
Proactive Replication in Distributed Storage Systems
Using Machine Availability Estimation

Alessandro Duminuco
Institut Eurecom

Sophia Antipolis, France
duminuco@eurecom.fr

Ernst Biersack
Institut Eurecom

Sophia Antipolis, France
erbi@eurecom.fr

Taoufik En-Najjary
Institut Eurecom

Sophia Antipolis, France
ennajjar@eurecom.fr

ABSTRACT
Distributed storage systems provide data availability by means
of redundancy. To assure a fixed level of availability in case
of node failures, new redundant fragments need to be intro-
duced.

Since node failures can be either transient or permanent,
deciding when to generate new fragments is non-trivial. An
additional difficulty is due to the fact that the failure behav-
ior in terms of the rate of permanent and transient failures
may vary over time. To be able to adapt to changes in the
failure behavior, many systems adopt a reactive approach, in
which new fragments are created as soon as a failure is de-
tected. However, reactive approaches tend to produce spikes
in bandwidth consumption.

Proactive approaches create new fragments at a fixed rate
that depends on the knowledge of the failure behavior or is
given as a parameter by the system manager. However, ex-
isting proactive systems are not able to adapt to a changing
failure behavior, which is common in real world.

We propose a new technique based on an ongoing estima-
tion of the failure behavior that is modeled by a network of
queues. This scheme combines the adaptiveness of reactive
systems with the smooth bandwidth usage of proactive sys-
tems. It can be considered as a generalization of the two pre-
vious approaches, in which the duality reactive or proactive
becomes a specific case of a wider approach tunable with
respect to the dynamics of the failure behavior.

1. INTRODUCTION
Peer-to-peer systems have received a lot of attention

in recent years. In particular file sharing systems have
been very popular. The key property of P2P systems is
self-scaling, i.e. as more peers become part of the sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’ 07, December 10-13, 2007, New York, NY, U.S.A.
Copyright 2007 ACM 978-1-59593-770-4/ 07/ 0012 ...$5.00.

tem not only the service demand increases but also the
service capacity. P2P systems can be used to build vari-
ous distributed applications. One such application that
has attracted the attention of the research community is
peer-based distributed storage [1, 2, 5, 13, 10, 7]. Such
a system is only useful if it can provide service guar-
antees concerning the durability and the availability of
the stored data.

Durability means that, once stored, data are never
lost. Availability assures that data can be retrieved
in any moment, i.e. they are always available.

Note that availability implies durability, while the op-
posite is not always true. A durable object, can indeed
be unavailable at certain periods, when the node on
which it was stored goes temporarily offline. Peers that
are not available for a limited time, due to disconnec-
tions or transient failures, affect availability, while peers
that permanently leave the system affect durability.

The ability to provide such service guarantees is strongly
related to the variations in peer availability. When
building a distributed storage out of “unreliable” com-
ponents, redundancy is used to achieve the required ser-
vice guarantees. Redundancy helps to keep the data
available, in case of transient failures. To cope with
permanent failures and to assure durability, one needs
to monitor the amount of redundant data and insert
new redundant data when needed [18].

Redundancy in storage systems can be achieved in
two different ways: (i) Replication of the original data
or (ii) parity encoding of the original data. For a given
amount of redundancy, parity encoding offers a higher
degree of reliability than replications. In this paper we
assume that parity encoding is used which works as fol-
lows: The original object to be stored is divided in k
chunks that are coded in k + h fragments such that
any k fragments are sufficient to reconstruct the origi-
nal object. Moreover we assume that the creation of a
new fragment, called repair, can be always performed
as long as a minimum number of fragments is available.
Note that such a scheme is rate-less, i.e. the number of
coded fragments is not bounded in the design phase. An
example of such a technique is Network Coding [8]. In

our analysis we fix at k the minimum number of avail-
able fragments needed for a repair, which corresponds
to the object availability. This choice is quite conserva-
tive, but keeps our system more general.

In this paper we present and analyze a scheme that
periodically infers the failure behavior of the peers in or-
der to determine when repairs need to be triggered. Our
aim is to maximize the smoothness of the repair rate
and thus the smoothness of the bandwidth needed for
these repairs. While smoothness has not received much
attention in the literature, we believe that it is a very
important metric, especially in P2P systems. Peers typ-
ically only have a limited network bandwidth, which is
determined by their access link capacity. Additionally,
they may deliberately limit the bandwidth budget allo-
cated to a P2P application in order to avoid degraded
performance of other activities. If the repair process op-
erates in bursts, the spikes in network bandwidth may
be not sustainable by the peers and the success of the
repair process may be delayed or compromised. There-
fore, one should try to smooth as much as possible the
repair rate anticipating some of the repair work in order
to prevent bursts to occur.

Generally, repair schemes assume the existence of an
entity, distributed or centralized, that is capable of mon-
itoring the number of available fragments and decide
when to schedule the repairs. We rely on this assump-
tion as well. The details of how such a monitoring de-
vice works is beyond the scope of this paper. Peers
could, for instance, be organized in a hierarchy and run
a gossip algorithm to compute the number of available
fragments [11, 12].

Existing approaches for the repair of lost fragments
are either reactive or proactive. Reactive schemes are
able to follow changes in failure behavior of peers and
provide availability, however at the expense of a global
waste of resources or bursty use of them.

Proactive schemes use a constant repair rate and are
able to smooth the resource consumption for repairs.
However, to provide durability, proactive schemes need
an a priori knowledge of failure behavior. In case of
imprecise or wrong knowledge, durability may be com-
promised.

We argue that proactive and reactive schemes repre-
sent two specific cases of a more general approach that
tunes its reactivity with respect to the expected stabil-
ity of the peers. In limit cases, it may result in a purely
reactive scheme, if the peer behavior does not follow
any predictable pattern, or a fixed repair rate, if peer
availability remains constant.

We want to draw the attention to one important is-
sue: Any scheme that does a repair to replace a frag-
ment stored on a node that became temporarily unavail-
able may do wasted work. Indeed if the newly created
fragment was stored on a peer that later permanently

leaves, it may disappear before the system needs it. In
this case that fragment would be completely useless for
both durability and availability.

The main contribution of this paper is a framework
based on an ongoing estimation of the peer failure be-
havior. The rate R, at which repairs are performed, is
periodically updated accordingly to the changes in sta-
tistical properties of failures. This framework is able to
provide at the same time durability, adaptiveness and
a smooth use of the resources.

The design of this framework requires the solution
of an adaptive control problem, presented in section 3,
which is based on a periodical estimations of the peer
behavior. In section 4 we discuss the impact of the es-
timation time, while in section 5 we propose a hybrid
reactive-proactive scheme, which improves the availabil-
ity guarantees of the system. The proposed system is
first validated in section 6 and then evaluated using ex-
periments as described in section 7.

2. BACKGROUND AND RELATED WORKS
Providing availability or durability is a key issue to

be addressed by any work on distributed storage. The
classical solution employed in most of the early DHT-
based systems is what is usually defined as a purely
reactive scheme, also known in literature as eager re-
pair scheme. These systems [7, 5, 15] make no distinc-
tion between transient and permanent failures and the
fragments stored on peers that come back after a tran-
sient failure are not reintegrated in the system. This ap-
proach is extremely simple and effective, but it does not
address at all the efficiency of the maintenance, which
may overwhelm in certain conditions the capacity of the
system and compromise data durability.

From traces of peer availability we know that tempo-
rary disconnections are much more frequent than per-
manent ones. Reintegrating fragments should signifi-
cantly reduce the number of repairs needed.

There exist a number of reactive schemes that use
reintegration. These systems are more complex since
they need to track the disconnected peers and react se-
lectively to disconnection events. Usually they accom-
plish this last task by means of a threshold. Carbonite
[3] uses a repair threshold THL which corresponds to
the minimal level of redundancy needed to face tran-
sient failures and provide availability. THL is consid-
ered as a lower-bound: any time the number of available
fragments runs below THL a single repair is performed.
This threshold-based reactive scheme is the cheapest
one in terms of resources consumed, since only the re-
pairs strictly needed are performed. Total Recall [2]
uses a lower-bound threshold THL as well, but fixes
also another threshold THH , which is the amount of re-
dundancy that is initially inserted and that is restored
when the system runs below THL. This means that

the system triggers multiple repairs at once to bring
the number of replicas back to the initial number THH .
This approach represents a first step towards a proac-
tive approach, where part of the work is done in advance
with respect to the real needs.

The work in [6] is one of the first to address the time
evolution and the steady state characteristics of a stor-
age system. It still uses a threshold THL but adopts a
proactive approach called random lazy repair strategy,
in which the number of repairs done increases as the
system gets closer to the threshold THL. The main in-
tuition behind random lazy repair is that if one waits
until the threshold is reached before repairs are made,
the occurrence of correlated failures may put in danger
the durability of the objects. Besides, this may result
in a very bursty use of the resources needed.

To our knowledge, Tempo [4] is the only one that
is concerned about smoothing the bandwidth used for
repair. Tempo argues that reactive systems tend to per-
form repairs in bursts, alternating periods of intensive
bandwidth consumption with periods of inactivity. The
spikes produced by such a behavior represent both an
inefficient use of the resources and a danger for object
durability. The idea in Tempo is to have a constant
repair rate that is not correlated to the instantaneous
condition of the system. This rate is fixed by the sys-
tem administrator in terms of a bandwidth budget per
node, and if properly chosen, is able to assure durabil-
ity. The main weakness of this method is that there is
no way to choose a priori the right repair rate. Even
if the bandwidth is used as smoothly as possible, there
is neither guarantee on the object durability nor on the
optimality of the resource consumption, which may be
a lot higher than what is strictly needed.

The present work, starting from the considerations
made by Tempo, tries to develop a system that strives to
meet three different objectives: provide data availabil-
ity, consume an amount of resources comparable with
the one consumed by reactive schemes, and maximize
the smoothness of the repair bandwidth needed.

The closest work in this sense is [6], which, however,
does not analyze the impact of its randomized algorithm
on the smoothness of the bandwidth.

3. AN ADAPTIVE CONTROL PROBLEM
A generic non-adaptive scheme uses a repair rate R

that is constant in time to match a target number of
available fragments.

In this work, we aim to build an adaptive control
scheme that is able to adapt the repair rate to the
changes of the system behavior.

We depict our adaptive control scheme in figure 1. In
this scheme, the repair rate is a time-dependent signal
R(t) determined by the controller, which in this case
receives also an estimation of the system behavior per-

formed by the estimator.
The system is defined by a set of parameters. Start-

ing from the observation of n(t), the estimator is able
to estimate these parameters, which in turn are used by
the controller to choose R(t). Note that the estimator
receives as input an additional information called tran-
sition, which signals the occurrence of a repair or of a
reconnection.

Figure 1: The adaptive control scheme.

The operations of estimation and control are per-
formed periodically. We denote this period with ∆T ,
which represents both the estimation time, i.e. the ob-
servation period used by the estimator, and the update
period, i.e. the interval between two updates of R(t).

3.1 The System Model
The design of the estimator needs the definition of a

mathematical model of the system, able to capture the
behavior of peers.

First of all let us consider the life-cycle of a single
peer belonging to the system. It can be represented by
a state machine with three possible states. When the
peer joins for the first time the system, it enters the
connected state. After a session time, the peer may dis-
connect and enter the abandon state if it will never come
back, otherwise the temporarily disconnected state. Af-
ter a disconnection time, it will leave the temporar-
ily disconnected state and reenter the connected state.
This state machine corresponds to the Continuous-Time
Semi-Markov chain depicted in figure 2, where the tran-
sition rates specified on the arcs are related to the fol-
lowing parameters:

• µ: Single peer disconnection rate. 1/µ repre-
sents the average session duration.

• λ: Single peer reconnection rate. 1/λ rep-
resents the average time a peer stays temporarily
disconnected before coming back online.

• P : Abandon Probability. When a peer discon-
nects it can go either temporarily or permanently
offline. The actual event is governed by the proba-
bility P , which formally is the conditioned proba-
bility that a peer abandons the system given that
it is leaving the connected state.

The behavior that describes the life-cycle of a single
peer must be translated in a more complex model that

Figure 2: The Continuous-Time Semi-Markov
chain of a peer life-cycle.

takes into account the participating peers all together
and the repair rate R.

Given the above assumptions, we can use a network
of two G/G/∞ queues depicted in figure 3 to represent
the system behavior. A G/G/∞ queue represents a
pure delay element where the delay, which corresponds
to the service time, fits a generic distribution. In our
case, Q1 represents the peers in the connected state and
Q2 represents the peers in the disconnected state.

We assume that the number of peers is sufficiently
large so that every fragment can be stored on a dif-
ferent peer. With this assumption the terms peer and
fragment are equivalent and thus this model represents
also the availability of the fragments in the system.

Figure 3: Queuing system representing the over-
all system behavior.

The customers of the first queue Q1 represent the
number of available fragments n(t). Its arrival process,
whose rate is denoted with γ1, is given by the fragments
that are newly introduced at rate R and the process of
fragments that are becoming again online after a period
of unavailability. The time spent in Q1 is determined
by the service rate µ. The departure flow from Q1 rep-
resents the fragments becoming unavailable and its rate
is equal to the arrival rate. The customers in the second
queue Q2 represent the number of temporarily unavail-
able fragments m(t). Its arrival process, whose rate is
denoted with γ2, is given by the fragments that have
become unavailable and with probability (1 − P) did
not abandon permanently the system. The time spent

in Q2 is determined by the service rate λ. Finally, the
departure process from Q2 represents the fragments be-
coming available again.

We want to make a clarification concerning the two
parameters µ and λ, which are defined, in the Continuous-
Time Semi-Markov chain of figure 2, as the single peer
disconnection and reconnection rates. In the rest of the
paper, we will refer to them simply as disconnection
rate and reconnection rate. In the queuing system
of figure 3, µ and λ represent the service rates of the
two queues and must not be confused with the global
departure rates, which are referred to by γ1 and γ2.

We can solve this network of queues, writing its bal-
ance equations:

γ1 = R + γ2

γ2 = (1− P)γ1
⇒

{
γ1 = 1

P R
γ2 = 1−P

P R
(1)

Using Little’s law [19] we can derive the average number
of customers in each queue:

n = γ1/µ = R
µP m = γ2/λ = (1−P)R

λP
(2)

In case the service times and the arrival times are ex-
ponentially distributed, Q1 and Q2 become M/M/∞
queues and we can write the analytical expression [19]
of the probability distribution of the number n of avail-
able fragments as:

f(n) =
nn

n!
e−n ∼ N (n, n) (3)

Note that eq. (3) can be approximated by the Normal
distribution with a variance σ2 = n. This particular
model will be used exclusively in the experiments with
synthetic data to validate the system and to get some
insights into its functioning.

3.2 The Estimator
The estimator is an object that, collecting statistical

information on the signal n(t) and on the input flow in
the first queue, is able to estimate the parameters µ and
P needed by the controller. We obtain:

• The average number of available fragments n̂:

n̂ =
∑

i niti
∆T

(4)

where ti is the time spent by the system in the
state ni, which implies ∆T =

∑
i ti. This compu-

tation seems to be quite intensive, since it needs
to track every single transition. Actually experi-
ments showed that losing some transitions, which
could happen in a gossip-based algorithm, does not
have an important impact on results.

• The disconnection rate µ̂ using the relation:

γ̂1 =
#Disconnections

∆T

and Little’s law as in eq. 2:

µ̂ =
γ̂1

n̂
(5)

• The abandon rate P̂ can be computed in two equiv-
alent ways. The first one is:

P̂ = 1− #Reconnections

#Disconnections

while the second, which is the one used in our im-
plementation, relies on the first balance equation
in eq. (1) and it is:

P̂ =
R

γ̂1
(6)

3.3 The Controller
The controller receives the estimations µ̂ and P̂ and

the target number of available fragments n′ and uses
eqs. (5) and (6) to compute the repair rate R as:

R = µ̂P̂ n′ (7)

Table 1 summarizes the symbols used.

symbol meaning
µ disconnection rate
λ reconnection rate
P abandon probability
R repair rate
Q1 queue of available fragments
Q2 queue of temporarily unavailable frag-

ments
γi departure/arrival rate for queue Qi

n number of available fragments
m number of temporarily unavailable frag-

ments
n′ target number of available fragments

∆T estimation/update period

Table 1: Table of symbols.

4. IMPACT OF ESTIMATION TIME
The estimation time ∆T , which corresponds also to

the update time of the repair rate R, is the most crucial
parameter of our model. In this section we discuss the
tuning of this parameter and explain its implications.

4.1 Impact on Bandwidth Usage
Proactive schemes work well in static environments in

which there exist constant statistical properties, i.e. prop-
erties that once estimated never change. In such a case,
the ideal choice would be to perform a preliminary of-
fline estimation and then select an infinite ∆T . Any

different choice would make the controller follow short-
term fluctuations, doing unnecessary work on the one
hand and unevenly using the bandwidth resources on
the other.

Reactive schemes follow instantaneously any fluctu-
ation of the system in the belief that no properties
describing the long-term behavior of the system can
be found. This, in principle, corresponds to setting
∆T = 0, in which case the controller promptly reacts
to any change. An example of such a condition is when
we expect from the system massive correlated failures,
where, without any possible prediction, most of avail-
able fragments suddenly disappear.

Our assumption is that while real systems may lack
long-term statistical properties, they may have short-
term properties that can be still exploited to make smoother
the use of the bandwidth keeping providing data dura-
bility.

If we consider a system in which the model parame-
ters change continuously at a given rate, our challenge
is to choose the maximum ∆T that divides the time in
segments in which the system can be approximated as
being statistically stable.

This ideal choice would use the repair bandwidth in
the smoothest possible way. In this case the residual
fluctuations in the repair bandwidth are those strictly
necessary to provide durability. If these fluctuations
are not supported by the system, it just means that
the available resources are not enough for what we are
trying to achieve.

At this point, reactive schemes appear as the safest
and the most conservative choice: they overshoot the
instantaneous repair rate, but requiring, in certain pe-
riods, an excessive amount of the repair bandwidth. Re-
active systems are very popular, because without any
complex tuning they provide availability, but they pay
a high cost in terms of a bursty resource consumption.
Purely proactive schemes, instead, found very little at-
tention in literature, because they work only for theo-
retical cases.

Tempo [4] is a very interesting work in this domain.
The authors state that estimation is unreliable and in-
stead introduce a per-node bandwidth budget. Using
this budget and the available storage space, Tempo pro-
duces as many fragments as it can. This, of course, is
a valid solution, but the right choice of the bandwidth
budget is crucial since a wrong choice may waste repair
resources or compromise the durability of the stored
objects.

4.2 Robustness of the Estimation
The convergence speed is a key issue in a statistical

estimator, and in our case puts a lower limit on ∆T .
If one tries to push system reactivity too much, it

would degenerate to a situation in which estimation

does not make sense and a pure reactive scheme is more
reliable. Besides, stating that the system has short-
time statistical properties with a very high variation
frequency, which is the condition that would require a
very small ∆T , is equivalent to saying that statistical
properties do not exist at all.

Furthermore the time needed to estimate the parame-
ters depends on the parameters themselves. This means
that in a dynamic environment a fixed choice of ∆T
does not make sense. For this reason, in our implemen-
tation we do not fix ∆T , but D, the average number
of disconnections observed during an estimation
period: we use the last estimations of µ̂ and n̂ to pre-
dict the time ∆TD we expect to wait to observe D dis-
connections, with ∆TD defined as:

∆TD , D

γ̂1
=

D

µ̂n̂
(8)

5. A HYBRID SCHEME FOR AVAILABIL-
ITY

Let us consider the control rule in eq. (7) using the
real parameters and under the hypothesis in which the
average number of available fragments is exactly n′:

R = µ̂P̂ n′ ⇒ R = P (µn) = Pγ1 (9)

Eq. 9 means that the objective of the controller is to
make the repair rate equal to the rate of permanent
failures, which corresponds to an oracle system able to
tell apart the permanent departures from the transient
ones. This ability, however, provides only durability,
but it cannot give any guarantee on the availability.
Indeed there might be periods in which a lot of peers are
temporarily disconnected and some objects might not
have enough available fragments to be reconstructed,
while their existence in the system in the long run is
not jeopardized.

A common pitfall is to consider durability and avail-
ability as completely separate objectives that can be
achieved independently. The problem resides in the fact
that the repair operation needs k fragments, i.e. we need
availability to assure durability. Therefore, even an or-
acle may run into situations in which it cannot respond
to a permanent failure because there are not enough
fragments.

The conclusion is that durability can be provided
without availability only in a statistical sense, as shown
in [14]. However no deterministic guarantees can be
provided.

As previously said our system tries to achieve dura-
bility, maximizing at the same time the likelihood of
availability. To always guarantee availability, we pro-
pose a hybrid scheme in which the system switches to a
purely reactive policy any time the number of available
fragments hits a lower threshold THpro. During these
reactive periods, which should be exceptional, the num-

ber of available fragments does not decrease as long as
the system can keep up with all the disconnections, in-
troducing, as a side effect, spikes in the bandwidth us-
age. If THpro is properly chosen, these spikes are again
strictly needed and our approach still remains the best
trade-off.

6. SYSTEM VALIDATION
To validate the system we designed and implemented

an event-driven simulator. It simulates a simplified ver-
sion of a distributed storage system on a set of peers
whose behavior is described by availability traces it is
fed with.

For these experiments, we created synthetic traces of
the peer behavior using exponentially distributed dis-
connection and reconnection times. This assumption is
very useful to validate the system. Indeed, if the model
is correct we will obtain a distribution of the number of
available fragments matching the expected theoretical
one in eq. (3). Note, however, that, since the estima-
tion is independent of the distribution used, a choice of
a different distribution would not affect the results.

6.1 Model Validation
To validate the model we observe its behavior when

the parameters are known. We choose a set of fixed
parameters: µ = 1, P = 0.5 and λ = 2 and the repair
rate R = 100 · µ · P = 50 which should provide, using
eq. (2), an average number of available fragments n =
100.

Figure 4(a) shows the distribution of the number of
online fragments, which clearly fits a Normal distribu-
tion as we expected. Figure 4(b) instead depicts the
instantaneous repair rate Rinst, which reflects roughly
the bandwidth consumption due to the maintenance
process. This measure is computed as the inverse of
the time elapsed between two consecutive repair
events:

Rinst =
1

tRi − tRi−1

Since repair times are exponentially distributed, the re-
pair events are not equally spaced, producing a high
variability in the repair rate.1. This high variability is
exactly what we want to avoid and suggests that the
use of exponentially distributed repair times does not
fit our needs.

We run a second experiment in which we use constant
repair times, which violates the assumptions made in
the model about exponentially distributed arrival rates.
Figure 5 shows that this has practically no impact on
the distribution of the available fragments that keeps
fitting a Normal distribution and seems to be even nar-
1For graphical reasons we limited the y-range to 500. Rate
spikes did attain values up to 50000 repairs per time unit.

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 60 70 80 90 100 110 120 130 140 150

fr
eq

ue
nc

y

n
(a) Distribution of the number of available frag-
ments.

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5

R
in

st

time
(b) Instantaneous repair rate.

Figure 4: Simulation with synthetic data, fixed
parameters and exponentially distributed repair
times.

rower. Obviously, in this case, the instantaneous repair
rate is completely smoothed, i.e. constant.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 60 70 80 90 100 110 120 130 140

fr
eq

ue
nc

y

n

Figure 5: Simulation with synthetic data, fixed
parameters and constant repair times. Distribu-
tion of the number of available fragments.

This synthetic scenario does not require any estima-
tion since the parameters are known to be stable. In
practice their values could have been obtained with an
offline observation of the system behavior.

6.2 Estimator Validation
In this section we show the efficacy of the estimator.

We run several experiments with different fixed values
of the parameters and we observe the convergence of the
estimation. For space limitations, in figure 6 we show
only the results of a single case, where µ = 1 and P =
0.5. The estimator is able to converge in about 5 time
units. This convergence time is roughly proportional to
γ1, i.e. the number of samples (disconnections) observed
per time unit, which is in turn proportional to µ.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 5 10 15 20

µ

time
(a) Estimation of the disconnection rate µ.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

P

time
(b) Estimation of the abandon probability P .

Figure 6: Estimations with fixed parameters:
µ = 1 and P = 0.5.

All the experiments we ran pointed out two different
issues that we already discussed in section 4.2:

1. Convergence of the estimation is not immediate.
Even with fixed values it takes some time to obtain
reasonable estimates. When we select a very small
∆T , we increase the reactivity of the system, but
we are not able to infer its statistical properties.

2. The convergence time depends on µ. This leads us
to say that in a changing environment we cannot
use a constant estimation period, but instead ∆TD

should be adapted to the order of magnitude of the
parameter µ as we did in eq. (8).

6.3 Controller Validation
In this section we run experiments with varying pa-

rameters shown in figure 7(a) and with an ideal estima-
tor that knows these parameters. This simulation aims

to show that all the considerations made about a sys-
tem with fixed parameters are still valid in a dynamic
environment.

Results are shown in figure 7(b) and demonstrate
clearly that the controller is able to maintain correctly
the number of fragments. Moreover, the distribution
of the number of available fragments in figure 7(c) still
resembles a Gaussian.

0.000
0.004
0.008
0.012
0.016
0.020

 30000 60000 90000 120000

µ

0.120
0.160
0.200
0.240
0.280

 30000 60000 90000 120000

P

time
(a) Evolution of the input parameters µ and
P .

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 30000 60000 90000 120000

R

 60
 80

 100
 120
 140

 30000 60000 90000 120000

n

time
(b) Repair rate R and evolution of the number
of available fragments.

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 60 80 100 120 140

fr
eq

ue
nc

y

n
(c) Distribution of the number of available
fragments.

Figure 7: Controller Validation: simulation with
varying parameters and ideal estimator

7. EXPERIMENTS
We are mainly interested in two aspects, the capac-

ity to assure durability and the smoothness of the in-

stantaneous repair rate. The durability can be easily
evaluated looking at the distribution of the number of
available fragments n.

Assessing the smoothness of the instantaneous repair
rate is a bit more complex. Note that the ideal case is
not necessarily the one in which the instantaneous re-
pair rate is constant, but the one in which its variations
are minimal given the variations in the system. This
minimum corresponds to the ideal instantaneous repair
rate, which is the rate we would select if we were able
to know instantaneously the exact system parameters,
as we did in section 6.3.

Formally speaking, the ideal instantaneous repair
rate is a continuous signal Rideal(t) and is given by the
following relation:

Rideal(t) , µ(t)P (t)n′

For every repair event Ri we compute Rdiff(tRi
), which

is the instantaneous repair rate we observe and the ideal
instantaneous repair rate in that instant:

Rdiff(tRi
) , Rinst(tRi

)−Rideal(tRi
) (10)

The discrete sequence Rdiff(tRi) measures how far is
the instantaneous repair rate from the ideal one. To
characterize this measure we use its standard deviation.
The closer std(Rdiff) is to zero, the closer our system is
to the ideal case.

7.1 Evaluation with Synthetic Data
In these experiments we use synthetic traces, again

with the assumption of exponentially distributed dis-
connection and reconnection times. The objective is to
show that our approach obtains a higher smoothness
than a reactive scheme and to evaluate the impact of
the parameter D on the smoothness.

We choose the same sine waves for µ and P as in
figure 7(a) . The duration is 300000 time units and we
choose n′ = 100, which is a good value to show all the
dynamics of our system.

The reactivity is controlled through the parameter
D, which in turn influences ∆TD. Since for too small
values of D the estimation is not reliable and for too
big values the distribution of the number of available
fragments degrades too much, we choose for D values
between 50 and 2000.

The basis for our comparison is a generic reactive
scheme, which performs a single repair whenever the
number of available fragments is below a threshold THreac.
In these experiments, we choose the threshold THreac =
95 , which is the value that produces an average num-
ber of online fragments equal to the one provided by
our proactive scheme, namely n′ = 100. In figure 8(a)
we plot the distribution of the number of available frag-
ments, which represents an extremely good result. How-
ever, the cost of the reactive scheme is a bursty repair

activity shown in figure 8(b), where the sequence of re-
pair events is depicted.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 150

fr
eq

ue
nc

y

n
(a) Distribution of the number of available
fragments.

 3000
 3200

 3400
 3600

 3800
 4000

time
(b) Sequence of repair events.

Figure 8: Reactive Scheme: simulation with
synthetic data.

The objective of our scheme is to equally space the
repair events, while still assuring a reasonable distribu-
tion of the number of available fragments, which tends
to get worse when D is increased (Compare in figure 9
the case of D = 50 and D = 2000).

The results obtained with D = 2000 are clearly not
acceptable because of the low level of availability. This
is due to the fact that D is too big with respect to the
parameter dynamics and the estimator is not able to
cope with their changes. This is clearly shown in figure
10(b), where the instantaneous repair rate Rinst(tRi)
is compared with the ideal one Rideal(t). Comparing
figures 10(a) and 10(b) we also see that smoothness of
the rate is strongly related with D.

The aggregate results for all the values of D are shown
in figure 11, where the mean, the 5-percentile and the
95-percentile of the number of available fragments are
shown in 11(a) and the standard deviation of Rdiff, as
defined in eq. (10), is shown in 11(b). Note that at
D = 0 we associated the results for the reactive scheme.
These results give a clear picture of the trade-off in the
choice of D, namely that the increased smoothness has
a cost in terms of the distribution of the number of
available fragments.

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0 50 100 150 200

fr
eq

ue
nc

y

n
(a) D=50.

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0 50 100 150 200 250

fr
eq

ue
nc

y

n
(b) D=2000.

Figure 9: Simulation with synthetic data: dis-
tribution of the number of available fragments
for D = 50 and D = 2000.

The poor availability in case of D being too big mo-
tivates the need for a hybrid scheme that puts a lower-
bound on the number of available fragments, even when
D is not properly chosen.

Experiments with the Hybrid Approach
In these experiments we evaluate the hybrid approach
presented in section 5, and set the threshold THpro =
50.

The essence of such approach is shown in figure 12,
where the distribution of the number of available frag-
ments for D = 2000 is plotted. The number of frag-
ments, thanks to the hybrid scheme, never goes below
the threshold of 50.

The aggregate results are not dissimilar from the ones
obtained without the Hybrid Approach.

7.2 Evaluation with PlanetLab Traces
We tested our scheme using real availability traces

from PlanetLab All Pairs Ping [17]. These traces consist
in the availability status of 669 nodes and were obtained
by means of pings sent every 15 minutes between all
pairs of the concerned PlanetLab nodes, starting from
January 2004 for about 500 days. These traces are pub-
lically available at [9]. We used data from the file
pl-app-cleaned.avt.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50000
 100000

 150000

 200000

 250000

 300000

R

time

real rate
ideal rate

(a) D=50.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000
 100000

 150000

 200000

 250000

 300000

R

time

real rate
ideal rate

(b) D=2000.

Figure 10: Simulation with synthetic data: com-
parison of Rinst and Rideal for D = 50 and D = 2000.

We run and compare three different schemes:

• Our proactive scheme with the hybrid approach, a
threshold of THpro = 50 and a target number of
available fragments of n′ = 100.

• A reactive scheme with a threshold THreac = 80.
We choose experimentally the value of 80 that pro-
vides an average number of available fragments
equal to the one provided by our proactive scheme
(n′ = 100).

• An oracle scheme which also starts with the same
initial number of fragments as other schemes and
represents a system that is able to distinguish tran-
sient from permanent failures, triggering a repair
only in case of a permanent failure.

Since we do not know what are the real parameters
of the system, we can neither compute Rideal nor Rdiff.
To evaluate the smoothness of the repair rate in this
case we use directly the cumulative amount of repairs
done over time. This curve, already used in [4], gives
us the total amount of work done by the different al-
gorithms and its derivative expresses the instantaneous
repair rate at which this work was done.

To easily compare the schemes we selected two values
of D: D = 500 and D = 1000.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 500
 1000

 1500
 2000

n

D

95-percentile
mean

5-percentile

(a) Mean, 5-percentile and 95-percentile of the
number of available fragments.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500
 1000

 1500
 2000

st
d(

R
di

ff)

D
(b) Standard deviation of Rdiff.

Figure 11: Simulation with synthetic data: reac-
tivity vs fragments availability and rate smooth-
ness.

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0 50 100 150 200 250

fr
eq

ue
nc

y

n

Figure 12: Hybrid Approach: Simulation with
synthetic data. Distribution of the number of
available fragments for D = 2000 and THpro = 50.

In figure 13 we show the time evolution of our proac-
tive system for D = 500, where the estimations of µ
and P are shown in 13(a), while the repair rate selected
and the evolution of the available fragments obtained
are shown in 13(b).

In figure 14(a) the distribution of the available frag-
ments with the three schemes is shown, while in 14(b)
the cost of the repair process is shown in terms of cu-
mulative number of repairs performed.

 0
 2e-06
 4e-06
 6e-06
 8e-06
 1e-05

 0 100 200 300 400 500

µ

 0.00
 0.02
 0.04
 0.06
 0.08

 0 100 200 300 400 500

P

time (days)
(a) Estimation of µ and P .

 0
 1e-06
 2e-06
 3e-06
 4e-06
 5e-06
 6e-06

 0 100 200 300 400 500

R

 0
 30
 60
 90
 120
 150

 0 100 200 300 400 500

n

time (days)
(b) Evolution of R and n.

Figure 13: Proactive scheme with D = 500 on
PlanetLab traces.

The oracle, which is a scheme that is practically not
achievable, requires the lowest number of repairs, since
it creates new fragments only when peers permanently
fail. Although an oracle system would not perform un-
necessary work, its distribution of the number of avail-
able fragments is shifted towards lower values of n run-
ning into the risk of being below the level required to
assure availability.

The reactive scheme and our proactive scheme have a
distribution of the number of available fragments with
the same mean value, namely 100; the difference re-
sides in the fact that in the reactive scheme the thresh-
old mechanism prevents the number of available frag-
ments to fall below 80, while in the proactive schemes
we tolerate lower values. This situation is still accept-
able and is compensated by the advantage of having
a much smother repair rate as shown in 14(b). While
the total number of repairs is comparable, the curves
in 14(b) show that the reactive scheme is more bursty
than the proactive schemes. Moreover, as expected, a
large D produces a better smoothness.

The differences in the dynamics of the two schemes
may be understood looking at day 300, where a lot of
transient failures took place. To face such an event, a
reactive scheme simply performs a lot of repairs pro-
ducing a step in the curve and a spike in the resource
consumption. The proactive schemes, instead, up to

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 40
 60

 80
 100

 120
 140

 160

fr
eq

ue
nc

y

n

D=1000
reactive

oracle

(a) Distribution of available fragments.

 0

 20

 40

 60

 80

 100

 120

 0 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

nu
m

be
r

of
 r

ep
ai

rs

time (days)

D=500
reactive
D=1000

oracle

(b) Cumulative number of repairs.

Figure 14: Simulations with PlanetLab traces.

that moment have already done a higher number of re-
pairs, i.e. they have done part of the work in advance,
and can absorb the massive disconnection without neg-
ative impact on the repair process. At the next pa-
rameter update, this higher disconnection rate is taken
into account slightly increasing the repair rate. If the
disconnection peak was bigger and was not sustainable
by the chosen rate, the number of available fragments
would have fallen below the threshold THpro trigger-
ing the hybrid scheme to initiate a reactive period in
response of the excessive churn.

In general, proactive schemes tend to have a higher
number of repairs. This, as already suggested, is due
to the fact that proactive schemes work in advance to
spread the repairs over time. This anticipation of re-
pairs is the only way to smooth the rate without com-
promising the durability. The price to pay, however,
is that part of the fragments created in advance may
be lost, because of permanent failures, before they are
needed [3]. The higher the abandon probability P the
more pronounced this effect will be.

8. CONCLUSION AND FUTURE WORK
We proposed a novel framework for managing redun-

dancy based on the estimation of the peer behavior.
Our system combines the resilience of reactive schemes

with the smoothness of proactive schemes. This can be

considered as a general approach, in which the duality
reactive or proactive becomes a specific case of a wider
approach tunable with respect to the dynamics of the
failure behavior.

We validated the proposed scheme and demonstrated
its effectiveness using synthetic data and availability
traces of PlanetLab nodes.

We also clarified the difference between availability
and durability and their relationship, which is often
misunderstood.

We see possible extensions of our scheme in the fol-
lowing two directions.
Automatic tuning of the parameter D. Even if the
ability of the system to provide durability is not very
sensitive to the choice of D and we chose the working
range manually, it would be nice to find a way to au-
tomatically tune its value. Our objective is to build a
system that automatically finds a good tradeoff between
reactivity and rate smoothness and selects the optimal
value of D, even if the starting one is not optimally
chosen or if the system evolves in time.

Hybrid redundancy scheme. It is well known that
for a given amount of redundancy, parity encoding offers
a higher degree of reliability than replications. However,
as has been pointed out previously [16, 20], to regen-
erate one lost fragment, parity encoding schemes need
to read k fragments. This means that for parity encod-
ing schemes the volume of the I/O and network traffic
will be k times higher than the amount of regenerated
fragments. Depending on the rate R of permanent node
failures, parity encoding schemes may result in a very
high amount of traffic. For this reason, a hybrid re-
dundancy scheme that combines replication to keep
the repair traffic low and parity to protect against mas-
sive (correlated) node failures seems very attractive (see
e.g. [10]). We plan to study how our proactive scheme
can be extended to hybrid redundancy schemes.

Acknowledgments
The first author is supported by a PhD Scholarship from
Microsoft Research.

9. REFERENCES
[1] A. Adya, W. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. Douceur, J. Howell, J. Lorch,
M. Theimer, and R. Wattenhofer. Farsite: Federated,
available and reliable storage for an incompletely
trusted environment. In Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and
G. M. Voelker. Total recall: System support for
automated availability management. In Symposum on
Networked Systems Design and Implementation
(NSDI), 2004.

[3] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit,
H. Weatherspoon, M. F. Kaashoek, J. Kubiatowicz,
and R. Morris. Efficient replica maintenance for
distributed storage systems. In Symposum on

Networked Systems Design and Implementation
(NSDI), 2006.

[4] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit,
H. Weatherspoon, J. K. M. Frans Kaashoek, and
R. Morris. Proactive replication for data durability. In
International Workshop on Peer-to-Peer Systems
(IPTPS), 2006.

[5] F. Dabek, K. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with cfs. In
Symposium on Operating Systems Principles (SOSP),
2001.

[6] A. Datta and K. Aberer. Internet-scale storage
systems under churn - a study of the steady state
using markov models. In IEEE International
Conference on Peer-to-Peer Computing (P2P), 2006.

[7] P. Druschel and A. Rowstron. PAST: A large-scale,
persistent peer-to-peer storage utility. In Workshop on
Hot Topics in Operating Systems (HotOS), 2001.

[8] C. Fragouli, J.-Y. L. Boudec, and J. Widmer. Network
coding: An instant primer. SIGCOMM Comput.
Commun. Rev., 36(1):63–68, 2006.

[9] B. Godfrey. Repository of availability traces.
http://www.cs.berkeley.edu/ pbg/availability/, 2006.

[10] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive
correlated failures. In Symposum on Networked
Systems Design and Implementation (NSDI), 2005.

[11] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Transactions on Computer System,
23(3):219–252, August 2005.

[12] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In IEEE
Symposium on Foundations of Computer Science
(FOCS), 2003.

[13] J. Kubiatowicz et al. Oceanstore: An architecture for
global-scale persistent storage. In International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[14] G. Lefebvre and M. J. Feeley. Separating durability
and availability in selfmanaged storage. In ACM
SIGOPS European Workshop (SIGOPSEW), 2004.

[15] S. Rhea et al. OpenDHT: A public DHT service and
its uses. In SIGCOMM, 2005.

[16] R. Rodrigues and B. Liskov. High availability in dhts:
Erasure coding vs.replication. In International
Workshop on Peer-to-Peer Systems (IPTPS), 2005.

[17] J. Stribling. Planetlab all pairs ping.
http://infospect.planet-lab.org/pings.

[18] K. Tati and G. M. Voelker. On object maintenance in
peer-to-peer systems. In International Workshop on
Peer-to-Peer Systems (IPTPS), 2006.

[19] K. S. Trivedi. Probability and statistics with reliability,
queuing, and computer science applications. John
Wiley & Sons, 2nd edition, 2001.

[20] G. Utard and A. Vernois. Data durability in peer to
peer storage systems. In IEEE International
Symposium on Cluster Computing and the Grid, 2004.

