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Abstract

We have previously (ISIT’05) introduced the optimal Diversity versus Multiplex-
ing Tradeoff (DMT) for a FIR frequency-selective i.i.d. Rayleigh MIMO channel.
This tradeoff is the same as for a frequency-flat MIMO channel with the larger of
the number of receive or transmit antennas being multiplied by the delay spread.
In this paper we provide alternative proofs and insights into this result. In par-
ticular, we consider the ordered LDU decomposition instead of the usual eigen
decomposition of the channel Gram matrix. Popular approaches for frequency-
selective channels use OFDM techniques in order to exploit the diversity gain
due to frequency selectivity. We show that the minimum number of subcarriers
that need to be involved in space-frequency coding to allow achieving the opti-
mal tradeoff is the delay spread times the smaller of the number of transmit or
receive antennas, thus answering a question that was open hitherto. Although
the no-CSIT/full-CSIR case is considered here, we propose an alterative DMT
interpretation based on negligible CSIT. This CSIT allows to exploit the ordered
LDU decomposition.

1 Introduction

Consider a linear modulation scheme and single-carrier transmission over a Multiple
Input Multiple Output (MIMO) linear channel with additive white noise, as shown in
Fig. 1. The multiple (subchannel) outputs will be mainly thought of as corresponding
to multiple receive antennas. After a Rx filter (possibly noise whitening), we sample
the received signal to obtain a discrete-time system at symbol rate1. After stacking the
samples corresponding to multiple subchannels in column vectors, the discrete-time
communication system is described by

yk = H(q) ak + vk =
L−1∑

l=0

Hlak−l + vk , (1)

where H(q) =
L−1∑

l=0

Hl q
−l, q−1xk = xk−1 (q−1 is the unit sample delay operator). The

coefficients Hl are Nr × Nt matrices. L is the channel delay spread. We introduce the

SNR variable ρ = P

Ntσ2
v

= σ2
a

σ2
v

. We consider the i.i.d. Rayleigh channel model in which

the entries of Hl, l = 0, . . . , L − 1 are i.i.d. Gaussian : Hrt
l ∼ CN (0, 1).

1In the case of additional oversampling with integer factor, we would vectorize the samples to get
a per antenna vector received signal sequence at symbol rate.
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Figure 1: MIMO channel model.

2 Diversity and Outage Basics

The SINR is random due to its dependence on the random channel h. In [1], it was
demonstrated that at high SNR outage only depends on the SINR distribution behavior
near zero (this was also observed in [2]). This result is quite immediate. Indeed, let us
introduced the normalized SINR γ through SINR = ρ γ and consider the dominating
term in the cumulative distribution function (cdf) of γ:

Prob{γ ≤ ε} = c εk (2)

for small ε > 0. Then the outage probability for a certain outage threshold α is

Prob{SINR ≤ α} = c

(
α

ρ

)k

=

(
α

g ρ

)k

(3)

from which we see that k is the diversity order and g = c−1/k is the coding gain
(reduction in SNR required for identical outage probability). When γ is obtained as a
combination of independent γi, we get the diversity orders k that are indicated in the
table below.

γ k∑
i γi

∑
i ki

maxi γi
∑

i ki

mini γi mini ki∏
i γi mini ki

3 Diversity vs Multiplexing Background

In [2], Zheng and Tse introduced a scenario of SNR-adaptive modulation and coding
schemes (MCS) with hence varying diversity and spatial multiplexing (or normalized
rate). Scheme C(ρ) is a family of codes (MCS) of block length T (one code for each SNR
level), that supports a bit rate R(ρ). This scheme is said to achieve spatial multiplexing
r and diversity gain d if the data rate and the average error probability satisfy

lim
ρ→∞

R(ρ)

ln(ρ)
= r , lim

ρ→∞

ln Pe(ρ)

ln(ρ)
= −d . (4)

For each r, d∗(r) is defined to be the supremum of the diversity order achieved over
all possible schemes. The maximal diversity gain is defined by d∗

max = d∗(0) and the



maximal spatial multiplexing gain is r∗max = sup{r : d∗(r) > 0}.
For a Flat MIMO channel (L = 1), with T ≥ Nt, the optimal trade-off curve
d∗(r) (DMT) is given by the piecewise-linear function connecting the points (k, d∗(k)),
k = 0, 1, . . . , q, where

d∗(k) = (p − k)(q − k),
q = min{Nr, Nt},
p = max{Nr, Nt}

as shown in Fig. 3. The optimal DMT can be achieved by a family of codes with
non-vanishing determinant [3], such as e.g. the space-time spreading codes of [4].
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Figure 2: Optimal Diversity vs. Multiplexing tradeoff (DMT) for freq.-flat MIMO ch.

For SIMO/MISO frequency selective channels, the optimal trade-off curve is
given by the linear function d∗(r) = L p (1 − r) [5]. For SIMO, the DMT can be
achieved by using QAM at the Tx and MMSE DFE at the Rx citeMedlesSlock:isit04,
see also [6] for the DMT of various SIMO linear and decision-feedback equalizers.

4 Flat MIMO DMT via LDU

First of all, for STC schemes with non-vanishing determinant (see e.g. [3] or also [4]),
we have Pe(ρ) = Prob{error} = Prob{error,outage} + Prob{error, no outage}

.
=

Prob{outage} = Pout(ρ) (due to the faster decay of Prob{error, no outage}), hence
d∗(r) = dout(r) and an outage analysis suffices. In what follows, assume w.l.o.g. Nr ≥
Nt (otherwise replace H by H†). Now introduce the LDU (Lower Diagonal Upper
triangular factorization) [7] of the channel Gram matrix:

HH H = L D LH = (L D
1

2 ) (L D
1

2 )H (5)

where L = [Li,j] has unit diagonal, D = diag {d1, . . . , dq} , di ≥ 0. The second
factorization in (5) corresponds to the Cholesky decomposition. Let H = [h1 · · ·hq] =
h1:q, and introduce the projection matrices PH = H(HHH)#HH , P⊥

H = I−PH. Then
we can write 




di+1 = ‖P⊥

h1:i

hi+1‖2

Li+1,j+1 = hH
i+1P

⊥

h1:j

hj+1/‖P⊥

h1:j

hj+1‖2 (6)

The Cholesky factorization of a Wishart matrix (such as HH H) leads to




di+1 ∼
σ2

2
χ2

2(p−i)

Li+1,j+1

√
dj+1 ∼ CN (0, σ2) , i > j

(7)



which is also known as Bartlett’s decomposition [8]. Note that det(HHH) = det(D) =
q∏

i=1

di. A proof of the DMT via the LDU decomposition has been provided in [9], in

which the DMT for Flat MIMO has been extended to the partial CSIT case. The key
starting point in [9] is the Matrix Determinant Expansion lemma:

det(Iq + ρHHH) = 1 +
q∑

i=1

ρi


 ∑

(l1,...,li)∈(1,...,q)

det(Dl1<···<li)


 . (8)

A somewhat simpler proof can be obtained by considering the LDU decomposition
with pivoting (ordering): order the columns of H (no influence on capacity) to obtain

the columns of H̃ =
[
h̃1 · · · h̃q

]
recursively:

‖P⊥

h̃1:i

h̃i+1‖ = max
k∈(i+1,...,q)

‖P⊥

h̃1:i

h̃k‖ , i = 0, 1, . . . , q−1 . (9)

This leads to the LDU with ordering: H̃
H

H̃ = L̃ D̃ L̃H , d̃i+1 = ‖P⊥

h̃1:i

h̃i+1‖2 ∼

χ2
2(p−i)(q−i). Note that ordering modifies the marginal pdf’s but not the joint pdf (apart

from the support region). Observe that the diversity orders of the d̃i+1 correspond
to the diversity orders in the breakpoints of the DMT curve. Also note that H is
of rank i if d̃i is not in outage but d̃i+1 is. Now, the actual quantity of interest is

Iq + ρ H̃
H
H̃ = L

′

D
′

L
′H . However, at high SNR ρ, ln(d

′

i)
.
= ln(ρ d̃i) if d̃i is not in

outage, whereas ln(d
′

i)
.
= 0 otherwise. To be a bit more precise, consider

Pout(ρ) = Prob{ln det(Iq + ρ H̃
H
H̃) < r ln ρ} = Prob{

q∑

i=1

ln d′
i < r ln ρ}

.
= Prob{ln d′

k−1 + ln d
′

k < (r−k+1) ln ρ} , k−1 < r ≤ k

(10)

This development leads to the DMT, after some details that are omitted here for lack
of space.

5 Diversity and Multiplexing for Frequency Selec-

tive MIMO Channel

Assume T >> L, then the mutual information per symbol period for white input is

IT (H) ≈ I(H) =
∮

dz

2πj z
ln det(I + ρH(z)H†(z)) =

∮
dz

2πj z
ln det(I + ρH†(z)H(z))

(11)
where the approximation is explaine din more detail in [4], and we introduced the
paraconjugate (matched filter): H†(z) = HH(1/z∗). For Single-Carrier Cyclic Prefix
(SC-CP) or OFDM systems, it suffices to replace the integral by a sum over subcarriers.
Now, ’

∮
dz

2πj z
ln det(I + ρH†(z)H(z))

.
= ln

∮
dz

2πj z
det(I + ρH†(z)H(z)) (12)



since det(I + ρH†(z)H(z)) is a FIR spectrum and for a FIR spectrum S(z), it was
shown in [10] that

c ln(
∮

dz

2πj z
S(z)) ≤

∮
dz

2πj z
ln S(z) ≤ ln(

∮
dz

2πj z
S(z)) (13)

where c only depends on the FIR length. This states that for a FIR spectrum, a
prediction error variance fades like the corresponding variance. As in the frequency-
flat case, at high SNR outage is determined by the behavior of the Gram matrix
H†(z)H(z). So consider again the LDU factorization: H†(z)H(z) = L(z) D(z) L†(z).
Then

ln
∮

dz

2πj z
ln det(H†(z)H(z)) = ln

∮
dz

2πj z
ln det(D(z)) =

q∑

i=1

ln
∮

dz

2πj z
di(z) (14)

where di(z) =
det(D1:i(z))

det(D1:i−1(z))
is IIR, but the det(D1:i(z)) are FIR and the numerator

and denominator of di(z) are strongly coupled. In particular,

∮
dz

2πj z
di(z) =

∮
dz

2πj z
h†

i(z) P⊥

h1:i−1(z)
hi(z) = hH

i Ai hi (15)

where Ph(z)
= h(z)(h†(z)h(z))−1h†(z) and hi = [hH

i,0 hH
i,1 · · ·h

H
i,L−1]

H . The matrix Ai

is block Toeplitz, with block (Ai)m,n = Ip δm,n −
∮ dz

2πj z
Ph1:i−1(z)

z−(m−n).

nullity(Ai) = i − 1 w.p. 1, indeed:

• hH
i Ai hi =

∮ dz
2πj z

h†
i (z) P⊥

h1:i−1(z)
hi(z) ∈ [0 , hH

i hi] ⇒ λk(Ai) ∈ [0, 1]

• Null(Ai) = Span(h1:i−1)

Eigen decomposition: Ai = Vi︸︷︷︸
pL×(pL−i+1)

Λi︸︷︷︸
(pL−i+1)×(pL−i+1)

V H
i︸︷︷︸

(pL−i+1)×pL

where Vi is uni-

tary: V H
i Vi = IpL−i+1, Λi is diagonal. Now hH

i Ai hi = h
′H
i Λi h

′

i =
pL−i+1∑

k=1

λk|h
′

i,k|
2

where h
′

i = V H
i hi ∼ CN (0, σ2IpL−i+1). Note that Ai and hence Λi is random since

function of h1:i−1. Hence we need the diversity order of λmin = λpL−i+1.

Now, λmin = 0 if min{‖h1,0‖, . . . , ‖hi−1,0‖, ‖h1,L−1‖, . . . , ‖hi−1,L−1‖} = 0.

And min{‖h1,0‖, . . . , ‖hi−1,0‖, ‖h1,L−1‖, . . . , ‖hi−1,L−1‖} (all i.i.d.) has the same pdf as
e.g. ‖h1,0‖, so consider w.l.o.g. ‖h1,0‖ = 0. Now, if ‖h1,0‖ = 0, then λmin = 0 with

eigen vector hH = [hH
1,1 · · ·h

H
1,L−1 01×p].

To find the pdf of λmin near 0, consider ∆λmin = hH ∆Aih with ∆Ai due to ∆h1,0. It

follows that ∆λmin =
|hH

1,1h1,0|2

‖h1,0‖2
∑L−1

k=1 ‖h1,k‖2
∼ χ2

2 hence div(hH
i Ai hi =

∑

k

λk|h
′

i,k|
2) =

div(‖h
′

i‖
2) = div(χ2

2(pL−i+1)) due to the diversity rules in the table in Section 2.
Now, as in the frequency-flat case, consider the ordered LDU (ordering on variances

of di(z)), then due to the same diversity rule:

div(d̃i+1(z)) = div(χ2
2(pL−i)(q−i)) . (16)



The behavior of I(H) is characterized by I(H)
.
= ln det(I + ρ H̄H̄

H
), where H̄ =


H0...

HL−1


 for Nt ≤ Nr, H̄ = [H0,H1, . . . ,HL−1] for Nt ≥ Nr. The optimal trade-off

curve d∗(r) is given by the piecewise-linear function connecting the points (k, d∗(k)),
k = 0, 1, . . . , p, where

d∗(k) = (Lq − k)(p − k), with p = min{Nr, Nt}, q = max{Nr, Nt} . (17)

which is the DMT of the equivalent frequency-flat MIMO channel H̄. For e.g. Nt ≤ Nr,
the DMT is the same as for a flat MIMO channel with N ′

t = Nt and N ′
r = LNr.
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(r, (L.Nr − r)(Nt − r))
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Figure 3: Asymptotic diversity vs. multiplexing tradeoff for a frequency-selective chan-
nel (for the case Nt ≤ Nr).

5.1 Outage Manifolds Analysis

An intuitive explanation of the DMT can be obtained as follows. Consider a parame-
terization of FIR channels of rank k ≤ q=Nt ≤ Nr =p

H(z)︸ ︷︷ ︸
q×p︸ ︷︷ ︸

FIR−L

= H(z)︸ ︷︷ ︸
q×k︸ ︷︷ ︸

FIR−L

[ Ik H︸︷︷︸
k×(p−k)︸ ︷︷ ︸

constant

] P︸︷︷︸
permutation

. (18)

The number of degrees of freedom in the q × p rank-k FIR-L manifold is:

q k L︸ ︷︷ ︸
H

+ (p − k) k︸ ︷︷ ︸
H

= q p L − (q L − k)(p − k) . (19)

To send at rate k, one needs to be guaranteed rank k. The diversity degree is the
remaining number of degrees of freedom in H(z):

d∗(k) = q p L − (q p L − (q L − k)(p − k)) = (q L − k)(p − k) . (20)



5.2 Min Blocklength / Min Number of OFDM Subcarriers

For a SISO/SIMO/MISO FIR channel of length L and OFDM transmission, the full
diversity order is obtained by jointly coding over at least L subcarriers. Hence some
may expect this to continue to hold in the MIMO case. However, for a MIMO OFDM
approach using coding over L independent OFDM subcarriers (frequency-spacing of 1

L

or not): we get d(r) = L(q − r)(p− r) ≤ d∗(r) (in the case of frequency-spacing of 1
L
,

the channel transfer function at the L subcarriers is i.i.d. and the DMT result follows
from the transmission over parallel i.i.d. channels in [2]). In any case, coding over
only L subcarriers is suboptimal in the MIMO case. The difference (suboptimality) in
diversity is d∗(r)−d(r) = (L−1) r (p− r), it peaks at r = p

2
. For large L and Nr = Nt,

d∗(p/2) ≈ 2 d(p/2).
In the MIMO case, the minimum blocklength in time domain, or the minimum

number of subcarriers to be coded jointly in an OFDM approach is

q L = min{Nt, Nr} L . (21)

The position of the subcarriers used only influences the coding gain, not the diversity
order. The above result follows from observing that

det(I + ρH(z)H†(z)) = g†(z) g(z) (22)

for some scalar FIR spectral factor g(z) of length q L.

5.3 Case Nt > Nr

Note that even though we consider to be in the no CSIT case, the whole DMT approach
in fact assumes that the receive SNR is known at the transmitter. Indeed, the whole
DMT idea is one of adaptive modulation and coding, though adapting only to the
average SNR, and hence requires some minimal feedback. At the very high SNR
considered in the DMT analysis, the capacity becomes unbounded. So, in a duplex
transmission system, feedback consisting of a finite amount of bits per symbol period
or even per transmission block constitutes a negligible perturbation of the capacity,
and hence can be assimilated to the no CSIT case. This is the point of view we shall
follow in this subsection.

Straightforward space-time coding techniques use Nt L as blocklength in time or
number of subcarriers in frequency. Tx antenna ordering CSIT can be used to limit
transmission to the Nr best transmit antennas when Nt > Nr. If indeed we assume
the channel column pivoting order to be known at the Tx, then to transmit at rate
r = k, the Tx will only use the columns (Tx antennas) h̃1:k+1 with diversity order that

of d̃k+1 (weakest): (p − k)(q − k).

So, ordering CSIT is especially handy when Nt > Nr (d̃i = 0, i > Nr), it allows
to simplify the space-time coding to the Nr (< Nt) Tx antennas scenario. Note: the
ordering is based on the global spatio-frequency SIMO channel power

∮ dz
2πj z

di(z) after
Gram-Schmidt orthogonalization, not to be confused with per subcarrier ordering.

6 Concluding Remarks

In this paper we introduced first an alternative proof of the DMT of frequency-flat
MIMO channels by using the ordered LDU factorization instead of the basic LDU or
eigen decompositions. Then we extend the use of this ordered LDU factorization to
the frequency-selective channel. Some remarks are in order.



H(z) and H†(z) have the same capacity, but transmission can only be done from
the transmit side ⇒ ordering CSIT can be handy (MIMO Tx selection diversity); e.g.
case 4×2: with ordering CSIT, one can apply the Golden code instead of using double
Alamouti.

The existing diversity-rate tradeoff: defined at high SNR, and only focuses on
diversity order and not on coding gain/SNR offset. To observe the frequency-selective
MIMO DMT, one needs to go to very high SNR (e.g. 50dB, due to bad coding gain of
products of fading variables of equal div. order). Hence, work at finite SNR required.

Correlation of fading variables only influences (decreases) the coding gain, not the
diversity order.

Extension to include temporal diversity: when coding gets performed over multiple
data blocks in which the channel varies with non-singular covariance of the temporal
variation, then the diversities (at any multiplexing/rate) of the blocks simply add up.
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