de nœud PULSE que nous avons réalisés en utilisant des testbeds à large échelle
comme Grid’5000 [3] et PlanetLab [5].

9.3.1 Propriétés des systèmes non-structurés

D’un point de vue analytique, les systèmes data-driven sontplus difficiles à décrire et à évaluer
que les systèmes structurés classiques. Les raisons sont les suivantes:

1. Les données ne suivent pas le même chemin sur l’overlay, nila trajectoire d’un morceau de
données est prévisible, même avec une connaissance complète de l’état de tous les nœuds
dans le réseau.

2. Des mécanismes locaux de réconciliation des données sontgénéralement utilisés pour
éviter tout risque de duplication redondante. La réconciliation nécessite l’échange d’informations
de contrôle qui décrivent les chunks contenus dans le bufferde chaque noeud. Tenir en
compte l’état de la connaissance que chaque nœud a du reste dusystème pour expliquer
les décisions que les nœuds prennent est très difficile si on veut observer le réseau d’une
perspective globale.

182 CHAPTER 9. SYNTHÈSE EN FRANÇAIS

3. Les connexions ouvertes entre les nœuds peuvent transporter seulement des messages de
contrôle, ou bien soit les données soit les informations de contrôle. L’existence d’une
connexion entre deux nœuds n’implique donc pas que des données soient régulièrement
échangées dans les deux sens.

4. L’overlay évolue au fil du temps puisque les liens qui le constituent sont renégociés locale-
ment parmi les nœuds.

PULSE possède toutes les propriétés d’un système data-driven. En plus, la topologie de son
overlay évolue très rapidement et de façon chaotique dans letemps, puisque elle est influencée
par la rétroaction (feedback) basée sur l’état des échanges de données entre nœuds. Ce fait nous
a poussé à utiliser un approche empirique (plutôt que théorique) dans l’étude des systèmes data-
driven et de PULSE.

9.3.2 Simulation

La simulation des algorithmes de PULSE a été la première étape de notre analyse. Après avoir
décidé d’implementer un simulateur ’maison’ pour décrire le système avec un niveau de détail
approprié (le raisons de ce choix sont expliquées dans le Chapitre 4), on a opté pour une approche
utilisant une division du temps en unités discrètes (time-slotsousimulation steps).

Pour simplifier les choses, on a introduit une synchronisation partielle des transferts de données
dans l’ensemble du système, afin qu’ils respectent toujoursles limites temporelles d’unstepde
simulation. Cela peut être implementé (comme dans notre cas) en limitant le nombre total de
morceaux qu’un nœud peut générer au cours de chaque time-slot. Le montant de bande passante
en upload / download détermine ainsi le nombre dedata chunksqui peuvent être échangés. Avec
cette technique, nous pouvons être sûrs que tous les transferts de chunks seront achevés avec
un délai maximal d’un time-step (si la capacité totale est utilisée) ou avant la fin du step (si la
capacité n’est pas epuisée), mais en aucun cas après cette limite.

La simplification ci-dessus nous amène vers le concept debandwidth slot, qui constitue l’unité
de mesure pratique pour représenter les transferts de données dans notre modèle. Unband-
width slotest défini comme la quantité de bande passante nécessaire pour transmettre un chunk
dans un time-slot. Les capacités des nœuds peuvent alors être définies en termes de multiples de
bandwidth slots: cette quantisation de la bande passante peut approximer assez bien le comporte-
ment typique de TCP en cas de congestion au niveu du bord du réseau, car la capacité d’upload
disponible est partagée équitablement par tous les transferts de chunks qui se déroulent au même
temps.

Au sujet des latences de propagation introduites par le réseau, la durée relativement large que
nous avons choisie pour notre time-step a des effets positifs. Si nous considérons les valeurs
typiques de latence entre deux nœuds mesurée sur l’Internet, qui vont de quelques dizaines à
quelques centaines de millisecondes, nous pouvons approximer par excès le délai nécessaire pour
qu’un message parvienne à un autre nœud avec la durée d’un seul step. Cette possibilité simplifie

9.3. ÉVALUATION 183

le modele d’échange des messages de contrôle, qui sont assezcourts (quelques dizaines d’octets),
et dont le délai de transfert est dominé par la latence. Représenter la latence de réseau par un
délai constant d’un seul time-step nous aide à mieux comprendre l’évolution de l’état interne
du système, puisque les changements d’état induits par les messages de contrôle prennent effect
avec un retard uniforme.

Les choix que nous avons faits lors de la définition de notre modèle du système PULSE cherchent
à produire une description simplifiée mais fidèle de la dynamique interne et du comportement
global du système à l’état d’équilibre. Il y a évidemment deslimites entrainées par ce compro-
mis entre simplicité et fidélité sur la portée des résultats qu’on peut obtenir en utilisant notre
approche: ces limites sont examinées en détail dans la Section 6.1.

9.3.3 Émulation sur large échelle

La deuxième étape de notre analyse nous a amenés à valider lesresultats produits par les simu-
lations en réalisant l’émulation d’un système PULSE dans unenvironnement contrôlé. Utilisant
le nœud prototype sur des testbeds à large échelle, on a pu largement confirmer que le com-
portement global d’un système “réel” est bien représenté par le modèle que notre simulateur
implémente.

Après la phase de validation, on a mis en œuvre un déployementde moyenne échelle sur Plan-
etLab, un testbed composé de machines connectées à Internetlocalisées dans le monde entier:
ces conditions sont assez répresentatives de l’environnement réel qu’une application distribuée
rencontre lors de son déploiement. Ce testbed nous a permis d’apprécier de façon préliminaire
l’impact sur le comportement de PULSE dû à la présence d’une latence non uniforme entre les
nœuds. On a aussi confirmé que l’utilisation de la latence en tant que critère sécondaire pour la
peer selectionpeut avoir un rôle important dans l’optimisation de la qualité globale de l’overlay.

9.3.4 Résultats de l’évaluation

Nous avons évalué le comportement du système PULSE dans un grand nombre de scenarios, en
observant les effets du changement des paramètres suivantes (parmi les autres):

• Disponibilité totale de bande passante dans le système par rapport à la demande des nœuds.
Ce paramètre, introduit en [27], est connu sous le nom deResource Index(abregé enRI)
et permet de quantifier la présence de ressources en excès.

• Distribution de la bande passante en upload des nœuds. Nous avons utilisé des scénarios
avec un nombre variable de “classes” de bande passante, avecune distribution des capacités
d’accès plus ou moins hétérogène.

• Taille du système et arrivées / départs de nœuds intempestifs (churn)

184 CHAPTER 9. SYNTHÈSE EN FRANÇAIS

Les résultats des simulations nous ont permis d’apprécier les phénomènes suivants:

1. Le système réjoint rapidement un équilibre stable en présence de valeurs deRI > 1, même
si l’excès de bande passante est assez faible et/ou en présence d’hétérogénéité.

2. La valeur deRI détermine les performances du système après convergence. En présence
de ressources en excès, la distance moyenne en hops des nœudspar rapport à la source est
réduite, avec un gain en termes de délai moyen de réception des chunks (node lag).

3. Les nœuds qui appartiennent à des classes de bande passante différentes s’attestent sur des
positions différentes dans l’overlay: une corrélation très forte est présente entre proximité
à la source et disponibilité d’upload, avec les nœuds les plus “riches” placés en moyenne
plus près que les “pauvres”. Cette corrélation tend à faiblir avec l’augmentation de la
valeur deRI.

4. La présence d’hétérogénéité résulte en un overlay plus compacte, c’est à dire où les nœuds
ont une distance moyenne de la source inférieure, par rapport à un scénario homogène avec
le mêmeRI.

5. La dépendence entre la taille du système et lenode lagmoyen de ses participants est
logarithmique, à condition que la disponibilité de ressources soit suffisante (toujoursRI >
1, les scénarios homogènes démandant un surplus de ressources légèrement plus élévé).

6. Le système offre une très bonne résilience aux changements soudains (départs et arrivées
de nœuds), même quand ces changements intéressent une largepartie des nœuds présents.

On a ensuite analysé attentivement les trajectoires des chunks à l’intérieur du système et la contri-
bution de chacun des différents aspects des algorithmes de sélection des nœuds voisins (Chapitre
6). Les points suivants offrent une synthèse des résultats acquis au cours de notre travail sur
PULSE:

Le tit-for-tat est efficace pour optimiser la réception Nos résultats confirment que l’utilisation
d’un mécanisme d’incitation réciproque tel que le tit-for tat, combiné à une rétroaction basée sur
les performances de réception (node lag), fournit un mécanisme puissant pour l’optimisation de
la qualité de l’overlay. Sans aucune connaissancea priori quant à la disponibilité de ressources
des autres noeuds, et en dépit de la courte durée moyenne des intéractions entre nœuds, chaque
peer atteint et maintient une position assez stable à l’intérieur du système, ce qui détermine à son
tour la réception régulière du flux de données. L’analyse deschemins de distribution des données
dans le système à l’équilibre indique que les nœuds des classes les plus “riches” en bande pas-
sante ont une haute chance d’être traversés très tôt au coursde la distribution de chaque chunk.

9.4. CONCLUSIONS 185

Le node lag est efficace comme mécanisme de discriminationSi l’on étudie un système
PULSE en pénurie de ressources, on constate que les nœuds quicontribuent le plus ne souffrent
que très peu souvent de la dégradation des performances. Notre conclusion est que l’utilisation
du node lagdes voisins en tant que facteur discriminant pour la sélection des nœuds avec qui
coopérer permet au système de résister à l’influence negative du freeloading(contribution de
ressources nulle ou inférieure au débit du flux).

L’altruisme a un rôle essentiel La présence d’altruisme a clairement une grande importance,
car il peut améliorer l’efficace de l’incitation par rapportà l’usage d’un mécanisme de “tit-for-tat
pur”. Nos simulations montrent que, par l’ajout de juste quelques connexions vers des nœuds
qui ne seraient autrement pas choisis en base au critère “tit-for-tat pur”, les performances et
la stabilité globale du système s’améliorent de manière remarquable. La meilleure utilisation
de l’upload assurée par l’altruisme favorise une diffusionplus rapide des chunks au niveau des
toutes premières duplications (qui sont effectuées, on le rappelle, par le nœuds les plus riches en
ressources). Le résultat global de l’altruisme est une réduction généralisée du délai de réception.

9.4 Conclusions

Les resultats offerts par PULSE montrent que un choix approprié des politiques de sélection de
nœuds voisins permet la création d’overlays adaptatifs et dynamiques, capables de fournir un
service best-effort dans un large éventail de scénarios. Les conclusions qu’on a pu tirer de notre
travail d’analyse empirique nous ont permis de mieux comprendre les avantages des overlays
data-driven, qui se revèlent formidables dans le cas d’applications destinées à fonctionner dans
des environnements réels avec des conditions aléatoires etnon maîtrisables et des nœudsa priori
non cooperatifs.

Notre méthode, qui propose l’utilisation combinée d’incitations réciproques et d’une boucle de
rétroaction basée sur le délai moyen de réception, s’est révelée adéquate par rapport à notre but
initial: définir une architecture pour un système de streaming live pouvant opérer sur Internet à
une échelle globale. Nous souhaitons que le résultats que nous avons obtenu puissent alimenter
l’activité de recherche dans le domaine de la distribution de contenus, surtout pour ce qui con-
cerne l’atteinte de l’efficacité optimale et le support d’environnements non-cooperatifs.

186 CHAPTER 9. SYNTHÈSE EN FRANÇAIS

Bibliography

[1] Directive 2001/29/EC of the european parliament and of the council of 22 may 2001 on the
harmonisation of certain aspects of copyright and related rights in the information society.

[2] Electronic Frountier Foundation - list of lawsuits against P2P users and service providers
- http://www.eff.org/issues/file-sharing.

[3] Grid’5000 - grid platform testbed - http://www.grid5000.org.

[4] Loi n. 2006-961 du 1er août 2006 relative au droit d’auteur et aux droits voisins dans la
société de l’information. J.O. n. 178 du 3 août 2006 page 11529.

[5] PlanetLab - http://www.planet-lab.org/.

[6] The Trusted Computing Group - https://www.trustedcomputinggroup.org/.

[7] USA H.R. 2281, DMCA (digital millenium copyright act), oct. 20, 1998.

[8] E. Adar and B. Huberman. Free riding on Gnutella. Technical report, Xerox PARC, 10
Aug. 2000, Aug 2000. First Monday, 5(10), Oct 2000.

[9] A. Ali, A. Mathur, and H. Zhang. Measurement of commercial peer-to-peer live video
streaming. InProceedings of 1st Workshop in Recent Advances in Peer-to-Peer Streaming,
August 2006.

[10] S. Annapureddy, C. Gkantsidis, and P. Rodriguez. Providing video-on-demand using peer-
to-peer networks. InInternet Protocol TeleVision (IPTV) workshop in conjunction with
WWW ’06, May 2006.

[11] R. Axelrod.The Evolution of Cooperation. Basic Books, New York, USA, 1984.

[12] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast.
In Proceedings of the 2002 ACM SIGCOMM Conference, Aug. 2002.

[13] S. Banerjee, T. G. Griffin, and M. Pias. The interdomain connectivity of PlanetLab nodes.
In Proceedings of PAM, Antibes Juan-les-Pins, France, April 2004.

187

188 BIBLIOGRAPHY

[14] M. Bawa, H. Deshpande, and H. Garcia-Molina. Transience of peers and streaming media.
In HotNets-I, Princeton, NJ, USA, pages 107–112, 2002.

[15] Berkeley/LNBL/ISI. The NS-2 network simulator. http://www.isi.edu/nsnam/ns/, 1989-.

[16] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, and H. Zhang. The impact of hetero-
geneous bandwidth constraints on DHT-based multicast protocols. InProceedings of the
4th International Workshop on Peer-to-Peer Systems, February 2005, 2005.

[17] E. W. Biersack. Where is multicast today?SIGCOMM Comput. Commun. Rev., 35(5):83–
84, 2005.

[18] A. Brampton, A. Macquire, I. A. Rai, N. Race, L. Mathy, and M. Fry. Characterising user
interactivity for sports video-on-demand. InProc. of the 17th International Workshop on
Network and Operating Systems Support for Digital Audio andVideo, (NOSSDAV 2007),
Urbana-Champaign, IL, USA, June 2007.

[19] C. Buragohain, D. Agrawal, and S. Suri. A game theoreticframework for incentives in
P2P systems. InProceedings of the Third IEEE International Conference on Peer-to-Peer
Computing (P2P 2003), 2003.

[20] D. Carra, R. L. Cigno, and E. W. Biersack. Fast stochastic exploration of p2p file distri-
bution archite ctures. InProc. IEEE GLOBECOM’06, San Francisco, USA, Nov. 2006.

[21] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-
stream: High-bandwidth multicast in cooperative environments. In Proceedings of
IPTPS’03, February 2003.

[22] A. Chaintreau, F. Baccelli, and C. Diot. Impact of TCP-like congestion control on the
throughput of multicast groups.IEEE/ACM Trans. Netw., 10(4):500–512, 2002.

[23] B. Chang, Y. Shi, and N. Zhang. Refine DONet’s overlay with network distance esti-
mation. InProc. of the First Workshop on Recent Advances in Peer-to-Peer Streaming
(WRAIPS 2006), Waterloo, Canada, August 2006.

[24] Y. Chawathe. Scattercast: an adaptable broadcast distribution framework. Multimedia
Syst., 9(1):104–118, 2003.

[25] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: reliablemulticast for heterogeneous
networks. InProceedings of IEEE INFOCOM’00, Tel Aviv, Israel, pages 795–804, March
2000.

[26] S. Cheshire. Latency and the quest for interactivity. White paper commissioned by Volpe
Welty Asset Management, L.L.C., for the Synchronous Person-to-Person Interactive Com-
puting Environments Meeting, San Francisco, November 1996.

BIBLIOGRAPHY 189

[27] Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai, J. Zhan, and H. Zhang.
Early experience with an internet broadcast system based onoverlay multicast. InUSENIX
Annual Technical Conference, General Track, pages 155–170, 2004.

[28] Y. H. Chu, J. Chuang, and H. Zhang. A case for taxation in peer-to-peer streaming broad-
cast. InProc. of the ACM SIGCOMM workshop on Practice and theory of Incentives in
Networked Systems (PINS’04), Portland, OR, USA, 2004.

[29] Y. H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for endsystem multicast.
20(8):1456–1471, Oct. 2002.

[30] Y. H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. InProceedings of
ACM Sigmetrics’00, Santa Clara, CA, pages 1–12, June 2000.

[31] Y.-H. Chu and H. Zhang. Considering altruism in peer-to-peer internet streaming broad-
cast. InProc of the 14th ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’04), Kinsale,County Cork, Ireland, June
2004.

[32] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. InIn Proc. of the ICSI Workshop on Design
Issues in Anonymity and Unobservability, Berkeley, CA, page 46, 2000.

[33] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of the First Workshop
on the Economics of Peer-to-Peer Systems, Berkeley, June 2003.

[34] G. Dán, V. Fodor, and I. Chatzidrossos. On the performance of multiple-tree-based peer-
to-peer live streaming. InProceedings of IEEE INFOCOM’07, Anchorage, Alaska, 2007.

[35] S. E. Deering. Multicast routing in internetworks and extended LANs. InSIGCOMM ’88:
Symposium proceedings on Communications architectures and protocols, pages 55–64,
New York, NY, USA, 1988. ACM Press.

[36] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaminglive media over peers. Tech-
nical report, Tech. Rep. 2001-31, CS Dept., Stanford University, 2001.

[37] P. Dhungel, X. Hei, K. W. Ross, and N. Saxena. The pollution attack in p2p live video
streaming: Measurement results and defenses. InProceedings of the 2nd P2P-TV Work-
shop, in conjunction with ACM SIGCOMM 2007, Kyoto, Japan, 2007.

[38] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment issues
for the IP multicast service and architecture.IEEE Network magazine special issue on
Multicasting, 14(1):78–88, January/February 2000.

[39] J. R. Douceur. The sybil attack. InProceedings of the IPTPS02 Workshop, Cambridge,
MA (USA), 2002.

190 BIBLIOGRAPHY

[40] J. Edmonds. Edge-disjoint branchings.Combinatorial Algorithms, R. Rustin, Ed., pages
91–96, 1972.

[41] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A. M. Kermarrec, and P. Kouznetsov.
Lightweight probabilistic broadcast.ACM Transactions on Computer Systems, 21(4):341–
374, November 2003.

[42] B. Fan, D.-M. Chiu, and J. C. Lui. The delicate tradeoffsin BitTorrent-like file sharing
protocol design. InProc. of the International Conference on Network Protocols(ICNP),
Santa Barbara, USA, 2006.

[43] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. Areliable multicast frame-
work for light-weight sessions and application level framing. IEEE/ACM Transactions on
Networking, 5(6):784–803, Dec. 1997.

[44] P. Francis. Yoid: Extending the internet multicast architecture. Technical report, ACIRI,
April 2000.

[45] A.-T. Gai, D. Lebedev, F. Mathieu, F. de Montgolfier, J. Reynier, and L. Viennot. Acyclic
preference systems in P2P networks. InProceeedings of the 13th European Conference
on Parallel and Distributed Computing (Euro-Par 2007), 2007.

[46] A.-T. Gai and L. Viennot. PrefixStream: a balanced, resilient and incentive peer-to-peer
multicast algorithm. Technical report, Technical Report RR-5514, INRIA Rocquencourt,
March 2005.

[47] A. Ganesh, A. M. Kermarrec, and L. Massoulié. Peer-to-peer membership management
for gossip-based protocols.IEEE Transactions on Computers, 52:139–258, 2003.

[48] A. J. Ganesh, A. M. Kermarrec, and L. Massoulié. SCAMP: peer-to-peer lightweight
membership service for large-scale group communication. In Springer-Verlag, editor,Pro-
ceedings of the Third International COST264 Workshop, pages 44–55, 2001.

[49] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks inpeer-to-peer networks. In
Proceedings of IEEE INFOCOM’04, Hong Kong, 2004.

[50] V. K. Goyal. Multiple description coding: Compressionmeets the network.IEEE Signal
Processing Magazine, 18(5):74–93, September 2001.

[51] C. Grothoff. An excess-based economic model for resource allocation in peer-to-peer
networks.Wirtschaftsinformatik, June, 2003.

[52] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips: Building an
efficient and stable P2P DHT through increased memory and background overhead. In
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03),
2003.

BIBLIOGRAPHY 191

[53] D. Hales and S. Arteconi. SLACER: a self-organizing protocol for coordination in peer-
to-peer networks.Intelligent Systems, IEEE [see also IEEE Intelligent Systems and Their
Applications], 21(2):29–35, 2006.

[54] Q. He, M. Ammar, G. Riley, H. Raj, and R. Fujimoto. Mapping peer behavior to packet-
level details: A framework for packet-level simulation of peer-to-peer systems. InPro-
ceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Sim-
ulation of Computer Telecommunications Systems (MASCOTS’03), Orlando, USA, 2003.

[55] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. Insights into PPLive: a measurement
study of a large-scale P2P IPTV system. InProceedings of IPTV Workshop, International
World Wide Web Conference, 2006.

[56] X. Hei, Y. Liu, and K. Ross. Inferring network-wide quality in P2P live streaming systems.
IEEE JSAC, Special Issue on Advances in P2P Streaming:to be published, 2007.

[57] C. Huang, J. Li, and K. Ross. Can Internet VoD be profitable? InProceedings of ACM
SIGCOMM 2007, Kyoto, Japan, 2007.

[58] C. Huitema. The case for packet level FEC. InProceedings of IFIP 5th Int’l Workshop on
Protocols for High Speed Networks, Sophia Antipolis, France, October 1996.

[59] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole. Overcast:
Reliable multicasting with an overlay network. InProceedings of the Fourth Symposium
on Operating System Design and Implementation (OSDI), pages 197–212, October 2000.

[60] M. Jelásity, A. Montresor, G. P. Jesi, and S. Voulgaris.Peersim peer-to-peer simulator -
http://peersim.sourceforge.net/, 2004.

[61] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos. Is P2P dying or just
hiding? InIEEE Global Telecommunications Conference, volume 3, pages 1532–1538,
2004.

[62] R. Karp, A. Sahay, E. Santos, and K. Schauser. Optimal broadcast and summation problem
in the LogP model. InIn Proc of ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 142– 153, 1993.

[63] J. Keller and G. Simon. SOLIPSIS: a massively multi-participant virtual world. InInter-
national Conference on Parallel and Distributed Techniques and Applications, 2003.

[64] S. Keshav. REAL network simulator - http://www.cs.cornell.edu/skeshav/real/overview.html,
1989-1997.

[65] D. Kostíc, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High bandwidth data dis-
semination using an overlay mesh. InProceedings of ACM SOSP, 2003, 2003.

192 BIBLIOGRAPHY

[66] R. Kumar, Y. Liu, and K. W. Ross. Stochastic fluid theory for P2P streaming systems. In
Proceedings of IEEE INFOCOM’07, Anchorage, Alaska, 2007.

[67] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering and sharing incentives in
BitTorrent systems. InProceedings of ACM SIGMETRICS’2007, San Diego, CA, USA,
June 2007.

[68] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free riding in BitTorrent is cheap. In
Fifth Workshop on Hot Topics in Networks (HotNets-V), Irvine, CA, USA, Nov. 2006.

[69] N. Magharei and R. Rejaie. Understanding mesh-based peer-to-peer streaming. InPro-
ceedings of ACM NOSSDAV’06, Newport, Rhode Island, USA, May 2006.

[70] N. Magharei and R. Rejaie. PRIME: peer-to-peer receiver-driven mesh-based streaming.
In Proceedings of IEEE INFOCOM’07, Anchorage, Alaska, 2007.

[71] N. Magharei, R. Rejaie, and Y. Guo. Mesh or multiple-tree: A comparative study of live
P2P streaming approaches. InProceedings of IEEE INFOCOM’07, Anchorage, Alaska,
2007.

[72] L. Massoulié, A. Twigg, C. Gkantsidis, and P. R. Rodriguez. Randomized decentralized
broadcasting algorithms. InProceedings of IEEE INFOCOM’07, Anchorage, Alaska,
2007.

[73] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-peer information system based
on the XOR metric. InProceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS), pages 53–65, Mar. 2002.

[74] T. Moreton and A. Twigg. Trading in trust, tokens, and stamps. InProc. of the 1st
Workshop on Economics of Peer-to-Peer Systems, 2003.

[75] G. Neglia, G. L. Presti, H. Zhang, and D. Towsley. A network formation game approach
to study BitTorrent Tit-for-Tat. InProceedings of EuroFGI International Conference on
Network Control and Optimization, June 2007.

[76] S. R. Network. SSFNET network simulator - http://www.ssfnet.org/homepage.html, 1999.

[77] T. S. E. Ng and H. Zhang. Predicting internet network distance with coordinates-based
approaches. InProceedings of IEEE INFOCOM’02, New York, NY, USA, pages 170–179,
June 2002.

[78] T. Nguyen and A. Zakhor. Distributed video streaming with forward error correction. In
Proceedings of Packet Video Workshop, Pittsburgh, USA, 2002.

[79] J. Nonnenmacher and E. W. Biersack. Scalable feedback for large groups.IEEE/ACM
Trans. Netw., 7(3):375–386, 1999.

BIBLIOGRAPHY 193

[80] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Distributing streaming media
content using cooperative networking. InProceedings of the 12th International Workshop
on Network and Operating Systems Support for Digital Audio and Video, pages 177–186,
2002.

[81] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr. Chainsaw: Eliminating
trees from overlay multicast. InProceedings of the 4th International Workshop on Peer-
to-Peer Systems, February 2005, 2005.

[82] D. Perino. The PULSE system. A new P2P prototype for livestreaming. Master’s thesis,
Institut Eurecom, Sophia-Antipolis, France, 2006.

[83] R. Peterson and E. G. Sirer. Going beyond tit-for-tat: Designing peer-to-peer protocols for
the common good. InProceedings of the Workshop on Future Directions in Distributed
Computing, Bertinoro, Italy, June 2007.

[84] F. Pianese. P2P live media streaming: Delivering data streams to massive audiences within
strict timing constraints. Master’s thesis, Institut Eurecom, Sophia-Antipolis, France,
2004.

[85] F. Pianese, J. Keller, and E. W. Biersack. PULSE, a flexible P2P live streaming system. In
Proceedings of the 9th IEEE Global Internet Symposium 2006,in conjunction with IEEE
Infocom 2006, Barcelona, Spain, Apr. 2006.

[86] F. Pianese and D. Perino. Resource and locality awareness in an incentive-based P2P live
streaming system. InProceedings of the 2nd P2P-TV Workshop, in conjunction withACM
SIGCOMM 2007, Kyoto, Japan, August 2007.

[87] F. Pianese, D. Perino, J. Keller, and E. W. Biersack. PULSE: an adaptive, incentive-based,
unstructured P2P live streaming system.IEEE Transactions on Multimedia, November
2007. Special Issue on Content Storage and Delivery in Peer-to-Peer Networks.

[88] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, andA. Venkataramani. Do incentives
build robustness in BitTorrent? InProc. of the 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI 2007), Apr. 2007.

[89] J. Pouwelse, J. Taal, R. Lagendijk, D. Epema, and H. Sips. Real-time video delivery using
peer-to-peer bartering networks and multiple descriptioncoding. InProceedings of the
IEEE Int’l Conference on Systems, Man and Cybernetics, October 2004.

[90] D. Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like peer-peer
networks. InProceedings of the 2004 ACM SIGCOMM Conference, Portland, OR, USA,
2004.

[91] J. Ritter. Why gnutella can’t scale. no, really. http://www.monkey.org/ dug-
song/mirror/gnutella.html, February 2001.

194 BIBLIOGRAPHY

[92] L. Rizzo. Dummynet: A simple appproach to the evaluation of network protocols.Com-
puter Communication Review, 27(1):31–41, Jan. 1997.

[93] L. Rizzo. Effective erasure codes for reliable computer communication protocols.Com-
puter Communication Review, 27(2):24–36, April 1997.

[94] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and A. Vahdat. MACEDON: methodology
for automatically creating, evaluating, and designing overlay networks. InProceedings of
the USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI
2004), 2004.

[95] S. Sanghavi, B. Hajek, and L. Massoulié. Gossiping withmultiple messages.IEEE Trans-
actions on Information Theory, (12), Dec. 2007.

[96] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file
sharing systems. InProceedings of Multimedia Computing and Networking, 2002.

[97] M. Schiely and P. Felber. CROSSFLUX: an architecture for peer-to-peer media stream-
ing. Global Data Management, Volume 8, Emerging Communication:Studies on New
Technologies and Practices in Communication, IOSPress, 8:342–358, 2006.

[98] M. Schiely, L. Renfer, and P. Felber. Self-organization in cooperative content distribution
networks. InProceedings of the IEEE International Symposium on NetworkComputing
and Applications (NCA’05), Cambridge, MA, 2005.

[99] S. Sheu, K. A. Hua, and W. Tavanapong. Chaining: A generalized batching technique for
video-on-demand. InICMCS, pages 110–117, 1997.

[100] J. Shneidman, D. Parkes, and L. Massoulié. Faithfulness in internet algorithms. InProc. of
the ACM SIGCOMM workshop on Practice and theory of Incentives in Networked Systems
(PINS’04), Portland, OR, USA, 2004.

[101] J. Shneidman and D. C. Parkes. Specification faithfulness in networks with rational nodes.
In Proc. 23rd ACM Symp. on Principles of Distributed Computing(PODC’04), St. John’s,
Canada, July 2004.

[102] T. Silverston and O. Fourmaux. Measuring P2P IPTV systems. InProceedings of ACM
NOSSDAV’07, Urbana-Champaign, IL, USA, June 2007.

[103] T. Small, B. Liang, and B. Li. Scaling laws and tradeoffs in peer-to-peer live multimedia
streaming. Inin Proc. of ACM MM’06, October 23-27, 2006, Santa Barbara, California,
USA., 2006.

[104] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang.The feasibility of supporting
large-scale live streaming applications with dynamic application end-points. InProceed-
ings of the 2004 ACM SIGCOMM Conference, Portland, OR, USA, 2004.

BIBLIOGRAPHY 195

[105] M. Steiner, E. W. Biersack, and T. En-Najjary. Actively monitoring peers in kad. In
Proceedings of the6th International Workshop on Peer-to-Peer Systems (IPTPS’07), 2007.

[106] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. InProceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.

[107] Y.-W. Sung, M. Bishop, and S. G. Rao. Enabling contribution awareness in an overlay
broadcasting system. InProceedings of the 2006 ACM SIGCOMM Conference, Pisa,
Italy, pages 411–422, 2006.

[108] K. Tamilmani, V. Pai, and A. E. Mohr. SWIFT: a system with incentives for trading. In
Proceedings of the 2nd Workshop on the Economics of Peer-to-Peer Systems, 2004.

[109] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann. BubbleStorm: resilient,
probabilistic, and exhaustive Peer-to-Peer search. InProceedings of ACM SIGCOMM
2007, Kyoto, Japan, Aug. 2007.

[110] D. A. Tran, K. A. Hua, and T. T. Do. A peer-to-peer architecture for media stream-
ing. IEEE JSAC Special Issue on Advances in Service Overlay Networks, 22(1, Jan.
2004):121–133, 2004.

[111] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostič, J. Chase, and D. Becker.
Scalability and accuracy in a large-scale network emulator. In Proceedings of the 5th
ACM/USENIX Symposium on Operating System Design and Implementation (OSDI),
Boston, MA, 2002.

[112] V. Venkataraman, P. Francis, and J. Calandrino. Chunkyspread: Multi-tree unstructured
peer-to-peer multicast. InProceedings of the 5th International Workshop on Peer-to-Peer
Systems, February 2006, 2006.

[113] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread: Heterogeneous unstruc-
tured end system multicast. InProceedings of the 14th IEEE International Conference on
Network Protocols, 2006.

[114] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: a secure economic frame-
work for peer-to-peer resource sharing. InProc. of the 1st Workshop on Economics of
Peer-to-Peer Systems, June 2003.

[115] V. Vishnumurthy and P. Francis. On overlay construction and random node selection
in heterogeneous unstructured P2P networks. InProceedings of IEEE INFOCOM’06,
Barcelona, Spain, 2006.

[116] A. Vlavianos, M. Iliofotou, and M. Faloutsos. BiToS: enhancing bittorrent for supporting
streaming applications. In9th IEEE Global Internet Symposium 2006 (in Conjunction
with IEEE INFOCOM 2006), Barcelona, Spain, 2006.

196 BIBLIOGRAPHY

[117] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: inexpensive membership man-
agement for unstructured P2P overlays.Journal of Network and Systems Management,
13(2):197–217, Jun 2005.

[118] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,
and A. Joglekar. An integrated experimental environment for distributed systems and
networks. InProceedings of OSDI ’02, December 2002.

[119] W. Yang and N. Abu-Ghazaleh. GPS: a general peer-to-peer simulator and its use for mod-
eling BitTorrent. InProceedings of the 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05),
pages 425 – 434, 2005.

[120] X. Yang and G. de Veciana. Service capacity of peer-to-peer networks. InProceedings of
IEEE INFOCOM’04, Hong Kong, Mar. 2004.

[121] M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang. A peer-to-peer network for live media
streaming using a push-pull approach. InMULTIMEDIA ’05: Proceedings of the 13th
annual ACM international conference on Multimedia, pages 287–290, New York, NY,
USA, 2005. ACM Press.

[122] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. CoolStreaming/DONet: a data-driven overlay
network for peer-to-peer live media streaming. InProceedings of IEEE INFOCOM’05,
Miami, FL, USA, March 2005.

