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‡ Univesite d’Avignon, 339, Chemin des Meinajaries, Agroparc BP 1228, 84911 Avignon Cedex 9, France

Abstract—We consider the situation whereN nodes share a
common access point. With each nodei there is an associated
buffer and channel state that change in time. Nodei dynamically
chooses both the power and the admission control to be adopted
so as to maximize the expected throughput, which depends on
the actions and states of all the players, given its power anddelay
constraints. The information structure that we consider is such
that each player knows the state of its own buffer and channeland
its own actions. It does not know the states of, and the actions
taken by other players. Using Markov Decision Processes we
analyze the single player optimal policies under differentmodel
parameters. In the context of the stochastic games we study the
equilibria of the N player scenario.

I. I NTRODUCTION

We consider a set of mobiles who transmit packets through
a wireless network and who share a common access point
(AP). Each mobile must dynamically choose its power and
packet admission control based on the information that it has
about its queue size (number of backlogged packets) and on
its current channel state.

Although the large majority of wireless networks operating
today do not delegate these decisions to the users, the possi-
bility of leaving the decisions to the mobiles is an important
alternative worth studying since it scales much better with
increasing traffic demand, throughputs and the number of
subscribers.

In the absence of queues, in the case that each mobile
always has a packet to transmit (this is the saturated regime),
the problem can be described as a game with a random
environment. We call the random environment the state of
the system. The state is given by a set of Markov chains,
one for each user. The users control the power (and hence
the instantaneous costs or rewards) but have no control over
the system state. This situation was studied in Altman et al.
[1], [2]. In contrast, in this paper the control of a user has
an impact not only on the instantaneous costs or rewards but
also on the state transition probabilities, as the state of player
i now includes also the (controlled) queue size (while [1], [2]
assumes a saturated system).

Adding the queues allows us to reduce losses at the cost of
introducing queueing delays within the network. In formulat-
ing the optimal control problem we shall take these delays into
account in the optimization objectives in the form of additional
constraints.

The problem of maximizing the throughput of some traffic
subject to constraints on its delay has received extensive
attention, starting with the pioneering work [3] by Lazar with
its extension to a game setting in [4]. The research on power
control in cellular networks is also rich [5]. Our work is the
first to consider both admission control and discrete power
control to maximize the throughput given certain power and
delay constraints. We study this situation for the case of a
single mobile, as well as for the case of several players. When
there are several players, we consider both the non-cooperative
and the cooperative (team problem) formulation, using game
theory. The team problem occurs when there is more than
one mobile but a common objective function is optimized by
all mobiles. On the contrary, in the non-cooperative game,
the objective of each player is to selfishly maximize its own
payoff. We consider both the Nash equilibrium concept as well
as that of correlated equilibrium.

The notion of correlated equilibrium was introduced by R.
Aumann in [6] as a generalization of Nash equilibrium. The
important feature of correlated games is the presence of an
arbitrator. An arbitrator needs not have any intelligence or
knowledge of the game, it needs only send random (private or
public) signals to the players that are independent of all other
data in the game. In the context of non-cooperative games,
each player has the possibility not to consider the signal(s) it
receives. Coordination between players turns out to be useful
also in the case of cooperative optimization. The signals enable
joint randomization between the strategies of the players,pos-
sibly resulting in equilibria with higher payoffs. The concept
of correlated games was recently introduced in a networking
context in [7], where the authors consider a simple ALOHA
setting. To our knowledge, our paper is the first to consider
correlated equilibria of stochastic games with constraints.

This paper is structured as follows. In Sec. II we present the
proposed model. In Sec. III we analyze using Markov Decision
Processes the optimal policies when a single controller is
involved. In Sec. IV we provide results about the equilibriain
the scenario with multiple users with completely independent
state information. Finally, in Sec. V we assume that there is
a common device that emits signals to all the users and we
present the correlated equilibria that emerges from this system.

The scripts used to generate the pictures presented in this
paper and the solution techniques adopted [Lemke linear
complementarity program (LCP) and successive best response]



as well as an extended version of this work are available online
at [8].

II. T HE MODEL

We consider the situation whereN nodes share a common
AP. Time is divided into slots. We assume that packets are
generated at each node by application(s). At each time slot
t, each mobilei transmits data with power levelpt

i chosen
among a finite setP = {0, 1, . . . , Pmax} containingPmax + 1
power levels. The actionpi = 0 means back-off and the action
pi ≥ 1 means transmission with power levelpi.

We propose a rate control mechanism where we assume
that nodei has elastic traffic and uses an admission control
mechanism to select the input rates to the buffer with finite
capacityBi. A node receiving a new packet can decide to drop
or accept it. The admission control actions available to each
mobile are in the setC = {0, 1}, where1 (resp.0) means that
mobile i accepts (resp. drops) a new packet from the upper
layer.

We assume that the channel between mobilei and the
base station can be modeled as an ergodic finite Markov
Chain taking values in a setEi = {1, 2, . . . , Li} of Li states
with transition probabilitiesλi

xy (i.e, the entry (x, y) of the
transition matrixΛi is equal toλi

xy,
∑Li

y=1 λi
xy = 1). We shall

denote byπi = [πi
1, π

i
2, . . . , π

i
Li

] the steady state probability
distribution ofΛi. We assume throughout thatΛi is irreducible
and aperiodic for alli = 1, 2, . . . , N .

At each node packets arrive from the upper layer according
to the arrival process{γt, t = 1, 2, . . . } (an independent and
identically distributed process).

Knowing the number of packets in its buffer and the channel
state between itself and the access point mobilei must choose
(a) pi ∈ P , i.e., the transmission power level and (b)ci ∈ C,
i.e., to accept or reject new packets which may arrive from the
upper layer. Only local information is available to each mobile
and there is no coordination in their actions (except when
considering correlated equilibria). Letat

i = (pt
i, c

t
i) wherept

i ∈
P andct

i ∈ C.
Let qt

i be the queue size of nodei at the beginning of slot
t. In a given time slot we assume that all the arrivals from the
upper layer occur after transmission of packets to the network.
Therefore, the dynamics of the buffer size at nodei are given
by

qt+1
i = min([qt

i + ct
iγ

t
i − wt

i ]
+, Bi) (1)

whereγt
i is the realization of a random variableΓt

i indicating
the number of arrivals in slott and wt

i is the realization of
a r.v. W t

i indicating the number of departures in slott. In
general we adopt the convention of using capital letters for
r.v.s and small letters for their realization.

We assume that the mobiles will never retransmit packets.
In each time slot a mobile can transmit at most one packet
(wt

i ∈ {0, 1}). When qt
i > 0, wt

i is equal to 0 (resp. 1) if
pt

i = 0 (resp.pt
i > 0). Whenqt

i = 0, wt
i = 0.

The state of mobilei at timet is described byxt
i = (yt

i , q
t
i),

where yt
i is the state of the channel in slott and qt

i is the

number of packets in the queue at the beginning of slott. If
the state of mobilei at time t is xi and actionai is adopted
the next state will bezi with probabilityPxiaizi

.
Mobile strategies ui((pi, ci)|xi) is the probability that

mobile i chooses the transmission power levelpi ∈ P and the
actionci ∈ C when its state isxi. The class of decentralized
policies of mobilei is denoted byUi. DefineU = ΠN

i=1Ui.
Performance measuresThe signal to interference ratio

SIRi of mobile i at the base station when the power level
choices of the mobiles arep = (p1, .., pN ) and the mobile
states arex = (x1, .., xN ) is given by

SIRi((y,q),p) =
gi(yi)pi

N0 +
∑

j 6=i,qj >0 cijgj(yj)pj

if qi > 0

= 0 otherwise

where cij are the coding orthogonality coefficients andN0

the thermal noise in the medium. We consider the following
instantaneous utility of mobilei:

ri(x, (p, c)) = ri(x,a) = log2(1 + SIRi(x,p)) (2)

Notice that we optimize an upper bound on the throughput. In
the sequel we refer to it simply as capacity.

For a given policyui and a given initial statext=0
i = βi

we now define the constraints of each mobile.
Power constraints: Let mobile i’s power level at timet

be pt
i ∈ P . The exact power of the signal of mobilei is

Pi = P0pi whereP0 is some base value of the power (in this
paper,P0 = 1). For each mobilei let its expected average
power consumption be constrained by the following bound:

Poweriβi,ui
= lim sup

T→∞

1

T

T−1
∑

t=0

Eui

βi
di(X

t
i , A

t
i) ≤ P i

const (3)

where di(xi, ai) = P0pi if qi > 0 and 0 otherwise. Note
that the power constraints of a mobile don’t depend on the
decisions of the other mobiles.

Expected buffer length constraints: Some mobiles (ap-
plications) might have stringent delay constraints. Let the
expected average buffer length be constrained by the following
bound:

Bufiβi,ui
= lim sup

T→∞

1

T

T−1
∑

t=0

Eui

βi
Qt

i ≤ Qi
const (4)

Problem statement:The objective of mobilei is to maxi-
mize the mean throughput. Givenxt=0 = β, the controller’s
problem is thus to obtain the optimal strategyui that maxi-
mizes (5) subject to (3) and (4).

Thpi
β,u = lim sup

T→∞

1

T

T−1
∑

t=0

Eu

βri(X
t,At) (5)

III. T HE SINGLE PLAYER CASE

In this section we analyze the single player case in the con-
text of the Markov Decision Processes (MDP). The notation
is the same as the one used in Table I although we don’t write
the indexesi for notational convenience.



TABLE I
TABLE OF NOTATION FOR PLAYER i

qt

i
size of the queue at the beginning of slott

yt

i
channel state during slott

wt

i
number of departures at time slott

γt

i
number of arrivals at time slott

xt

i
= (yt

i
, qt

i
) state vector

(channel state, buffer size)
at

i
= (pt

i
, ct

i
) action vector

(power control, admission control)
gi(yi) attenuation at channel stateyi

di(pi) = pi power consumption related to actionpi

di(xi, ai) di(pi) if qi > 0 (0 otherwise)
rt

i
(xt,at) instantaneous throughput in slott

A. The Linear Program

The single player problem can be solved using a linear
program [9]. LetK = {(x, a) : x ∈ X, a ∈ A}.

LP1 :
Find z∗ := {z∗(x, a)}x,a, where(x, a) ∈ K, that minimizes

∑

x∈X

∑

a∈A

r(x, a)z(x, a) subject to: (6)

∑

x∈X

∑

a∈A

z(x, a) [δr(x) − Pyar] = 0, ∀r ∈ X, (7)

∑

x=(y,q)∈X

∑

a∈A

qz(x, a) ≤ Qconst (8)

∑

x∈X

∑

a∈A

d(x, a)z(x, a) ≤ Pconst (9)

z(x, a) ≥ 0, ∀(x, a) ∈ K
∑

(x,a)∈K

z(x, a) = 1 (10)

z(x, a) is an occupation measure. It gives the steady state
probability that the system is in statex ∈ X and actiona ∈
A is chosen. For any policyu there is one and only one
corresponding occupation measurez [9]. Solving the linear
program above we findz∗ and the optimal policy is the one
that chooses actiona at statex with probability

u(a|x) =
z∗(x, a)

∑

a′∈A
z∗(x, a′)

. (11)

B. Model Parameters and the Presentation of the Results

Here we illustrate how the parameters of the model will be
set and how the optimal policies will be presented throughout
this paper. To this end we consider the scenario shown in the
first column of Table II.

The parameterL specifies the size of the Markov Chain
Λ that characterizes the channel. The precise definition of
Λ assumed throughout this paper is analog to the BF-FSMC
model [10]:λ0,0 = 1/2,λ0,1 = 1/2;λL−1,L−1 = 1/2,λL−1,L−2

= 1/2; λi,i = 1/3, λi,i−1=1/3,λi,i+1=1/3 (2 ≤ i ≤ L− 2). This
means that at each time slot the channel preserves its state or
changes by one unit. The power gaing(y) when the MC is in
statey is given byy/(L − 1).

Recall that the parameterPmax specifies the maximum
power level available. The power action set isP =
{0, 1, 2, . . . , Pmax}.

We associate to each state and to each of the controller’s
actions an index, as shown below (an analog indexing scheme
is used in the other examples):

state index 1 2 3 4 5 6 7 8 . . . 24

q 0 0 0 0 1 1 1 1 . . . 5
y 0 1 2 3 0 1 2 3 . . . 3

action index 0 1 2 3 4 5 6 7

c 0 0 0 0 1 1 1 1
p 0 1 2 3 0 1 2 3

In order to fully characterize the model we have to show
how to assignPxar, the probability of moving from statex to r
given that actiona is used. LetPxar = P(y0,q0)(p,c)(y1,q1). We
assume that the transitions in the channel state are independent
of the buffer state, henceP(y0,q0)(p,c)(y1,q1) = λy0,y1

P ′
q0(p,c)q1

whereP ′
q0(p,c)q1

depends on the arrival process and is given as
follow. Let w be the number of packets served during the time
slot t, wherew = 0 if p = 0 andw = min(q0, 1) otherwise.

Let Γ be the r.v. that characterizes the number of arrivals in a
time slot,q1 is equal tomin(q0 −w + cγ, B) with probability
P{Γ = γ}. P ′

q0(p,c)q1
= P{Γ = γ} whereq1 = min(q0 −

1p>0 min(q0, 1) + cγ, B).
Once the parameters of the linear program are fully de-

termined we solve it using the simplex method. The optimal
policy obtained from the occupation measuresz(x, a) is shown
in Fig. 1 (in the sequel of this paper, instead of 3d pictures
we will only present the support of the optimal policies).
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Fig. 1. Optimal policy.

Note that when the buffer is empty (states 0 to 4) the optimal
policy consists of randomizing freely between actions 4 to 7.
There is no difference between the outcome generated by these
actions since when there are no packets to be transmitted the
power level chosen is irrelevant.

When the amount of packets in the buffer varies between 1
and 4 (states 5 up to 20) the optimal policy is very restrictive: a
packet is transmitted using maximum power just if the channel
condition is perfect (states 8, 12, 16 and 20). However, when
the buffer is full the optimal policy is less restrictive: packets
are transmitted even if the channel condition is not perfect



(states 23 and 24). The rationale is that the optimal policy
avoids as much as possible to empty the buffer (states 1-4)
because when the buffer is empty the controller looses the
opportunity to transmit packets and to increase its throughput.
Therefore, the lower the amount of packets in the buffer
the more restrictive the optimal policy.One of our major
conclusions is that the controller becomes more careless as
the amount of packets in the buffer increases. This comment
applies to all the policies presented in this paper.

Finally, notice that in states 21 and 22 the optimal policy
consists of randomizing between actions 0 and 4. This occurs
because when the buffer is full and the controller decides not
to transmit packets it is irrelevant if newly arrived packets
that come from the upper layer will be accepted or not – the
buffer will remain full independently of the adopted admission
control action.

C. Even Without Constraints, ‘Always Transmit’ is Not Opti-
mal!

Consider now what happens when there are neither delay
constraints nor power constraints. One could guess that in this
scenario the optimal strategy would be to always transmit
with maximum power. However, since we are considering
a non saturated system, that’s not the case: the optimal
policy consists of transmitting with maximum power when the
network state is good,but not transmitting when the network
state is bad. When the queue empties the controller may loose
opportunities to send packets so it is important to avoid empty
queues.

Considering the parameters shown in the second column of
Table II we obtain the optimal policy in Fig. 2. When the
number of packets in the buffer is small (states 12-55) the
optimal policy states that packets should be transmitted ifthe
channel condition is greater than or equal to 2 (a channel
condition of 0 represents the worst possible scenario). When
the number of packets in the buffer is large (states 56-110) the
optimal policy is less restrictive: packets are not transmitted
only if the network condition is 0.

A more prominent example illustrating that even without
constraints the policy ‘always transmit’ is not optimal is
obtained as follows. We start from the scenario in the second
column of Table II and change the arrival probability of the
packets from 0.9 to 0.1 (ceteris paribus). (Please, refer to[8]
for the optimal policy in that case) The new optimal policy has
the same structure but is much more restrictive than the one
shown in Fig. 2. The optimal throughput obtained is 0.30 while
the throughput obtained with the policy ‘always transmit’ is
0.25. All the numerical examples that we conducted had this
property of leading to optimal policies that become more
restrictive as the arrival probability decreases. This happens
because the lower the arrival probability the greater the drift
towards the states where the buffer is empty. Hence, the
optimal policies must be more restrictive to compensate this
drift and to avoid empty buffers.
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Fig. 2. No constraints. (x axis - states, y axis - actions)

D. Coping with Power and Delay Constraints

We now analyze what happens when we have to cope with
delay constraints. Starting from the scenario of the second
column of Table II we add a power constraint of 5 and a
delay constraint of 4. The optimal policy is depicted in Fig.3.
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Fig. 3. Optimal policy with power and delay constraints (x axis - states, y
axis - actions). Buffer distribution (down).

The optimal policies described up to this point did not
involve the rejection of packets. The admission control action
adopted could always be set to ‘accept’ without leading to
a decrease in the mean throughput. However, due to the
delay constraints the optimal policy shown in Fig. 3 involves
necessarily the rejection of some packets that arrive from the
upper layer when the system is in states 56, 67, 78, 79, 89 or
90. In Fig. 3 we see the pmf of the buffer size: the probability
of a full buffer is indeed almost zero and the mean buffer size
is equal to 4. Notice also that it is beneficial to have only one
packet in the buffer but not the empty buffer.

IV. M ULTIPLE PLAYERS WITH INDEPENDENTSTATE

INFORMATION

In this section we study stochastic games where each player
has independent state information. In particular, we seek for



TABLE II
MODEL PARAMETERS

Parameter Sect Sect Non cooperative Correlated
1B 1C and Cooperative Cooperative (Sec IV-C)

L 4 11 4 4
B 5 9 7 7

Pmax 3 11 5 5
Pconst 5 - 2 1.8
Qconst - - none none

arr. prob. 0.1 0.9 0.5 0.5

the Nash equilibria in different settings. The existence ofthose
Nash equilibria among stationary policies is guaranteed, and
the proof is presented in a subsequent paper [11].

A. Linear Program

Next we present a Linear Program (LP) for computing the
set of all optimal responses for playeri against a stationary
policy u−i. Let Ki = {(x, a) : x ∈ Xi, a ∈ Ai(x)}.

LP(i,u) :
Find z∗i := {z∗i (x, a)}x,a, where(x, a) ∈ Ki, that maximizes

∑

x∈Xi

∑

a∈Ai(y)

Ru
i (x, a)zi(x, a) subject to: (12)

∑

x∈Xi

∑

a∈Ai(x)

zi(x, a)
[

δr(x) − P i
xar

]

= 0, ∀r ∈ Xi,

(13)
∑

x=(y,q)∈Xi

∑

a∈Ai

qzi(x, a) ≤ Qconst (14)

∑

x∈Xi

∑

a∈Ai

d(x, a)zi(x, a) ≤ Pconst (15)

zi(x, a) ≥ 0, ∀(x, a) ∈ Ki

∑

(x,a)∈Ki

zi(x, a) = 1 (16)

Ru
i (·) denotes the immediate cost induced by players other

than i, when playeri uses actiona and the other players use
a stationary multi policyu−i:

Ru
i (x, a) :=

∑

x−i∈X−i

∑

a−i∈A−i

[

∏

l 6=i

ul(al|xl)π
u
l (xl)

]

ti(x,a)

(17)
whereπu

l (xl) is the steady state probability of userl being
in state xl given that multi policyu is adopted (note that
πu

l (xl) depends onu only through ul). ti(x,a) is equal
to ri(x,a) defined by (2) (unless we explicitly consider
something different).

B. Non Zero Sum Games

We now consider two decentralized problems. In the first
one each mobile maximizes its own throughput while in the
second one each mobile maximizes the aggregated throughput.
Our aim is to compare the equilibrium policies and the
throughput obtained in the equilibrium of these two scenarios.

1) Non-Cooperative Game: Assuming that there are two
mobiles sharing a channel and that the parameters of the
model are those described in the fourth column of Table II,
the optimal policy for both players is the one shown in Fig. 4.
The throughput obtained by each player in the equilibrium is
0.69616 (the aggregated throughput is 1.39231).
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Fig. 4. Non cooperative equilibrium (x axis, states; y axis,actions).

2) Cooperative Game (Team Problem): We consider here
the same parameters as in the decentralized non-cooperative
case. However, now we assume that the two players have the
same objective function, which is the aggregated throughput.
Player i seeks the policyui that maximizes the objective
function

R(ui,u
∗
−i) = Ri(ui,u

∗
−i) + R−i(ui,u

∗
−i) (18)

where u∗
−i is the strategy of the other player. For the two

player case, this is equivalent to setting in equation (17) the
quantityt1(y,a) = t2(y,a) = r1(y,a) + r2(y,a) whereri’s
were defined in (2).

Due to space restrictions, please refer to [8] for the optimal
policy in this scenario. The aggregated throughput is 1.39726.

V. CORRELATED EQUILIBRIA

In this section, we consider the simple case when there are
only two players involved. Results can be straightforwardly
extended to the case of multiple players.

We wish to introduce a coordination mechanism in this
model. The simplest and most intuitive coordination mecha-
nism is given by a common signal which both users as well as
the base station overhear before each transmission. This signal
is a random boolean variable in{0, 1}, and is independent
of all other random variables in the setting. Instead of using
the regular matched filter as in (2), the base station will use
Successive Interference Cancellation (SIC) matched filter[12].
If the signal is “0”, the base station will decode first user 1 then
user 2; if the signal is “1”, the base station will decode them
in the reverse order, first user 2 then user 1. We assume that
users will always be decoded successfully, which is critical in
SIC. Thus each time a signal is decoded its contribution to the
interference is perfectly subtracted. This removes some ofthe
inter-user interference and therefore increases the SNR ofthe
following decoded user. This rule of decoding according to the
coordination signal is known by the users, which allows them
to jointly optimize their strategies. In this section we assume



that there is a device that emits signals to the mobiles at every
time slot. This means that the players may coordinate through
the emitted signals and we seek for correlated equilibria [6],
[7].

A. Linear Program

The LP presented in Section IV-A can be adapted to find
correlated equilibria as follows. First, the system state of each
mobile i is now characterized byxi = (yi, qi, si) where the
extra variablesi is the correlation signal. Second, we adapt
ti. ti(x,a) = ti(((y1, q1, s1), . . . , (yN , qN , sN )),a) is equal
to zero if it is not the case thats1 = s2 = . . . = sN and ti
is greater than or equal to 0 otherwise (the exact definition
will depend on the scenario considered, as we will see next).
Finally, we adjustP i

xar. Assuming that the correlation signal
alternates between two values, givenx = (y1, q1, s1) andr =
(y2, q2, s2), P i

xar ≥ 0 if s1 6= s2 andP i
xar = 0 otherwise.

B. Non-Cooperative Game

We assume that the AP alternates in a round robin fashion
between serving first the packets from player 1 and than those
from player 2. The parameters of the game are the same as
those considered in the last section (last column of Table II).
At each time slot the AP sends a signal (which alternates
between 1 and 2) to both mobiles. When the signal is 2 the
packets from mobile 2 are decoded before those of mobile 1
[5]. Thus the throughput perceived by mobile 1 is

t1(((y1, q1, 2), (y2, q2, 2)),a) = log2

(

1 +
g1(x1)d1(y1, a1)

N0

)

(19)
and the throughput obtained by mobile 2 is

t2(((y1, q1, 2), (y2, q2, 2)),a) = log2

(

1+
g2(x2)d2(y2, a2)

N0 + g1(x1)d1(y1, a1)

)

(20)
Similar formulas apply when the signal is equal to 1.

Notice that the state space has now size 64 (twice the size
of the state space in the last section). The first (last) 32 states
correspond to a signal equal to 1 (2).
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Fig. 5. Correlated equilibrium: optimal strategy for players 1 (left) and 2
(right) (x axis, states; y axis, actions).

The throughput obtained by each player in the equilibrium is
0.8168 (greater than the 0.69616 obtained in Section IV-B1 for
the decentralized non-cooperative case). The optimal strategies
obtained using the iterative method for player 1 and 2 are
shown in Fig. 5. Player 1 invests most of his power in states

33-64 when he has an advantage over player 2, while player
2 invests more power in states 1-32 than in states 33-64.

C. Cooperative Game (Team Problem)

In this section we analyze the correlated equilibrium in the
decentralized cooperative scenario (all the mobiles wish to
maximize the aggregated throughput). The correlation mecha-
nism considered here is not the same as the one considered in
the last section. Here we assume the simplest possible of those
mechanisms: at each time slot the AP sends a signal which
alternates between 1 and 2 to the mobiles. The AP does not
take different actions based on the signal sent.

Consider the parameters shown in the last column of Ta-
ble II. The optimal policy obtained using the LCP for players
1 and 2 is shown in Fig. 6. It is interesting to notice that
the equilibrium has a time division multiplexing structure: the
mobiles never transmit at the same time. The joint throughput
in this case is equal to 1.49294.
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Fig. 6. Optimal strategy for players 1 (left) and 2 (right) (xaxis, states; y
axis, actions).
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