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Abstract—We consider the situation where N nodes share a ~ The problem of maximizing the throughput of some traffic
common access point. With each node there is an associated subject to constraints on its delay has received extensive
buffer and channel state that change in time. Nodeé dynamically attention, starting with the pioneering work [3] by Lazattwi

chooses both the power and the admission control to be adopte . . o
so as to maximize the expected throughput, which depends on its extension to a game setting in [4]. The research on power

the actions and states of all the players, given its power andelay —control in cellular networks is also rich [5]. Our work is the

constraints. The information structure that we consider issuch first to consider both admission control and discrete power
that each player knows the state of its own buffer and channednd  control to maximize the throughput given certain power and
its own actions. It does not know the states of, and the actian a5y constraints. We study this situation for the case of a

taken by other players. Using Markov Decision Processes we _. I bil I for th f ol s Wh
analyze the single player optimal policies under differentmodel S!N9!€ MODIE, as well as Tor the case of several players.nivhe

parameters. In the context of the stochastic games we studpe there are several players, we consider both the non-conera

equilibria of the N player scenario. and the cooperative (team problem) formulation, using game
theory. The team problem occurs when there is more than
|. INTRODUCTION one mobile but a common objective function is optimized by

. . . all mobiles. On the contrary, in the non-cooperative game,
We consider a set of mobiles who transmit packets throughe objective of each player is to selfishly maximize its own

a wireless network and who share a common access pQialoff. We consider both the Nash equilibrium concept as wel
(AP). Each mobile must dynamically choose its power angs that of correlated equilibrium.

packet admission control based on the information thatst ha The notion of correlated equilibrium was introduced by R.
about its queue size (number of backlogged packets) and Qfimann in [6] as a generalization of Nash equilibrium. The
its current channel state. important feature of correlated games is the presence of an
Although the large majority of wireless networks operatingrbitrator. An arbitrator needs not have any intelligence or
today do not delegate these decisions to the users, the- pagsbwledge of the game, it needs only send random (private or
bility of leaving the decisions to the mobiles is an impottarpublic) signals to the players that are independent of &kt
alternative worth studying since it scales much better wiata in the game. In the context of non-cooperative games,
increasing traffic demand, throughputs and the number @ich player has the possibility not to consider the sigpél(s
subscribers. receives. Coordination between players turns out to beulisef
In the absence of queues, in the case that each mokilso in the case of cooperative optimization. The signabken
always has a packet to transmit (this is the saturated rggimjeint randomization between the strategies of the playwrs;
the problem can be described as a game with a randgibly resulting in equilibria with higher payoffs. The capt
environment. We call the random environment the state of correlated games was recently introduced in a networking
the system. The state is given by a set of Markov chainsntext in [7], where the authors consider a simple ALOHA
one for each user. The users control the power (and henegting. To our knowledge, our paper is the first to consider
the instantaneous costs or rewards) but have no control ogerrelated equilibria of stochastic games with constgaint
the system state. This situation was studied in Altman et al.This paper is structured as follows. In Sec. Il we present the
[1], [2]. In contrast, in this paper the control of a user hasroposed model. In Sec. Il we analyze using Markov Decision
an impact not only on the instantaneous costs or rewards Pubcesses the optimal policies when a single controller is
also on the state transition probabilities, as the statdayfep involved. In Sec. IV we provide results about the equilibina
i now includes also the (controlled) queue size (while [1], [2he scenario with multiple users with completely indeperide
assumes a saturated system). state information. Finally, in Sec. V we assume that there is
Adding the queues allows us to reduce losses at the costofommon device that emits signals to all the users and we
introducing queueing delays within the network. In formulapresent the correlated equilibria that emerges from thitesy.
ing the optimal control problem we shall take these delags in  The scripts used to generate the pictures presented in this
account in the optimization objectives in the form of adutial paper and the solution techniques adopted [Lemke linear
constraints. complementarity program (LCP) and successive best respons



as well as an extended version of this work are availabl@enlinumber of packets in the queue at the beginning of sldt
at [8]. the state of mobilé at timet is x; and actiona; is adopted
the next state will be;; with probability Py, ,, », .

Mobile strategies w;((p:,c;)|x;) is the probability that
We consider the situation wherg nodes share a commonmobilei chooses the transmission power leygk P and the
AP. Time is divided into slots. We assume that packets ametionc;, € C when its state is;. The class of decentralized

generated at each node by application(s). At each time spatlicies of mobilei is denoted byU;. DefineU = 1Y, U;.
t, each mobilei transmits data with power level! chosen  Performance measuresThe signal to interference ratio
among a finite seP = {0,1, ..., Pmax} containingPnax+ 1 SIR; of mobile i at the base station when the power level
power levels. The actiop; = 0 means back-off and the actionchoices of the mobiles arp = (p1,..,pn) and the mobile
p; > 1 means transmission with power leygl states arex = (z1,..,2n) iS given by

We propose a rate control mechanism where we assume iy )pi _
that nodei has elastic traffic and uses an admission contrél/Ri((y.q).p) = 0 -if ¢; >0
mechanism to select the input rates to the buffer with finite 0+ ijéi,q?->() ¢ij 95 (Y;3)p;
capacity;. A node receiving a new packet can decide to drop = 0 otherwise

or accept it. The admission control actions available tcheaghere ¢i; are the coding orthogonality coefficients and

mobile are in the set’ = {0, 1}, wherel (resp.0) means that the thermal noise in the medium. We consider the following
mobile i accepts (resp. drops) a new packet from the uppgktantaneous utility of mobile:

layer.
We assume that the channel between mobiland the ri(x, (P, ¢)) = ri(x,a) =logy (1 + SIRi(x,p)) (2

base station can be modeled as an ergodic finite MarkQetice that we optimize an upper bound on the throughput. In

Chain tak|ng VaIUeS in a S@i = {1, 2, ey L»L} Of LZ states the Seque' we refer to |t S|mp|y as Capacity‘

with transition probabllltIeSX;y (i.e, the entl’y (X, y) of the For a given po“cyuZ and a given initial St&t&ﬁzo — ﬁi

transition matrixA’ is equal to\.,, Zj;l AL, =1). We shall we now define the constraints of each mobile.

denote byr' = [, 75,..., 7] the steady state probability Power constraints: Let mobile i's power level at timet

distribution of A’. We assume throughout that is irreducible be p! € P. The exact power of the signal of mobileis

and aperiodic for ali =1,2,..., N. P; = Pyp; where P, is some base value of the power (in this
At each node packets arrive from the upper layer accordipgper, P, = 1). For each mobile let its expected average

to the arrival proces$§+!,t = 1,2,...} (an independent and power consumption be constrained by the following bound:

Il. THE MODEL

identically distributed process). T_1
Knowing the number of packets in its buffer and the channel powe%v . = limsup 1 Z Eg?di(Xf,AE) <Pl (3
state between itself and the access point mehiteist choose T Teee T

where d;(z;,a;) = Pop; if ¢; > 0 and 0 otherwise. Note

i.e., to accept or reject new packets which may arrive froen t'?hat the power constraints of a mobile don't depend on the
upper layer. Only local information is available to each fif@b decisions of the other mobiles

and _t(l;er_e IS no lc?otgdlna'qlpbn_ln &eliaczloTs (Exceptt when Expected buffer length constraints: Some mobiles (ap-
considering correlated equilibria). Let = (p;, c;) wherep; plications) might have stringent delay constraints. Le¢ th

P andct € C. : ;
i expected average buffer length be constrained by the follpw
Let ¢! be the queue size of nodeat the beginning of slot boznd' g g y b

t. In a given time slot we assume that all the arrivals from the

.. T-1
upper layer occur after transmission of packets to the mtwo Bufi — lims 1 EUuiOt < Oi 4
Therefore, the dynamics of the buffer size at nodee given B lﬁfip T tz_; 19 < eonst @)
by N

Problem statement: The objective of mobile is to maxi-
mize the mean throughput. Gived=" = 3, the controller's
where~! is the realization of a random variabllé indicating problem is thus to obtain the optimal strategy that maxi-
the number of arrivals in slot and w! is the realization of mizes (5) subject to (3) and (4).

¢/t = min([q] + cfvf — wi]T, By) 1)

(2

a r.v. W} indicating the number of departures in slotin T-1
general we adopt the conve_ntion _of L_Jsing capital letters for Thpfa,u — lim Sup% Z EBT.Z_(Xt’ AY) (5)
r.v.s and small letters for their realization. T—oo =0
We assume that the mobiles will never retransmit packets.
In each time slot a mobile can transmit at most one packet IIl. THE SINGLE PLAYER CASE
(wt € {0,1}). Whengq! > 0, w! is equal to O (resp. 1) if In this section we analyze the single player case in the con-
pt =0 (resp.p! > 0). Wheng! = 0, w! = 0. text of the Markov Decision Processes (MDP). The notation

The state of mobile at timet is described by = (y!,q}), is the same as the one used in Table | although we don't write
where y! is the state of the channel in slotand ¢! is the the indexes for notational convenience.



TABLE | - :
TABLE OF NOTATION FOR PLAYER i Recall that the parameteP,.. specifies the maximum

power level available. The power action set B =

qt size of the queue at the beginning of stot {Oa L2,..., J.Dmax}-
y! channel state during slat We associate to each state and to each of the controller’s
wg numbt;r of Separtlfrest ﬁt{t timeloihbt actions an index, as shown below (an analog indexing scheme
Vi numper or arrivals at time s . H .
ot = (b, qb) state vector is used in the other examples):
(channel state, buffer size)
at = (pt, ct) action vector stateindex 1 2 3 4 5 6 7 8... 24
(power control, admission control)
9i(yi) attenuation at channel staig q c o000 12111 1.. 5
di(ps) = pi power consumption related to actign y 01 2 3 0 1 2 3 ... 3
di(xi, ai) d; (pl) if g; > 0 (0 otherwise)
ri(xt, at) instantaneous throughput in slot
actonindex 0 1 2 3 4 5 6 7
c 0 000 1 1 1 1
A. The Linear Program p 01 2 3 01 2 3
The single player problem can be solved using a linearIn order to fully characterize the model we have to show
program [9]. LetK = {(x,a) : 2 € X,a € A}. how to assigrP,...., the probability of moving from stateto r
given that actioru is used. LePrar = P(yo.q0)(p,¢) (y1,q1)- WE
LP1: assume that the transitions in the channel state are indepen
Find z* := {*(z, a) }4.4, Where(z, a) € K, that minimizes  of the buffer state, hencﬂé(quo)(w)(.thl) = Ayo,ylP(’m.(w).ql
bi _ 5 wherePéO( O depends on the arrival process and is given as
> D rlwa)(,a) subject to: ) follow. Let'w be the number of packets served during the time
rzeX acA

slot ¢, wherew = 0 if p = 0 andw = min(qg, 1) otherwise.
SN i@ a)[6:(2) ~ Pyar] =0, VreX, (7)  LetT'betherv.thatcharacterizes the number of arrivalsin a
z€X a€A time slot,q; is equal tomin(go — w + ¢y, B) with probability

P{I' = ~}. P/ = P{I' = whereq; = min(qy —
Z Z qz(z,a) < Qconst (8) 1p{>0 rnin’y(ijg7 130—(12—0722)?,13). { K ! .
e=(y.q)€X acA Once the parameters of the linear program are fully de-
Z Z d(z,a)z(z,a) < Peonst 9) termined we solve it using the §imp|ex method. The optimal
2eX acA policy obtained from the occupation measuzés, a) is shown
in Fig. 1 (in the sequel of this paper, instead of 3d pictures
z(z,a) 20, Y(z,a) €K > z(,a)=1 (10) we will only present the support of the optimal policies).

(z,a)EK

z(x,a) is an occupation measure. It gives the steady state
probability that the system is in statee X and actiona €
A is chosen. For any policy. there is one and only one
corresponding occupation measurg9]. Solving the linear
program above we find* and the optimal policy is the one
that chooses actioa at stater with probability

z*(z,a)

u(alz) = (11)

ZG'EA Z*(x7a/l). action 6( 70
B. Model Parameters and the Presentation of the Results

Here we illustrate how the parameters of the model will be
set and how the optimal policies will be presented throughou Note that when the buffer is empty (states O to 4) the optimal
this paper. To this end we consider the scenario shown in thelicy consists of randomizing freely between actions 4 to 7
first column of Table II. There is no difference between the outcome generated by thes
The parametell, specifies the size of the Markov Chainactions since when there are no packets to be transmitted the
A that characterizes the channel. The precise definition mdwer level chosen is irrelevant.
A assumed throughout this paper is analog to the BF-FSMCWhen the amount of packets in the buffer varies between 1
model [10]:Xo,0 = 1/2, Mo1 = 1/2; A1, -1 = 1/2,A\_1,.—2 and 4 (states 5 up to 20) the optimal policy is very restricta
=1/2; M = 13, X i—1=1/8\; ;+1=1/3 2 < i < L —2). This packet is transmitted using maximum power just if the channe
means that at each time slot the channel preserves its stateandition is perfect (states 8, 12, 16 and 20). However, when
changes by one unit. The power gaify) when the MC is in the buffer is full the optimal policy is less restrictive: ghets
statey is given byy/(L — 1). are transmitted even if the channel condition is not perfect

Fig. 1. Optimal policy.



(states 23 and 24). The rationale is that the optimal poli
avoids as much as possible to empty the buffer (states 1
because when the buffer is empty the controller looses t
opportunity to transmit packets and to increase its thrpugh

Therefore, the lower the amount of packets in the buffi 1
the more restrictive the optimal policdne of our major

conclusions is that the controller becomes more careless as

the amount of packets in the buffer increases. This comment
applies to all the policies presented in this paper.

Finally, notice that in states 21 and 22 the optimal polic 45— 45
consists of randomizing between actions 0 and 4. This occi
because when the buffer is full and the controller decidés no
to transmit packets it is irrelevant if newly arrived packet
that come from the upper layer will be accepted or not — the
buffer will remain full independently of the adopted adnoss Coping with Power and Delay Constraints
control action.

RN NN

=S

86 77 88 99 110

Fig. 2. No constraints. (x axis - states, y axis - actions)

We now analyze what happens when we have to cope with
delay constraints. Starting from the scenario of the second

C. Even Without Constraints, ‘ Always Transmit' is Not Opti- column of Table Il we add a power constraint of 5 and a
mal! delay constraint of 4. The optimal policy is depicted in Rg.

Consider now what happens when there are neither delay
constraints nor power constraints. One could guess thisn t
scenario the optimal strategy would be to always transmit
with maximum power. However, since we are considering
a non saturated system, that's not the case: the optima
policy consists of transmitting with maximum power when the
network state is goodyut not transmitting when the network
state is bad. When the queue empties the controller may loose
opportunities to send packets so it is important to avoid empty
gueues.

Considering the parameters shown in the second column of 0%
Table 1l we obtain the optimal policy in Fig. 2. When the
number of packets in the buffer is small (states 12-55) the
optimal policy states that packets should be transmittedef
channel condition is greater than or equal to 2 (a channel 00
condition of O represents the worst possible scenario)."WWhe 012456789
the number of packets in the buffer is large (states 56-11d) t
optimal policy is less restrictive: packets are not traradi Fig- 3. Optimal policy with power and delay constraints (¥saxstates, y

. .. . axis - actions). Buffer distribution (down).
only if the network condition is 0.

A more prominent example illustrating that even without The optimal policies described up to this point did not
constraints the policy ‘always transmit’ is not optimal ispyolve the rejection of packets. The admission controioact
obtained as follows. We start from the scenario in the secoggopted could always be set to ‘accept’ without leading to
column of Table Il and change the arrival probability of the decrease in the mean throughput. However, due to the
packets from 0.9 to 0.1 (ceteris paribus). (Please, ref@8]to gejay constraints the optimal policy shown in Fig. 3 invalve
for the optimal policy in that case) The new optimal policghanecessarily the rejection of some packets that arrive fiwen t

the same structure but is much more restrictive than the ofiner layer when the system is in states 56, 67, 78, 79, 89 or
shown in Fig. 2. The optimal throughput obtained is 0.30 @hilgg, |n Fig. 3 we see the pmf of the buffer size: the probability
the throughput obtained with the policy ‘always transmé’ iof g full buffer is indeed almost zero and the mean buffer size
0.25. All the numerical examples that we conducted had thisequal to 4. Notice also that it is beneficial to have only one

property of leading to optimal policies that become morgacket in the buffer but not the empty buffer.
restrictive as the arrival probability decreases. Thispess

because the lower the arrival probability the greater thifs dr V. MULTIPLE PLAYERS WITH INDEPENDENTSTATE

towards the states where the buffer is empty. Hence, the INFORMATION

optimal policies must be more restrictive to compensate thi In this section we study stochastic games where each player
drift and to avoid empty buffers. has independent state information. In particular, we seek f

i S-S
§
g
§
g

1
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TABLE Il

MODEL PARAMETERS 1) Non-Cooperative Game: Assuming that there are two
mobiles sharing a channel and that the parameters of the
Parameter] Sect| Sect | Non cooperative Correlated model are those described in the fourth column of Table II,
1B | 1C | and Cooperative| Cooperative (Sec IV-C)| the optimal policy for both players is the one shown in Fig. 4.
é g‘ 191 gf gf The throughput obtained by each player in the equilibrium is
Poox 3 11 5 5 0.69616 (the aggregated throughput is 1.39231).
Peonst 5 2 1.8
Qconst - - none none
arr. prob. | 0.1 0.9 0.5 0.5 66 ©0 06 00 00 00 00 O
10 (o]e] o (©] (] o O O
(o]e)
8 (o]e] O A
(o]e)
the Nash equilibria in different settings. The existencéhoke §O000000 00+ 00+ 00~ 00 00 - O
Nash equilibria among stationary policies is guaranteed, a 4
the proof is presented in a subsequent paper [11]. i
A. Linear Program s 8 12716202332

Next we present a Linear Program (LP) for computing the
set of all optimal responses for playglagainst a stationary Fig. 4. Non cooperative equilibrium (x axis, states; y assjons).
policy u_;. Let ; = {(z,a) : x € X;,a € A;(x)}.
2) Cooperative Game (Team Problem): We consider here
LP(i,u): the same parameters as in the decentralized non-cooerativ
Find z; := {2/ (2,a)}+,., Where(z,a) € K;, that maximizes case. However, now we assume that the two players have the
) same objective function, which is the aggregated throughpu
> Y. Riwa)zura) subject to: (12) player; seeks the policyu; that maximizes the objective

z€X; acA;(y) function

S0 > zwa) [6(z) - Pi,] =0, VreX, R(u;,u*;) = Ri(ui,u*;) + R_i(us,u*;) (18)
z€X; a€A;(x)

(13) whereu* ; is the strategy of the other player. For the two

Z Z qzi(z,a) < Qconst (14) player case, this is equivalent to setting in equation (llfé) t
quantityt; (y,a) = ta(y,a) = r1(y, a) + r2(y,a) wherer;’s

r=(vy, er (J/EAm i [
(v.9)€ were defined in (2).

Z Z d(z,a)zi(z,a) < Peonst (15) Due to space restrictions, please refer to [8] for the odtima
2€X; acA; policy in this scenario. The aggregated throughput is 12897
zi(z,a) >0, ¥(z,a)€K; Z zi(z,a) =1 (16) V. CORRELATED EQUILIBRIA
(z,0)EL; In this section, we consider the simple case when there are

u . . . only two players involved. Results can be straightforwardl
RY¥(-) denotes the immediate cost induced by players other - nded to the case of multiple players.

thans, when player: uses actioru and the other players use We wish to introduce a coordination mechanism in this

a stationary multi policy_;: model. The simplest and most intuitive coordination mecha-
nism is given by a common signal which both users as well as
Rz, a) := Z Z {Huz(allxl)ﬂﬂxz)} ti(x,a) the base station overhear before each transmission. Gmalsi
x X _ia A 1A is a random boolean variable if0,1}, and is independent
(17) of all other random variables in the setting. Instead of gisin
where ;' (x;) is the steady state probability of uskbeing the regular matched filter as in (2), the base station will use
in statex; given that multi policyu is adopted (note that Successive Interference Cancellation (SIC) matched [l
mi(z;) depends omu only throughw;). t;(x,a) is equal Ifthe signalis “0”, the base station will decode first usehért
to r;(x,a) defined by (2) (unless we explicitly considewser 2; if the signal is “1”, the base station will decode them
something different). in the reverse order, first user 2 then user 1. We assume that
users will always be decoded successfully, which is ctifica
SIC. Thus each time a signal is decoded its contribution¢o th
We now consider two decentralized problems. In the firgiterference is perfectly subtracted. This removes sontbeof
one each mobile maximizes its own throughput while in thieter-user interference and therefore increases the SNReof
second one each mobile maximizes the aggregated throughfallowing decoded user. This rule of decoding accordind® t
Our aim is to compare the equilibrium policies and theoordination signal is known by the users, which allows them
throughput obtained in the equilibrium of these two sceygri to jointly optimize their strategies. In this section we lasg

B. Non Zero Sum Games



that there is a device that emits signals to the mobiles ayev83-64 when he has an advantage over player 2, while player
time slot. This means that the players may coordinate throug invests more power in states 1-32 than in states 33-64.
the emitted signals and we seek for correlated equilibrja [Q:_ Cooperative Game (Team Problem)

(7 In this section we analyze the correlated equilibrium in the
A. Linear Program decentralized cooperative scenario (all the mobiles wish t
The LP presented in Section IV-A can be adapted to fifdaximize the aggregated throughput). The correlation @ech
correlated equilibria as follows. First, the system stdteawh Nism considered here is not the same as the one considered in
mobile i is now characterized by; = (v, i, s;) Where the the last section. Here we assume the simplest possible & tho
extra variables; is the correlation signal. Second, we adaghechanisms: at each time slot the AP sends a signal which
ti. ti(x,a) = ti(((y1,q1,51),---, (yn,qn,Sn)),a) is equal alternates between 1 and 2 to the mobiles. The AP does not
to zero if it is not the case that = s» = ... = sy and¢; take different actions based on the signal sent.
is greater than or equal to O otherwise (the exact definitionConsider the parameters shown in the last column of Ta-
will depend on the scenario considered, as we will see nexje |l. The optimal policy obtained using the LCP for players
Finally, we adjustP! . Assuming that the correlation signall and 2 is shown in Fig. 6. It is interesting to notice that
alternates between two Va|ueS, gweﬁ: (yl; q, 51) andr = the equilibrium has a time division mUltipIeXing structutiee
(Y2, 2, 82), Pl > 0if s1 # s2 andP? . = 0 otherwise. mobiles never transmit at the same time. The joint throughpu

m-._ in this case is equal to 1.49294.
B. Non-Cooperative Game

We assume that the AP alternates in a round robin fast

Player 1 - LCP Method

Player 2 - LCP Method

between serving first the packets from player 1 and thanth "] A N Dt O O

from player 2. The parameters of the game are the sam: 7= [ S O e o

those considered in the last section (last column of Tafle — geemmoommoomomom 0 0 0 0 o o oo 0 00 00

At each time slot the AP sends a signal (which alterna 4 4

between 1 and 2) to both mobiles. When the signal is 2 . 2

paCketS from mObIIe 2 are deCOded before those Of mObll 0 4 8 12162024 28 32 36 40 44 48 52 56 60 64 0 4 8 12162024 28 32 36 40 44 48 52 56 60 64

[5]. Thus the throughput perceived by mobile 1 is
gl(xl)dl(ylaal))
N()
(19)

Fig. 6. Optimal strategy for players 1 (left) and 2 (right) dxis, states; y

t1(((y1,q1,2), (Y2, G2,2)), ) = logy (1 + axis, actions).
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g2(w2)da(y2, az) )

No + g1(w1)dy (?216?1)

and the throughput obtained by mobile 2 is
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Fig. 5. Correlated equilibrium: optimal strategy for pleyel (left) and 2
(right) (x axis, states; y axis, actions).

The throughput obtained by each player in the equilibrium js0]
0.8168 (greater than the 0.69616 obtained in Section IVeB1 f[11]
the decentralized non-cooperative case). The optimakgifies
obtained using the iterative method for player 1 and 2 are)]
shown in Fig. 5. Player 1 invests most of his power in states



