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Abstract

Vehicular Ad Hoc Networks (VANETS) are a particular catggof mobile ad hoc networks
(MANETS) characterized by a high mobility and a reduced eotimity. In order to de-
velop protocols for vehicular networks, the community makes create VANET specific
approaches, or adapt already existing protocols to VANERil&®\the former may provide
efficient specialized solutions, the latter offers an iasexl interoperability and universal-
ity, which is a key issue for industrial partners involvediie deployment of VANET and
Intelligent Transportation Technologies (ITS). An im@ont aspect in the porting of ad hoc
networks solutions to VANET and ITS is an efficient managenoénehicular mobility.

Mobility Management is a principle aimed at updating nekvayutes or structures in
order to keep them coherent with mobile topologies. Mopititanagement may be proac-
tive or reactive, depending if the updates are triggeret writvithout topology changes, or
if and only if a change in the topology effectively requiresupdate the structure. Failure
to develop efficient mobility management heuristics leads waste of network resources
and suboptimal routes or structures. The optimal soluBabiiously the reactive mobility
management, as updates are optimally triggered only whesssary. However, due to its
complexity, the reactive mobility management has not etiih as much attention as its
proactive counterpart.

In this paper, we introduce a location-aware frameworkedaKinetic Graphs, that may
be followed by ad hoc protocols in order to implement a re@acthobility management.
The Kinetic Graph framework is able to capture the dynamfasabile structures, and is
composed of four steps: (i) a representation of the trajissto(ii) a common message for-
mat for the posting of those trajectories, (iii) a time varyiweight for building the kinetic
structures, (iv) an aperiodic neighborhood maintenanaeeVéntually provide a example
of a successful application of this framework to broadogséind routing in VANET.

Key words: Mobility Management, Kinetic graphs, mobility predictmrbroadcasting,
routing, ITS, vehicular networks.
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1 Introduction

Vehicular communication is regarded as a key technologiyrproving road safety
and comfort through Intelligent Transportation Systeri$jl The growing interest
towards the possible applications of wireless technoki¢he vehicular environ-
ment has recently led consortia (US VII [1], EU C2C-CC [2]hastandardization
bodies (IEEE [3]) to develop technologies and protocolstfansmission of data
between vehicles and between vehicles and road infrastasctA network without
any centralized coordinator and where communicating nodegose cars or road
infrastructures is called a Vehicular Ad Hoc Network (VANEVANET is there-
fore a generalization of MANET for extremely mobile topoieg} Due to the par-
ticular mobility and connectivity, standard protocols MANET have been mostly
criticized due to the latency and overhead required whed tmevehicular net-
works. It has been notably observed that the OLSR routingppobd based on the
Multipoint Relaying structure was not adapted to highly m®betworks such as
vehicular networks, and more generally that proactiveingybrotocols consumed
a significantly large energy and network resource dedidatd¢ide maintenance of
their routing tables. The community working in vehiculamgounication there-
fore started to develop solutions specific to VANETS, gephrm@arouting such as
Greedy Perimeter Stateless Routing (GPSR) or Last EncoRotgting (LER) for
instance, or more generally opportunistic routing.

Taking a different look, we can see that the limitation ohsli@rd routing and broad-
casting protocols for highly dynamic networks comes fromnltck of an efficient
management of nodes mobility and not the protocols theraselndeed, routing
data is built and optimized based on topology informatiothgeed by periodic
beacon messages. Beside the significant overhead of peilydiending topology
information, this critical procedure is also limited by stsbility with respect to the
latency required to update routing data and the validityppbtogy information. If
nodes are moving too fast, the time needed to update rowtbigs might actually
exceed the duration of the links composing the routing pthsstance.

One solution in order to improve mobility management is wéase the time in-
terval during which the topology is assumed known and doésieed updates.
For that matter, mobility predictions could be used in ortteavoid dead links
by predicting alternate connectivity solutions. As long@sology information is
correctly predicted, a maintenance is not required. Adogiy, the maintenance
is optimized by updating routing data if and only if an unpecgetd new topology
information truly affects routing. Thanks to this enhanecedbility management
that we categorize dsnetic the use of standard MANET routing protocols, such
as DYMO, MPR or OLSR, could be envisioned again for VANET am&.l That
is also a significant argument for industries and standatidiz bodies working
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in ITS and vehicular communication, as it could ease thedapierability between
vehicular networks, and fixed networks or MANETS, where ¢ha®tocols lead.

In this paper, we propose a Kinetic Mobility Management sofubased on mo-
bility predictions for optimizing standard MANET protocolor VANETS or ITS.
We define a location-aware framework called #iaetic Graphthat may be fol-
lowed by ad hoc protocols in order to reach a kinetic mobititgnagement. We
first provide a general description of how the trajectoriesraodeled, how struc-
tures are initially built and finally, how they are maintain&/e emphasis that our
objective is to suppress the periodic beaconing processlyvigsed by almost all
ad hoc protocols in order to adapt to mobility, and also togaase the time interval
during which the mobile topology is correctly anticipatddhen, we discuss two
different kinetic link weights that could be easily adapteanost of the protocols
for VANETSs. Finally, we provide a successful applicatiortloé Kinetic Graph ap-
proach to broadcasting in VANETs. We also would like to engitethis approach
may also be applied to VANET and ITS specific protocols, asrawipg mobility
management is also important for geographic routing faaimse.

The rest of this paper is organized as follows. In Sectione€define a novel termi-
nology for mobility management and describe the challermgekis terminology
in VANETS. Section 3 formally introduces the Kinetic Grared covers the four
steps of its framework, while Section 4 provides an apgbeaexample of the
Kinetic Graph framework to broadcasting in VANETSs. We figgtirovide some
related works in the field of mobiltiy management in Sectioansl conclude in
Section 6 with some insights on future orientations of kinetobility manage-
ment.

2 Reactive Mobility Management

In this section, we define a novel and optimal concept for fitgbnanagement
calledReactive Mobility Managemenwhich is based on mobility predictions and
aims at optimally updating a structure when and only whemired, regardless
of any topology change. First, we define the concept, theneaddhe challenges
facing this concept, and finally analyze the expected perdmice of this concept.

2.1 Definition of Concept

The MANET routing community classified routing protocolsstig in two classes
ProactiveandReactive depending if a route is created when there is data traffic to
transmit, or if all routes are proactively created indepanily of the data traffic.
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As mobility was not considered during the design of mostimguprotocols, it is
only handled by a periodic maintenance process in order tiectiany topologi-
cal change and update the routes. This process is suboialaste network
resources, as the process is run even if nothing needs tcabgeth. Taking a sim-
ilar vocabulary, but considering mobility instead of rawgjj routing protocols may
therefore be considered to be using a proactive mobilityagament defined as
follows:

Definition 1 (Proactive Mobility Management) A Proactive Mobility Management
protocol proactively triggers a maintenance process withvibhout topology changes.
Moreover, as proactive protocols do not have any vision afreutopologies, the
process is usually repeated periodically.

According to this definition, a mobility proactive protocohy only adapt the routes
based on past topologies, as nodes already moved when ttesprstarts. More-
over, important network resources are wasted as the maimteris triggered with

or without changes in the topology that effectively regsiit@ update the routes.

In opposite, a better choice would be to only start a maintea@rocess reactively
to a change that requires an update. We therefore have thwiiod definition for
the reactive mobility management approach:

Definition 2 (Reactive Mobility Management) A Reactive Mobility Management
protocol tries to anticipate all topological changes usimgbility prediction tech-
niques and only starts a maintenance process reactively nassed prediction.
Moreover, as all nodes are assumed to run the same predistibama, the node
that wrongly predicted its own behavior is responsible figdering the mainte-
nance process.

According to this definition, a reactive mobility managerngrotocol will not act
as long as the topology evolves as predicted, and only réacthange in the
topology effectively affects the routes. This is an optimalbility management, as
network resource is not wasted for any unnecessary maimtena

We therefore use a similar terminology but in a differentlagapion. For data traf-
fic, proactive protocols open all routes with or without figfwhile reactive pro-
tocols open routes if and only if there is traffic to send ort thate. With respect
to mobility, a proactive mobility management protocol ¢régs a maintenance duty
with or without change in the network topology, while theatdze one triggers a
maintenance duty if and only if there is an unanticipatecdkogical change that
effectively impacts the structures.
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2.2 Challenges of Predicting Mobility

As the potential gain from the reactive mobility managenuamicept comes from
its capability to correctly predict a future topology, tHeatlenge is therefore to de-
sign efficient mobility prediction techniques. The perfamae of a mobility predic-
tion schema may be quantified by evaluating its predictioare¥et, a prediction
schema is a complex process, and potential predictionsamay come from differ-
ent factors. Similarly to the analysis of mobility models propose to decompose
a mobility prediction schema into functional blocks, thealgze the error created
by each block.

The objective of a mobility prediction schema is to predezlrmovement patterns
or traces. Depending on the approach, a mobility model géeetraces, or the
model is extracted from traces. In both cases, the predisthema is based on a
mobility model and its patterns. Therefore, the first stepriedicting mobility is
modeling this mobility. It is therefore straightforwardgee that the first source of
potential prediction error comes from the realism of a mgbihodel with respect
to the real movement patterns. If the traces are not actynaiedeled by a mo-
bility model, this error will not be able to be corrected byeevhe most complex
prediction models.

Definition 3 (Realism) The realism is the depiction of a feature as it appears in
life, without error, interpretation or embellishment. A miity model, thus its func-
tional blocks, should therefore be as realistic as possible

The realism of a mobility model may be evaluated by compatsgynthetic traces
with real traces obtained through a measurement campdigme Hifference lies
within an acceptable gab, one say that the mobility modebleas validated, and
thus has a small realism error. If not, the realism error magignificant. For ex-
ample, modeling vehicular motions with the random waypawedel generates a
significant realism error. As this process of validating abitity model requires
significant financial and manpower resources, anotherisalig to compare a mo-
bility model with another model that has already been vatidaT hat is the solution
chosen by VanetMobiSim [4], a realistic and validated velac mobility model
that we will use in this paper. Although each application issealistic mobility
model, such as pedestrian or or vehicular mobility, we tadéhe latter as vehic-
ular mobility patterns show non-uniform distributions afrs and velocity coming
from a strongly restricted mobility helping to reduce thaigrity error. Moreover,
the concept of trajectory may be easily seen in vehicularanst

Macroscopically speaking, a mobility model may be decoragasto two function
blocks:

e Trajectory Modeling— It is defined as the probable course of a node in a mobile
system
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e External Configuration— It is composed of random configuration parameters,
as well as external influences on the trajectory modelingh s1$ the impact of
traffic accident on traffic management

A prediction model must act on both blocks, and its error$ bél evaluated with
respect to its ability to follow each block. Therefore, agdcion model may also
be separated into the following blocks:

¢ Kinematic Model- The kinematic model aims at reproducing the trajectory
modeled by the mobility model as adequately as possible.gkediction model
may only have access to a limited information on the reatttayies, a variance
exists between the modeled and the predicted trajectomedicg an adequacy
error.

¢ Kinematic Hypothesis—Since the complexity of most of the real motion pat-
terns exceeds the ability to develop a kinematic model, thblpm is usually
relaxed using hypothesis on the kinematics patterns. Faonple, a model could
assume a fixed velocity between two successive trajectapges. If the hy-
pothesis is invalid, then the adequacy error is furtherdased.

e Prediction Criterion— The prediction criterion is the mechanism that detects
a change in the motion patterns according to the predictiodah When the
criterion is invalidated, the prediction model creates amgrprediction and thus
needs to be updated. The criterion therefore controls tagwe predictability of
the motion patterns modeled by the prediction schema. Ebengb prediction
criteria are distance between two nodes, or constant speed.

Similarity
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Figure 1. lllustration of the relationship between Realisobility and Prediction Models

Figure 1 illustrates the interactions between the mobhititydeling and prediction
blocks. The accuracy of the interaction between the diffieléocks is represented
by prediction errors, which we classified in four categaries

Definition 4 (Adequacy) The adequacy reflects the similarity between the motion
models used by the kinematic model and the modeled trajestdirthe two models
are identical, or yield to identical results, one say that ttvo models are adequate.
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The hypothesis plays a crucial role in the adequacy and shtduls be wisely
chosen.

Definition 5 (Predictability) The predictability is a time interval between which
the prediction criterion remains valid or within an acceptea errore.

Definition 6 (Similarity) The similarity reflects the relative variance of the mod-
eled trajectories between successive criteria. Indepetigléo the adequacy, it re-
flects the extends of the error if predictability is miscddted or not available.

The adequacy is obtained by the comparison between theetimtinematic mod-
els employed by the prediction schema and the mobility mods adequacy is
maximized when the two models are identical, and it is mingdiwhen they to-
tally diverge. Usually, the objective is to develop kinemmamhodels that fit best to
real mobility patterns. For example, using a kinetic firgteyrmotionz = v - t + xq
to model vehicular mobility is highly inadequate and wilateto a strong diver-
gence of the prediction model. In opposite, using such tineadel on the Random
Waypoint Model leads to a perfect adequacy.

As the time during which the hypothesis used by the kinenmatdliction model
remains valid also controls the time interval during whible triterion remains
valid, the predictability depends on the analysis of théista of the hypothesis.
However, this study cannot be obtained in real-time, buy @nposteriori as the
prediction model only has a partial access to the mobilitgef's parameters. For
instance, a car may be able to transmit its position and itglbat not its desti-
nation, as it might be unknown, subject to external factorssimply subject to
privacy protections. Accordingly, an average predictgbihust be learned based
on the history of previous movement patterns, or statikyiohtained if the motion
patterns are modeled by an analytical model.

The similarity is obtained by measuring the variance behnsgccessive values
of the criterion. The similarity is minimized when no coatbns exist between
past and future values, while it is maximized when the futakele may be fully
extracted based on past ones. For example, vehicular nyamiély have complex
patterns but benefit from a large similarity.

Now that we defined the different relationships between tgous functional

blocks in Figure 1, we are ready to define the prediction egemrerated by a pre-
diction schema. As this error depends on the criterion torbdipted, we use the
general term "Criterion Prediction Error", and define ittwiéspect to the mobility
patterns.

Definition 7 (Criterion Prediction Error) It represents the order of magnitude
between the true and the predicted criteria. The objectve iminimize this error
by either changing the sensitivity of the criterion withpest to mobility predic-
tion errors, or improve the parameters controlling this@trThe criterion error is
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defined as
Oy+717+&-v)
where

~: represents the realism error

T: represents the adequacy error

&: represents the predictability error
v: represents the similarity error

We summarize the process of predicting mobility and illatgtrthe criterion pre-
diction error in Figure 2. Assuming the real trajectory doled by a node started
at timet = 0, the first step is to model that trajectory with a mobility nebdf the
modeled trajectory is not similar to the "real" trajectamg create a realism errot
The next step is to predict the modeled trajectory with atikingrediction model.
Once again, if the predicted and the modeled trajectoresatridentical, we gen-
erate an adequacy error The predicted trajectory is considered valid during the
average predictability interval. If the criterion changes before the end of this in-
terval, a predictability errof is generated, which is illustrated at time= 15 on
Figure 2. Yet, the extends of this error also depends on thiesity. Indeed, if two
successive criteria are close, the predictability erraniisimized. In the contrary,
the error will be maximized. This is illustrated by the casgdr (2) on Figure 2.

Figure 2. lllustration of criterion prediction error

2.3 Performance Evaluation

Previously, we introduced the novel concept of reactiveifitplonanagement, and
also provided a definition of the errors generated by a ptiedienodel when used
in conjunction with the reactive mobility management. Evkaugh the perfor-
mance of a prediction model is provided by the analysis optleeliction error, the
performance of the reactive mobility management approsettually controlled
by the predictability interval, defined as the time interval between two successive
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valid criteria. Indeed, as the reactive approach startsiatereance process roughly
at the instantaneous predictability interval (i.e. whemdhterion is invalidated), a
frequent maintenance is requirea\ifs short, while a seldom maintenance may be
reached if\ is long.

When the predictability interval is significantly reducedtoo small to be effi-
ciently used, the reactive maintenance falls into a degeé@eicase which is equiva-
lent to the proactive maintenance, where the maintenampezisdically performed.
Accordingly, the performance of a reactive mobility managet tends to a proac-
tive mobility management.

Two parameters are therefore required to evaluate therpeafce of the reactive
mobility management: therediction errorand theprediction performanceBy
comparing them for various strategies, we may evaluate isliae best choice for
a mobility protocol:

e Proactive Strategy: The node periodically starts the maintenance process at
each time intervak < .

- Prediction Error:O(y + 7 + K - v).
- Prediction Performance® (k).

e Adaptive Strategy: The node which generated the predictions corrects them at
the end of the average predictability interval.
- Prediction Error:O(y + 7+ & - v).

- Prediction PerformanceO (¢ + \).

e Reactive Strategy:The node which criterion changed immediately notifies the
neighborhood. The predicted trajectory is therefore abeck at the exact pre-
dictability interval\.

- Prediction Error: O(y + 7).
- Prediction Performance®(\).

As it may be seen, the major benefit of the reactive approatiaighe predictions
are updated roughly at the same time as the mobility parasetanceling the
predictability and the similarity errors. This yet comesgferformance depending
on the exact predictability interval. The challenge is therefore to jointly address
the adequacy and realism together with predictability.

3 The Kinetic Graph Framework

In the previous section, we defined the reactive mobility aggament, as an optimal
management strategy for mobile networks. The objectivhiefdection is to define
a framework indicating the guidelines to follow in order toglement a reactive
mobility management protocol. Most of the protocols in MANEare based on
graph theory. Although this field created efficient alganthfor ad hoc networks,
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its major drawback remains its limitation to quasi-stattworks and to proactive
mobility management. Graph Theory is also a good candidatié implementa-
tion of reactive mobility management schemes, as any MANBTogol based on
graph theory could benefit from the proposed framework.

In this section, we therefore introduce tkenetic Graph Framework to adapt
any graph algorithm to reactive mobility management. Thenfework consists of
four steps: (i) a representation of the trajectories, (igoanmon message format
for the posting of those trajectories, (iii) a time varyingight for building the
kinetic graphs, (iv) an aperiodic neighborhood maintepaiiée also provide two
examples of possible time-varying weights. The framewa&sdnot specifically
target a particular area of MANETS, but we will provide laterthis paper an
application example of its use in the case of broadcastingelmcular Ad Hoc
Networks.

3.1 Preliminary Concept Definitions

Before moving forward, we provide some necessary prelingidafinitions related
to graph theory. Irstaticgraph theory, the following definitions are usually used:

e Link Weight — It is a value attributed to the cost of using a link between two
graph vertices.

e Criterion — It represents the choice of a link, as a function of the linkghg
which insures the optimality of the graph algorithm

Thekineticgraph theory basically uses the same definitions, but adéptaoving
structures:

e Time Varying Link Weight — It is a continuous and integrable function related
the evolution of the link weight with time. It needs to be danbus in order to
insure a value for the link weight at each time instant, asd aitegrable as two
time varying link weights are compared by their primitiveegrated over the
simulation time.

e Transition— Itis the precise time at which one time varying link weightbmes
better than another one.

e Activation — It is a time interval, between two successive transitionsjng
which a link is active and valid.

¢ Kinetic Criterion — It represents the choice ofatof links as a function of time
varying link weights and activations, which insures themoptity of the kinetic
graph algorithm.

Based on the previous definitions, we now describe the fapssof the Kinetic
Graph Framework.

10
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3.2 Trajectory Knowledge

In order to model trajectories in Kinetic Graphs, we need efindd the motion
hypothesis in order to reduce the complexity of the kinecnatbdel. For example,
if we can assume a fixed velocity or a fixed acceleration betve®e trajectory
changes, we may either use a first order or a second order &titemodel. The
worst case scenario is if we cannot assume any kinematidhggis and thus must
use a sophisticated stochastic prediction model. In tipgpave chose to assume a
fixed velocity between two successive trajectories, antetbee used a first order
prediction model possibly improved by a stochastic valiflitnction.

According to the analysis on the prediction errors, it isiobs that a first order

prediction model produces a significant adequacy error vasipect to vehicular
mobility, but by wisely choosing the kinetic nodal degreprediction criterion less

sensitive to adequacy errors than the distance, we will ketalbeduce the effect of
the adequacy and predictability errors. Indeed, it is noaihee a node slightly mis-
modeled its neighbors’ trajectory, meaning that the neagl not exactly where

the node thinks it should be (adequacy), or the neighborgdthits trajectory be-

fore the node thought it would (predictability), that thedeoneeds to update its
nodal degree. Finally, the realism depend on the mobilitdehemployed for the

simulations. As we chose to use VanetMobiSim, a realistit\alidated vehicular

mobility model, the realism error will be limited. We yet akvledge that using

the nodal degree in order to reduce the prediction errornglathat cannot be ap-
plied to all protocols. We let the definition and use of monglssticated stochastic
kinematic models to future work.

We base our trajectory computation on Location Informatishich may be pro-
vided by the Global Positioning System (GPS) or other soh#iexposed in [5]
or [6] and exchanged by means of beacon messages. Velocitybmalerived
through successive location samples at close time instaletalso assume a global
time synchronization between nodes in the network whicHccalso be obtained
by the GPS system. Accordingly, we defingy, dx, dy as the four parameters de-
scribing a node’s position and instant velocitythereafter callednobility.

Over a relatively short period of timé, we assume that each such node, say
follows a linear trajectory. Its position as a function ahé is then described by

Pos;(t) = , 1)
yi +dy; -t

I Unless otherwise specified, we are considered moving in altmensional plane.
2 The time required to transmit a data packet is orders of nbagdmishorter than the time
the node is moving along a fixed trajectory.

11
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wherePos;(t) represents the position of nodat timet, the vectoffz;, ;] denotes
the initial position of node, and vectofdz;, dy;]* its initial instantaneous velocity.
Let us consider nodg¢ as a neighbor of. In order to let nodé compute nodg’s
trajectory, let us define the squared distance between ricie; as

D};(t) = D3 (t) = [|[Pos;(t) — Pos;(t)[|?
2
l’j — T; n dﬂl‘j — dﬂ?l

Yi — Vi dy; — dy;
= aith + bijt + Cij, (2)

wherea;; > 0, ¢;; > 0. Consequentlyy;, b;;, c;; are defined as the three parame-
ters describing nodesand j mutual trajectories. Ananj(t) = a;t* + bt + cij,
representing’s relative distance to nodg is denoted ag’s linear relative trajec-
tory toi. Consequently, thanks to (1), a node is able to compute thesfposition

of its neighbors, and by using (2), it is able to extract angimigoring node’s future
relative distance.

Finally, considering as nodes maximum transmission range, according to the Unit
Disk Graph (UDG}, as long aD;;(t) < r*, nodesi and;j are neighbors. There-
fore, solving

2 2
Dl-j(t) —r“=0
a,-th + bijt + cij — r? = 0, (3)

givestlfjmm andt;$ as the time intervals during which nodeand; remain neigh-
bors.

3.3 Neighborhood Discovery

Basically, theKinetic Graphneighborhood discovery procedure makes a node de-
tect changes in its neighborhood without exchanges of gieabbeacon messages.
During this phase, each node broadcasts a sindlello message indicating its

3 A Unit Disk Graph is a graph in which every two nodes are coteteavith an edge if
and only if they are at a distance at most one. Up to normaizah UDG corresponds to
a graph where every two nodes are connected if and only ifdheyat a distance at most
the homogeneous transmission range.

4 In order to take into account possible collision and paasetés, @l ello message is sent
a configurable number of times. Unless otherwise specifiedsend eacl#/ ello message
3 times.

12
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presence in the neighborhood, and transmitting its mglpktrameters. Such mes-
sage is emitted using maximum transmission power in ordeyaoh the maximum
number of neighbors, and is never forwarded. Thanks to ntypbiledictions, upon
completion of this discovery procedure, nodes in the néiwwave an accurate
knowledge of their neighborhood, and as long as their neighkeep on moving
along their initial linear trajectories, there will be noeteto refresh it by send-
ing new H ello messages. If such prediction becomes invalid due to an digped
event (i.e. trajectory changes or disconnections), thgees/e node spontaneously
advertises its new parameters, refreshing the predictioagvent-driven way.

In the rest of this section, we will list the content and fotrohgeo-localization
information, and then discuss the cost of transmitting slath.

3.3.1 Geo-localization Data Format

In basic simulation environments such as ns-2, Qualnet oie@geo-localization
data is usually based on Cartesian coordinates and theatorislclock for time
references. However, in real vehicular deployment, it ids#oned to directly use
the coordinates provided by a GPS-like system (and A-GP$ftwor location),
whose benefits are twofold. First, it provides a standareregice coordinates, and
second, it ensures a global synchronization based on thea@PS clock.

The first data that the Kinetic Graph needs is a sampled pogifia node. It may
either be represented by Cartesian coordinafeand Y or GPSlongitudeand
latitude, encoded in 4 bytes each. The speed vector is also crucialctoract
prediction and also needs to be included in a geo-locatimatiessage. It may either
be represented by a normalized Cartesian projection ofptbedsvector, iex and
dy, or by the GPSazimuthandvelocity The transmission of the speed therefore
requires two coordinates encoded in 4 bytes each. Finaihg is also required
in order to set the correct time scale for the prediction.metistamp may either
be sampled from the simulator’s clock or by the GPS atomiclcloefore being
transmitted. In both cases, time is encoded in 8 bytes. Hl,tthte transmission
of geo-localization information requires a transmissioerbead of 24 bytes per
message.

We illustrate in Figure 3 an layout example of a geo-locdéillmamessage that is
exchanged between two nodes implementing the Kinetic Grapimework.

3.3.2 Discussion

Transmitting geo-localization data is a tradeoff betwdenpotential benefits ob-
tained by network protocols and the cost of their transmisdndeed, it is expected
that network protocols will need the geo-localization datéhe sender and also of
the sender immediate neighbors. Accordingly, as the n&tWwecomes dense, the
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Figure 3. Hello Packet Containing Geo-localization Infatimn

overhead induced by the transmission of these geo-lotializdata increases sig-
nificantly. Figure 4 illustrates the cost of the transmiasibgeo-localization data as
a function of the node degree. We can see that transmittiovdagalization without
compression becomes a serious limiting factor for efficrattvork usage, as each
packet could reach more thanbytes for dense networks. When using the com-
pression proposed in [7], we can significantly reduce thaswtback, which in turn
could help improve mobility protocols in general, and Kiné&raphs in particular.

12s
1500 .

Node ID
- - Cartesian
GPS
== Compressed Cartesian

. Compressed GPS
1000 ~

5001 -7

Neighbor Discovery Overhead [Bytes/packet]

(=)
|

5 1 15 20
Node Density [neighbors/node]

Figure 4. lllustration of the per packet overhead for gemalization data transmission

3.4 Time Varying Link Weights

In this section, we describe two popular link weights usedjriaph theory and
which could be applied to kinetic graphs. Based on thosem®ig graph can be
build and dynamically updated. Most of the graph algoritlumsld be adapted to
use those criteria, however, as mentioned in the introdngtart of this paper, it is
important that graph protocols be distributed and locatdkdingly, we suggest as
potential targets localized graph constructions desdnibég].
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3.4.1 Kinetic Distance-based Weight

The power cosffunction, required to transmit between nodemndj at timet, is
defined asP;(t) = C - Dg(t) + v, wherea > 2 and for some constants As
we assume free space propagation and homogeneous antearageristics, we
seta = 2 andC = 1. The constant represents a constant charge for each trans-
mission, including the energy needed for signal processmernal computation,
and overhead due to MAC control messages. However, sincesstere perfect
channel, and that the election is distributed and does ricamuextra burden on
any particular nodey is common to all nodes and is not of great significance when
comparing power costs. Therefore, without loss of gengralie assume = 05
and define

P;(t) = D?j(t) = a;;t* + byt + cij 4)
as the power cost function for the weight of tkmetic Graphs By choosing the
distance between nodes as the link cost, one obtains minipmuwer routes that
help preserve battery life (see Figure 5).

Figure 5. The power function, where each parabola represkatenergy needed to reach
each neighbor of nodeas a function of time

We then define
pi(t) — e—ﬁi(t—ti) (5)
as the probability that a nodeis continuing on its present trajectory, where the

Poisson paramet% indicates the average time the node follows a trajectony, an
t; the time its current trajectory has begun (see Figure 6).

Assuming independent node trajectories,

tiB;+t;8,

pit) = pult) -ps(t) = & NI < hule) ©®)

describes the probability that nodésand j are continuing on their respective
courses at time, which will be considered as thaability® of link 7;. The modi-

® Therefore, Power and Distance will later be interchangeabéd.
6 The probability that the mutual trajectory between two rsogenains identical after both
nodes have changed course at the same time is negligible
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Figure 6. The stability function, where the probability Bonodei to behave as predicted
decreases exponentially

fied power cost below probabilistically weights the powestdd, (¢) to reflect the
link’s stability.

Finally, since we aim at suppressing periodic beacon messagnode that will

shortly leave the neighborhood must be automatically resddvom the neigh-

boring table. We usé? as atimeoutcounter. Upon expiration, it will remove the
corresponding neighbor from the table. The link weight cated so far is able

to dynamically represent the energy cost between two moloitkes. However, it

does not represent the actual capability to reach the neightore specifically if

two nodes stop being within mutual transmission range. kar tatter, we must
add a function which invalidates a link weight as soon as teigimbors stop being
neighbors in the Unit Disk Graph sense. Accordingly, to espnt the node’s finite
range, we use an inverse sigmoid function

. 1
Sigm;(t) = PR D) (7)
whose value is equal tbas long ag < t and thereafter drops g wheret;? is

computed as described in Section 3.2.

We finally define

i (1) » e~ (Big)(t—tij) 1
Wii(t) = — -9 ii(t) = — . - 8
i) Py;(t) gy (t) aijt? + byt +cij 14 @) ®)
Rt ) .
Wi (t) = — 9)

aijt2 + bijt + Cij . 1 —+ 6a-(t—t§;’)

as the composite link weight between two neighbors (see&igu A low modified
power cost favors a low power cost with high stability. Weéd#wen six parameters
aij, bij, cijy Bij» tij, andti? describinglV; () as the time varying weight of a link
between two nodes inléinetic Graph

In order to clarify our approach, let's consider the sitoatilepicted in Figure 8-C.
Node: tries to find the best next hop node to reach a far destinatide.rifo do so,
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Figure 7. The composite link cost function, where we can Beebst increase due to the
link’s instability.

it will consider the distance separating it from its neigty@nd the stability of the
respective links, in other words, the expected length oféigihbors’ trajectories.
Figure 8-A reflects the probabilities nodgsandj, are not to have changed their
trajectoriest;, andt;, are the time they actually began. As it can be seen, attijme
to representing the execution time-the probability ngdbeas not to have changed
its trajectory is bigger than,. Therefore, as depicted in Figure 8-B, even though
nodejs is closer to node and has a similar trajectory, this link is less reliable than
j1's. However, at time,,..,.,, nodej, has a relatively more reliable link and follows
a similar trajectory that node Therefore, at this time, node@utomatically changes
its next hop neighbor, and this, without any exchange of agss

t

,‘ vi{
=0 j;

[
A x f j2
RCRRTS

t

stochastic link cost

probability of
trajectory existence

Figure 8. Topology example

3.4.2 Kinetic Nodal Degree Weight

In Graph theory, besides the Euclidean distance, the nadakd is also widely
used, as it provides high data spreading efficiency instéamhoweight structure.
While the former is popular as a criterion for routing praib@.e. Distance Vector),
the latter is very popular for broadcast and multicast pol®y as a node with a high
nodal degree has a larger diffusion potential.

Similar to the euclidean distance, the nodal degree maytesapplied to Kinetic
Graphs as a time varying link weight. We explain in this sattithe method for
modelingKinetic Nodal Degreesn MANETS.

As defined in Section 3.2, we model two nodesd; mutual trajectory as

D?j (t) = CLZ'jt2 + bijt + Cij (10)
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Consequently, thanks to (10), a node is able to compute theefposition of its
neighbors and is able to extract any neighboring node’sdutlative distance.

Consideringr as nodes maximum transmission range, as lon@a&) < 2,

nodes and; are neighbors. Therefore, we obtajﬁm andt}? as the time intervals
during which nodes and; remain neighbors. Consequently, we can model nodes
kinetic degree as two successive sigmoid functions, whezditst one jumps to
one when a node enters another node’s neighborhood, anddbedone drops to
zero when that node effectively leaves that neighborhoee Esgure 9).

to
t{jrom tj t

Figure 9. Double sigmoid function modeling a link lifetimetitveen nodé and nodej
Consideringnbrs;(t) as the total number of neighbors detected in ndsleeigh-
borhood at time, we define

nbrs; (t)

1 1
Deg;(t) = kz:%] <1 +exp(—a - (t— tgrom)) g exp(a - (t — t?»)

as node’s kinetic degree function, wherg ™ andt!° represent respectively the
time a node: enters and leaves neighborhood. Thanks to (11), each node is able
to predict its actual and future degree and thus is able tagbkeely adapt its cov-
erage capacity. Figure 10(a) illustrates the situatiorifioee nodes. Node enters

i's neighborhood at timeé = 4s and leaves it at timé = 16s. Meanwhile, nodg
leavesi’s neighborhood at timé = 20s. Consequently, Figure 10(b) illustrates the
evolution of the kinetic degree function over

Finally, the kinetic degree is obtained by integrating (11)

oo [ k=nbrs;
Deai(t) = [ ( > : 1 >) (11)

= l+exp(—a-(t—t]""") 1+exp(a-(t—t}))

For example, in Figure 10(b), nod&inetic degree is< 32.

Similarly to the previous section 3.4.1, the kinetic nodadicee may also be stochas-
tically weighted by the probability of the existence of thekl The last task is
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Figure 10. lllustration of nodes kinetic degrees

therefore to consider the uncertainty of a predicted deyeedding the stability
function (6). Accordingly, we obtain a criterion reflectingdes actual and future
degree, yet biased by the uncertainty of the link betweereafiective neighbors.

By using substituting (6) to (11), we define

- oo [ k=nbrs; 1
Degz(t) :/t ( kzzo <1 + exp(—a ] (t | t£r0m>>
1+ exp(al- (t — o)) ~exp(—(8i + Bi)(t — W»)) (12)

1
Using the same topology as Figure 10 and applying the unogrtaf predicted
degrees, we obtain a stochastically predicted nodal detgpieted in Figure 11.
Initially, node i has a degree equal fosince nodej is in its neighborhood and
both initiated their trajectories at the same time. Yet,im® telapses, so does the
probability both nodes have to keep their trajectories rétoee, the stochastically
predicted degree decreases. Then, at time4, nodei detects a new neighbar
and computes the time during which both nodes will be in rakigsvever, node:
initiated its trajectory before nodeésind;, consequently nodes Poisson function
is smaller than nod¢s (see Figure 11 bottom part). Thus, during the intervalenod
1 andk are in range, the nodal degree of nades not increase as much as it did
in Figure 10. Worse, its decreasing curve is sharper thaorieebetween nodes
and; taken alone. Similarly to Figure 10, at time= 16 and¢ = 20, nodesk and
j leavei’s neighborhood thus makings nodal degree decrease abruptly. The main
difference here between the two figures, is that the degrmeetistable during the
time two nodes are in range but decreases following the pilityeboth nodes are
still following their initial trajectories.
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Figure 11. Stochastically Predicted Nodal Degree

3.5 Aperiodic Neighborhood Maintenance

A limitation in per-event maintenance strategies is thglmeorhood maintenance.
While mobility prediction and the kinetic graph approaclowaito discard invalid
links or unreachable neighbors, it remains impossible tesipaly acquire new
neighbors reaching some other nodes’ neighborhood. Ttkeofaan appropriate
method to tackle this issue would limit Kinetic Graphs’ &@lito obtain up-to-date
links and effective kinetic weights.

We developed several heuristics to help Kinetic Graphsctietedes stealthily en-
tering some other nodes transmission range in a non-penaa.

Constant Degree Detection-Every node tries to keep a constant neighbor de-
gree. Therefore, when a noddetects that a neighbor actually left its neighbor-
hood, it tries to acquire new neighbors by sending a smakiiding message.
(see Figure 12(a));

Implicit Detection— A node j entering node transmission range has a high
probability to have a common neighbor withConsidering the case depicted
in Figure 12(b), node&: is aware of bothi and j;'s movement, thus is able to
compute the moment at which eithjeor i enters each other’s transmission range.
Therefore, nodé sends a notification message to both nodes. In that case, we
say that node implicitly detected nodg and vice versa;

Adaptive Coverage Detection-We require each node to send an advertising
message when it has moved a distance equal to a part of igsrtission range.
An adjusting factor which vary between 0 and 1 depends on dlde’s degree
and its velocity (see Figure 12(c));

All three heuristics may be implemented simultaneouskghter improving the ca-
pability to detect nodes stealthily entering other nodeghi®rhood. The adaptive
coverage contains an adjusting factor that can be tweakeddes send beacons
after having moved a large part of their transmission ramgereduce the bea-
coning overhead but also reduce the capability to detectnegghbors, whereas if
they send a beacon after having moved a shorter distanceppveve the capacity
to discover new neighbors at the cost of an increased beagonerhead. In this
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Figure 12. Three heuristics to detect incoming neighboesper-event basis

paper, we chose an adjusting factomof %

A second approach is identical to the information exchareg@g@ proposed in [9].
The idea is to determine the refreshing rate by a probabilsbdel with the fol-
lowing assumptions:

¢ All nodes are randomly distributed within a disk of arg@and the total number
of nodes inG,N, is known.
e For a short time interval of length t, each node moves indépetly toward a

random direction ir{0, 27) with a constant speed v that is uniformly distributed

in [0, vmax].
e The maximum transmission range of a node is dmax.

Under these assumptions, Li [9] calculated the probaddithat a new neighbor
moves into the transmission range of nedeithin a time interval oft. We ignore
the case of existing neighbors moving out of the transmmssiage of node u since
we already know this intervals.

The probabilityp;.;,, that nodes moves into transmission range of nadevithin
timetis

_ (d+r 228
Pjoin = Ja = 5,2 for0<r<2d
A _ wd?(r=2d) rd+r 2zS;
DPjoin = Sor fd—r Sor2 fO’I“’I“ Z 2d

Then, given that node u has n neighbors and the total numhsvd#s isN. the
probability that no new neighbor enters the visible neighbod of node u is

P1 = (1 _pjoin)N_n_l

Therefore, the probability that the visible neighborhoddade u changes is

Pchange = 11— y4
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Given a predetermined probability thresheld, we can determine the neighbor-
hood update intervalsuch thap.iange < pin-

4 Application of Kinetic Graphs to Broadcasting in VANETS

Broadcasting in VANETSs and ITS is a major application aimeoigroving driv-
ing safety or comfort. However, insuring that broadcastkptsare correctly de-
livered to all cars without wasting network resource is a tesearch objective. In
this section, we propose to improve broadcasting by empépthe kinetic graph
approach with link weights represented by kinetic nodafeesg. We introduce the
Kinetic Multipoint Relaying (KMPRprotocol which heuristic selects kinetic relays
based on nodes actual and future predicted nodal degressd Ba this, the topol-
ogy maintenance may be limited to the instants when a charie neighborhood
actually occurs. Our objective is to show that this appraactile to adapt a broad-
casting structure faster to dynamic topologies despitedymamism of vehicular
mobility, and this as a much lower maintenance cost.

We first provides a short description of the original MPR poaid and then de-
scribe the heuristics for the construction of the kinetickine using the Kinetic
Nodal Degree as time-varying link weight. Specificationstfe trajectory defini-

tion, neighborhood discovery, link weight, and aperiodiaimenance are similar
to those described for Kinetic Graphs in Section 3.

4.1 Multipoint Relays (MPR)

In order to reduce the effect of broadcasting messagesoads in the network, a
subset of nodes, callddultipoint Relays (MPR)is selected to be part of a relaying
backbone. In order to build this structure, each node gatkérops neighborhood
information and elects the smallest number of relays suahal 2-hops neigh-
bors are covered by at least one relay. Nodes notifies theatgp relays of their
decision such that each relay maintain a list of nodes, ¢éleltipoint Relaying
Selectors (MPR Selectomyhich has elected it as MPR. Finally, the relaying deci-
sion is made on the basis of last-hop address according foltbeing rule:

Definition 8 (MPR flooding) A node retransmits a packet only once after having
received the packet the first time from a MPR selector.

Figure 13 shows a node with its set of 1-hop and 2-hops nerghBagure 13(a)
depicts the initial full topology, while Figure 13(b) illtrates the MPR topology,
where solid circles are MPRs to the central nodes. Accolgititge central node is
part of the MPR Selector list of each solid circles nodes.
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(a) All neighbors retransmit (b) Only MPR nodes relay
broadcast broadcast

Figure 13. lllustration of flooding reduction using MPR

4.2 Kinetic Multipoint Relays (KMPR)

To select the kinetic multipoint relays for noddet us call the set of 1-hop neigh-
bors of node as N (i), and the set of its 2-hops neighborséd(i). We first start
by giving some definitions.

Definition 1 (Covering Interval) The covering interval is a time interval during
which a node inNV?(i) is covered by a node itV (i). Each node inV?(i) has a
covering interval per nodeé, which is initially equal to the connection interval
between its covering node i¥(i) and nodei. Then, each time a node iN?(7) is
covered by a node itV (i) during a given time interval, this covering interval is
properly reduced. When the covering interval is reducef, iwe say that the node
is fully covered.

Definition 2 (Logical Kinetic Degree) The logical kinetic degree is the nodal de-
gree obtained by (11) but considering covering intervatgead of connection in-
tervals. In that case;, " andt}’ will then represent the time interval during which
anodek € N?(:) starts and stops being covered by some nodg if).

Algorithm 1 Kinetic Multipoint Relaying (KMPR)

Require: Begin with an empty KMPR set.

1: Compute the logical kinetic degree of each nod&/if).

2: Add in the KMPR set the node iV (i) that has the maximum logical kinetic
degree. Compute the activation of the KMPR node as the marisavering
interval this node can provide. Update all other coveringrivals of nodes
in N2(i) considering the activation of the elected KMPR, then recampall
logical kinetic degrees. Finally, repeat this step untihables inV2(;) are fully
covered.

The basic difference between MPR and KMPR is that unlike MERPR does not
work on time instants but on time intervals. Therefore, aenizdnot periodically
elected, but is instead designated KMPR for a time intei®ating this interval,
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we say that the KMPR node is active and the time interval iedats activation.

The KMPR protocol elects a node as KMPR a nod#/ifi) with the largest logical
kinetic degree. The activation of this KMPR node is the latgevering interval of
its nodes inV2(i).

Then, each node having elected a node KMPR for some actngdhen a KMPR
Selector during the same activation. FinaKy{IPR floodings defines as follows:

Definition 3 (KMPR flooding) A node retransmits a packet only once after hav-
ing received the packet the first time from an active KMPRcsete

4.3 Performance Evaluation

We implemented the KMPR protocol under ns-2.29 and used RieGLSR [10]
implementation for comparison with KMPR. We measured se\sgnificant met-
rics for VANETSs: The effectiveness of flooding reductiorg ttelay before the net-
work receives a broadcast packet, the number of duplicatkeepmand finally the
routing overhead. We used a square simulation ared@f x 2000 with a node
density of8nbrs/node. For realistic results, we used VanetMobiSim, where we in-
creased the road segment length frdom: to 200m " . As we wanted to illustrate
the effect of mobility, we did not include pause time at thd eha trip. Finally, we
simulated the system at steady statelfa@i's, and each point is plotted with a 95%
confidence interval.

As the objective is to evaluate KMPR with respect to an insirggadynamism of the
network, the straightforward choice is to increase the gpakhough this remark
is straightforward for random maobility, realistic vehiaulmobility patterns are an
issue. Indeed, the real velocity effectively reached byraceanot be configured
apriori, as it is subject to external influences as illustan Figure 1. So, if we
cannot control the velocity, we may influence the paramdtetscontrol it. As it
has been observed in [11], the length of a road segment betiweesuccessive
intersection has a significant impact on the real speed eekloh cars, as cars are
required to reduce their speed and stop at each interseéttmordingly, when
increasing the dynamism of vehicular networks, we will atljuincrease the road
segment length.

In this section, we also illustrate the impact of the pradicerrors on the Kinetic
Graphs. For the adequacy error, we compare the efficiendyeoKinetic Graphs
using random and vehicular mobility, using respectively Random Waypoint
Mobility (RWM) model and VanetMobiSim [4]. As the trajectes generated by

7 As shown in [11], increasing the length between two inteisas is a more significant
method in order to increase the real vehicular speed thatothieggured average speed.
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the RWM are in total adequacy with the ones used by the framewte adequacy
error is canceled in the case of random mobility. Accordmghe framework, we
also nullified the predictability error by updating the sture at each predictability
interval, yet as the cost of a maintenance strictly tidedhéodredictability interval.
Therefore, an increasing topology dynamism from an ine@e@apeed or shortened
road segment lengths will reduce the predictability indéand thus increase the
maintenance cost of the kinetic structure. Finally, asaalyementioned before, by
using a realistic vehicular mobility model instead of orapdom mobility, we will
also be able to significantly reduce the realism errors inewatuations.

A general preliminary remark is that the MPR protocol, whitgs been obtained
from graph theory, is able to build a connected dominatingggerfect conditions
In other words, on a static network and when the wirelessroélas perfect, i.e.
each broadcast packet is corrected received by all neighlaibhin the intended
communication range, the subset of relays created by MRR floe optimal relay
set required by a broadcast packet to be correctly delivier¢lde entire network.
Unfortunately, thgerfect conditionassumption is wrong in practice, and mobility
added to a challenging wireless channel make the MPR seifisagily deviate
from its initial optimality. Either more relays are desig@@ that are really neces-
sary, or conversely, relays are missing and thus the retdyesemes disconnected.
In any case, there is not much the original MPR algorithm |e &ibdo in order to
reduce this issue, as it faces the same limitations as abhgobdeveloped for mo-
bile wireless networks. As previously discussed, the djeof the Kinetic Graph
framework is to suppress the periodic maintenance thatminaproves the broad-
cast channel’s reliability. In the rest of this section, Wasitrate how the relay set
based on actual and future topologies and not on past ongslsmby improving
the broadcast channel efficiency, the KMPR protocol is abteduce the deviation
of the MPR protocol from the optimal MPR set in perfect coiuatis.

Figure 14(a) and in Figure 14(b) first illustrate forwardipgcket ratio represent-
ing the size of the MPR set. According to the original MPR pool, the optimal
number of MPR relays)/ PR°" is proportional toy/n, wheren is the number of
nodes in the network, or more generally, the density of nsgh per node. As the
density used for these simulationstiseighbors/node, the optimal number of MPR
relays isM PRP* = ForwardPacket Ratio®®* = 2. As it may be observed in the
two figures, both the MPR and KMPR sets are larger than thenaptialue. How-
ever, KMPR is able to significantly reduce the gap betweerMR& set and the
optimal MPR set. This reduction is particularly exacerfatethe case of random
mobility, where the adequacy is perfect. When consideruohggaacy errors with
vehicular mobility, KMPR also deviates from the optimal,d®it still remains bet-
ter than MPR. The impact of the predictability on the KMPRiséitnited thanks to
the nodal-degree criterion in both figures. Accordingly,cae see that the Kinetic
Graph framework is well adapted to highly mobile topologideen building and
maintaining a structure such as a relay set.
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On Figure 15(a) and in Figure 15(b), we further analyze tloaticast efficiency of
MPR and KMPR with the duplicate reception ratio. The ratis baen computed
as the number of packets duplicated per packet sent. Cleadlyplicate packet is
useless in term of broadcast efficiency when the broadcasbrieis connected.
Accordingly, the smaller the duplicate ratio is, the beit¢he broadcast efficiency.
Similarly to the forward packet ratio, KMPR is able to sigcdtly reduce the
number of duplicate packets that are carried in the wirabessork compared to
MPR. As the decision to forward a packet, and possibilityegate a duplicate
packet, also depends on the relay set, KMPR manages to keegeancurate relay
set with respect to the instantaneous topology. By comgahe duplicate ratio
between random and vehicular motions, i.e with perfect addeed adequacy, we
can clearly see the effect of the adequacy error, as theaglratio is increased
by a factor of 40%. As it may also be observed, the duplicate imaffected by a
reduced predictability, a feature that is specific to the Mi@Rnected dominating
set. Indeed, in standard connected dominating sets (CD®)ay node forwards
any packet in its queue that it sees for the first time. Theeefas the KMPR relay
setis not influenced by the predictability interval, neitbleould the duplicate ratio.
Yet, a (KIMPR-CDS node forwards a packet based on the lasirfiopnation (the
node that elected it as relay). Therefore, a difference éetvmthe topology based
on which a relay has been elected and the current topologgrhespact. And due
to the reduced predictability, thus an increased mainemeate, the new (KYMPR
set cannot be updated on time for the a perfect adequacyarabe, set is updated
on wrong topology information for a reduced adequacy. Ireothords, there is a
deprecancy between the nodes that elected a (K)MPR nodéarid)MPR node
itself. Luckily, KMPR reduces this deprecancy compared t®R\ as it manages
to reach respectively a 40% and 10% reduction in the duplicio with perfect
adequacy and reduced adequacy. Indeed, KMPR bases therelattthe current
state information and not on the past, and also significaetlyces the maintenance
cycles as we will show in Figure 17(a) and in Figure 17(b). @ag for the Kinetic
Graph framework to further reduce the influence of the ptaditty is to increase
the predictability interval, in other words, to develop armaccurate prediction
model than the linear first order model, even in the case afaanmotion. That is
part of future works.

Second, we illustrate in Figure 16(a) and in Figure 16(b)ehd-to-end delivery
delay, which represents the time required to successfallyat a broadcast packet
to the network. We artificially only consider the deliveryiaeof packets that may
be correctly delivered on the first broadcast attempt. lddee are interested in
measuring the efficiency of théonnected Dominating S&rmed by the MPR,
resp. KMPR nodes, and thus neglect dropped packets andssiweeetransmis-
sion attempts. Nodes that do not receive the first copy of adwast packet form
an Unconnected Dominating Sale can clearly see on both figures that the de-
lay is significantly reduced when using kinetic graphs. Te@asons are behind this
feature. As KMPR builds its topology on actual and futurefguration, the struc-
ture is always adapted to the correct topology. Second, asdie maintenance
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messages are not sent, the channel is more available fotrdéta. And as we
will show later, the ratio of nodes to which a broadcast patkdelivered is also
significantly bigger than with MPR.

We may then see on Figure 17(a) and in Figure 17(b) KMPR’s teaance over-
head in bytes compared to MPR. As a reminder, the mainteracbead is mea-
sured by computing the ratio of the number of bytes requicedHe maintenance
with the total number of bytes (traffic and maintenance)dfamed on the wire-
less network. We can see that by using the Kinetic Graph fnarie KMPR is
able to significantly reduce the routing overhead ratio, gtincreasing the speed
or the road segment length, and thus reducing the predityahterval, KMPR’s
routing overhead ratio grows and even overpasses MPR’sethdas the Kinetic
Graph framework updates the structure at each predidtabilierval, the num-
ber of messages is worsen. Moreover, each kinetic messauyg lhgger due to
the transmission of position information and other kingosatiata, the overhead in
bytes is furthermore degraded compared to the packet cagrfibere are therefore
configurations, where the non-periodic approach might lmetker in term of main-
tenance overhead, but as we previously showed, this doesppbt to the other
broadcast efficiency metrics, such as a kinetic protocoéhisrnfrom an enhanced
topology knowledge compared to the non-kinetic approach.

Finally, Figure 18(b) illustrates thenconnected Dominating Set RatAll results
obtained so far have been averaged over tests &hemdes could obtain a copy
of the broadcast packet (we discarded tests where at leastade could not get
the broadcast packet). Due to the particular spatial digion of cars creating
clusters at intersections and a sparse connectivity indsstvor instance, frequent
disconnections occur for MPR. This figure therefore illasts the ratio of runs
which showed a disconnected graph with respect of the totaler of runs. It is
straightforward from this figure to see that, as KMPR is lesssgive to mobility
and adapts to dynamic topologies much faster, these teinpospatial discon-
nections are significantly reduced, further improving tekability of KMPR for
broadcasting in VANETS.
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Figure 14. lllustration of Forwarding Ratio vs. Predictipi
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In this section, we illustrated how MPR could be succesgfimiproved by the
use of Kinetic Graphs and use a Kinetic Mobility Managem¥vi. evaluated the
influence of prediction errors, such as realism, adequattyreapredictability error,
on the performance of the Kinetic Graphs. We compared KMPBRIgavior when
considering the Random mobility which has a low adequaay &t a high realism
error, and VanetMobiSim that has a high adequacy error batvaréalism error.
We also increased the predictability error by increasimgrtiobility of the ad hoc
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network and emphasized the relative stability of KMPR. Walfinshowed how

even by suffering from a high adequacy error, the use of time#a Degree instead
of a Kinetic Distance was able to limit the scope of the priadlircerror. KMPR and

the Kinetic Graph Framework therefore showed to be pagdityphdapted to highly
mobile networks.

We chose not to test KMPR with respect to the network deresityhe problematic
of this work is mobility and not density or scale. As the numbeMPR nodes for

a static configuration behaves@$+/density), and as MPR is a degenerated case
of Kinetic MPR, we expect the scale of KMPR to be similar to MPR

5 Related Work

Mobility management has been very early seen as a critiqainrement by any net-
work protocol when confronted to mobile terminals. In cilfunetworks, mobility
management aims at tracking users in order for calls or atbkular services to
be corrected delivered to them. It has been later extendddk users on-calls in
order to prepare a hand-off.

The very first and basic mobility management technique wasp#riodic and
proactive mobility management. As no apriory knowledgehef ¢volution of the
topology could be assumed, a maintenance process wasipatipttiggered. Very
early, the cellular network community understood that firiscess consumed a
large amount of an already scarce network resource anddlkiverefore be im-
proved. For example, the cellular system created the loieial mobility manage-
ment to track off-call users. When a cell-phone does not teekd precisely tracked
in a base-station micro-cell (i.e. during a call), then trentenance is limited to a
macro-cell called location area.

Yet, each micro-cell may contain a large number of cellplsotiat need to be
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tracked as precisely as possible in order to know when th#éychange cell and
avoid to interrupt the call. Cellular networks thereforeyaded the majority of
related work in mobility management for wireless commutiaces as it responded
to an industrial need. Since the knowledge of the trajedtaiywed by a cell phone
would let the network anticipate a hand-off and reduce thetemance overhead,
the most advanced solution for intra-cell mobility managatrwere also based on
mobility prediction techniques. As a matter of fact, the onty of works on the
application of mobility prediction techniques has beenealon cellular networks
and Wireless ATMs. Various solutions have been developanjing from user
movement history, Kalman or Particle filters, or neural reets. A review of the
state-of-the-art of mobility prediction techniques apglto cellular networks may
be found in [12].

At the early stage of mobile ad hoc networks, mobility hasnbeelely ignored,
as the major concern of the community was scalability wittpeet to density.
Yet, in recent years and following a similar path as that dfuta network, tech-
niques have been developed to replace the proactive withdaptige mobility
management. Successful applications have been proposéobfilogy manage-
ment [13,14], link availability [15,16,17,18,19], routeaalability [20,21,22], loca-
tion services [23,24] or geo-routing [25]. In each case,abgective was to adapt
the periodic maintenance to the dynamism of the mobile nétwar to choose a
link or a path depending of its maximum life duration.

Despite the fruitful results in adaptive mobility managemehe next step to a
fully reactive mobility management was never walked, or enarecisely, was but
has widely gone unnoticed by the MANET community. Indeedhatl been first
described in the field of data structures when confronted obil® objects. 10
years ago, the concept Kinetic Data Structures (KDS)as introduced byash
et al. [26], which is to the best of our knowledge the first descoiptof an ap-
plication of a reactive mobility management technique.sTtiopic has then been
widely studied in various areas such as mobile facility tmees [27], clustering
and routing [28], or shortest path [29]. A survey on KDS canfduend in [30].
Unfortunately, at the time of this fruitful developmentsgtpowerful distributed
graph algorithms were not available, and all protocols vdenesloped for central-
ized protocols.

By taking a step back and looking at the KDS and MANET commuathieve-

ments, we see that the former created solutions optimafipted to mobility, but
which could not be applied to a fully distributed network,il@htthe latter devel-
oped efficient distributed graph algorithms, which were adéapted to mobility.
It therefore appeared to us straightforward that the twoegghes were mutually
profitable. This observation gave then birth to #ieetic Mobility Management
and the Kinetic Graph framework that we presented in thigpagnlike any other
mobility management developed in cellular networks or inIMAT's, Kinetic Mo-

bility Managements fully reactive and has also been designed to be implerdente
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by any distributed graph algorithm.

6 Conclusion

As the bad performance of standard MANET protocols in vdhaicoetworks is
mostly coming from inefficient mobility management solaothis paper focused
on improving mobility management in vehicular ad hoc neksonsingKinetic
Graphsand mobility predictions. The objective was to offer an rai&dive to the
development of specific mobility protocols for VANET and ITilBdeed, the use
of standard MANET protocols in vehicular networks is a kesuis for industrial
partners and standardization bodies involved in the depéoy of VANET and
ITS, as it would ease the interoperability between fixed oeta; MANETS, and
vehicular networks.

We first described the challenges of predicting mobility @nicular networks and
then provided guidelines for adapting mobility protocalsinetic mobility man-
agement. By following these guidelines, standard prowéml MANET may be
efficiently operated for vehicular networks, as it suppeesbe periodic beaconing
process widely used by almost all mobility protocols, arsahcreases the time in-
tervals during which the mobile topology is correctly aigated. As an application
example, we depicted the improved broadcast efficiency@Kthetic Multipoint
Relaying (KMPR)rotocol compared to the original MPR protocol. This apptoa
is therefore able to efficiently maintain a communicatiocKimne for VANETS
and ITS, despite the dynamism of vehicular mobility.

In this work, we chose to use have a high realism but a bad adgquith respect to
modeling and predicting vehicular mobility. Yet, we chos®&iterion less sensitive
to prediction errors. An interesting extension could be Ibtamm a good realism
and a good adequacy. For this matter, more sophisticatetichoen models for

vehicular motions should be devised. Moreover, the appraséndependent of
the criteria used to build the backbone and various appesagiay be combined
and tested. Other mobility protocols could therefore beptatato kinetic mobility

management.
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