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Abstract—This paper proposes a new methodology to model the distribution of finite-size content to a group of users connected through

an overlay network. Our methodology describes the distribution process as a constrained stochastic graph process (CSGP), where the

constraints dictated by the content distribution protocol and the characteristics of the overlay network define the interaction among

nodes. A CSGP is a semi-Markov process whose state is described by the graph itself. CSGPs offer a powerful description technique

that can be exploited by Monte Carlo integration methods to compute in a very efficient way not only the mean but also the full distribution

of metrics such as the file download times or the number of hops from the source to the receiving nodes. We model several distribution

architectures based on trees and meshes as CSGPs and solve them numerically. We are able to study scenarios with a very large

number of nodes, and we can precisely quantify the performance differences between the tree-based and mesh-based distribution

architectures.

Index Terms—Modeling techniques, performance attributes, stochastic processes.
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1 INTRODUCTION

THE peer-to-peer (P2P) networking paradigm has
received a lot of attention in recent years. P2P

systems construct an overlay at the application layer
and do not require any modification to the existing
Internet, which is in contrast to other technologies such
as IPv6 or IP-level multicast, which do require modifica-
tions inside the network. Therefore, P2P systems are very
attractive for supporting new communications paradigms
such as “application-level multicast” or “distributed
publish/subscribe.”

One of the most popular P2P applications is file sharing,

a variation of which can also be used for file distribution.

P2P for file distribution has the appealing feature of self-

scaling: Each peer can play both roles, the one of a client

and the one of a server, which implies that the amount of

resources scales with the demand for service. The main

difference between file sharing and file distribution is the

different roles played by the search and download phases:

In file sharing, the most difficult part is normally finding the

file, whereas the download is considered just a matter of

time. In file distribution, the file location is known, whereas

the download phase is crucial, especially for very large

numbers of downloading peers. The issue that needs to be

addressed is how the resources of the overall P2P system
can be used efficiently.

In this paper, we consider the specific problem of how
we can distribute in the shortest possible time a file to a
community of users organized as an overlay of peers. We
develop a model that takes into account the transmission
bandwidth between logically adjacent nodes as only
“undetermined” of the problem, i.e., the only quantity that
has a stochastic description. Extensions to other nondeter-
ministic behaviors such as malfunctioning or malicious
nodes are feasible: In Section 6, we present some results in
the presence of nodes that leave the system. The computa-
tion of the file distribution time may seem simple. However,
as discussed below, few results exist that go beyond the
deterministic case where the bandwidth between peers is
assumed to be constant and homogeneous.

We do not attempt to model a specific file distribution
system, although this task may be possible by using the
proposed methodology. We are also not proposing yet
another file swarming application or a specific file distribu-
tion protocol. Rather, we propose a methodology to capture
the general properties of distribution protocols and algo-
rithms in an attempt to provide guidelines for the protocol
and system design.

In particular, we provide a high-level description of a
generic distribution protocol that can be implemented for
delivering software patches or antivirus updates in static
scenarios, such as enterprise or content replication to the
edge, where congestion is not significant. In such a context,
we can assume that users are collaborative. It is therefore
not necessary to consider all the functionalities (for
example, tit-for-tat) provided by well-known protocols such
as BitTorrent. The aim of the content distribution applica-
tion is to deliver the content in the fastest way and, thus, it
is possible to rely on distribution architectures such as trees
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or meshes built while distributing the content, which can be
considered stable during the distribution process.

1.1 Prior Work

Performance analysis in terms of the minimum time

required to distribute a file by using a P2P system has

received some attention in recent years. Most of the

analytical work focuses on a specific system and not on a

generic distribution architecture. The work in [1] is among

the first to evaluate the performance of a P2P system using a

multiclass closed queuing network. In [2], the authors use

an age-dependent branching process to model the transient

evolution of a P2P system and a simple Markovian model to

analyze the steady-state regime. Fluid models have recently

been considered since they can efficiently describe the

amount of transferred data. The work in [3] proposes a fluid

model to accurately estimate the performance of the

Squirrel protocol. In [4], the authors study the BitTorrent

protocol [5] with a simple fluid model, which is able to

catch the transient and the steady-state behavior of the

system with few simple parameters. Moreover, an analysis

of the different mechanisms of BitTorrent is provided.

Among all these papers, only [1] tackles the problem of

different access bandwidths among peers, which is also

treated in this paper.

A related topic where distribution architectures are

explicitly taken into account is the delivery of streaming

services through overlay multicast. Application-Level Mul-

ticast Infrastructure (ALMI) [6] and SplitStream [7] define a

set of mechanisms to efficiently distribute the streaming

data to many overlay nodes. They build distribution trees in

different ways and manage the dynamics of nodes that are

leaving or joining. Nevertheless, most of these studies are

focused on the protocol design and do not quantify the

impact of the distribution architecture on performance. The

performance evaluation is limited to specific aspects of the

proposed protocol and not on the entire network.

To the best of our knowledge, very few models that

allow comparative studies of different distribution archi-

tectures have been proposed. In [8], inspired by SplitStream,

the authors have defined and analyzed linear-chain-based

and tree-based architectures in a completely deterministic

setting. The work in [9] defines a model for chain-based and

tree-based architectures, uses max-plus algebra, and con-

siders an infinite number of packets to calculate the long-

term average throughput. Our analysis instead considers a

finite file size and calculates either the download time of

peer i or the mean (and total) download time of all the peers

involved in the distribution process.

Stochastic Graph Processes (SGPs), which are the

analytical tool that we use in this paper to model overlay

content delivery networks, were defined in [10], with the

same notation that we use here, and they are based on well-

known random graphs [11]. The focus of the analysis in [10]

and [11] is the topological properties of random graphs,

whereas our aim is to take into account not only connec-

tions among nodes but also their weights (lengths) given by

the bandwidths of the nodes involved (this concept is

clarified in Section 3.1), which give rise to the state reward

structure that allows the computation of completion times.

Moreover, content distribution is done by building a

content distribution graph on top of the overlay graph (see

Fig. 1), and these two levels have different properties.

1.2 Contributions of This Paper

In Sections 3 and 4, we formalize the problem of building a

content distribution overlay as a Constrained Stochastic

Graph Process (CSGP), which is a discrete-time Markov

chain (DTMC) whose states are graphs with additional

constraints describing the features of the distribution

system. The graphs that we are interested in are directed

acyclic graphs such as trees or meshes. Depending on how

we define the transition rules from one state of CSGP to the

next one, we get different content distribution overlays. We

consider three different overlays, two of which are trees

(hop-driven and cost-driven trees), and the third of which is

a mesh. Part of the material (related to tree architectures) of

these initial sections was presented in [12], where the initial

ideas about the use of CSGP as modeling techniques for

complex systems were discussed.
In Section 5, we explain in detail the solution approach

and the motivations underlying the use of the proposed

methodology. We show how we can use the formalism of

CSGP to compute the metrics of interest for the content

distribution, such as the file download times and the

percentage of upload bandwidth left unused. Numerical

results are obtained by solving the stochastic process via

Monte Carlo integration. Monte Carlo integration converges

very quickly, allowing us to obtain results for very large

overlays with up to a million nodes, where standard event-

driven simulations would fail for the lack of time or

memory. Monte Carlo integration has been used in other

fields such as physics and chemistry, but to the best of our

knowledge, it has never been applied to modeling overlay

networks. The interested reader is referred to [13], where

we briefly discuss the similarities between modeling the

content propagation across an overlay and the modeling of

chemical reactions of a set of molecules.
In Section 6, we present the results for the three different

distribution overlays. These results precisely quantify, for

the first time, the impact of the minimum outdegree and the

improvement of mesh-based overlays, as compared to tree-

based overlays, and provide important practical insights

into how content distribution overlays should be con-

structed. Some of these results were presented in a
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preliminary form in [14]. In Section 8, we discuss practical
issues for the design of content distribution algorithms.

2 OVERLAY CONTENT DELIVERY APPLICATIONS

Content Delivery Applications are systems where informa-
tion (data or multimedia) is distributed to a community of
users. They include fast delivery of antivirus updates,
software distribution, live video streaming, or video-on-
demand distribution. Different types of contents have
different requirements (for example, maximum delay),
but they can share common features and fundamental
architectures.

The content is distributed by using an overlay network
formed by a P2P application connecting end hosts. In this
paper, we focus on the distribution of a finite-size file to
cooperative users willing to forward the content to others.
We consider a BitTorrent-like distribution protocol where
the file is broken into independent pieces called chunks. A
node that has started to download the file can, in turn, start
to upload after it has entirely received the first chunk. The
order in which the chunks are received by a node is not
important. However, the transfer is not complete until all
the chunks have been received by all interested nodes.

The distribution application has different configuration
parameters. The source of the content can decide the size of
the chunks (or, alternatively, the number of chunks). A
typical chunk size is 256 Kbytes: The download time for a
single chunk is typically much larger than the propagation
delay. Control messages represent few packets with
information about the chunks received and the traffic
generated can be considered negligible with respect to the
chunk transmission. Users can also set the maximum
download and upload bandwidth, as well as the maximum
number of active connections used for data exchange.

The path followed by chunks is composed of a subset of
edges of the overlay network. This subset, which is
determined by the configuration parameters of the applica-
tion (for example, the maximum number of upload
connections), identifies the distribution architecture: The
distribution architecture will have a major impact on the
time that it takes to distribute the content. Thus, one of the
major issues in content distribution networks is the choice
of the distribution architecture.

Although we consider the P2P overlay network already
formed, the distribution graph is built step by step while
distributing the content; that is, edges are included when
nodes start downloading the file.

3 PROBLEM FORMULATION

In this section, we formalize the problem of delivering a
given finite-size content F to a set of users N . We propose a
novel methodology to model and analyze file distribution
that is based on a class of semi-Markov processes whose
state is described through a graph. This property allows
adding a reward structure to the process that is related to
the topological properties of the graph, which enables the
computation of the performance metrics and gives deep
insight into the behavior of the file distribution systems.

3.1 Basic Assumptions

We consider a basic distribution protocol, where the aim is
to deliver the content to cooperative users: We do not
consider advanced features such as tit-for-tat implemented
in BitTorrent, focusing on basic parameters that influence
the distribution protocol.

The main performance metrics are the download time T of
the content, either for a given user i (Ti). We also consider
the mean T of all the individual download times Ti.

The content F is divided in C pieces. We assume that
each node knows a subset of the whole set of users; that is, a
node has a finite number of neighbors.

We initially consider that nodes are stable; that is, they
always stay online. We then relax this assumption (details
on the node leaving process can be found in Section 6.1),
showing the impact on the performance metrics. For each
node i, we define bui and bdi as the upload and download
bandwidth, respectively, which can be symmetric, asym-
metric, or correlated, e.g., bui þ bdi constant, as in a shared-
medium-based access. The values of the bandwidth in the
network are described through a probability density
function (pdf) that is known (e.g., derived from measure-
ment studies). We assume that the upload/download
bandwidth remains constant during the distribution pro-
cess: Since the download time can be in the order of hours,
we consider the bandwidth as a mean value as fluctuations
are much faster than the download time.

When a node starts uploading chunks of F , the effective

rate that is used to transfer the chunks to each child depends

on multiple factors such as the number of children of the

uploading node and the rate at which the uploading node is

receiving chunks. In particular, given the upload band-

width and the upload rate1 of the parent node i, bui and ri,

and the download bandwidths of the children nodes,2

bdj 8j 2 fchildren setg, the single chunk transfer rate to each

child j, b�dj , is computed according to the max-min fairness

criterion [15]. The effective rate is then calculated as the

minimum between the single chunk transfer rate and the

effective rate of the parent node rij ¼ minðb�dj ; riÞ. While the

upload and download bandwidths are given, the effective

rates are computed during the distribution process.
We define the eligibility time tel

i of node i as the time at

which node i can start uploading chunks to other nodes; i.e.,

it has completely received the first chunk. We assume that

each node receives the first chunk from a single parent. Once

it has completely downloaded the first chunk, it can accept

other incoming connections. This assumption simplifies the

calculations and has only a negligible effect if the number of

chunks C is much greater than one. If a node j is child of

node i and receives at an effective rate rij, its eligibility time

is tel
j ¼ tel

i þ t
step
ij , where tstep

ij ¼
� F

C
1
rij

. In case of tree-based

distribution architectures, where each node has a single

parent, knowing the eligibility time and the rate at which a

node j receives chunks, the total download time can be

computed as Tj ¼
�
tel
j þ ðC � 1Þtstep

ij (at the end of the
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1. The upload rate is the minimum between the receiving rate of the node
and its upload bandwidth.

2. How many children are selected by the parent is decided according to
a saturation criterion defined in Section 4.1.



eligibility time, the first chunk is received, so there are C � 1

chunks left). In case of mesh-based architectures, the

download time is computed by considering the rates of all

parents and the instants when the different chunks are

received.

As a last assumption, we suppose that node i chooses its

children j uniformly at random among all its neighbors, not

taking into account the upload and download bandwidths.

3.2 General Definitions

The distribution of content within a community of users can

be formalized as the propagation of the content across a

graph of nodes and edges with some stochastically defined

characteristics. Nodes are the users and edges summarize

all the characteristics of the communication paths between

the users.
Let N be the set of nodes, i.e., the vertices of the

graph, and A be the set of all the arcs that connect pairs
of nodes A � N �N . We only consider connected net-
works with bidirectional connections so that A can be
represented by an irreducible symmetric adjacency ma-
trix. Bi is the set of neighbors of user i, i.e., all those
nodes in N that are known and directly reachable from
node i, with

S
i2N Bi ¼ N , since the network is fully

reachable. Bi is also represented by row i of the adjacency
matrix A.

The graph GðN ;AÞ represents the overlay network

created, for instance, by a P2P network (see Fig. 1). For

each node i, the neighbor set Bi is the subgraph of G
containing the neighbors of i and the related arcs. In

general, GðN ;AÞ is time varying; i.e., nodes and edges can

change in time and even appear or disappear. The overlay

layer is the basis on top of which the distribution graph is

built. We define the distribution graph G�ðN ; EÞ as a

directed subgraph of GðN ;AÞ with E � A. G� is a directed

graph, since, from the content distribution point of view,

the content propagates from the source to the destinations.

3.3 Stochastic Graph Processes for Content
Distribution

How we can obtain the distribution graph G� from G is

determined by the rules implemented in the specific content

distribution protocol. In general, we can assume that the

distribution graph G� is built step by step following a given

protocol. The building process can be modeled as a DTMC

since the distribution graph G� at step n contains all the

information required to (stochastically) define the distribu-

tion graph G� at step nþ 1. Let N�n be the set of nodes that

belong to the distribution graph at step n and let N�n be its

complement with respect to N . The distribution graph G�nþ1

at step nþ 1 is obtained from G�n by adding new edges 2 A
from nodes inN�n to nodes inN�n. The complete distribution

graph G�ðN ; EÞ is obtained when N�n ¼ N , and N�n is the

empty set.

The dynamic behavior of the distribution graph can be

modeled as an SGP. We recall here the general definition of

SGPs [10], whereas, in Section 4, we specialize them for the

analysis of content distribution.

Definition 1. An SGP on a set of nodes N is a DTMC whose
states are graphs on N .

Even if not stated in the definition, two observations are
in order:

. Nodes can be connected only through edges that
belong to A (in the next definitions, we state
explicitly this dependence).

. The SGP is embedded in a continuous time semi-
Markov chain that is sampled at the instants of
adding nodes and arcs to obtain the SGP.

Adhering to the definition given in [10], the focus is on
the building process, and the SGP evolution implies that
the graph is built step by step by adding nodes and
edges at each step.

In content distribution, the distribution graph is natu-
rally built step by step, so using the graph G�ðN ; EÞ as a
formal representation of the state of the system is appro-
priate and complete; that is, that state contains all the
information required to define (stochastically) the next state
of the evolution. The time between two steps depends on
the sojourn time of the state. If the sojourn times are
exponentially distributed, then we obtain a Markov chain.
However, in general, this assumption is not true, and in
continuous time, we have a semi-Markov chain.

Definition 2. A CSGP on a graph GðN ;AÞ is a semi-Markov
chain whose states are subgraphs on G. The semi-Markov chain
embeds a DTMC obtained by sampling the process exactly at
transition instants. The “constraints” limit the degrees of
freedom during state transitions and “govern” the evolution of
the process.

A CSGP is a precise representation of the content
distribution process.

Given G�n, the next state G�nþ1 depends only on the
eligibility times of the nodes in N�n, and the transition
probabilities can be easily defined step by step.

The eligibility times tel
j influence the semi-Markov

process in two different ways. In the general case of
randomly varying tstep

ij , they define both the transition
probabilities between states and the state sojourn times. In
the particular case of deterministic tstep

ij (e.g., when the
bandwidth is only determined by access links), the sojourn
times are deterministic and the tel

j define only the state-
transition probabilities. Notice, however, that the file
distribution is entirely described by the embedded DTMC
so that only transition probabilities are important.

The DTMC that describes a CSGP is a transient chain
with a set of adsorbing states G�ðN ; EÞ that are reached
when N�n ¼ N ; i.e., all nodes interested in the content are
reached.

The way that we defined a CSGP implies that nodes are
stable and collaborative and that the networking infra-
structure is reliable enough to allow edge stability. Clearly,
there is the possibility of extending the analysis to cases
where nodes (or edges) can disappear during the distribu-
tion process so that G�n is derived from G�n�1 not only by
adding an edge and a node but also by removing one node
and all the edges relative to it.
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A well-known class of CSGPs are the random graph
processes studied back in the 1950s by Erdös and Renyi [11].
In random graph processes, edges are added uniformly at
random, which does not capture the propagation of the data
blocks in content distribution graph.

4 CONTENT DELIVERY CSGP

In the following, we refine the CSGP by adding constraints.
These constraints concern the minimal and maximal out-
degree and also the depth of graph. We define three
different distribution architectures, referred to as Content-
Delivery Constrained Stochastic Graph Processes (CD-
CSGPs). Two of the CD-CSGPs form trees, and the third
one forms a mesh. We have seen that the distribution graph,
as defined by a CD-CSGP, grows step by step by connecting
each time a new node to a node i in the existing graph. As
we will see for the two tree-based distribution architectures,
the final distribution tree will be very much affected by the
way that we select the node i in the graph to which the new
node will be attached. The mesh-based distribution graph
will be obtained by first constructing a tree-based distribu-
tion graph, which will then be augmented by additional
links originating at the leaves of the tree. The advantage of a
mesh is that the leaf nodes of a tree, which do not at all
contribute to the distribution of the content, will now help
distribute the file content.

4.1 Content-Delivery-Related Definitions

Before we introduce the CD-CSGP, we need some addi-
tional definitions that will simplify the characterization of
each CD-CSGP.

Each node has a constraint on the maximum and
minimum numbers of active uploads that limit the possible
outdegree of the node: kmax

i is the maximum outdegree and
kmin
i is the minimum outdegree.

Definition 3 (saturated node). A node i 2 N �n is called
saturated if it has either

. kmax
i outgoing edges that belong to G�n or

. at least kmin
i outgoing edges, and the sum of the

download rates to its children is equal to bui .

Definition 4 (interior subset). The subset In � N�n of nodes
that are saturated at step n is called the interior node subset at
step n.

Definition 5 (leaf subset). The set of nodes Ln 2 N �n that are
not interior nodes is called the leaf node subset at step n, with
Ln ¼ N�n n In.

We consider a single node as a root of the stochastic graph.
We define a distance measure based on the number of hops
from the root to any node i.

Definition 6 (step distance). The number of hops from the root
to a node i following the shortest path is called step distance
or step depth dðiÞ.

In a tree, maxiðdðiÞÞ is the tree depth.

4.2 Cost-Driven and Hop-Driven Trees

We now define the precise steps that must be executed in
building the content distribution tree. The exact rules for

building the tree have a big impact on the shape (as well as
number of hops and outdegree) of the final content
distribution tree. In the following, we will introduce two
different trees called cost-driven and hop-driven trees.

CD-CSGP 1. A CSGP on graph GðN ;AÞ is called tree-

based and cost-driven if the following hold true:

1. G�0 is a node, called root, randomly chosen in N .
2. G�n is obtained from G�n�1 as follows:

. Choose the node i from Ln�1 with the smallest
eligibility time tel

i ¼ minjðtel
j Þ. If several nodes

have the same eligibility time, one of the nodes
is chosen randomly.

. Add edges from node i to nodes randomly
chosen from Bi

T
N�n�1 until node i becomes

saturated.

Fig. 2 shows an example, with few states of the DTMC
generated by a CD-CSGP 1 process. In this case, we have
only two possible bandwidths (slow nodes with black
circles and fast nodes with white ones, with the slow
bandwidth less than half the fast bandwidth), kmax

i ¼ 2 and
kmin
i ¼ 1. Starting, for instance, from a state where the

server is uploading to a slow node and to a fast node, the
fast node has the smallest eligibility time and there are
only three next possible states:

1. The fast node selects a fast node among its neighbors
and becomes saturated. Alternatively, the fast node
chooses a slow node, so it has to select another node.

2. The selected node is fast and we have bandwidth
saturation.

3. The node chosen is slow and we have saturation
because kmax is reached.

Note that, in case 1, the node becomes saturated since
the rate of the content that it is receiving is high. If, for
instance, the rate were slow (consider the fast node under
the slow node in the shadowed state), the number of
children would be always 2 since the rate to each child is at
most equal to the rate that it is receiving.

The resulting tree is called “cost driven” since, in general,
the nodes in the leaf set Ln do not all have the same step
distance from the root. As the speed of growth of the
different branches is not the same, the deeper branches will
contain faster nodes, that is, nodes with smaller eligibility
times tel (eligibility times represent the costs).
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States are graphs built on G, black and white circles represent slow and
fast nodes, respectively, kmax

i ¼ 2 and kmin
i ¼ 1.



Many analytical models proposed in the literature
consider balanced trees, for example, binary trees. This
assumption is actually unrealistic. Forcing the same step
distance for all the leaves means that we do not consider the
bandwidth heterogeneity when chunks are transferred.
Nevertheless, the majority of the proposals consider trees
where leaves are at the same step distance from the source,
even in cases of variable outdegree. We call such trees “hop
driven.” These trees do not represent real distribution
applications, but we have to define a special SGP for them
in order to reproduce results that can be found in the
literature and compare these results with those obtained
with more realistic architectures such as cost-driven trees.
To do so, we consider a subset of the leaf set Ln.

Definition 7. Let dMAX
n ¼ max

j
ðdðjÞn Þ be the maximum step

distance of the nodes j 2 Ln. The subset fLn � Ln is defined as

fLn ¼ fi 2 LnjdðiÞn < dMAX
n g.

Now, we can define the process that leads to hop-driven
trees.

CD-CSGP 2. A CSGP on graph GðN ;AÞ is called tree-
based and hop-driven if the following hold true:

1. G�0 is a node, called root, randomly chosen in N .
2. G�n is obtained from G�n�1 as follows:

. Choose a node i from gLn�1 if it is not empty;
otherwise, choose from Ln�1 with the smallest
eligibility time. If several nodes have the
eligibility time, one of the nodes is chosen
randomly.

. Add edges from node i to nodes randomly
chosen from Bi

T
N�n�1 until the node becomes

saturated.

Since we are interested in the file download time, it is
worth looking at a weighted graph where the weight
associated to a directed edge is given by the difference
between the download times of the nodes connected by the
edge. Considering hop-driven trees, this representation
shows the disparity in terms of download time among leaf
nodes that have the same step distance. In Fig. 3, the weight
is represented by the edge length. Conversely, in cost-
driven trees, leaf nodes are at different step distances and
the weighted graph gives a pictorial illustration of why the

tree grows this way: A new edge is added only after a node
becomes eligible and this forces a uniform growth of the
weighted graph.

The difference between hop-driven and cost-driven trees
is significant. A node i in the tree will influence the
reception speed of all nodes in the subtree with i being the
root. A slow node j will slow down the reception of the
chucks for all the nodes in the subtree with j being the root.
Since slow nodes become eligible later than fast nodes, in
the case of cost-driven tree, a subtree with a slow node
being its root will grow much slower, i.e., have fewer nodes
than a subtree consisting of fast nodes, which will help
“limit” the impact of slow nodes.

We will show in Section 6 how the choice of the tree,
hop-driven or cost-driven, affects the performance.

4.3 General Mesh Architecture

Tree-based architectures allow the content to rapidly diffuse
to nodes. However, trees also have known shortcomings.
Each node has only one ancestor, and in case of a node
failure, the entire subtree will stop receiving data. Each
node must divide the upload bandwidth among its
children, so children use only a fraction of their download
bandwidth for receiving chunks. If we consider the case of
asymmetric capacities, where the upload bandwidth is
smaller than the download bandwidth (as in the case of the
Asymmetric Digital Subscriber Line (ADSL)), the percen-
tage of unused download bandwidth increases even
further. Finally, the leaf nodes of a tree receive the entire
file without uploading a single chunk.

Mesh-based architectures are meant to overcome these
problems. Nevertheless, they introduce a new problem: the
chunk selection strategy. A node i can help another node j if
i has parts of F that are not yet received by j, i.e., if it has
“fresh” information. We are not concerned here on how
freshness is checked and/or imposed (for instance, see [16]
for work on the topic). We assume an ideal situation, where,
if a node has received only part of F and it is contacted by
another node that is not yet its ancestor, then all the
information that it can provide is either completely fresh or
completely stale. Any impairment can be easily taken into
account with a probabilistic approach.

Allowing the generation of mesh topologies means that a
node i already included in G�n may be contacted by other
nodes j that are also in G�n to receive parts of F that it does
not yet have. If j has only information that is not fresh for i,
then the “delivery connection” is not established.

The building process of a mesh architecture can be

divided into two phases: diffusion and interconnection. In

the first phase, we assume that the root node uploads the

chunks to its k children in different orders. For instance,

child i will first receive the chunk j, with j 2 f1; . . . ; Cg, and

jmod k ¼ i. This means that each child receives the whole

file, but the first C=k chunks are disjoint with respect to the

content received by the other children.3 Each of the children

generates its own diffusion subtree FG, where new nodes that

252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008

Fig. 3. Difference between hop-driven and cost-driven trees, considering

the corresponding weighted graphs, where the length of edge between

nodes i and j is given by tstep
ij .

3. Other techniques such as network coding could also be used to assure
that different children receive different chunks, but these details do not
impact the performance of distribution architectures.



are not yet reached by the content (untouched nodes) are

added to the subtrees. Once no more untouched nodes are

available, subtrees start to interconnect. Leaf nodes of a

subtree upload chunks to nodes belonging to different

diffusion subtrees, providing up to C=k disjoint chunks. In

the final configuration, we obtain a mesh, where each node

receives from up to k nodes (belonging to distinct diffusion

subtrees) and uploads to other nodes according to the

saturation rules. This constrained mesh diffusion process is

depicted in Fig. 4. Note that the diffusion direction is

“reverted” at the leaves, ensuring a better spreading of the

content.4

In order to improve the performance, we require that
diffusion trees must grow until no more untouched nodes
are available. In fact, [8] shows that, in the homogeneous
case, the best performance can be obtained if the node is an
internal node of one diffusion tree and a leaf node in the
remaining trees. Untouched nodes have some upload
bandwidth available, so they can become internal nodes.
Nodes that have already received the content probably have
already started to distribute it and have little upload
bandwidth available, slowing down the growth of the
diffusion tree. This policy can be implemented in a
distributed manner: When a node finishes downloading
the first chunk, it first searches for untouched neighbors,
and if it is not able to find any, it starts uploading to nodes
that are already downloading.

We can formally define the CSGP that leads to these
architectures.

CD-CSGP 3. A CSGP on graph GðN ;AÞ is called
constrained mesh-based if the following hold true:

1. G�0 is a node, called root, randomly chosen in N .
2. G�1 consists of the root node and the k nodes

randomly chosen in N n frootg called the first
generation nodes, where each of them will generate
a subtree FG.

3. G�n is obtained from G�n�1 as follows:

. Choose a node i from Ln�1 with the smallest
eligibility time. If several nodes have the same
eligibility time, one of the nodes is chosen
randomly. FGi denotes the subtree to which i
belongs.

. Add edges from node i to nodes randomly

chosen from Bi
T
N�n�1 until the node becomes

saturated and N�n�1 is not empty.

. If Bi
T
N�n�1 is empty and node i is not

saturated, add edges from node i to nodes

randomly chosen from Bi
T
Nyn�1 until the node

becomes saturated, where Nyn�1 is the set of

nodes in the subtree FGi at step n� 1.

CD-CSGP 3 can describe construction processes such as

SplitStream [7] and PTree [8]: Both schemes use a fixed

outdegree k and partition the file in exactly k stripes, where

each stripe is distributed along one of the k diffusion trees.

The process that we define is more general since we do not

impose any fixed outdegree and allow that nodes upload

the whole file, however, in different orders.

5 SOLUTION OF THE CD-CSGP

The CD-CSGPs defined in Section 4 describe the evolution

over time of the underlying Markov process: The Markov

chain that models the process is a transient chain and its

absorbing states are the states where all elements of N have

downloaded F . Thus, we are interested in the analysis of

the transient behavior of the system; i.e., we focus on the

time that is necessary to reach an absorbing state or, given a

time bound, the mean number of nodes contained in the

distribution graph.
The transient analysis of a Markov process can be done

by considering the well-known Kolmogorov forward (or
backward) equations, coupled with the Chapman-Kolmo-
gorov equations, which lead to a set of differential

equations that describe how the probabilities to be in a
given state change over time. A closed-form solution of
these equations is not feasible unless it is for a very small
number of nodes, so we need to resort to numerical

integration.
A numerical solution of the Markov process equations

can be done by using different methodologies. Direct
methods that numerically approximate the equations have
similar problems as the closed form solution: The equations

can be written only for a small number of nodes.
However, the structure of the transition matrix that

describes the stochastic process is extremely suited for an
efficient numerical solution based on Monte Carlo
techniques [17], [18].5

Monte Carlo integration is basically a random walk in
the state space of the process. The convenience of the
methodology is given by the fact that it is very simple to
build a random walk by following the process definitions
given in Section 4. Each random walk starts from the initial

empty state and finishes in an absorbing state. At each
step, we generate transition probabilities at runtime when
hitting a state.

These samples are, by construction, independent and
identically distributed, so we can compute the average

characteristics of these random walks, along with the
confidence interval, given a desired confidence level.
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Fig. 4. Mesh topologies obtained from the interconnection of different

diffusion subtrees.

4. It may be possible that a node has two parents, let us say, A and B, and
uploads to parent A the content received from parent B, provided that A is
not receiving from other nodes belonging to the diffusion subtree of B.

5. In physical and chemical sciences, this technique is often called the
Stochastic Simulation Algorithm or Gillespie Algorithm, but we prefer to stick to
the term “Monte Carlo,” which is normally used in computer science.



The Monte Carlo integration is efficient for a number of
reasons:

. There are a small number of transitions from each
state, all of them with a nonvanishing probability, so
that rare paths are nonexisting.

. The reward structure defined on the DTMC (see
Section 5.2 for the definition of the metrics that we
use) ensures that there are no dominating rewards
associated to low-probability states (no “rare-event”
syndrome is present in the problem) and that the
coefficient of variation (standard deviation divided
by the average value) of all output metrics decreases
as the number of nodes increases. In fact, the
variance remains bounded, whereas the mean
download time increases monotonically as we add
more nodes. The consequence is that the numerical
results yielding the histograms of the distribution
converges (almost surely) more rapidly to the exact
distribution as the number of nodes increases.

. The difference between the estimates and the exact

value can be evaluated with standard stochastic

means [19], yielding a powerful tool to stop the

solution iteration.

The Monte Carlo integration that we propose is not a

“generic” event-driven simulation but a numerical solution
technique for the analytical model. The definition of the

problem as a CSGP ensures that the numerical solution
generates all and only the states that are relevant to

compute the performance metrics. A generic event-driven
simulator, written without formally defining the underlying

stochastic process, may end up in exploring a state space
where interesting states are sparse in the middle of states

that are not useful to find the metrics of interest.

5.1 Detailed Description

The results of the Monte Carlo integration are an approxi-

mated solution of the differential equations that describe
the process, but with a known error. All the probabilities

that we compute are estimations of the real probabilities.
For instance, when we find the performance metrics, as

described in Section 5.2, we consider the probabilities of the
absorbing states. Actually, these probabilities are the

estimated probabilities with an error bound given by
confidence intervals.

The fast convergence of the integration using Monte

Carlo is due to the fact that we look for node properties that
are not necessarily related to the graph structure. For

instance, given a time t and a specific number of nodes Nt

that have completed the download, there are many different

possible graphs that contain Nt nodes at time t. Another
example can be the download rates of nodes in the

absorbing states: There are many graph structures where
the number of nodes that complete the download with the

slowest rate is the same. Thanks to these aggregate
measures, the convergence of the distribution is fast.

5.2 Computation of the Performance Metrics

In order to compute the mean download time T , we assign

to each absorbing state SSk 2 SSa (SSa is the set of absorbing

states; i.e., the states where all elements of N have

downloaded F and no further transitions are possible) a

reward Tk that is equal to the mean download time of the

nodes in the state:

Tk ¼
1

jN j
X
i2N

Ti ; SSk 2 SSa;

where Ti are the individual download times defined in

Section 3.1. The mean download time T is the reward of a

DTMC obtained by adding a deterministic transition from

all the absorbing states to an initial state represented by the

empty graph ;:

T ¼
P

k2SSa T k�kP
k2SSa �k

;

where �ks are defined as the steady-state probabilities of the

support DTMC.

Another performance measure that is easily defined as

a reward is the wasted upload bandwidth wu (in percentage).

Let wui ¼ 100 1� maxðrui Þ
bui

� �
be the wasted upload bandwidth

of node i, where maxðrui Þ is the maximum upload rate ever

reached by the node in any visited state. Considering

again the modified DTMC and letting Sa be the set of

absorbing states in the unmodified DTMC, we have

wuk ¼
1

jN j
X
i2N

wui ; Sk 2 Sa

and

wu ¼
P

k2Sa
wuk�kP

k2Sa
�k

:

If we fix the number of nodes and let the time to go to

infinity, we obtain the pdf of the download rates and the

number of nodes that download at each possible rate

normalized by the total number of nodes. This representa-

tion enables the comparison of the input pdf of the

bandwidths with the output pdf of the rates, obtaining a

direct measure of the impact of different policies (for

example, constraints on the outdegree) on the performance.

5.3 The Numerical Solver

We developed a numerical solver called stochastic Graph

pROcess sOlVER (GROOVER), which implements a Monte

Carlo integration in the form of an algorithmic implementa-

tion of the content distribution processes defined as CD-

CSGPs. It simulates the stochastic process and computes

multiple realizations of that process. GROOVER has several

input parameters and produces as outputs the rewards

associated with the process.

Algorithm 1 gives a high-level view of GROOVER for the

case of a tree-based architecture, as defined in CD-CSGP 1.

The computation of rates rij is done as explained in

Section 3.1. A detailed description of GROOVER can be

found in [14]. The software is available at [22].
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Algorithm 1: Basic structure of GROOVER for tree-based
architectures.

input: pdf of node bandwidth, total number of nodes,

desired confidence level

output: pdf of download times;

initialization;

repeat

while (#nodes < tot.nodes) do /*build (diffusion)

trees*/
extract the node i with ðtel

i ¼ min
j
ðtel
j ÞÞ and

(#levels < max level);

repeat

select randomly a neighbor from the Bi not yet

reached by any other node;

until node i is saturated

if ð#children ¼ 0Þ or (node not saturated) then

put node in leaf set
else

compute the rate rk to each children according to

the max min fairness criterion;

for k ¼ 1 to #children do

assign tel
k ;

compute tdownload
i ¼ tel

k þ FC ðC � 1Þ=rk;
end for

end if

end while

update histograms (time, wasted bandwidth, etc.);

until stop criterion not met

stop criterion:

update the confidence interval for the histogram

including the last realization; stop if desired confidence

level is reached;

Solution Complexity. We have not attempted to compute
a priori the number of necessary realizations to obtain the
given confidence level and interval, although it may be
possible to exploit the properties of the DTMC. We use
instead an a posteriori evaluation of the distribution’s
accuracy by using standard methods (see [19]). As expected,
the number of realizations needed to reach a desired
accuracy decreases with the number of nodes.

For instance, in the numerical examples presented in
Section 6, the convergence is obtained in less than
1,000 realizations for 104 nodes, less than 500 realizations
for 105, and less than 200 realizations for 106. For
106 nodes and a mesh-based architecture, this means 4-
5 hours of CPU on a standard PC and 10-20 minutes for
105 nodes, whereas, for a smaller number of nodes, the
execution time becomes negligible.

For tree-based architectures, we also implemented a
much faster algorithm that exploits the properties of the
paths within the tree: We only realize a single path from
the source to a leaf within the tree and use the properties
of the DTMC to derive the metrics for the entire tree
directly in the form of aggregate histograms. For more
details on this method, see [14]. This further reduces the
solution time by more than one order of magnitude,
allowing the evaluation of tree architectures for up to
108 nodes. To the best of our knowledge, numerical results

for overlay-based content distribution networks rarely
extend beyond 103-104 nodes.

6 NUMERICAL RESULTS

To obtain our results, we use the pdf for the node
bandwidth taken from [20] as input: 13 percent of the
nodes with 56 kilobits per second (Kbps), 23 percent with
640 Kbps, and 64 percent of the nodes with 1.2 megabits
per second (Mbps).

When reporting results, we normalize the data such

that jF j
minðbiÞ ¼ 1 “round,” where jF j is the content size in

bits and min
i
ðbiÞ is the minimum bandwidth of the input

pdf in bits/s. We use a number of chunks C equal to

100, but a sensitivity analysis with different values of C

indicates a qualitative behavior that is independent of C,

as long as C � 1. All results have a confidence level of

0.99 and a confidence interval of �10 percent on the

whole distribution.
Fig. 5 shows the histogram of the estimated pdf of the

node download times ti for a network with 104 nodes.
The distribution architecture is a mesh modeled with
CD-CSGP 3. We see that all nodes complete the
download in at most one round.

Although distributions like the one depicted in Fig. 5
are the prime output of GROOVER, we show mostly
aggregate results (means) in the following, which are
more compact and yet convey the fundamental insights of
the results that we obtained.

6.1 Tree-Based Distribution Architectures

As we have seen in Fig. 1, the content distribution
network is built on top of the overlay network. We start
by evaluating the influence of the neighbor set size in the
overlay network on the delay in the content distribution
network. We see in Fig. 6 that a neighbor set size of
jBij ¼ 8 is sufficient to achieve as good a performance as
for the case where every node in the overlay network
knows about every other node, which corresponds to the
case jBij ¼ N , 8i.

If the neighbor set is small ðjBij ¼ 4Þ, the mean download
time grows for an increasing number of nodes much faster
than for the case where jBij ¼ N .

These observations are valid and are independent of the
constraints on the outdegree (results are not shown here for
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Fig. 5. Histogram of the estimated pdf of the download time of the nodes
with CD-CSGP 3 for 104 nodes.



space reasons) and the type of content distribution tree
(hop-driven or cost-driven). For this reason, we assume, for
the rest of the paper, that the neighbor set is sufficiently
large, i.e., jBij � 8.

We first focus on the comparison between hop-driven
and cost-driven trees and the difference in the way that the
trees are built and the different constraints for kmax and kmin

have a major impact on the shape of the tree and on the
download performance.

Fig. 7 shows the mean download time as a function of
the total number of nodes. We see that the mean
download time is much lower for cost-driven trees, as
compared to hop-driven ones. This is due to the fact that
the cost-driven trees use the lowest eligibility time as a
criterion for selecting the leaf node to which a new node is
attached. Therefore, subtrees with slow nodes being the
root will grow much slower, i.e., have very few nodes, as
compared to subtrees with fast nodes. On the other hand,
hop-driven trees try to keep the step distance dðiÞ of all leaf
nodes approximately the same, which means that subtrees
with slow nodes being the root are potentially much larger
than in the case of cost-driven trees.

Another parameter that has a major impact on the

performance is the outdegree. We first consider the effect of

kmax: A node i can increase its number of children only if its

upload bandwidth is not saturated. This means that if a

node has a high upload bandwidth but receives chunks at a

low rate, it can serve as many nodes as its maximum

outdegree kmax allows. Since, in hop-driven trees, it is more

frequent that fast nodes receive at a low rate (this concerns

all the fast nodes belonging to a subtree rooted at a slow

node), the possibility of increasing the outdegree helps, as it

allows fast nodes to use more of their upload bandwidth. In

the case of cost-driven trees, fewer fast nodes will receive

chunks at a low rate and the benefit of an increased

outdegree is not visible.
The impact of the minimum outdegree on the download

performance is also very interesting. If we impose a

minimum outdegree kmin ¼ 2, a slow node will divide its

low upload bandwidth available by 2 to serve each of the

two children, which will affect the speed of content

propagation to the entire subtree rooted at the slow node.

If we allow instead a minimum outdegree of 1, in the case of

hop-driven trees, this will cut the mean download time in

half (see Fig. 7). For cost-driven trees, the value kmin ¼ 1 will

also reduce the mean download time but not as dramati-

cally as for hop-driven trees. This is expected, since, in cost-

driven trees, the overall influence of slow nodes on the

download times is reduced, as already explained. To the

best of our knowledge, the impact of the minimum

outdegree on the download performance has not been

discussed previously in the literature.
The superior download performance of cost-driven trees,

as compared to hop-driven trees, comes at the cost of a
greater step distance. In Fig. 8, we report the distribution of
the step distance for different cases. As expected, the mean
number of hops in cost-driven trees is higher than in hop-
driven trees. However, the individual hops are shorter
(smaller chunk download time tstep), so the file download
time is smaller.

In the case of hop-driven trees, the choice of the
minimum outdegree (kmin ¼ 1 or kmin ¼ 2) has very little
influence on the distribution of the step distance, whereas,
for cost-driven trees, a value of kmin ¼ 1 results in a much
larger step distance than a value of kmin ¼ 2. In hop-driven
trees, the probability of having many consecutive hops with
a high rate is very low, so the outdegree of fast nodes
increases after a few hops and the total number of nodes
reached becomes comparable for kmin ¼ 1 or kmin ¼ 2.

Finally, we consider the impact of churn on the file
download times. We assume that, when a node starts
downloading the file, with a probability pchurn, it will leave
the network during the download. The time until a node
leaves is selected uniformly from the interval between the
beginning of the download and the estimated end of the
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Fig. 7. Mean download time for cost-driven and hop-driven trees.

(a) kmin ¼ 1. (b) kmin ¼ 2.

Fig. 6. T for different numbers of neighbors jBij in the overlay (CD-
CSGP 1 with the outdegree between 1 and 4.)



download.6 Fig. 9 shows the cumulative distribution
function (CDF) of the download times with different
outdegree constraints using a cost-driven tree architecture
(we place a subset of the markers to differentiate the
curves). The CDF is built by considering the nodes that have
completed the download. Even in the presence of 30 percent
of nodes leaving, the download performance deteriorates
only very little.

We can explain this “surprising” result as follows: In a
tree structure, a high percentage of nodes are leaf nodes.
However, only internal nodes that leave will impact the
performance. The download time depends on the initial
delay to get the first chunk and the download rate. When a
node i becomes an orphan, since its parent has left, it
searches among its neighbors for a node that has upload
bandwidth and has downloaded a number of chunks that is
greater than the number of chunks owned by the node i.
This very simple policy automatically selects the “faster”
nodes among the neighbors, preserving the download rate
seen by node i. Thus, if the new parent can offer the same
download rate, a small increase in the step distance will not
have a great impact. Consider also that, according to the
distribution of the step distance, most of the nodes have
high step distances, so the absolute difference in terms of
delay until the first chunk is received is most likely low.

6.2 Mesh-Based Distribution Architectures

Tree-based architectures have the disadvantage that the leaf
nodes do not at all contribute to the distribution of the
content. However, when the average outdegree is larger
than 2, the leaves make at least 50 percent of all the nodes. It
is therefore natural to consider mesh-based architectures.
Remember that, to construct a mesh, we first let the
diffusion trees reach all the nodes, then nodes with spare
bandwidth (typically, the leaves of the diffusion trees)
upload to nodes belonging to different diffusion trees.
Diffusion trees can be hop-driven or cost-driven. Due to the
poor performance of hop-driven trees, we consider meshes
with cost-driven diffusion trees only.

In Fig. 10, we compare the mean download time of
meshes and cost-driven trees. We see that meshes improve
the download time and that the improvement is particularly
significant when the minimum outdegree is set to 2. We
would like to mention that another advantage of meshes
over trees is that meshes are more resilient to node failures.
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Fig. 9. CDF of the download times for 104 nodes with a churn probability
of 30 percent. (a) Outdegree: kmin ¼ 1 and kmax ¼ 4. (b) Outdegree:
kmin ¼ 2 and kmax ¼ 4.

Fig. 10. Mean download time T for cost-driven trees and mesh
architectures with different outdegree constraints.

Fig. 8. Distribution of the step distance for 106 nodes. (a) Minimum

outdegree kmin ¼ 1. (b) Minimum outdegree kmin ¼ 2.

6. We talk here about the estimated download time since the distribution
structure is not stable and an ancestor of the node can disappear. This
influences the effective download time, so it may happen that a node selects
an instant for leaving the network, but in that instant, it has already
completed the download (if, for instance, during the download, it has
increased its rate).



Table 1 compares meshes and cost-driven trees in terms

of the amount of upload bandwidth wasted ðwuÞ and also

provides information about the mean tree depth, i.e., the

average step distance. A mesh architecture reduces, in all

the cases that we considered, the wasted upload bandwidth

by more than 50 percent. Another interesting result in

Table 1 is the increase in the mean tree depth by 40 percent

to 50 percent when we reduce the minimum outdegree from

2 to 1. For an operational content distribution system,

smaller step distances are attractive: At a given node churn

rate, smaller step distances reduce the likelihood that a

node will get disconnected due to such an event. If we take

into consideration good download performance and robust-

ness in case of node churn, the mesh architecture with a

minimum outdegree of 2 is very attractive (see also Fig. 11).

Looking not only at the mean download time but also at

the distribution of the download times of individual nodes

can give valuable insights. We can, for instance, see up to

what degree the slow nodes affect the download times of

the faster nodes. We consider that only 13 percent of the

nodes are slow nodes. In Fig. 11, we see that, for the cost-

driven and mesh architecture, the slow nodes do not

negatively affect the download time of the other nodes. On

the other hand, in the case of hop-driven trees, the slow

nodes negatively affect the download times of about

50 percent of the other nodes.
The performance comparison of the different distribution

architectures for a heterogeneous peer population gives
some very interesting insights that we have not seen
published elsewhere:

. Cost-driven trees and meshes allow us to avoid any
negative impact of slow nodes on the download
performance of the other nodes. This is due to the
fact that the construction process of a cost-driven
tree assures that subtrees rooted at a slow node
remain very small.

. A minimum node degree of 1 allows a slow node to
achieve twice the upload rate to its only child, as
compared to the case where a slow node would
upload to two children. Although kmin ¼ 1 reduces
the download times for all the three distribution
architectures, the improvement is most pronounced
for hop-driven trees.

7 COMPARISON WITH SIMULATIONS

In order to validate our analytic model and our assump-
tions, we implement a simple content distribution protocol
on top of the PeerSim P2P network simulator [23]. PeerSim

is a Java-based simulator that consists of many configurable

components: It has two types of engines, cycle-based and

event-driven, and different modules that manage the

overlay building process and the transport characteristics.

For a more detailed description of the PeerSim simulator,

the interested reader is referred to [23].

7.1 Protocol Description and Simulation Setup

We implemented two file distribution protocols by using
the event-driven engine: One represents CD-CGSP 1 (cost
driven) and the other represents CD-CGSP 3 (mesh). In
the following, we give a high-level view of the protocol
messages and procedures, leaving out details about the
management of all the situations. The implementation is
available at [24]:

. Messages

– New Content. With this message, a node informs
its neighbors that it has finished downloading a
chunk of a new file and can upload it to
interested nodes.

– Reply. With this message, a node replies to a
New Content message saying that it is inter-
ested, specifying its bandwidth.

– Start Downloading. With this message, a node
informs its children that they can start down-
loading the content previously announced and
the rate that they can use.

. Procedures

– End First Chunk. When a node terminates to
download the first chunk, it sends out the New
Content messages to its neighbors.
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TABLE 1
Comparison of Cost-Driven Trees and Meshes

Fig. 11. Comparison of the CDF of the mean download time between a
hop-driven tree, a cost-driven tree, and a mesh. (a) Set of 105 nodes with
outdegree of 1-8. (b) Set of 105 nodes with outdegree 2-8.



– Process Replies. While receiving the replies after a
New Content message from its neighbors, a
node selects the neighbors that replied as its
children until its bandwidth is saturated. Addi-
tional replies are ignored.

For the overlay graph construction in PeerSim, we build

a random graph with a mean degree of 20. At the transport

layer, each message experiences an end-to-end delay that is

uniformly distributed between minimal and maximal

values. The other constraints concerning the minimum

and maximum number of children, number of chunks to be

transmitted, and number of diffusion subtrees for the mesh

case are the same as before.

7.2 Simulation Results

For a given set of configurations and cost-driven and mesh

architectures, we compare the results obtained by using

GROOVER and using PeerSim. Due to the computational

limits of PeerSim, we were only able to analyze systems

with up to 105 nodes, even with a more powerful machine

than the one used for running GROOVER. For all the

results, we computed the confidence intervals for a

confidence level of 95 percent. We obtained interval widths

of less than 1 percent of the point estimate, not shown in

the figures. We first start analyzing the case with no

message delay. Fig. 12 shows the case with outdegree of 2-8

(we obtain similar results, which are not reported here for

space constraints, with outdegree of 1-8) for cost-driven

and mesh architectures. As you can see, the results confirm

our analysis. The slight differences between some of the

results, especially for a small number of nodes, are due to

the properties of the overlay network connectivity: In

GROOVER, we assume a hypercubic connectivity with a

fixed degree, whereas the simulator constructs a random

graph. We have also implemented the random graph in

GROOVER and find a better agreement. Overall, we see

that analytic and simulation results agree very closely.
To check modeling assumptions, we add a delay in the

message transfer in the simulations that is uniformly

distributed between 0 and 1/10 of the time necessary to

upload a chunk with the minimum bandwidth.7 Fig. 13

shows the results for different architectures. The delay

slightly increases the mean download time, but the
quantitative behavior of the system remains the same.

From the comparison between the simulation and
analytic results, we can conclude that our analytic model
is able to capture the essential performance characteristics
of the file distribution architectures, provided that the mean
message delay is not exceedingly large with respect to
chunk transmission. With the chunk size in the order of a
few tens of kilobytes, this assumption is realistic.

8 PRACTICAL ASPECTS AND FURTHER EXTENSIONS

We have studied three different content distribution
architectures and evaluated their performance. We think
that our results can help in improving the design of content
distribution architectures. We therefore discuss briefly how
the systems that we describe with our model can be put into
practice in a real content distribution system, where the
distribution graph is constructed by a distributed algorithm
and where some of the assumptions made (for example,
that the upload/download bandwidth of the node is
known) may not hold. In the following, we will sketch
out the basic operation of such a distributed algorithm for
mesh construction, as defined in CD-CSGP-3, which is, in
fact, the most promising architecture, since it best exploits
the resources and offers a resilient structure in case of
bandwidth fluctuations.

Our results show that the minimum outdegree repre-
sents an important configuration parameter: Setting kmin to
1 helps in improving the performance independently of the
maximum outdegree. We assume that the overlay layer (see
Fig. 1) has been constructed, and each node i knows its
neighbors Bi. Assume that the root has been selected and
the root has chosen some of the nodes in its neighbor set to
which it starts transmitting chunks.

If a node i gets contacted and starts receiving the first
chunk, it will wait until this chunk is completely received.
At that point, node i will select among its neighbors a subset
of candidates. Node i will contact the nodes in Bi and retain
the ones that have not yet received chunks from any other
node in its candidate set Ci � Bi. Let us assume for the
moment that node i knows its upload bandwidth bui and the
download bandwidths bdj , j 2 Ci. Node i will open connec-
tions to its neighbors in Ci until it is saturated (that is, its
upload bandwidth is all used up or the constraint on the
maximum number of outgoing connections is reached). If
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7. This corresponds to two times the time necessary to upload the chunk
with the highest bandwidth, so it is a large delay.

Fig. 12. Comparison between results obtained with GROOVER and with

the PeerSim simulator (outdegree of 2-8).

Fig. 13. PeerSim results with a delay uniformly distributed between 0

and 1/10 chunk time (slower class, outdegree of 2-8).



the node is not able to find untouched nodes in Bi, it will
search for neighbors that belong to different diffusion trees.

There are quite a few cases where the upload and
download bandwidth may, in fact, be known; for instance,
in a corporate environment or even in an Internetwide P2P
system. Today, many file-sharing tools such as BitTorrent or
Edonkey allow the user to limit the upload bandwidth. In
this case, one can set both the available upload and
download bandwidth to that value.

However, if the available upload and download band-
widths of node i are not known, node i could proceed as
follows: It first opens only kmin connections and starts
transmitting to kmin neighbors. If, after some time, node i
observes that its upload bandwidth is not fully utilized, it
can send a message searching for a candidate node j whose
download bandwidth is not fully utilized down the subtree
rooted at node i. The tree would be reorganized as follows:
Node j disconnects from its current parent and becomes a
direct child of node i.

8.1 Possible Extensions

We have presented a technique that allows us to evaluate
different content distribution architectures. In this paper,
we have limited ourselves for space reasons to the case
where the upload and download bandwidth between
neighbor nodes do not change during the whole transfer.
However, the technique that we have introduced can be
extended to handle more complex scenarios and we have
already made extensions for bandwidth fluctuations during
the distribution of the file. We have also been able to extend
our technique to evaluate real-time video streaming archi-
tectures. For details, see [21].

9 CONCLUSIONS

The use of trees for content distribution has been studied
intensively in the literature, but fundamental issues such as
bandwidth heterogeneity and varying node outdegree, as
well as different minimum and maximum outdegrees, have
received very little attention. In this paper, we have made
several contributions concerning 1) the formalism to
describe the content distribution graph, 2) the methodology
to compute the relevant performance metrics, and 3) the
performance results.

We have defined a new analytical methodology called
CSGPs that is suitable for the description of content
distribution architectures based on trees or meshes. The
formalism specifies the evolution of the content distribution
process as a semi-Markov process. To the best of our
knowledge, SGPs were only used to study connectivity
properties and have not been applied to the performance
analysis.

We have developed a numerical solver GROOVER that
emulates a random walk on the DTMC embedded in the
semi-Markov process. GROOVER allows for a very efficient
computation of the performance metrics, even for a very
large number of nodes, which is not feasible by using a
standard discrete-event simulation. On a PC, we can use
GROOVER to evaluate distribution architectures of a
million of nodes and more in just a few hours, which
makes our approach very attractive for the evaluation of
large P2P files distribution systems.

Using GROOVER, we have obtained a number of novel

results:

1. Cooperative content distribution networks are in-
herently self-scalable in that they take advantage of
the resources provided by every peer. Millions of
nodes can be reached by a content within a mean
download time that is near the download time in a
one-to-one communication.

2. Cost-driven trees are able to obtain performances
that are comparable to mesh-based architectures
since they succeed at placing slow nodes mainly at
the leaves. Besides resiliency, the gain of meshes is in
reducing the download time of high bandwidth
nodes.

3. The minimum node outdegree represents an im-
portant design parameter that has not been con-
sidered before. Allowing for a minimum node
outdegree of 1, as compared to 2, helps in decreasing
the download time. Thus, applications such as
eMule that force a minimum outdegree of 2 are not
able to fully exploit the resources.
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