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Abstract— We consider a power-limited ad-hoc network with
coherent radios in a slow-fading environment, and we analyze
the performance of different physical layer (PHY) and medium
access (MAC) schemes in such a network. Most of the existing
analysis assume that PHY is based on the nearest neighbor
decoding, which is not optimal in this case. Instead, we focus on
the MLE detector. We show that, since some of the interference
is mitigated by the MLE detector, the network design paradigm
changes significantly: a non-coordinated PHY and MAC, in
addition to a low complexity, exhibit better performance than
more complex coordinated, currently used PHY and MAC
schemes. Our results suggest that most of the complexity should
be invested in a receiver design instead of intricate MAC or
signaling protocols. We also present a novel algorithm, using
Monte-Carlo method, to calculate bounds on the rates that can
be achieved with MLE detector. We show that these rates can
be achieved with a detector of linear complexity.

I. INTRODUCTION

One characteristic of wireless transmissions in general is
that the performance of a link is substantially decreased in
presence of interference. In order to control the interference
in a network, different physical (PHY) layer and medium
access control (MAC) layer schemes are introduced. Wireless
LAN and PAN networks are decentralized, ad-hoc wireless
networks. Common MAC schemes for decentralized wireless
networks are based on mutual exclusion. The most prominent
example is CSMA/CA, where a node restrains from trans-
mitting if another node in its vicinity is already transmitting
or receiving. Hence, close neighbours exclude each other.
A decentralized MAC successfully reduces the interference
on active links, but it introduces a significant signaling
overhead. Additionally, interference in a wireless network
may also be controlled through PHY techniques, such as
power control. However, efficient implementation of power
control algorithms in a decentralized network also induces
significant overhead. In this paper we analyze the optimal
cross-layer MAC and PHY design for power-limited wireless
networks in coherent regime with slow-fading channels and
we show that, due to some specificities of power-limited
communication, MAC and PHY design can be simplified to
a large extent, without negatively impacting performance.

Power-limited wireless communication [1] means both
spectral efficiency and energy-per-bit are relatively low.
Nevertheless, interference from concurrent transmissions can
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still be high (e.g. in a near-far scenario, where an interferer
is much closer to the receiver than the corresponding trans-
mitter) and significantly impact the performance of wireless
links.

Indeed, several PHY and MAC protocols have been
proposed to control interference in power-limited ad-hoc
networks [2], [3], [4], [5], [6]. All these works are based on
the assumption that when transmission power is small and/or
bandwidth is large, the rate is a linear function of signal-to-
interference rate at a receiver. The assumption holds when
the interference is Gaussian. However, this is not necessarily
the case in the power-limited regime.

It has been shown in [1] that the capacity-achieving
signaling for power-limited channels is the binary antipodal
signaling. Consequently, if interfering links use the binary
antipodal signalling, the interference they generate is not
Gaussian. It is well known that the Gaussian noise is the
worst type of noise. However, as shown in [7], the nearest
neighbor decoding in presence of non-Gaussian noise is
suboptimal, and achieves the same performance as in the
presence of a Guassian noise of equivalent power.

We start by revisiting assumptions on the decoder design,
and we consider the optimal detector, instead of the nearest
neigbor one. We assume each receiver can estimate only the
long-term statistics of the interferer’s channel and the signal
transmitted by an interferer, but cannot decode the signal. It
then uses the optimal, maximum-likelihood estimator (MLE),
based on the interference statistics, to mitigate the interfer-
ence from concurrent transmissions. A detailed description of
the detector is given in Section II. Possible implementations
of this type of detector have been proposed in [8], [9], [10].
Note that, in contrast to multi-user detection techniques, our
MLE detector does not intend to fully decode the interfering
signals (see Section II-C for a further discussion).

Since the MLE detector may eliminate the effect of
impulsive interference to a certain extent, it is not clear
whether complex PHY and MAC interference mitigation
protocols are needed anymore. To this end, we develop a
mathematical model of the PHY and MAC layers with the
MLE detector and use them to assess different performance
aspects.

Our first result is a characterization of the capacity of a
coherent power-limited radio with interference in a slow-
fading channel environment. Although we cannot calculate
the maximum achievable rate explicitly, we give a novel
lower bound on the achievable rate based on random coding
and MLE decoding. Moreover, this bound is achievable using
a sub-optimal decoder of linear complexity, as described in
Section II-C.



Our second result is to show that the fully decentralized,
non-coordinated PHY and MAC are optimal. We apply previ-
ously derived bounds to assess the performance of different
PHY and MAC protocols on different network topologies.
We show that MLE decoding itself is sufficiently effective in
mitigating interference and that no additional medium access
or power control protocols are needed. In other words, we
show that an uncoordinated MAC and PHY, where each node
transmits, with maximum allowed power, whenever it has a
packet to transmit, performs better than any exclusion based
protocol, even when the signaling overhead is disregarded.

As a special case of previous findings, we show analyti-
cally that the performance of a link in presence of a single
interferer drops by a constant factor that does not depend
on interferer’s signal strength, hence power control does not
help. We also show that this factor is so small that medium
access control cannot significantly improve performance.

Our theoretical results confirm findings from [9]. They
suggest that, due to the particularities of antipodal signaling,
design complexity should be invested in the physical layer
(as in [11], [12], [10], [8]) to mitigate interference, and
the MAC should be kept simple. This is in contrast to [2],
[3], [4], [5] where, due to the nearest neighbor decoding, a
complex and inefficient MAC protocol is needed to mitigate
the interference.

The results presented in our paper are based on a theo-
retical model of a network with coherent radios in power-
limited regime (with multi-path), slow-fading channels and
MLE-based multi-user decoders. Our model is based on [13],
[14], [15], and extends them by introducing interference. We
use a combination of analytical and numerical approaches
to demonstrate the optimality of a non-coordinate access.
Therefore, this paper is a theoretical confirmation of results
conjectured in [9]. Extending our results to particular im-
plementations of a detector, such as [10], [9], remains as a
future work.

In Section II we present our assumptions on PHY and
MAC. We derive bounds on achievable rates of the MLE
detector in Section III. We analyze the performance of
different PHY and MAC protocols in Section IV and we
conclude in Section V.

II. SYSTEM ASSUMPTIONS

In this section we present assumptions on channel behav-
ior, receiver and transmitter design.

A. Channel model

We model the communication channel using the following
descrete vector channel model

r[n] = u1[n]A1h1 +
I∑

i=2

ui[n]Aihi + z[n]. (1)

where ui[n] is the n-th transmitted simbol by user i, Ai is
the long-term average amplitude of the signal from node i
received at node 0, z[n] are i.i.d. Gaussian samples back-
ground noise and r[n] are the received channel samples for
n-th symbol.

Vector hi = (hi1, . . . , hiM ) models the random fading,
and M represents the number of dimensions in the system
(e.g. number of frequency carriers). Futhermore, we assume
slow-fading , that is the channel fading hi = hi[n] is con-
stant throughout channel duration. We also assume coherent
communication, so receiver 0 disposes of the value of h1

(but does not dispose of hi for i > 1). For simplicity of
exposition, we assume a real-valued channel (hi ∈ RM ).
Analysis can be extended to complex-valued channels.

It is difficult to calculate the capacity of the channel (1)
numerically. Instead, in what follows we will present a set
of assumptions that will help us to derive a lower and an
upper bound on the capacity of the channel, and also give
us some insight in how these rates might be achieved with
linear complexity.

B. Transmitter Structure

The optimal signaling for a real-valued coherent power-
limited channel is BPSK [1]. Each symbol slot n node i
transmits one of the symbols from the set ui[n] ∈ {−1, 1}.
We assume that {ui[n]}n are i.i.d. random variables with
P (ui[n] = 1) = P (ui[n] = −1) = 1/2. We also assume
that the average power during transmission Pi = A2

i is upper-
bounded by PMAX

i , where the value of PMAX
i is specified

by regulations.
The goal of our physical layer is to adapt the the coding

rate in order to maximize the performance. We will assume
that for any given signal and interference power, node 1
always send to node 0 at the capacity of the channel, that
is at the highest rate R(1 → 0) that gives arbitrarily low
bit-error probability.

C. Receiver Structure and Maximum-likelihood Receiver

Suppose the source sends codeword u1 from a codebook
C ⊆ {−1, 1}N that corresponds to the selected trans-
mission rate R(1 → 0). The destination receives R =
{r[n]}n=1,··· ,N , as described in (1). We consider a coherent
communication where the receiver dispose of an accurate
estimate of channel-impulse response h1. The maximum
likelihood (MLE) detector then, knowing statistics of noise
and interference, selects the codeword û1 ∈ C that maxi-
mizes the likelihood P (R | û1,h1).

This formulation of the MLE detector implies that the
receiver has some knowledge about interferers. In particular,
it needs to know the number of interferers I − 1 and their
long-term average channel characteristics Ai. In some cases,
this may be feasible in practice. For example, a receiver
may focus on estimating only the strongest interferer. It can
estimate long-term average channel statistics of this interferer
during receiver’s idle times, and during reception of a packet
it can detect whether the interferer is active or not. Further
implementation details are out of scope of this paper.

It is difficult to calculate exactly the capacity of the
channel defined by (1). Instead, we shall use two bounds:
a simple upper-bound based on the assumption that there
are no impulsive interferers (they can all be extracted), and
a novel lower-bound for an MLE decoder. In order to derive



the lower-bound, we consider a sub-optimal threshold-based
MLE decoder, described in Section III-A.1. In addition to
being tractable, this threshold-based MLE decoder has linear
complexity, as opposed to exponential complexity of MLE
decoder. Both bounds are explained in detail in Section III.

D. Medium Access and Power Control
We next discuss PHY and MAC protocols. Let us denote

with L ⊆ {1, · · · , I} the set of links that actively commu-
nicate. We further define the an “activation profile” S ⊆ L
as a set of links that are transmitting together. A medium
access protocol (S, {αS}S∈S , {~PS}S∈S) is defined by a set
of activation profiles S, the fractions of time αS ∈ [0, 1]
each profile S ∈ S is active (

∑
S∈S αS ≤ 1) and the set of

transmission powers ~PS = (PS,l)l∈L used in each profile.
Let us also define R(l, S, ~PS) to be the rate achieved

on link l when links from profile S 3 l are active and
use transmission powers ~PS . We can calculate bounds on
this rate using the results from Section III. If link l is
not active during profile S we say R(l, S, ~P ) = 0. The
average rate of link l in MAC (S, {αS}S∈S , {~PS}S∈S) is
R̄(l) =

∑
S∈S αSR(l, S, ~PS).

We will further consider two types of MAC and PHY
protocols. The first one is the uncoordinated protocol. This
is the protocol in which all links are activated at the same
time (hence S = {L}), and all transmit with the maximum
power. The second one is the exclusion-based MAC, where
some links are not allowed to be scheduled together, and
where each link can adapt transmission power. In order
to implement an exclusion-based protocol, one needs some
coordination among nodes. Note that a non-coordinated
access can be seen as a special case of an exclusion-based
protocol with zero exclusions.

The considered protocol model does a priori not assume
any constraints on whether a node can transmit to or receive
from several nodes at the same time since this is not funda-
mental to our analysis. However, it can easily be extended
to such cases.

III. BOUNDS ON ACHIEVABLE RATES

We next derive bounds on the achievable link’s physical
data rate, given the received signal power and the received
powers of interferers. For that matter, we will consider the
discrete vector channel model described in (1). We will first
derive a novel lower-bound, which is one of the main results
of our paper, and then we will present a simple upper-bound.

A. Lower bound
1) Threshold Decoding: Next, we will derive a lower-

bound on achievable rates using a practical decoding scheme.
We suppose the source sends data in packets of length N ,
where N is assumed large. Each packet has a coding rate
CR associated with it, yielding error probability of decoding
P (err). We consider an upper bound on P (err) using random
coding bound technique [16].

Suppose packets are coded using a random codebook
C, ||C|| = 2NCR . The optimal decoder is the maximum like-
lihood (MLE) decoder described in Section II-C. However,

the performance of the maximum likelihood decoder is hard
to analyze. Since we are interested in an upper-bound on
the probability of error, we shall consider a simple threshold
decoding scheme, based on an arbitrary threshold θ. If the
likelihood P (R |u1,h1) > θ for only one u1 ∈ C, then the
decoding is successful. Otherwise, it fails.

2) Performance of Threshold Decoding: We start by
giving the short-hand notation, based on (1), that we
will be using in the following section. We denote with
H = {hi}i=1,··· ,I , H−1 = {hi}i=2,··· ,I matrices repre-
senting channel states. Matrix R = {r[n]}n=1,··· ,N , ui =
{ui[n]}n=1,··· ,N denotes the set of received samples. Trans-
mitted codewords are denoted with U = {ui}i=1,··· ,I ,
U−1 = {ui}i=2,··· ,I and U[n] = {ui[n]}i=1,··· ,I . We will
also use a short notation for P (Y |v,h) = P (R = Y |u1 =
v,h1 = h) and P (Y |V,h) = P (R = Y |U = V,h1 =
h).

We first need to choose the threshold θ which will yield
good performance. Ideally, θ(u1,h1) is a function of the
(unknown) transmitted codeword u1 and the channel-state
h1, and we shall choose it to minimize the probability of
false-negative P (P (R |v,h1) < θ(v,h1) |u1 = v,h1). We
will show later that the optimal θ does not depend on the
choice of v,h1.

The noise and the interferences are ergodic pro-
cesses hence for a large packet size N we have that
P (P (R |v,h1) > θ(v,h1)|u1 = v,h1) → 1 if

θ(v,h1) = (1− ε)ER(P (R |v,h1) |u1 = v,h1) (2)

= (1− ε)
∫
Y

P (R = Y |v,h1)2dY (3)

for any ε > 0. We will choose θ(v,h1) =
∫
Y

P (R =
Y |v,h1)2dY (i.e. ε = 0), and assume further
P (P (R |v,h1) > θ(v,h1)|u1 = v,h1) = 1. We next show
that θ(v,h1) does not actually depend on v,h1, hence we
can write θ(v,h1) = θ.

Let D(v,w) = |{n : |v[n]− w[n]| 6= 0}| be the distance
between vectors v and w. We will show in the following
proposition that the probability of falsely detecting vector v
as w depends only on this distance.

Proposition 1: The following integral

p(D(v−w),h1) =
∫
Y

P (R = Y |v,h1)P (R = Y |w,h1)dY

depends only on D(v−w) and h1. Also, θ(v,h1) depends
neither on v nor on h1.

Proof: Let us denote with Q[n] =∑I
i=2 ui[n]Ai[n]hi[n] + z[n]. Then, P (R = Y |v,h1) =

P (
⋃

n=1···N Q[n] = Y[n]− v[n]A1h1) and∫
Y

P (R = Y |v,h1)P (R = Y |w,h1)dY =∫
y

P

( ⋃
n=1···N

Q[n] = Y[n]

)
×

× P

( ⋃
n=1···N

Q[n] = Y[n]− (w[n]− v[n])A1h1

)
dy.



The distribution of the vector {Q[n]}n=1···N is by definition
symmetric and invariant to a permutation of its elements,
hence the value of the integral depends only on D(v,w).
Furthermore, if ||v − w|| = 0, as in (3), then the integral
does not depend on h1 either.

Now we are interested in the probability of error of decod-
ing a random transmitted codeword. We consider a random
codebook C with a distribution as described in Section II-
B, and from there select a random codeword v to transmit.
Note that P (v = ω | C = C) = 2−CRN1{ω ∈ C} since by
definition all the codewords from C are equiprobable. The
probability of error can be bounded by the union bound as

P (err|h1) ≤

≤ EC,v∈C

 ∑
ωw∈C,ωw 6=v

P (P (r |ωw,h1) > θ |v,h1)


=

∑
C,ωv,ωw 6=ωv

P (C = C)P (v = ωv | C = C)

1{ωw ∈ C}P (P (r |ωw,h1) > θ |ωv,h1)

=
∑

C,ωv,ωw 6=ωv

P (C = C)P (v = ωv | C = C) 2ClN

P (v = ωw | C = C)P (P (r |ωw,h1) > θ |ωv,h1)
= 2ClNEv,w,v 6=w [P (P (r |w,h1) > θ |v,h1)] (4)

where v,w are two randomly chosen codewords from a
random codebook.

Next, using Markov inequality, we bound

P (P (R |w,h1) > θ |u1 = v,h1) ≤ (5)

≤ 1
θ

ER [P (R |w,h1) |v,h1] (6)

=
p(D(v −w),h1)

θ
(7)

where the last equation follows from Proposition 1. Note
that, since v and w are random codewords, (7) is a random
variable as well. The Markov bound is the best bound we
can use knowing only the mean of a random variable, and
numerical results in Section IV show that the bound is useful
for performance evaluation of the channel.

Since we have P (ui[n] = 1) = P (ui[n] = −1) = 1/2,
we can easily express

P (D(u− v) = d) =
(

N
d

)
2−N . (8)

Next, let
ed = (1, . . . , 1︸ ︷︷ ︸

d

,−1, . . . ,−1︸ ︷︷ ︸
N−d

).

Clearly, D(ed − e0) = d. Then from Proposition 1, (4), (7)
and (8) we have

p(d,h1) = EU−1,V−1

[ ∫
Y

P (R = Y | [ed,U−1],h1)

P (R = Y | [e0,V−1],h1)dY
]
, (9)

P (err) ≤ 2CRN

θ

N∑
d=1

(
N
d

)
2−Np(d,h1) (10)

where U−1 = {ui}i=2,··· ,I ,V−1 = {vi}i=2,··· ,I are ran-
dom codewords transmitted by interferers. We can express∫
Y

P (R = Y | [ed,U−1],h1)P (R = Y | [e0,V−1],h1)dY
in a closed-form, as explained in Appendix, and calculate the
mean over interferers’ codewords U−1,V−1 using Monte-
Carlo simulations. Since p(0,h1) = θ, we can use the same
procedure to calculate θ (note that in addition θ does not
depend on h1). Details on Monte-Carlo simulations are given
in Section III-C.

From (10) we can obtain a lower-bound Cl on the com-
munication rate CR. Let us fix an arbitrary small probability
of error P (err) = ε. We then have

CR(N) = − 1
N

log2

(
N∑

d=1

(
N
d

)
2−N p(d,h1)

θ

)
+

1
N

log2(ε)

When N → ∞, the second term vanishes. Hence, we can
achieve arbitrarily small P (err) using communication rate

Cl = lim inf
N→∞

CR(N) (11)

= lim inf
N→∞

− 1
N

log2

(
N∑

d=1

(
N
d

)
2−N p(d,h1)

θ

)
(12)

= lim inf
N→∞

− 1
N

log2

(
N∑

d=0

(
N
d

)
2−N p(d,h1)

θ

)
.(13)

Note that limits (12) and (13) are equivalent but the latter is
easier to calculate numerically.

B. Upper bound

As an upper bound, we use the information-theoretic
capacity of the channel (1) without interference (I = 1).
Note that in this case our lower bound coincides with a well-
known random-coding bound for AWGN channels, which
is tight. In other words, we can readily calculate the upper
bound using (13) and setting Ai →∞ for all i > 1.

C. Numerical Methods

We calculate θ and
∑N

d=1

(
N
d

)
2−Np(d,h1) using

Monte-Carlo simulations, averaging over many random sam-
ples of V−1,U−1 and h1.

In the case of θ, we verify that the samples obtained by
Monte-Carlo fit the Gaussian distribution well. This allows
us to calculate confidence intervals of the simulation [17],
and in all cases the relative confidence intervals are smaller
than 10%.

In case of
∑N

d=1

(
N
d

)
2−Np(d,h1) the samples are

no longer Gaussian, but we verify that a log transform is
Gaussian. There is a simple intuitive explanation for this. For
very small d the candidate and the transmitted codewords are
similar, the probability of error (estimated through p(d,h1))
is high. However, there are a few such codewords. On the
contrary, for large d, p(d,h1) is small, but there are a lot of
such words.



In all the simulations we find that the relative confidence
intervals for the error probability of decoding P (err) are
smaller than 10%. We are interested in Cl, given by (13),
which is of order of log2(P (err)). Since the values of interest
of log2(P (err)) are smaller than -13, we can see that the
relative confidence for Cl is around 5%-10%.

IV. MAC AND PHY PROTOCOL PERFORMANCE
EVALUATION

A. Network Topologies

In this section we analyze the performance of different
PHY and MAC schemes on different network topologies. We
will compare the non-coordinated PHY and MAC schemes
with the optimal exclusion-based schemes and show that the
uncoordinated schemes are equally good.

There are two main difficulties arising in these compar-
isons. The first one is a choice of the performance metric.
Several performance metrics have been considered in evalu-
ation of computer networks, such as maximum throughput,
max-min fairness and proportional fairness [18], and we need
to decide which one to use.

The second difficulty is the complexity of the underlying
optimization problem. Finding the optimal MAC protocol
in an arbitrary network is an NP hard problem [19]. In
our setting the problem becomes even more complex be-
cause calculating bound on channel rates themselves is
computationally very expensive, as explained in Section III.
Furthermore, the resulting MAC protocol depends to a large
extent on the performance metric of choice.

D1S1

dS2

S4

S6
S5

D2 D6

D3

D4

S3
D5

l

Fig. 1. Cylindric scenario: There are K nodes and I links (in this example
K = 12, I = 6). Si sends to Di. Adjacent links have opposite directions.

This work focuses on the performance of a non-
coordinated protocol, and not on discussing the issues of
different scheduling techniques and performance metrics.
Therefore, we shall consider a class of symmetric cylindric
network topologies with K nodes and I links, described in
Figure 1, which greatly simplifies the analysis but still gives
a broad insight into the performance of non-coordinated
protocols. It is easy to verify for the network on Figure 1
that, due to the symmetry, all nodes should have the same
rate regardless of the metrics (R̄(l) = R̄ for all l ∈ L). Our
goal is to maximize R̄.

We can further show that the activation profiles need to be
symmetric as well. Let us define the rotation of an activation
profile ρi(S) = {l | (l+i) mod I ∈ S}. We will show that the
optimal MAC consists of rotating a single activation profile.

Proposition 2: There exists an activation profile S∗ and
a set of transmit powers {~P ∗

S}S∈S such that S =

{ρi(S∗) | i = 1, · · · , I}, αQ = 1/I for all Q ∈ S and
(S, {αS}S∈S , {~PS}S∈S) is the optimal MAC.

Proof: For every link l we have

R̄ =
∑
S∈S

αSR(l, S, ~PS)

=
∑

i=1,··· ,I

1
I

∑
S∈S

αSR(l, ρi(S), ~Pρi(S))

=
∑
S∈S

αS

∑
i=1,··· ,I

1
I
R(l, ρi(S), ~Pρi(S))

≤ max
S∈S

∑
i=1,··· ,I

1
I
R(l, ρi(S), ~Pρi(S))

=
∑

i=1,··· ,I

1
I
R(l, ρi(S∗), ~Pρi(S∗)).

where S∗ achieves the max in the last inequality. Hence, for
any MAC (S, {αS}S∈S , {~PS}S∈S) we can construct a MAC
that satisfies the claims of the theorem and performs at least
as good.

For example, for K = 12, I = 6, we might
have that the optimal activation profile is S =
{(S1, D1), (S3, D3), (S5, D5)}, meaning that every second
link is active. This profile defines an exclusion based protocol
that may corresponds to a CSMA/CA based protocol where
the carrier can be sensed at distance d. A non-coordinate
PHY and MAC are represented by a single user profile
S = {1, · · · , I} where all links are active all the time, using
the same transmission powers, due to symmetry(Pl = Pk for
all l, k ∈ L).

Our goal is to evaluate whether the non-coordinate PHY
and MAC are as good as any coordinated, exclusion-based
ones. We will use (13) to calculate a lower bound and an
upper bound on performance of non-coordinated protocol,
and we will show that the two are very close and that no
exclusion protocol can perform better.

B. System Parameters

In all the simulations we will assume that the signal
transmitted power is Ptrans = 0.1mW. The received signal
at distance l is Prcv(l) = Ptrans b l−α, where we take
the signal propagation parameters b = 10−5.5, α = 3.3
from measurements [20]. We assume white-noise power is
σ2

W = 10−13W . Typical communication range for these
system parameters is up to 10m.

We will also consider codeword sizes of N = 80, which
is sufficiently large to give reliable results and is computa-
tionally feasible. We will take M = 5 that corresponds to a
5-tap receiver, again the highest computationally feasible.

For channel statistics we use the measurements from [13]
which says that the tap energy drops linearly with the tap
delay. Approximately 14% of the total energy is in the first
5 taps. We also assume here that taps are independent. In
order to avoid additional unnecessary variance in our results,
we will assume here that h1 is fixed to the average measured
values. Similar results hold for different values of h1 (hence
will hold for the average channel realizations as well).
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Fig. 2. Cylindric scenario: We consider different numbers of interfering links ((a) I = 2, (b) I = 4, (c) I = 6). We vary d for different l, and plot the
ratio between the rate achieved in presence of the interferers vs the rate of a link in isolation (e.g. d = 100m).
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Fig. 3. A special case of cylindric scenario with 7 interfering link (I = 8). We vary d for different l, and plot the absolute rates (a), as well as the ratio
(b) between the rate achieved in presence of the interferer vs the rate of a link in isolation (e.g. d = 100m).

C. Numerical Results
In this section we consider numerical results for cylindric

networks, depicted in Figure 1. We first look at the non-
coordinate MAC. Again, due to symmetry, we have that
the transmitted power P = Pi for all i. We do not vary
the transmitted power explicitly in our simulations, as it is
equivalent to changing l and d.

We look at the achievable rates for cylinder topologies
with 1,3,5 and 7 interferers (I = 2, 4, 6, 8). The results are
depicted in Figure 2 and Figure 3. We see that when the
interferers are sufficiently far away (e.g. d ≥ 10m), there is
no drop in rate. As the interferers approach, a slight drop in
rate occurs. This drop is insignificant for the single interferer
case (I = 2), and can go up to 20% in case of 7 interferers.

In all cases we observe that the performance drop occurs
when we decrease d from 10m to 1m. As we continue to
decrease d, no further drop occurs. This means that for d <
1m, the interferers’ signals are strong enough to be extracted
to the same extent.

In order to better explain the above phenomenon, we
consider the simple case of a single interferer (I = 2) and
a single channel sample (M = 1), with N large. We then
have the following proposition

Proposition 3: Let us consider the channel model given
in (1), with I = 2 and M = 1. Then, if NA2

2σ
2
M � σ2

W ,
the lower bound (13) on feasible communication rate does
not depend on A2.

Proof: We first observe that T = σ2
M is scalar, since

M = 1. We start from the output distribution of the channel
(14), given in the appendix, and we denote D[n] = y[n] −
h1A1v1[n]. We then have

P (R = Y |V,h1) =

(
1√

2πσ2
W

)N √
σ2

W

σ2
W + σ2

MA2
2N

exp

(
− 1

2σ2
W

N∑
n=1

D[n]2
)

exp

 1
2σ2

W

σ2
MA2

2

σ2
W + σ2

MA2
2N

(
N∑

n=1

D[n]v2[n]

)2
 .

Now sinc NA2
2σ

2
M � σ2

W , we have

P (R = Y |V,h1) =

(
1√

2πσ2
W

)N √
σ2

W

σ2
W + σ2

MA2
2N

exp

− 1
2σ2

W

 N∑
n=1

D[n]2 − 1
N

(
N∑

n=1

D[n]v2[n]

)2
 .

and only the multiplicative factor depends on A2. However,
since in (13) we have ratio p(d,h1)

θ and both p(d,h1) and
θ have the same multiplicative factor, it cancels out, hence
(13) does not depend on A2.
A similar result can be derived for I = 2 and arbitrary
M ; see [21]. We conjecture that it can be generalized
for arbitrary I as well, although the derivation becomes
extremely complex.



We can conclude from Proposition 3 that the performance
of a channel in presence of interferers depends only on their
number, and drops by a constant factor regardless of the
actual position of interference. It is difficult to characterize
this constant factor analytically. Our numerical results sug-
gest that this factor is very small, even when the number of
interferers is relatively large. Note that our numerical results
illustrate the result of Proposition 3 only for d < 2m (which
ensures that the condition NA2

2σ
2
M � σ2

W holds).
We also give the following proposition about the shape of

function p(·) in the special case of a single interferer
Proposition 4: Let us consider the channel model given

in (1), with I = 2. Then, p(·) has the following form∫
Y

P (R = Y |V,h1)P (R = Y |W,h1)dY =

= K exp
(

A2
1

σ2
W

hT
1 h1f(V,W)

)
.

where hT
1 h1 = 1, K is a constant that does not depend on

V,W, f(V,W) is a function that depends solely on V,W
and A2

1
σ2

W
is the signal-to-noise ratio of the received signal. We

do not give the proof here as it requires tedious derivations;
see [21]. As a consequence we see that (13) does not depend
on statistics of channel-impulse response.

It is easy to see that one cannot construct an exclusion-
based protocol with this performance. First, consider a pro-
tocol that ensures that when link l is active, link l − 1
and l + 1 will be silent. The most dense schedule that
satisfies this property is based on activation profile P =
{(S1, D1), (S3, D3), (S5, D5), · · · } (every second link is ac-
tive). In this case we can upper-bound the performance of
link l by assuming there is no interference at all. However,
link l is scheduled at most 50% of the time, and the perfor-
mance of this MAC is much lower than the performance of
the non-coordinated one.

In order to match the rate of non-coordinated MAC in, for
example, the case of 8 links, we need to schedule each link
at least 80% of a time, which implies approximately 5 inter-
fering links in each slot. However, the drop of performance
caused by 5 interfering links is already very similar to what
one can achieve with a non-coordinated MAC, hence there
will be no benefit of further exclusions.

Furthermore, from Proposition 3 we see that the impact
of the interference does not depend on the power of the
interfering signal, hence any form of power control will not
improve performance. Instead, it is optimal that all links
transmit with the maximum power.

V. CONCLUSIONS AND FUTURE WORK

We analyzed the performance of different PHY and MAC
protocols for coherent, slow-fading, wide-band channel with
MLE detector and random coding. We showed that the
impact of the wide-band interference can be diminished
to a large extent by the use of the maximum-likelihood
decoder. We also showed that the performance drop due to
interference depends only on the number of interferences,

and not on their actual position (interfering signal strength).
Even in a harsh scenario, with 7 near-by interferers, we show
that the link rate drops by less than 20%.

We further concluded that there is no need for an
exclusion-based MAC protocol as the interference is suc-
cessfully mitigated by the PHY. The non-coordinate MAC,
in which all links transmit regardless of the others, with
the maximum powers, is very close to a theoretical optimal,
and it largely outperforms already proposed systems [4], [5]
based on the nearest neighbor decoder and repetition coding.

We also presented a novel procedure to calculate a lower-
bound on achievable rates using random-coding techniques
and Monte-Carlo simulations. We showed that, in the case
of a single interferer, bound drops by a constant factor,
regardless of the interferer’s strength.

Our results indicate that when designing a wide-band
network, one should not invest in complex MAC protocol,
with a lot of signaling overhead, in order to control the
interference, as done in [4], [5]. Instead, the complexity
should be invested in a multi-user decoder that can success-
fully mitigate interference with much lower complexity, as
proposed in [10].
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APPENDIX

In the appendix we explain how to calculate the channel
output distribution P (R = Y |V,h1) and

∫
Y

P (R =
Y |V,h1)P (R = Y |W,h1)dY. First, conditional to the
channel realization H and the transmitted symbols U, the
channel outputs R = {rm[n]} are Gaussian i.i.d. RV with
distribution

P (R = Y|U,H) =

(
1√

2πσ2
W

)MN

×

× exp

(
−

N∑
n=1

M∑
m=1

(ym[n]−
I∑

i=1

vi[n]Aihim)2/2σ2
W

)
.

Also, each channel response hi is multivariate Gaussian with
distribution

P (H−1) =

(
1√

(2π)M |T |

)I−1

exp

(
−1

2

I∑
i=2

hT
i T−1hi

)
,

Thus, we have

P (R = Y |V,h1) = EH−1(P (R = Y|V,H)) = (14)

=
∫
H−1

(
1√

(2π)M |T |

)I−1(
1√

2πσ2
W

)MN

×

× exp

(
−

I∑
i=2

hT
i T−1hi

2

)
×

× exp

(
−
∑
n,m

(ym[n]−
∑I

i=1 vi[n]Aihim)2

2σ2
W

)
dH−1

which is again a multivariate Gaussian and can be expressed
in closed form. Similarly, since P (R = Y |V,h1) is
exponential,

∫
Y

P (R = Y |V,h1)P (R = Y |W,h1)dY
is also exponential and can be calculated explicitly. See [21]
for details.


