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Abstract— Addition of new bands, modes and services in mobile devices
means the use of software defined radio (SDR) in the upcoming wireless
devices is inevitable. To realize SDR, a common flexible hardware plat-
form is required that supports transmission and reception of the existing
radio access technologies. Air-interface and analog/digital conversions
make a key part of SDR hardware both on transmitter and receiver. Front
end processing block (FEP) of SDR consists of processing blocks required
at the air-interface including Time/Frequency conversions, Dot-Products,
Energy and Max calculations. We propose a flexible yet efficient hardware
design for FEP that will furnish the front-end-functionality requirements
of 2G, 3G, 4G, broadcast communication and wireless-LAN standards.

I. INTRODUCTION

The current trend of convergence between communication and
information systems contributes not only to introduction of new
telecommunication products with ever-increasing functionalities, but
also to the integration of several means of communication in the same
system. Even a standard PC, now-a-days, has facilities like Blue-tooth
connection, several standards of high-rate local area network (IEEE
802.11a, b and g), and the possibility of integrating a 2G/3G card. The
different types of applications and usages have led to development of
different standards being used in wireless communications systems.
Though these systems have almost the same functional blocks,
however the way these blocks function differs greatly from standard
to standard. In wireless communication systems, radio spectrum,
radio access technologies and protocol stacks vary from system to
system and network to network. Moreover, the evolution of new
standards has not stopped and there are no signs of it in the near
future, rather there exist incompatible network technologies. These
issues give rise to the need for a global design of the system that can
handle most of the existing communication devices (using different
wireless communication standards) that exist, if not all. The obvious
choice is to have a flexible hardware architecture, that will replace
existing dedicated structures for each application. This sums up the
concept of Software Defined Radio (SDR). By a broad definition,
SDR is a reconfigurable radio communication system that can be
tuned to any frequency band, and can handle all the modulation
schemes in a wide frequency range; thus serving multiple services and
communication protocols [1]. SDR is controlled by software, while
the programmable / reconfigurable hardware performs the mentioned
tasks. Software defined radio and reconfigurability can be defined
in many ways, and it is always dependent on the functional support
these are providing. So before heading towards our design, we would
like to define these two terms in functional design perspective. SDR,
that we are addressing is capable of implementing 2G, 3G, 4G,
broadcast communication and wireless LAN standards using the same
HW/SW architecture. Reconfigurability denotes the capability of a
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system that can dynamically change its behavior, usually in response
to dynamic changes in its environment. However, in the context
of wireless communication reconfigurability tackles the changeable
behavior of wireless networks and associated equipment, specially
in the fields of radio spectrum, radio access technologies, protocol
stacks, and application services. In our design, baseband processing
is performed in a HW/SW co-design capable to support all the
functional requirements at any air-interface and at each stage of
SDR processing, from the lowest levels to higher ones. Partitioning
between HW and SW follows a general cost-and-complexity versus
speed trade-off. Hardware is designed in such a manner that it would
support the most computation intensive task efficiently i.e. meeting
the throughput and latency requirements. The hardware is also flexible
enough to use the same baseband processing resources for multiple
standards. The control is in software part of design, which passes
the relevant paremeters to hardware for specific functionalities. The
challenge in the design is to synchronize all the processings at air-
interface in a efficient manner with minimum resource utilization and
high accuracy.

II. SDR - FUNCTIONAL REQUIREMENTS AT AIR-INTERFACE

The air interfaces used by existing and future wireless
communication standards include; Orthogonal frequency-division
multiplexing/multiple-access (OFDM/A), Single Carrier FDMA (SC-
FDMA), Wideband Code Division Multiple Access (W-CDMA),
and Space-division multiple access (SDMA). The set of operations
at the transmitter and receiver in the air-interface used by these
schemes include Channel Estimation, Data Detection, Carrier Phase
Offset (CPO) Estimation, and Synchronization. The implementations
of these operations are typically tailored to the standard in question.
Furthermore, these operations themselves are built up from simple
macro-operations, for example Channel Estimation for OFDM
systems can be implemented using FFT / IFFT, and Component-
wise product of two vectors. The goal is to identify and describe
the set of required operations across standards that can provide the
air-interface functionality for all the standards, the said block is not
necessarily efficient for all standards but is far more efficient than
having different blocks for each standard supported by SDR. One
such processing block performing all the air-interface operations for
different standards is called Front End Processing (FEP) block in the
research based SDR-Platform under progress at Institute Eurecom
and ENST. The prototype being developed intends not only to fullfill
current UMTS processing requirements but will also be capable of
handling 3GPP Long Term Evolution (LTE) processing requirements.

The Fast Fourier Transform (FFT) has been used as building block
for air-interface specific architectures both at the transmitter and
receiver. Transform-based computation has traditionally been used
in OFDM systems. Over the last decade, different architectures
have been proposed for OFDM receivers with the FFT as the key
processing block [8] [9]. For OFDM systems, FFT/IFFT block is not



only used at transmitter and receiver but can also used for Channel
Estimation.
Similar to OFDM, different frequency domain computation
architectures for WCDMA / HSDPA have been proposed. Frequency
domain Equalization and Channel Estimation is performed in
frequency domain using FFT. Iacono et al [10] [11] proposed
a frequency domain block based linear equalizer for WCDMA
systems, whose performance is quite similar to classical time
domain equalizers. VLSI architecture for MIMO equalizer to
be used for CDMA downlink using FFT was proposed by Guo
et al [7]. Following the same methodology, FFT has also been
utilized for MMSE turbo equalization in Global System for Mobile
Communications(GSM)[6].

Though FFT makes the cardinal part of frequency domain receivers
for different air-interfaces as mentioned above, there are some other
blocks required to execute all the tasks. e.g. Carrier Phase Offset
(CPO) estimation in OFDM system can be performed using a dot-
product operation over pilot symbol position in each OFDM symbol.
Dot-Product is also useful in WCDMA/Single-Carrier Systems not
only for CPO but also for synchronization. Similarly, initial syn-
chronization in 802.11x, 3G and 802.16 can be achieved using the
FFT, component-wise-product, and peak detection (a max calculation
over sub-bands is sufficient). Functionalities like Signal to noise ratio,
automatic gain control require received signal energy, and hence an
energy calculation block can be added to the functional requirements
of Front End Processor (FEP). Table I lists some use cases for the
macro-operations required by the different air-interfaces supported by
our FEP block.

III. FEP COMPUTATIONAL BLOCKS

The main functionality of FEP is discrete Direct Fourier Transform
(DFT) for variable number of input samples. The processing block
also offers other functionalities as conjugate, component-wise prod-
ucts / division, dot products, energy, max and argmax computation,
rotations, rescaling, etc. Some of these functions can run in parallel,
some are exclusive because they share internal resources.

A. DFT/IDFT

The Direct and Inverse Fourier Tranforms of a complex vector X of
size N are defined as:

DFTN (X)[k] =
1√
N

N−1∑

n=0

X[n].e−
2πjnk

N , k ∈ [0, N − 1] (1)

IFTN (Y )[n] =
1√
N

N−1∑

k=0

Y [k].e
2πjkn

N , n ∈ [0, N − 1] (2)

Thanks to the 1√
N

normalization term the property X =

IFT (DFT (X)) holds. Optionally the conjugate of the input vector
may be computed before entering the DFT and the conjugate of the
output of the DFT may be computed before storage in the memory.
IFT is computed from IFT (Y ) = DFT (Y ) by using the conjugate
functionality of FEP.

B. Pre-post processing

The macro-processing blocks, other than DFT/IDFT, are normally
used to pre-process (or post-process) the input (output) data of the
DFT/IDFT. Functional description of these processes is described
below:

• Conjugate: computes the conjugate X of a vector X

• Component-wise product / division: computes the component-
wise product Z = X � Y of two vectors X and Y , this
macro is also capable of division by a real vector or by a real
scalar (each limited to 8-bits). The division operation is infact a
multiplication by inverse of vector entities (or constant) which
are stored in a look up table (LUT).

• Energy: computes the energy of a vector X:
E(X) =

∑N−1
i=0 |X[i]|2

• Maximum: computes the maximum of the squares of the mod-
ules of the components of a vector, and the corresponding
argmax:

max(X) = max
0≤i≤N−1

(|X[i]|2)

argmax(X) : |X[argmax(X)]|2 = max(X) and

∀ 0 ≤ i < argmax(X);

|X[i]|2 < max(X) (3)

• Dot product: computes the dot product of two vectors, and the
square of its module:

D = X.Y =
∑

XiYi

|D|2 = |X.Y |2 (4)

Energy, maximum, and dot products can be computed on a whole
vector or on several sub-bands of a given vector, producing as many
individual results. The sub-bands are defined by their number L, size
M (which is the same for all sub-bands), and starting index in the
vector I. The different pre-post processing can be chained in several
different ways. Figure 1 illustrates the different possibilities.
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Fig. 1. Chaining of pre-post processing

IV. DSP / HARDWARE SELECTION

Once the macro-processing blocks are defined, the next step is
to look for proper hardware components. A thorough analysis of
computation intensive block of FEP, i.e. DFT/IDFT, was carried out
to select the DSP slices for its mathematical operations. Candidate
standards and ease of operations suggest that the number of input
samples can be limited as powers of two between 8 and 4096. This
allows to calculate DFT using simpler and efficient algorithms such
as radix-4 FFT and split-radix FFT. The selection of number of
bits representation of each sample is based on target technology,
hardware resources, maximum achievable frequency of end product,
and dynamic range of ADC converters. Therefore, all input samples
to FEP block are represented in 32-bits, with real and imaginary part
each of 16-bits. The data representation format chosen is Q1.15, as
it matches the choice of number of bits, and also provides ease of
operation in the intermediate stages of FFT calculations.



Operations Air-Interfaces
OFDM/A SC-FDMA WCDMA

Channel Estimation DFT + Component-wise Product DFT + Component-wise-Product DFT
Energy Calculations Energy Calculations Energy Calculations Energy Calculations
CPO Estimation Dot-Product over sub-bands Dot-Product over sub-bands Dot-Product
Data Detection DFT + Component-wise Product DFT + Component-wise Product DFT + Component-wise-Product /

Time-domain Dot-Product
Synchronization Max Calculations, Filtering via DFT

or Dot-Product
Filtering via DFT or Dot-Product Dot-Product

MIMO Signal Processing Matrix /Vector Processing (Dot-
Product + Accumulation)

Matrix /Vector Processing (Dot-
Product + Accumulation)

Matrix /Vector Processing (Dot-
Product + Accumulation)

TABLE I
AIR-INTERFACE OPERATIONS AND RELEVANT MACRO-PROCESSING BLOCKS

To calculate N-point FFT, Radix-4 [3] and Split-Radix [2] are the
most widely used and efficient schemes considering the parameters
of our processing block. Radix-4 computes FFT for vector sizes that
are powers of 4 in M stages (where M = log4 N ), while split-radix
algorithm also supports vector sizes that are powers of 2. Radix-4
is more computation efficient and is preferred over Split-Radix as
long as the number of input samples (vector size) is power of 4,
otherwise Split-radix is used in our design. Split-Radix performs
all radix-4 stages (operations) except the first or last stage, which
is a Radix-2 stage (operation). The choice of first or last stage is
dependent on decimation scheme used, for Decimation in Frequency
(DIF) first stage is of type Radix-2 while for Decimation in Time
(DIT) last stage is of Radix-2 type.
Inputs to FFT module are input samples and twiddle factors (equi-
spaced roots of unity circle, equal to number of input samples in
count), and both real and imaginary parts of inputs are represented
in Q1.15 data format. Radix-4 FFT algorithm implementation is
based on butterfly operations [3], N/4 butterfly operations per stage
each of butterfly operation requiring Four Complex Additions and
then a complex multiplication. Four additions cause an addition of 2
bits to input data resolution, so if input at any stage is represented
by ’n.15’ bits, the output after four additions would be ’(n+2).15’
bits. Then this output is multiplied with twiddle factor resulting a
representation of ’(n+2).30’, no bit added on whole number portion
of fractional number because multiplying by twiddles means rotation
of input over unity circle. Least significant 15-bits can be ignored
with an acceptable loss of accuracy, so a right truncation of 15
bits gives a result of ’(n+2).15’ bits. Thus each stage will cause
an increase of two bits for each and every stage of FFT algorithm.
So starting from ’n.15’ bits, the output of maximum input size
(4096 samples = 6 stages) will be of ’(n+12).15’ resolution. As the
input samples are represented by ’1.15’, so the worst case output
resolution can be ’13.15’ bits (28-bits). Thus the dynamic range of
sample representation in DFT processing block would be between
16 and 28 bits.

The aim of the presented processing block and architecture is to
come up with a research based prototyping experimental platform,
and is not meant for any mass scale production; therefore for target
technology selection we look FPGAs and not ASICs. Among the
latest technologies available Virtex-V FPGA by Xilinx has DSP48E
slices which have 25*18 bit multipliers and 48-bit adders, quite close
to the requirements of FFT processing unit of FEP. The most likely
input data samples to FFT operation in the FEP block are 16-QAM
signal, and Zero-Mean White-Noise. Simulation analysis of these
input data samples reveals that the FFT operations never exceeds
the limit of 25-bits with any input samples range. This makes the

Virtex-V as the obvious choice with no extra operation of saturation
and/or re-scaling and also provides as good resolution of 25 bits in
the intermediate stages of FFT operation. DSP48E multipliers also
provide the opportunity to represent twiddle factors in Q1.17 format,
thus enhancing efficiency and also reducing computation noise.

V. FEP ARCHITECTURE

Front End Processor is a part of baseband-FPGA platform
which comprises of different generic processing blocks like
modulator/demodulator, interleaver/de-interleaver, FEP, etc. and
controlled by a central SPARC processor. These processing blocks
are connected to each other and external interfaces via a common
interconnect, and a generic Advanced Virtual Component Interface
(AVCI) [12] compliant interface called VCIInterface in our design.
The Interconnect is a crossbar and routes requests/ responses among
processing blocks. VCIInterface is an AVCI wrapper for signal
processing blocks and provides them a simple interface. In order
to configure external devices like ADC/DAC chips, RF Rx/Tx
components etc. general- purpose parallel interface modules are
used. Like other processing blocks on FPGA, Front End Processor
has its own Micro-controller to perform its specific tasks at its
own. This not only provides efficient and effective computation
but also facilitates local data transfers and low-level transactions
among blocks without the intervention of central microprocessor.
FEP embeds three main components as shown in figure 2 (with
details of DFT macro processing block only). The host interface is
responsible for the communications with the host system and for the
global control and signaling; the internal memory is a local memory
area, mapped on the global memory map of the system and used to
store input data and output results; the FEP core is the processing unit.

Overall throughput of the most computation intensive operation i.e.
DFT is set to one sample per cycle. 4096-point-DFT is the maximum
value supported, with radix-4 algorithm it would take six stages while
each stage would require N/4 i.e. 1024 butterfly operations. To meet
functional specification of throughput two butterfly operations per
cycle need to be performed, which in turn implies that eight samples,
and six twiddle factors are accessed (read from memory) in each
cycle. Thanks to sophisticated memory organization and memory
access algorithm, only N/8 twiddles are stored in memory and just
two twiddle factors are accessed per cycle instead of six; the details
of this are out of scope of this article. To match input samples
access requirements, memory banks for samples are divided into sub-
memory systems to have enough memory reads / writes every cycle.
Each butterfly operation requires three complex multiplications,
which in turn means utilization of twelve DSP48E multipliers. Thus
DFT processing block utilizes 24 DSP48E slices. Component-wise
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Fig. 2. FEP block diagram with description of DFT macro-processing-block

product and Dot-product processing blocks also requires multipliers,
a throughput of 8 multiplications per cycle without operating these
two blocks in parallel results 32 multipliers utilization. Thus in total
we use 56 slices (29 %) of the total 192 DSP48E slices available in
the largest virtex-V FPGA.
Initial synthesis results reveal that the critical operation in FEP,
viz butterfly operation of DFT module, can achieve 230 MHz
frequency (minimum). This, in turn, implies that for a 2048-point-
FFT operation, a (minimum) throughput of 150 M-samples/second
with the current design and can further be improved with design/code
optimizations.

A. Internal Memory Organizationion

Internally memory is divided in two sub-memory systems; input
memory bank, output memory bank. Furthermore Input memory
consists of three input sub-memories, one each for FFT-input samples,
Dot-Product input vector and Component-wise input vector. Each of
these memories is of size 128 K-bits (4096 * 32 bits). Moreover,
to access eight samples per cycle, input memory is divided into
eight sub-banks of size 16 K-bits (512 * 32 bits) each. Twiddle-
factor memory is also part of Internal Memory Subsystem, only N/8
twiddle factors (16 K-bits = 512*32) are stored in memory and the
rest of twiddles are calculated using roots-of-unity-circle property.
Output memory bank stores the respective results of input banks
(128*3 Kbits), and a 16-Kbits memory is used to store Energy, Max
Calculation processing blocks results over sub-bands. Apart from the
input and output submem-banks, to store and process intermediate
stages of FFT where the data resolution is 50-bits (18*25 bits
multipliers), two temp-memory banks of size 27 Kbits each is also
specified.
To cater to all the standards and hence to come up with specifications,
we consider 3GPP as the bench mark. The latest draft for the physical
requirements for 3GPP Long Term Evolution (LTE) [4], [5] specifies
generic radio frame of duration 10 ms consisting of 20 slots while two
slots comprise a sub-frame. Each sub-frame consists of 14 OFDM
symbols with 2048 samples each. For efficient operations, all the
symbols in one subframe are loaded together in memory for DFT
and other processings along with pilot symbols. Assuming 4 Receive
antennas, the number of total symbols needed to be stored at the
same time can safely assumed to be 64. Therefore, total memory
required would be around 4 Mbits to store the input samples only. The
largest Virtex-V FPGA has 10 Mbits of memory, the FEP percentage
memory usage of FPGA total memory size is quite high though

inside maximum limits, and if other processing blocks of baseband
computation need more memory then an external double data rate
dynamic random access memory (DDR DRAM) may be added to
cater these requirements.

VI. CONCLUSIONS

In this article, we have proposed a global air-interface hardware pro-
cessing block that can be configured to support almost all the existing
and in-progress wireless communication standards. The design is
based on identifying small macro-processing blocks which can be re-
used for multiple standards, thus providing hardware flexibility and
high efficiency. Using Virtex-V of Xilinx, the resource utilization is
quite reasonable. Further the control of the block is simple, and all the
parameters for specific processing of supported functionality using
single command word. Future work includes, more rigorous hardware
analysis to examine parmeters such as maximum achievable fre-
quency, area, resource utilization etc, and also benchmarking Front-
End-Processor and its macro-processing blocks with the existing
dedicated blocks for different standards.
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